

Electron. J. Probab. 20 (2015), no. 64, 1-20. ISSN: 1083-6489 DOI: 10.1214/EJP.v20-3559

The iPod Model

Daniel Lanoue*

Abstract

We introduce a Voter Model variant, inspired by social evolution of musical preferences. In our model, agents have preferences over a set of songs and upon meeting update their own preferences incrementally towards those of the other agents they meet. Using the spectral gap of an associated Markov chain, we give a geometry dependent result on the asymptotic consensus time of the model.

Keywords: Voter Model; IPS.
AMS MSC 2010: 60K35.
Submitted to EJP on May 28, 2014, final version accepted on August 28, 2014.
Supersedes arXiv:1402.4216.

1 Introduction

The terminology of Finite Markov Information Exchange (FMIE) models has been introduced [1] [3] as a catch-all for the interpretation of Interacting Particle Systems (IPS) models as stochastic social dynamics. Many important and classical models fit under this two-level framework; the bottom level a meeting model among agents, and the top level an information exchange algorithm performed at each meeting.

For classic IPS models, such as the Voter Model, with a simple meeting algorithm the FMIE perspective is perhaps unnecessary. Coupling and comparison to random walks, among other methods, suffice[2]. In this paper however, we will introduce and study a (much) generalized Voter Model - inspired by the evolution of musical preferences among a group of friends - as an FMIE process.

1.1 The iPod Model

Here we introduce the iPod FMIE model. The underlying framework of the stochastic process is a weighted graphs \mathfrak{G} on N vertices. We will refer to each vertex as an agent and occasionally to our vertex set as I. Associated to the edges are symmetric meeting rates $\nu_{i, j}$ for $1 \leq i \neq j \leq N$. We assume that all meeting rates are normalized, i.e.

$$
\sum_{j} \nu_{i, j}=1
$$

[^0]for all agents i.
Each agent i is equipped at each time t with a probability measure $X_{t}(i)$ on $\{1,2, \ldots, \sigma\}$ which we will reference by its distribution $X_{t}^{k}(i)$ for $1 \leq k \leq \sigma$.

We consider σ as a fixed number of songs and $X_{t}^{k}(i)$ the preference of agent i at time t for song k. The stochastic process X_{t} updates over time as follows. Between every pair of agents i, j we associate a Poisson process with rate $\nu_{i, j}$ whose times we refer to as meetings between i and j. At a meeting time t between agents i and j, each agent picks a song σ_{i} and σ_{j} independently and distributed according to $X_{t-}(i)$ and $X_{t-}(j)$.

We interpret this as each agent choosing a song to play to the other agent based on their preferences. After agent i hears the song chosen by j he updates his preferences according to

$$
X_{t}^{\sigma_{j}}(i)=(1-\eta) X_{t-}^{\sigma_{j}}(i)+\eta
$$

and

$$
X_{t}^{k}(i)=(1-\eta) X_{t-}^{k}(i)
$$

for all other $k \neq \sigma_{j}$. Here $0<\eta<1$ is a fixed interaction parameter. Agent j updates her preferences similarly. It is immediate that if $X_{t-}(i)$ is a probability measure then so is $X_{t}(i)$. Note that we are implicitly working with cadlag paths.

Analogous to results on the consensus time of the Voter Model - for instance [7] or more generally [12] - in this paper we will estimate the fixation time (to be defined) of the iPod process. Interestingly, again similar to the Voter Model our proof will explore a connection between this process and the Wright-Fisher diffusion [7].

A special feature of the model (Proposition 2.3) is that the average (over agents) preference for a given song evolves as a martingale, analogous to the total proportion of agents with a given opinion on the voter model. This distinguishes the iPod model from many other variants of the voter model that have been studied [4].

Similar models, but with unidirectional updating of opinions, have been studied in the context of language evolution [11]. Our bounds (on the analogous consensus time as a function of the spectral gap) in our setting are sharper by a factor of $\ln (N)$, but we are unsure whether our methods would apply in their setting.

1.2 Fixation Time

We will be focused on estimating the fixation time $T_{\text {fix }}$ of the iPod process. Every time two agents meet at least one distinct song is played between them and so at least one of the σ songs is played infinitely often. Given that only one song is played infinitely often, we define $T_{\text {fix }}$ to be the last time any other song is played.

We note that $T_{\text {fix }}$ is not a stopping time and a priori could be infinite, i.e. if more than one song is played infinitely often. However, we will show that this is not the case and in fact $T_{\text {fix }}$ has finite expectation, the bounding of which will be our primary goal.
Theorem 1.1. There exists a constant $C(\eta)$ so that from any initial configuration of σ songs, the fixation time $T_{\text {fix }}$ has expectation

$$
\mathbb{E} T_{\mathrm{fix}} \leq C(\eta) \frac{N}{\lambda}
$$

where λ is the spectral gap of \mathfrak{G}.
The spectral gap λ of reversible Markov chain is interpreted as its asymptotic rate of convergence to its stationary distribution, and can be defined by the second eigenvalue of the chain's transition matrix [10]. In our setting, we define the spectral gap λ in terms of the edge weights $\nu_{i, j}$. First, for any function $f: I \rightarrow \mathbb{R}$ we define the Dirichlet form $\varepsilon(f, f)$ by

$$
\varepsilon(f, f)=\sum_{i, j} \frac{\nu_{i, j}}{2 N}(f(i)-f(j))^{2}
$$

The spectral gap λ is then defined in our context by the extremal characterization

$$
\lambda=\inf _{f: I \rightarrow \mathbb{R} \mid \operatorname{Var}(f) \neq 0} \frac{\varepsilon(f, f)}{\operatorname{Var}(f)}
$$

There is extensive literature [10] giving order of magnitude bounds on the $N \rightarrow \infty$ asymptotic behaviour of λ_{N} for particular families of N-vertex graphs. For such families, Theorem 1.1 gives an order of magnitude upper bound on the asymptotic fixation time, for fixed η and σ. Similar results are known relating λ to the time of 'voting completion' in the classical Voter model [6]. We will show (Theorem 7.1) the tightness of this bound in the case of a particular special family of graphs.

2 Projection on a Single Song

We begin by focusing on the projection of our system to a single song. For some fixed (arbitrary) song k we will consider only $X^{k}(i)$ which we will write simply as $x(i)$ dropping the k. When two agents i, j meet, each independently chooses to either play song k or not; with probability $x(i)$ and $x(j)$ respectively. Writing $\operatorname{Ber}(x(i))$ and $\operatorname{Ber}(x(j))$ for independent Bernoulli variables with given success parameters, we see that if i and j meet at time t then

$$
x_{t}(i)=(1-\eta) x_{t-}(i)+\eta \operatorname{Ber}\left(x_{t-}(j)\right),
$$

with $x(j)$ updating similarly. At such a meeting, for all other agents $k \neq i, j, x(k)$ remains unchanged.

This implies that the evolution of any given song can be considered separately from the others - though not independently. We will therefore focus first on the FMIE system $\left\{x_{t}(i)\right\}_{i \in I, t \geq 0}$ evolving as above and then later return to the original multi-song model. The primary object of study in our one song model will be the average preference for the song, written

$$
M_{t}=\sum_{i \in I} \frac{x_{t}(i)}{N}
$$

Our goal in this section will be to estimate M_{t}^{2} using martingales. We will use the shorthand $x_{t}=\left\{x_{t}(i): 1 \leq i \leq N\right\}$ for the configuration at time t. In particular, we will often use x_{0} for an arbitrary initial configuration. By comparison, we will use X_{t} (respectively X_{0}) for a configuration of the multi-song model.

We will begin by analysing a few quantities derived from x_{t}.

2.1 Derived Quantities

For ease of notation we will occasionally drop t. Our primary object of study will be the (L^{1}) average of the preferences $x(i)$, denoted M_{t} which is introduced above. We will repeatedly make use of the following lem on the step sizes of M_{t}.
Lemma 2.1. If t is a meeting time then

$$
\left|M_{t}-M_{t-}\right| \leq \frac{2 \eta}{N}
$$

Proof. If agent i is involved in a meeting at t, then either

$$
x_{t}(i)=(1-\eta) x_{t-}(i) \text { or } x_{t}(i)=(1-\eta) x_{t-}(i)+\eta,
$$

and so

$$
\left|x_{t}(i)-x_{t-}(i)\right| \leq \eta .
$$

As only two agents are involved in any meeting, our bound follows easily.

As a warm-up for the more complicated quantities to appear later, we begin by showing that M_{t} evolves as a continuous time martingale. We here implicitly use the filtration \mathfrak{F}_{t} generated by $\left\{x_{t}(i)\right\}_{i \in I, t \geq 0}$. Also, note that we may clearly assume that almost surely meeting times between agents are unique and that the set of meeting times has no accumulation point.

We will make use of the process dynamics notation

$$
\mathbb{E}\left(d A_{t} \mid \mathfrak{F}_{t-}\right)=(\text { resp. } \geq, \leq) B_{t} d t
$$

to mean that

$$
A_{t}-A_{0}-\int_{0}^{t} B_{r} d r
$$

is a martingale (respectively submartingale, supermartingale). Clearly this notation is compatible with arithmetic operations. To calculate a process's dynamics, we make repeated use of the following lem, the proof of which is straightforward.

Lemma 2.2. Let A_{t} be a function of the $x_{t}(i)$. Then

$$
\mathbb{E}\left(d A_{t} \mid \mathfrak{F}_{t-}\right)=\sum_{i, j} \nu_{i, j} \mathbb{E}\left(A_{t}-A_{t-} \mid i \text { and } j \text { meet at } t\right) d t
$$

In particular, for the average preference M_{t} we have the following dynamics.
Proposition 2.3. With respect to the filtration \mathfrak{F}_{t}, M_{t} is a continuous time martingale.
Proof. To begin we note that since $\mathbb{E} \operatorname{Ber}\left(x_{t}(j)\right)=x_{t}(j)$ we have that

$$
\mathbb{E}\left(x_{t}(i) \mid i \text { and } j \text { meet at time } t, \mathfrak{F}_{t-}\right)=(1-\eta) x_{t-}(i)+\eta x_{t-}(j),
$$

and similarly for $x_{t}(j)$. Summing both we find that

$$
\mathbb{E}\left(x_{t}(i)+x_{t}(j) \mid i \text { and } j \text { meet at time } t, \mathfrak{F}_{t-}\right)=x_{t-}(i)+x_{t-}(j) .
$$

As only $x(i)$ and $x(j)$ change at such a time t, this gives us that

$$
\mathbb{E}\left(M_{t} \mid i \text { and } j \text { meet at time } t, \mathfrak{F}_{t-}\right)=M_{t-},
$$

which clearly implies that

$$
\mathbb{E}\left(d M_{t} \mid \mathfrak{F}_{t-}\right)=0,
$$

i.e. M_{t} is a martingale.

We next look at the process dynamics of M_{t}^{2}. To do so we introduce the quantity Q_{t} given by

$$
Q_{t}=\sum_{i \in I} \frac{x_{t}(i)\left(1-x_{t}(i)\right)}{N} .
$$

In particular we use Lemma 2.2 to calculate the following.
Proposition 2.4. The variation M_{t}^{2} satisfies

$$
\mathbb{E}\left(d M_{t}^{2} \mid \mathfrak{F}_{t-}\right)=\frac{2 \eta^{2}}{N} Q_{t} d t
$$

Proof. As before, we begin by calculating that for $k \neq i, j$, since $x(k)$ does not change after a meeting between i and j that:

$$
\mathbb{E}\left(x_{t}(k)\left(x_{t}(i)+x_{t}(j)\right) \mid i \text { and } j \text { meet at time } t, \mathfrak{F}_{t-}\right)=x_{t-}(k)\left(x_{t-}(i)+x_{t-}(j)\right) .
$$

Next we calculate that

$$
\begin{aligned}
& \mathbb{E}\left(x_{t}^{2}(i) \mid i \text { and } j \text { meet at } t, \mathfrak{F}_{t-}\right) \\
& \quad=(1-\eta)^{2} x_{t-}^{2}(i)+2 \eta(1-\eta) x_{t-}(i) x_{t-}(j)+\eta^{2} x_{t-}(j)
\end{aligned}
$$

and similarly for $x^{2}(j)$. Finally we have that

$$
\begin{aligned}
& \mathbb{E}\left(x_{t}(i) x_{t}(j) \mid i \text { and } j \text { meet at } t, \mathfrak{F}_{t-}\right) \\
& \quad=(1-\eta)^{2} x_{t-}(i) x_{t-}(j)+\eta(1-\eta)\left[x_{t-}^{2}(i)+x_{t-}^{2}(j)\right]+\eta^{2} x_{t-}(i) x_{t-}(j)
\end{aligned}
$$

Putting this all together we find that

$$
\begin{aligned}
& \mathbb{E}\left(\left(\sum_{i} x_{t}(i)\right)^{2} \mid i \text { and } j \text { meet at } t, \mathfrak{F}_{t-}\right) \\
& \quad=\left(\sum_{i} x_{t-}(i)\right)^{2}+\eta^{2}\left(x_{t-}(i)-x_{t-}^{2}(i)+x_{t-}(j)-x_{t-}^{2}(j)\right) .
\end{aligned}
$$

Using Lemma 2.2, summing over i, j and normalizing by N^{2} we find that

$$
\mathbb{E}\left(d M_{t}^{2} \mid \mathfrak{F}_{t-}\right)=\frac{2 \eta^{2}}{N} Q_{t} d t
$$

Instead of M^{2}, we will often be more concerned with $M_{t}\left(1-M_{t}\right)$. As M_{t} is a martingale, from Proposition 2.4 we easily have that

$$
\mathbb{E}\left(d M_{t}\left(1-M_{t}\right) \mid \mathfrak{F}_{t-}\right)=-\frac{2 \eta^{2}}{N} Q_{t} d t
$$

A central tool for the study of the underlying Markov Chain on \mathfrak{G} is the Dirichlet form ε. We recall that the Dirchilet form $\varepsilon(f, f)$ for a function $f: I \rightarrow \mathbb{R}$ is defined as

$$
\varepsilon(f, f)=\sum_{i, j} \frac{\nu_{i j}}{2 N}(f(i)-f(j))^{2}
$$

We will write $\varepsilon\left(x_{t}, x_{t}\right)$ for the Dirichlet form of the function $i \mapsto x_{t}(i)$.
The main fact that we will need about the Dirichlet form is its relationship to the spectral gap. We recall the definition of the spectral gap of a Markov Chain is given by

$$
\lambda=\inf _{f: I \rightarrow \mathbb{R} \mid \operatorname{Var}(f) \neq 0} \frac{\varepsilon(f, f)}{\operatorname{Var}(f)}
$$

where $\operatorname{Var}(f)$ is the variance of the function $f(i)$ with respect to the uniform measure on I. A simple but important fact we make repeated use of is that $0<\lambda \leq 1$.

Following Lemma 2.2 we can calculate $d Q$.
Proposition 2.5. The sum Q_{t} satisfies

$$
\mathbb{E}\left(d Q_{t} \mid \mathfrak{F}_{t-}\right)=4 \eta(1-\eta) \varepsilon\left(x_{t}, x_{t}\right) d t-2 \eta^{2} Q_{t} d t
$$

as well as

$$
\mathbb{E}\left(d Q_{t} \mid \mathfrak{F}_{t}\right) \geq 4 \lambda \eta(1-\eta) M_{t}\left(1-M_{t}\right) d t-\left(2 \eta^{2}+4 \lambda \eta(1-\eta)\right) Q_{t} d t
$$

Proof. We begin by noting that $Q_{t}=M_{t}-\sum_{i} \frac{x_{t}^{2}(i)}{N}$ and so

$$
\mathbb{E}\left(d Q_{t} \mid \mathfrak{F}_{t-}\right)=\mathbb{E}\left(\left.d\left(\sum_{i} \frac{x_{t}^{2}(i)}{N}\right) \right\rvert\, \mathfrak{F}_{t-\cdot}\right)
$$

We have from Proposition 2.4 that

$$
\begin{aligned}
& \mathbb{E}\left(x_{t}^{2}(i) \mid i \text { and } j \text { meet at } t, \mathfrak{F}_{t-}\right) \\
& \quad=(1-\eta)^{2} x_{t-}^{2}(i)+2 \eta(1-\eta) x_{t-}(i) x_{t-}(j)+\eta^{2} x_{t-}(j)
\end{aligned}
$$

When agents i and j meet, only $x(i)$ and $x(j)$ change and so

$$
\begin{aligned}
\mathbb{E}\left(Q_{t}-Q_{t-}\right. & \left.\mid i \text { and } j \text { meet at } t, \mathfrak{F}_{t-}\right) \\
& =-\mathbb{E}\left(\left.\frac{x_{t}^{2}(i)-x_{t-}^{2}(i)}{N}+\frac{x_{t}^{2}(j)-x_{t-}^{2}(j)}{N} \right\rvert\, i \text { and } j \text { meet at } t, \mathfrak{F}_{t-}\right) \\
& =\left(2 \eta-\eta^{2}\right) \frac{x_{t-}^{2}(i)+x_{t-}^{2}(j)}{N}-4 \eta(1-\eta) \frac{x_{t-}(i) x_{t-}(j)}{N} \\
& -\eta^{2} \frac{x_{t-}(j)+x_{t-}(i)}{N} \\
& =\frac{4 \eta(1-\eta)}{2 N}\left(x_{t-}(i)-x_{t-}(j)\right)^{2} \\
& -\frac{\eta^{2}}{N}\left(x_{t-}(i)\left(1-x_{t-}(i)\right)+x_{t-}(j)\left(1-x_{t-}(j)\right) .\right.
\end{aligned}
$$

Summing over i and j our first equation for $d Q_{t}$ is done. The second is an immediate consequence of the first using the identity

$$
\varepsilon(x, x)_{t} \geq \lambda \operatorname{Var}(x)_{t}=\lambda\left(M_{t}\left(1-M_{t}\right)-Q_{t}\right)
$$

2.2 Within an small Neighborhood

Next we focus our attention on M_{t} stuck within the neighborhood ($M_{0}-\epsilon, M_{0}+\epsilon$) for some small (unspecified for now) ϵ. Let τ be the escape time of the interval, i.e.

$$
\tau=\inf \left\{t \geq 0: M_{t} \notin\left(M_{0}-\epsilon, M_{0}+\epsilon\right)\right\}
$$

and ς any stopping time with $\varsigma \leq \tau$ almost surely.
For ease of notation in this section we will often write \mathbb{E} for $\mathbb{E}_{x_{0}}$ - that is the expectation starting from some initial condition x_{0}, perhaps with some (to be specified) condition on M_{0}.

Our main goal now is to give a lower bound on the quadratic variation of M_{t} until time ς.

2.3 A Lower Bound

First we look for a bound on the heterozygosity $M_{t}\left(1-M_{t}\right)$. We will make repeated use of the following calculus exercise.
Lemma 2.6. For a fixed x_{0}, if

$$
\epsilon \leq \frac{x_{0}\left(1-x_{0}\right)}{2}
$$

and $x_{0}-\epsilon \leq x \leq x_{0}+\epsilon$ then

$$
x(1-x) \geq \frac{1}{2} x_{0}\left(1-x_{0}\right) .
$$

Using our process dynamics calculations we may now begin to bound ς.
Lemma 2.7. There exist positive constants $C(\eta), D(\eta)$ so that

$$
\mathbb{E} \int_{0}^{\varsigma} Q_{r} d r \geq C(\eta) \lambda M_{0}\left(1-M_{0}\right) \mathbb{E} \varsigma-D(\eta)\left(\mathbb{E} Q_{\varsigma}-Q_{0}\right)
$$

Proof. First we recall that from Proposition 2.5 we have a submartingale

$$
Y_{t}=Q_{t}-Q_{0}-4 \lambda \eta(1-\eta) \int_{0}^{t} M_{r}\left(1-M_{r}\right) d r+\left(2 \eta^{2}+4 \lambda \eta(1-\eta)\right) \int_{0}^{t} Q_{r} d r
$$

The Optional Stopping Theorem shows $\mathbb{E} Y_{\varsigma} \geq \mathbb{E} Y_{0}=0$, so

$$
\begin{aligned}
\mathbb{E} Q_{\varsigma}- & Q_{0}+\left(2 \eta^{2}+4 \lambda \eta(1-\eta)\right) \int_{0}^{\varsigma} Q_{r} d r \\
& \geq 4 \lambda \eta(1-\eta) \mathbb{E} \int_{0}^{\varsigma} M_{r}\left(1-M_{r}\right) d r \\
& \geq 4 \lambda \eta(1-\eta) \mathbb{E} \int_{0}^{\varsigma} \frac{1}{2} M_{0}\left(1-M_{0}\right) d r \text { by Lemma } 2.6 \\
& \geq 2 \lambda \eta(1-\eta) M_{0}\left(1-M_{0}\right) \mathbb{E} \varsigma
\end{aligned}
$$

Next, we note that since $\lambda \leq 1$

$$
2 \eta^{2}+4 \lambda \eta(1-\eta) \leq 4 \eta-2 \eta^{2}
$$

Substituting this in and rearranging the inequality

$$
\left(4 \eta-2 \eta^{2}\right) \mathbb{E} \int_{0}^{\varsigma} Q_{r} d r \geq 2 \lambda \eta(1-\eta) M_{0}\left(1-M_{0}\right) \mathbb{E} \varsigma-\mathbb{E} Q_{\tau}+Q_{0}
$$

and so

$$
\mathbb{E} \int_{0}^{\tau} Q_{r} d r \geq C(\eta) \lambda M_{0}\left(1-M_{0}\right) \mathbb{E} \tau-D(\eta)\left(\mathbb{E} Q_{\tau}-Q_{0}\right)
$$

for $C(\eta)=\frac{2 \eta(1-\eta)}{4 \eta-2 \eta^{2}}$ and $D(\eta)=\frac{1}{4 \eta-2 \eta^{2}}$.
Using this we are ready for our lower bound.
Lemma 2.8. There exist positive constants $A(\eta), B(\eta)$ with

$$
\mathbb{E} M_{\varsigma}^{2}-M_{0}^{2} \geq \frac{1}{N}\left(A(\eta) \lambda M_{0}\left(1-M_{0}\right) \mathbb{E} \varsigma-B(\eta)\left(\mathbb{E} Q_{\varsigma}-\mathbb{E} Q_{0}\right)\right)
$$

Proof. Proposition 2.4 shows

$$
M_{t}^{2}-M_{0}^{2}-\frac{2 \eta^{2}}{N} \int_{0}^{t} Q_{r} d r
$$

is a martingale. The Optional Stopping Theorem and Lemma 2.7 show

$$
\mathbb{E} M_{\varsigma}^{2}-M_{0}^{2} \geq \frac{2 \eta^{2}}{N}\left(C(\eta) \lambda M_{0}\left(1-M_{0}\right) \mathbb{E} \varsigma-D(\eta)\left(\mathbb{E} Q_{\varsigma}-Q_{0}\right)\right)
$$

which finishes our proof.

3 Escaping an small Neighborhood

Write M_{t}^{k} for the family of martingales given by the average preferences for songs $1 \leq k \leq \sigma$ and \mathbf{M}_{t} for

$$
\mathbf{M}_{t}=\left(M_{t}^{1}, \ldots, M_{t}^{\sigma}\right)
$$

which lives in the simplex

$$
\mathbb{S}_{\sigma}=\left\{\left(x_{1}, \ldots, x_{\sigma}\right): \sum_{i=1}^{\sigma} x_{i}=1 \text { and } x_{i} \geq 0 \text { for all } i\right\}
$$

Define $\phi: \mathbb{R}^{\sigma} \rightarrow \mathbb{R}$ by

$$
\phi\left(x_{1}, \ldots, x_{\sigma}\right)=\sum_{i=1}^{\sigma} x_{i}\left(1-x_{i}\right)
$$

and $\phi_{*}: \mathbb{R}^{\sigma} \rightarrow \mathbb{R}$ by

$$
\phi_{*}\left(x_{1}, \ldots, x_{\sigma}\right)=\min _{1 \leq i \leq \sigma} x_{i}\left(1-x_{i}\right) .
$$

We now consider the escape time of the martingale \mathbf{M}_{t} from an ϵ-ball around \mathbf{M}_{0}. Define

$$
\tau=\inf \left\{t \geq 0:\left|\mathbf{M}_{t}-\mathbf{M}_{0}\right| \geq \epsilon\right\}
$$

In particular, we will consider ϵ sufficiently small, that is, ϵ satisfying

$$
\begin{equation*}
\frac{\eta}{4 N} \leq \epsilon \leq \frac{\phi_{*}\left(\mathbf{M}_{0}\right)}{2} \tag{3.1}
\end{equation*}
$$

The importance of the lower bound will be clear later.
For simplicity of notation, write

$$
\mathbf{Q}_{t}=\sum_{i=1}^{\sigma} Q_{t}^{i}
$$

where Q_{t}^{i} is the quantity as before for song i. Our main result in this section is the following.
Proposition 3.1. There exists a constant $A(\eta)$ such that, for $\phi_{*}\left(\mathbf{M}_{0}\right)$ and ϵ satisfying Equation (3.1) we have

$$
\mathbb{E} \tau \leq A(\eta) \frac{N \epsilon^{2}}{\lambda \phi\left(\mathbf{M}_{0}\right)}+\frac{B(\eta)}{\lambda} \mathbb{E}\left(\mathbf{Q}_{\tau}-\mathbf{Q}_{0}\right) .
$$

We will prove Proposition 3.1 by considering the quadratic variation of the martingale \mathbf{M}_{t}, that is $\langle\mathbf{M}\rangle_{t}$ given by

$$
\langle\mathbf{M}\rangle_{t}=\sum_{i=1}^{\sigma}\left(M_{t}^{i}-M_{0}^{i}\right)^{2} .
$$

We will need the following easy lem on the step sizes of \mathbf{M}_{t}, which can be proven similarly to Lemma 2.1.

Lemma 3.2. For any time t we have

$$
\left|\mathbf{M}_{t}-\mathbf{M}_{t-}\right| \leq \frac{3 \eta}{N}
$$

We now give our proof of Proposition 3.1.

Proof. First, for each song i, by Lemma 2.8 we have

$$
\mathbb{E}\left(M_{\tau}^{i}-M_{0}^{i}\right)^{2} \geq \frac{A(\eta) \lambda}{N} M_{0}^{i}\left(1-M_{0}^{i}\right) \mathbb{E} \tau-\frac{B(\eta)}{N}\left(\mathbb{E} Q_{\tau}^{i}-\mathbb{E} Q_{0}^{i}\right)
$$

where Q_{t}^{i} is the corresponding term for song i.
Combining these, we therefore have that

$$
\mathbb{E}\langle\mathbf{M}\rangle_{\tau} \geq \frac{A(\eta) \lambda}{N} \phi\left(\mathbf{M}_{0}\right) \mathbb{E} \tau-\frac{B(\eta)}{N} \sum_{i}\left(\mathbb{E} Q_{\tau}^{i}-\mathbb{E} Q_{0}^{i}\right)
$$

For the upper bound of $\mathbb{E}\langle\mathbf{M}\rangle_{t}$, by Lemma 3.2 and the definition of τ we have that

$$
\begin{aligned}
\langle\mathbf{M}\rangle_{\tau} & \leq\left(\epsilon+\frac{3 \eta}{N}\right)^{2} \\
& \leq 13^{2} \epsilon^{2}
\end{aligned}
$$

using assumption that $\epsilon \geq \frac{\eta}{4 N}$.
Combining these two facts

$$
13^{2} \epsilon^{2} \geq \frac{A(\eta) \lambda}{N} \phi\left(\mathbf{M}_{0}\right) \mathbb{E} \tau-\frac{B(\eta)}{N} \mathbb{E}\left(\mathbf{Q}_{\tau}-\mathbf{Q}_{0}\right)
$$

from which our claim follows easily

4 Approaching the Boundary

Our goal in this section is to apply Proposition 3.1 to give an upper bound on the first time S that \mathbf{M}_{t} approaches an extreme point of \mathbb{S}_{σ}. From any initial configuration, define the stopping time S by

$$
S=\inf \left\{t \geq 0: M_{t}^{i} \geq 1-\frac{\eta}{2 N} \text { for some song } i .\right\}
$$

Of course at S, all other songs $j \neq i$ must have

$$
M_{S}^{j} \leq \frac{\eta}{2 N}
$$

The main result on S is the following.
Proposition 4.1. There exists $A(\eta)$ so that from any initial configuration X_{0}

$$
\mathbb{E}_{X_{0}} S \leq A(\eta) \frac{N}{\lambda} \phi\left(\mathbf{M}_{0}\right)
$$

We begin by approximating S by a sequence of stopping times, then recall some basic facts about the Wright-Fisher diffusion, and finally use a coupling argument to estimate the stopping times.

4.1 The Sequence τ_{k}

We will consider the series of stopping times τ_{k} for the martingale \mathbf{M}_{t} defined inductively as follows. Let $\tau_{0}=0$ and for $k \geq 1$ define τ_{k}

$$
\tau_{k}=\inf \left\{t \geq \tau_{k-1}:\left|\mathbf{M}_{t}-\mathbf{M}_{\tau_{k-1}}\right| \geq \frac{\phi_{*}\left(\mathbf{M}_{\tau_{k-1}}\right)}{2}\right\}
$$

that is the first time after τ_{k-1} that \mathbf{M}_{t} exits the ball of radius $\frac{\phi_{*}\left(\mathbf{M}_{\tau_{k-1}}\right)}{2}$ around $\mathbf{M}_{\tau_{k-1}}$.
Using Proposition 3.1, we have the following bound on the expectation of the increments of our stopping times.

Lemma 4.2. There exists a constant $A(\eta)$ so that, from any initial X_{0}, if $K \geq k$ then for all songs i :

$$
\mathbb{E}\left(\tau_{k}-\tau_{k-1} \mid F_{\tau_{k-1}}\right) \leq A(\eta) \frac{N}{\lambda} \frac{\phi_{*}^{2}\left(\mathbf{M}_{\tau_{k-1}}\right)}{\phi\left(\mathbf{M}_{\tau_{k-1}}\right)}+\frac{B(\eta)}{\lambda} \mathbb{E}\left(\mathbf{Q}_{\tau_{k}}-\mathbf{Q}_{\tau_{k-1}}\right)
$$

Proof. This is an immediate application of Proposition 3.1 and the Strong Markov property at time τ_{k-1}.

We will see that the first term in Lemma 4.2 matches the equivalent estimate for a certain Brownian diffusion.

4.2 The Wright-Fisher Diffusion

We will now make use of some basic facts about the neutral σ-allele Wright-Fisher diffusion

$$
\mathbf{w}_{t}=\left(W_{t}^{1}, \ldots, W_{t}^{\sigma}\right)
$$

taking values in the simplex \mathbb{S}_{σ}. An excellent introduction to the WF diffusion and its place in genetics can be found in [9]. In the classical Voter model, the Wright-Fisher diffusion appears as a limit of the voter density process [5]. Here we take a slightly different approach and embed our finite process \mathbf{M}_{t} directly into the diffusion.

To begin our comparison between the iPod model and the WF diffusion, we first need a bound on the escape time of the WF process from a small ball.
Lemma 4.3. From any initial $\mathbf{W}_{0}=w_{0}$, for $\epsilon<\frac{\phi_{*}\left(w_{0}\right)}{2}$ the first escape τ of \mathbf{W}_{t} from the ϵ-ball about w_{0} satisfies

$$
\mathbb{E}_{w_{0}} \tau \geq \frac{\epsilon^{2}}{2 \phi\left(w_{0}\right)}
$$

Proof. This follows immediately from a standard calculation of the quadratic variation of \mathbf{W}_{t} and the fact that for $\epsilon<\frac{\phi_{*}\left(w_{0}\right)}{2}$, if x is in ϵ-ball around w_{0} we have

$$
\phi(x) \geq \frac{\phi\left(w_{0}\right)}{2}
$$

by Lemma 2.6.

We will also need the classical bound for the absorption time of the σ-allele WrightFisher diffusion, that is

$$
T_{\mathrm{abs}}=\inf \left\{t \geq 0: W_{t}^{i}=1 \text { for some } i\right\} .
$$

Lemma 4.4. (Theorem 8.2 [9]) Starting from $\mathbf{W}_{0}=x$, we have

$$
\mathbb{E}_{x} T_{\mathrm{abs}}=-2 \sum_{i=1}^{\sigma}\left(1-x_{i}\right) \ln \left(1-x_{i}\right)
$$

An immediate corollary to Lemma 4.4, by an application of Jensen's inequality, is the fact that $\mathbb{E}_{x} T_{\text {abs }}$ is uniformly bounded above, for all σ and x, by 1.

4.3 The Comparison Calculation

Let \mathbf{W}_{t} be a σ-allele Wright-Fisher diffusion started at $\mathbf{W}_{0}=\mathbf{M}_{0}$. The discrete martingale $\left\{\mathbf{M}_{\tau_{k}}\right\}_{k \geq 0}$ is clearly square integrable and so [8] we can find a sequence of stopping times $\tilde{\tau}_{k}$ for \mathbf{W}_{t} so that

$$
\begin{equation*}
\left\{\mathbf{M}_{\tau_{k}}\right\}_{k \geq 0}=^{d}\left\{\mathbf{W}_{\tilde{\tau}_{k}}\right\}_{k \geq 0} \tag{4.1}
\end{equation*}
$$

We will focus on the first time that \mathbf{M}_{t} approaches one of the extreme points of \mathbb{S}_{σ}. Recall the stopping time S defined by

$$
\begin{equation*}
S=\inf \left\{t \geq 0: M_{t}^{i} \geq 1-\frac{\eta}{2 N} \text { for some } i\right\} \tag{4.2}
\end{equation*}
$$

and let

$$
K=\inf \left\{k \geq 0: \tau_{k} \geq S\right\}
$$

Martingale arguments give us the following.
Lemma 4.5. $K<\infty$ almost surely.
Proof. This follows immediately from the fact that before τ_{K} we have

$$
\frac{\phi_{*}}{2}\left(\mathbf{M}_{t}\right) \geq \frac{\eta}{8 N}
$$

and so the discrete time martingale $\mathbf{M}_{0}, \mathbf{M}_{\tau_{1}}, \mathbf{M}_{\tau_{2}}, \ldots$ has step sizes

$$
\left|\mathbf{M}_{\tau_{k}}-\mathbf{M}_{\tau_{k-1}}\right| \geq \frac{\eta}{8 N}
$$

Thus on the bounded region \mathbb{S}_{σ}, K must occur after finitely many steps almost surely.

Next, let \tilde{K} be the equivalent index for \mathbf{W}_{t}, that is

$$
\tilde{K}=\inf \left\{k \geq 0: \mathbf{W}_{\tilde{\tau}_{k}}^{i} \geq 1-\frac{\eta}{2 N} \text { for some } i\right\}
$$

For \mathbf{M}_{t} we have clearly that

$$
\begin{equation*}
S \leq \tau_{K} \tag{4.3}
\end{equation*}
$$

Furthermore, if \mathbf{M}_{0} is in the interior of S_{σ} then so is \mathbf{M}_{t} for all $t \geq 0$ as a non-zero preference $X^{k}(i)$ for some song k by an agent i decreases geometrically and so is never actually zero. Thus, $\mathbf{M}_{\tau_{k}}$ is also in the interior of \mathbb{S}_{σ} and therefore so must be $\mathbf{W}_{\tilde{\tau}_{\tilde{K}}}$ by their equivalence in distribution. Therefore,

$$
\tilde{\tau}_{\tilde{K}} \leq T_{\mathrm{abs}}
$$

as for $t \geq T_{\text {abs }}, \mathbf{W}_{t}$ has already absorbed and is constant.
Lemma 4.6. The hitting times $\tilde{\tau}_{k}, k \geq 1$ satisfies

$$
\mathbb{E}\left(\tilde{\tau}_{k}-\tilde{\tau}_{k-1} \mid F_{\tilde{\tau}_{k-1}}\right) \geq \frac{1}{8} \phi\left(\mathbf{W}_{\tau_{k-1}}\right)
$$

Proof. Note that starting at $w_{0}=\mathbf{W}_{\tilde{\tau}_{k-1}}$, the time $\tilde{\tau}_{k}$ can only occur after \mathbf{W}_{t} leaves the ball of radius $\frac{1}{2} \phi_{*}\left(w_{o}\right)$ around w_{0} as $\mathbf{W}_{\tilde{\tau}_{k}}$ is already outside this interval and W_{t} is continuous. Write τ for the first exit time of this interval. Applying the Strong Markov Property we see that

$$
\begin{aligned}
\mathbb{E}\left(\tilde{\tau}_{k}-\tilde{\tau}_{k-1} \mid F_{\tilde{\tau}_{k-1}}\right) & \geq \mathbb{E}_{w_{0}}\left(\tau \mid F_{\tilde{\tau}_{k-1}}\right) \\
& \geq \frac{1}{8} \frac{\phi_{*}^{2}\left(\mathbf{W}_{\tau_{k-1}}\right)}{\phi\left(\mathbf{W}_{\tau_{k-1}}\right)} \text { by Lemma 4.3 }
\end{aligned}
$$

completing our proof.

We are now ready to prove Proposition 4.1.
Proof. We recall by Equation (4.3), $\mathbb{E} S \leq \mathbb{E} \tau_{K}$ and so we will focus on bounding $\mathbb{E} \tau_{K}$. As $K<\infty$ almost surely by Lemma 4.5 we have that

$$
\mathbb{E} \tau_{K}=\mathbb{E}\left(\sum_{k=1}^{\infty}\left(\tau_{k}-\tau_{k-1}\right) 1_{K \geq k}\right)
$$

By Lemma 4.2

$$
\mathbb{E}\left(\tau_{k}-\tau_{k-1} \mid F_{\tau_{k-1}}\right) \leq A(\eta) \frac{N}{\lambda} \frac{\phi_{*}^{2}\left(\mathbf{M}_{\tau_{k-1}}\right)}{\phi\left(\mathbf{M}_{\tau_{k-1}}\right)}+\frac{B(\eta)}{\lambda} \mathbb{E}\left(\mathbf{Q}_{\tau_{k}}-\mathbf{Q}_{\tau_{k-1}}\right)
$$

for some constants $A(\eta), B(\eta)$ depending only on η. Therefore we can calculate using the Strong Markov property that

$$
\begin{aligned}
\mathbb{E}\left(\left(\tau_{k}-\tau_{k-1}\right) 1_{K \geq k}\right) & =\mathbb{E}\left(\mathbb{E}\left(\left(\tau_{k}-\tau_{k-1}\right) 1_{K \geq k} \mid F_{\tau_{k-1}}\right)\right) \\
& =\mathbb{E}\left(1_{K \geq k} \mathbb{E}_{x_{\tau_{k-1}}}\left(\tau_{k}-\tau_{k-1}\right)\right) \\
& \leq A(\eta) \frac{N}{\lambda} \mathbb{E}\left(1_{K \geq k} \frac{\phi_{*}^{2}\left(\mathbf{M}_{\tau_{k-1}}\right)}{\phi\left(\mathbf{M}_{\tau_{k-1}}\right)}\right)+\frac{B(\eta)}{\lambda} \mathbb{E}\left(\mathbf{Q}_{\tau_{k}}-\mathbf{Q}_{\tau_{k-1}}\right),
\end{aligned}
$$

using that $1_{K \geq k} \leq 1$ for the second term.
From Equation (4.1) $\left\{\mathbf{M}_{\tau_{k}}\right\}_{k \geq 0}$ and $\left\{\mathbf{W}_{\tilde{\tau}_{k}}\right\}_{k \geq 0}$ are equivalent in distribution, so

$$
\mathbb{E}\left(1_{K \geq k} \frac{\phi_{*}^{2}\left(\mathbf{M}_{\tau_{k-1}}\right)}{\phi\left(\mathbf{M}_{\tau_{k-1}}\right)}\right)=\mathbb{E}\left(1_{\tilde{K} \geq k} \frac{\phi_{*}^{2}\left(\mathbf{W}_{\tau_{k-1}}\right)}{\phi\left(\mathbf{W}_{\tau_{k-1}}\right)}\right) .
$$

By Lemma 4.3

$$
\frac{1}{8} \frac{\phi_{*}^{2}\left(\mathbf{W}_{\tau_{k-1}}\right)}{\phi\left(\mathbf{W}_{\tau_{k-1}}\right)} \leq \mathbb{E}\left(\tilde{\tau}_{k}-\tilde{\tau}_{k-1} \mid F_{\tilde{\tau}_{k-1}}\right)
$$

so we can calculate

$$
\begin{aligned}
\mathbb{E}\left(1_{K \geq k} \frac{\phi_{*}^{2}\left(\mathbf{M}_{\tau_{k-1}}\right)}{\phi\left(\mathbf{M}_{\tau_{k-1}}\right)}\right) & \leq\left(\mathbb{E} 1_{\tilde{K} \geq k} 8 \mathbb{E}\left(\tilde{\tau}_{k}-\tilde{\tau}_{k-1} \mid F_{\tilde{\tau}_{k-1}}\right)\right) \\
& =8 \mathbb{E}\left(\mathbb{E}\left(\left(\tilde{\tau}_{k}-\tilde{\tau}_{k-1}\right) 1_{\tilde{K} \geq k} \mid F_{\tilde{\tau}_{k-1}}\right)\right) \\
& =8 \mathbb{E}\left(\left(\tilde{\tau}_{k}-\tilde{\tau}_{k-1}\right) 1_{\tilde{K} \geq k}\right)
\end{aligned}
$$

Therefore we see that

$$
\begin{aligned}
\mathbb{E} \tau_{K} & \leq 8 \frac{N}{\lambda} A(\eta) \sum_{k \geq 0} \mathbb{E}\left(\left(\tilde{\tau}_{k}-\tilde{\tau}_{k-1}\right) 1_{\tilde{K} \geq k}\right)+\frac{B(\eta)}{\lambda} \sum_{k \geq 0} \mathbb{E}\left(\mathbf{Q}_{\tau_{k}}-\mathbf{Q}_{\tau_{k-1}}\right) \\
& \leq 8 \frac{N}{\lambda} A(\eta) \mathbb{E} \tilde{\tau}_{\tilde{K}}+\frac{B(\eta)}{\lambda} \\
& \leq 8 \frac{N}{\lambda} A(\eta) \mathbb{E} T_{\mathrm{abs}}+\frac{B(\eta)}{\lambda}
\end{aligned}
$$

since the sum

$$
\sum_{k \geq 0} \mathbb{E}\left(\mathbf{Q}_{\tau_{k}}-\mathbf{Q}_{\tau_{k-1}}\right)
$$

is telescoping and \mathbf{Q}_{t} is bounded by 1 .

By Equation (4.3) we have $S \leq \tau_{K}$ and using Lemma 4.4 to bound $\mathbb{E} T_{\text {abs }}$ we can conclude that

$$
\begin{aligned}
\mathbb{E} S & \leq 8 \frac{N}{\lambda} A(\eta) \mathbb{E}_{\mathbf{w}_{0}} T_{\mathrm{abs}}+\frac{B(\eta)}{\lambda} \\
& =A^{\prime}(\eta) \frac{N}{\lambda} \phi\left(\mathbf{W}_{0}\right) \\
& =A^{\prime}(\eta) \frac{N}{\lambda} \phi\left(\mathbf{M}_{0}\right)
\end{aligned}
$$

for some other constant $A^{\prime}(\eta)$ since the first term dominates for $N \gg 0$. Our conclusion follows.

5 The Fixation Time

We are now ready to prove our bound on the fixation time of the general iPod model with σ songs. We recall that for each agent i, we write their preference for song k by $X_{t}^{k}(i)$.

We begin by estimating the fixation time given that the preference M_{t}^{k} for some (fixed but arbitrary) song k has approached the boundary 1 . Specifically, we will consider starting from an initial configuration X_{0} with

$$
M_{0}^{k} \geq 1-\frac{\eta}{2 N}
$$

or equivalently $S=0$ for the stopping time S as above. Of course all other songs $j \neq k$ then have

$$
M_{0}^{j} \leq \frac{\eta}{2 N}
$$

As long as M_{t}^{k} is near 1 , the fixation time $T_{\text {fix }}$ can only be the last time any song other than k plays. Projecting on k, this is the last time one of the Bernoulli trials for k has failed. We begin by showing that from such an initial configuration, $T_{\text {fix }}$ has with positive probability already occurred.
Proposition 5.1. From an initial configuration X_{0} with $M_{0}^{k} \geq 1-\frac{\eta}{2 N}$, we have

$$
\mathbb{P}_{X_{0}}\left(T_{\mathrm{fix}}=0\right) \geq \frac{1}{2}
$$

Proof. We will consider the stopping time R, the first time any song other than k plays. Before R, each $X^{k}(i)$ can only increase. Therefore at time R - without loss of generality, a meeting of agents i and j - if another song is played by only one of i, j then

$$
\begin{align*}
X_{R}^{k}(i)+X_{R}^{k}(j) & =(1-\eta)\left(X_{R-}(i)+X_{R-}(j)\right)+\eta \tag{5.1}\\
& \leq 2(1-\eta)+\eta \tag{5.2}\\
& =2-\eta \tag{5.3}
\end{align*}
$$

If both agents play a different song, then $X^{k}(i)+X^{k}(j)$ is even smaller at R.
This then implies that on $\{R<\infty\}$

$$
M_{R}^{k} \leq 1-\frac{\eta}{N}
$$

The iPod Model

Now, applying the Optional Stopping Theorem to $R \wedge t$, we find that

$$
\begin{align*}
1-\frac{\eta}{2 N} & \leq M_{0} \tag{5.4}\\
& =\mathbb{E} M_{R \wedge t}^{k} \tag{5.5}\\
& =\mathbb{E}\left(M_{R}^{k} 1_{R \leq t}+M_{t}^{k} 1_{t<R}\right) \tag{5.6}\\
& \leq\left(1-\frac{\eta}{N}\right)(1-\mathbb{P}(t<R))+1 \mathbb{P}(t<R) . \tag{5.7}
\end{align*}
$$

Solving for $\mathbb{P}(t<R)$ we find that

$$
\mathbb{P}(t<R) \geq \frac{1}{2}
$$

As this is true for arbitrary t, we have $\mathbb{P}(R=\infty) \geq \frac{1}{2}$ from which our result follows.
Next we need to consider what happens when M_{t}^{k} approaches 1 , but the song k fails to play at a meeting.
Proposition 5.2. Consider the stopping time R given by

$$
R=\inf \{t \geq 0: \text { some song other than } \mathrm{k} \text { plays at } t\} .
$$

From any initial configuration $M_{0}^{k} \geq 1-\frac{\eta}{2 N}$, we have

$$
\mathbb{E}\left(R 1_{R<\infty}\right) \leq \frac{1}{8 \eta}
$$

Proof. Let $T_{n}, 1 \leq n<\infty$ be the n-th meeting time. We first define

$$
\tilde{R}=\inf \left\{n \geq 0: \text { some song other than } \mathrm{k} \text { plays at } T_{n}\right\} .
$$

We will calculate how M_{t}^{k} changes after the first meeting time, given that song k is played by both agents at the meeting time T_{1}.

If agents i and j meet and both play k at T_{1} then

$$
X_{T_{1}}^{k}(i)=(1-\eta) X_{0}^{k}(i)+\eta
$$

and similarly for $X^{k}(j)$. So given that i and j meet and play k

$$
M_{T_{1}}^{k}=M_{0}^{k}-\frac{\eta\left(X_{0}^{k}(i)+X_{0}^{k}(j)\right)}{N}+\frac{2 \eta}{N} .
$$

Summing over pairs of agents we find that

$$
\begin{aligned}
\mathbb{E} & \left(M_{T_{1}}^{k} \mid \text { both agents play k at } T_{1}, \mathfrak{F}_{0}\right) \\
& =\sum_{i, j} \mathbb{E}\left(M_{T_{1}}^{k} \mid \text { i meets } \mathrm{j}, \text { both play } \mathrm{k} \text { at } T_{1}, \mathfrak{F}_{0}\right) \mathbb{P}\left(\mathrm{i} \text { meets } \mathrm{j} \text { at } T_{1} \mid \mathfrak{F}_{0}\right) \\
& =\sum_{i, j} \frac{\nu_{i j}}{N} \mathbb{E}\left(\left.M_{0}^{k}-\frac{\eta\left(X_{0}^{k}(i)+X_{0}^{k}(j)-2\right)}{N} \right\rvert\, \mathrm{i} \& \mathrm{j} \text { both play k at } T_{1}, \mathfrak{F}_{0}\right) \\
& =\sum_{i, j} \frac{\nu_{i j}}{N}\left(M_{0}^{k}-\frac{\eta\left(X_{0}^{k}(i)+X_{0}^{k}(j)-2\right)}{N}\right) \\
& =M_{0}^{k}+\frac{2 \eta}{N}-\sum_{i, j} \frac{\nu_{i j}}{N} \frac{\eta\left(X_{0}^{k}(i)+X_{0}^{k}(j)\right)}{N} \\
& =M_{0}^{k}+\frac{2 \eta}{N}-\frac{2 \eta M_{0}^{k}}{N} \\
& =\left(1-\frac{2 \eta}{N}\right) M_{0}^{k}+\frac{2 \eta}{N} .
\end{aligned}
$$

By the same calculation we find that

$$
\mathbb{E}\left(M_{T_{2}}^{k} \mid \text { both agents play k at } T_{2}, \mathfrak{F}_{T_{1}}\right)=\left(1-\frac{2 \eta}{N}\right) M_{T_{1}}^{k}+\frac{2 \eta}{N}
$$

and so

$$
\begin{aligned}
\mathbb{E} & \left(M_{T_{2}}^{k} \mid \text { both agents play k at } T_{1} \text { and } T_{2}, \mathfrak{F}_{0}\right) \\
& =\left(1-\frac{2 \eta}{N}\right)\left(\left(1-\frac{2 \eta}{N}\right) M_{0}^{k}+\frac{2 \eta}{N}\right)+\frac{2 \eta}{N} \\
& =\left(1-\frac{2 \eta}{N}\right)^{2} M_{0}^{k}+1-\left(1-\frac{2 \eta}{N}\right)^{2} \\
& =1-\left(1-\frac{2 \eta}{N}\right)^{2}\left(1-M_{0}^{k}\right) .
\end{aligned}
$$

Continuing the same easy inductive calculation we find that

$$
\mathbb{E}\left(M_{T_{n}}^{k} \mid \tilde{S}>n, \mathfrak{F}_{0}\right)=1-\left(1-\frac{2 \eta}{N}\right)^{n}\left(1-M_{0}^{k}\right)
$$

Next, we need to know the chance of some song other than k being played at time T_{n} given $M_{T_{n-1}}^{k}$. We will need the identity

$$
1-x y \leq(1-x)+(1-y)
$$

for $x, y \leq 1$ - which follows easily from $1+(1-x)(1-y) \geq 1$. Using that, and that the probability of at least one of i, j not playing k is $1-X^{k}(i) X^{k}(j)$, we have

$$
\begin{aligned}
\mathbb{P} & \left(\text { A song other than } \mathrm{k} \text { is played at } T_{n} \mid M_{T_{n-1}}^{k}\right) \\
& =\sum_{i, j} \frac{\nu_{i j}}{N} \mathbb{P}\left(\text { Another song is played at } T_{n} \mid M_{T_{n-1}}^{k}, \text { i meets } \mathrm{j} \text { at } T_{n}\right) \\
& =\sum_{i, j} \frac{\nu_{i j}}{N}\left(1-X_{T_{n-1}}^{k}(i) X_{T_{n-1}}^{k}(j)\right) \\
& \leq \sum_{i, j} \frac{\nu_{i j}}{N}\left(1-X_{T_{n-1}}^{k}(i)+1-X_{T_{n-1}}^{k}(j)\right) \\
& \leq 2\left(1-M_{T_{n-1}}^{k}\right) .
\end{aligned}
$$

Therefore we have that

$$
\begin{aligned}
& \mathbb{P}\left(\tilde{R}=n \mid \mathfrak{F}_{0}\right) \\
& \quad=\mathbb{P}\left(\tilde{R}>n-1, \text { Another song is played at } T_{n} \mid \mathfrak{F}_{0}\right) \\
& \quad \leq \mathbb{P}\left(\text { Another song is played at } T_{n} \mid \tilde{R}>n-1, \mathfrak{F}_{0}\right) \\
& \quad \leq \mathbb{E}\left(2\left(1-M_{T_{n-1}}^{k}\right) \mid \tilde{R}>n-1, \mathfrak{F}_{0}\right) \\
& \quad=2\left(1-\frac{2 \eta}{N}\right)^{n-1}\left(1-M_{0}^{k}\right) .
\end{aligned}
$$

For the first inequality here we used the simple bound

$$
\mathbb{P}(A \cap B) \leq \mathbb{P}(A \mid B)
$$

This allows us to calculate that

$$
\begin{aligned}
\mathbb{E}\left(\tilde{R} 1_{\tilde{R}<\infty} \mid \mathfrak{F}_{0}\right) & =\sum_{n \geq 0} n \mathbb{P}\left(\tilde{R}=n \mid \mathfrak{F}_{0}\right) \\
& \leq \sum_{n \geq 0} n 2\left(1-\frac{2 \eta}{N}\right)^{n-1}\left(1-M_{0}^{k}\right) \\
& =2\left(1-M_{0}^{k}\right) \sum_{n \geq 0} n\left(1-\frac{2 \eta}{N}\right)^{n-1} \\
& \leq \frac{\eta}{2 N} \frac{N^{2}}{4 \eta^{2}} \\
& =\frac{N}{8 \eta}
\end{aligned}
$$

using our assumption that $M_{0}^{k} \geq 1-\frac{\eta}{2 N}$ and the Taylor series expansion

$$
\sum_{n \geq 0} n x^{n-1}=\frac{1}{(1-x)^{2}}
$$

for $|x|<1$.
Our result then follows since meetings occur independently at rate $\frac{1}{N}$ and so

$$
\mathbb{E}\left(R 1_{R<\infty} \mid \mathfrak{F}_{0}\right)=\frac{1}{N} \mathbb{E}\left(\tilde{R} 1_{\tilde{R}<\infty} \mid \mathfrak{F}_{0}\right)
$$

We are finally prepared to prove Theorem 1.1.

Proof. We will calculate here an upper bound for

$$
\max _{X_{0}} \mathbb{E}_{X_{0}} T_{\text {fix }}
$$

i.e. the upper bound over all initial configurations X_{0}.

Let S be as above, i.e. the first time that some song k has $M_{t}^{k} \geq 1-\frac{\eta}{2 N}$ and let K be that song. Note that this defines K uniquely as $1-\frac{\eta}{2 N} \geq \frac{1}{2}$. Let R be stopping time (as above) defined by

$$
R=\inf \{t \geq S \mid \text { some song other than } \mathrm{K} \text { is played }\}
$$

We first recall from Proposition 5.1 that at time S, we have

$$
\mathbb{P}_{X_{S}}\left(T_{\mathrm{fix}}=0\right) \geq \frac{1}{2}
$$

Also, at time S, if $T_{\text {fix }}$ has not yet occurred, then some song other than K will play again and so $R<\infty$.

From Proposition 4.1 we have that there exists a constant $C(\eta)$ so that from any initial configuration X_{0}

$$
\mathbb{E}_{X_{0}} S \leq C(\eta) \frac{N}{\lambda}
$$

We then have for any initial X_{0} :

$$
\begin{aligned}
\mathbb{E}_{X_{0}} T_{\mathrm{fix}} & =\mathbb{E}_{X_{0}} \mathbb{E}\left(\left(T_{\mathrm{fix}}-S\right)+S \mid \mathfrak{F}_{S}\right) \\
& =\mathbb{E}_{X_{0}} S+\mathbb{E}_{X_{0}}\left(\mathbb{E}_{X_{S}} T_{\mathrm{fix}}\right) \\
& =\mathbb{E}_{X_{0}} S+\mathbb{E}_{X_{0}}\left(\mathbb{E}_{X_{S}}\left(T_{\mathrm{fix}} 1_{T_{\mathrm{fix}}>0}\right)\right) \\
& =\mathbb{E}_{X_{0}} S+\mathbb{E}_{X_{0}}\left(\mathbb{E}_{X_{S}}\left(\left(T_{\mathrm{fix}}-R\right) 1_{R<\infty}+R 1_{R<\infty}\right)\right) \\
& =\mathbb{E}_{X_{0}} S+\mathbb{E}_{X_{0}}\left(\mathbb{E}_{X_{S}} R 1_{R<\infty}\right)+\mathbb{E} \mathbb{E}\left(\left(T_{\text {fix }}-R\right) 1_{R<\infty} \mid R\right) \\
& =\mathbb{E}_{X_{0}} S+\frac{1}{8 \eta}+\mathbb{E}\left(1_{R<\infty} \mathbb{E}_{X_{R}} T_{\text {fix }}\right) \\
& \leq C(\eta) \frac{N}{\lambda}+\frac{1}{8 \eta}+\mathbb{E}\left(1_{R<\infty} m\right) \\
& \leq 2 C(\eta) \frac{N}{\lambda}+\frac{1}{2} \max _{x_{0}} \mathbb{E}_{x_{0}} T_{\text {fix }} .
\end{aligned}
$$

Here the $\frac{1}{8 \eta}$ is clearly dominated by the first term for $N \gg 0$. Therefore, we have that

$$
\max _{X_{0}} \mathbb{E}_{X_{0}} T_{\mathrm{fix}} \leq 2 C^{\prime}(\eta) \frac{N}{\lambda}+\frac{1}{2} \max _{X_{0}} \mathbb{E}_{X_{0}} T_{\mathrm{fix}}
$$

for some other constant $C^{\prime}(\eta)$ and so

$$
\mathbb{E}_{X_{0}} T_{\text {fix }} \leq 4 C^{\prime}(\eta) \frac{N}{\lambda}
$$

from which our conclusion follows.

6 The Interaction Parameter η

Next we consider the asymptotic of our bound with respect to η. Tracing through the steps of our proof of Proposition 4.1, we may actually prove the following improved bound.
Proposition 6.1. There exists a constant C so that from any initial configuration x_{0}, the first escape time S satisfies

$$
\mathbb{E}_{x_{0}} S \leq \frac{C}{\eta^{3}(1-\eta)} \frac{N}{\lambda}
$$

Then, repeating the arguments in Section 5, we may improve our bound in Theorem 1.1 on the expectation of the fixation time $T_{\text {fix }}$.

Theorem 6.2. There exists a constant C so that from any initial X_{0} the fixation time $T_{\text {fix }}$ satisfies

$$
\mathbb{E} T_{\text {fix }} \leq \frac{C}{\eta^{3}(1-\eta)} \frac{N}{\lambda}
$$

We conj that this can actually be improved to depend on η as $\frac{1}{\eta(1-\eta)}$.

7 The Complete Graph Case

As an example of a geometry in which more can be said than Theorem 1.1, we look at the complete graph K_{N} on N vertices. Specifically, we have uniform meeting rates between agents, that is $\nu_{i j}=\frac{1}{N-1}$ for all pairs of agents i, j. It is standard fact that the spectral gap $\lambda_{K_{N}}=1$ and so Theorem 1.1 shows that the fixation time has

$$
\mathbb{E} T_{\text {fix }}=O(N)
$$

A simple argument will show that this order of magnitude bound is in fact tight.

7.1 A Lower Bound

Throughout this section we assume that there are at least two songs, i.e. $\sigma \geq 2$. To achieve any reasonable lower bound, we need to ignore starting conditions that are likely already at fixation by time $t=0$. We call an initial configuration non-trivial if there exists at least one song k with

$$
\frac{1}{2 \sigma} \leq M_{0}^{k} \leq 1-\frac{1}{2 \sigma}
$$

and will consider only non-trivial initial configurations. The choice of the factor of $\frac{1}{2}$ here is of course arbitrary.
Theorem 7.1. There exists a constant $C(\eta, \sigma)$ such that for K_{N} started from any nontrivial initial configuration, the fixation time $T_{\text {fix }}$ has

$$
\mathbb{E} T_{\mathrm{fix}} \geq C(\eta, \sigma) N
$$

Proof. Recalling Proposition 4.1, first consider any one song and consider its average preference $M_{t}, t \geq 0$. From the proof of Proposition 2.4

$$
\mathbb{E}\left(d M_{t}\left(1-M_{t}\right) \mid \mathfrak{F}_{t-}\right)=-\frac{2 \eta^{2}}{N} Q_{t} d t
$$

which combined with $Q \leq \frac{1}{4}$ gives that

$$
M_{t}\left(1-M_{t}\right)-M_{0}\left(1-M_{0}\right)+\frac{\eta^{2}}{2 N} t
$$

is a sub-martingale.
By assumption, there exists at least one song k with $M_{0}^{k}\left(1-M_{0}^{k}\right) \geq \frac{1}{4 \sigma}$. Let

$$
T_{2}=\inf _{t \geq 0}\left\{M_{t}^{k} \notin\left(\frac{1}{8 \sigma}, 1-\frac{1}{8 \sigma}\right)\right\}
$$

be the first time that M_{t}^{k} leaves the interval $\left(\frac{1}{8 \sigma}, 1-\frac{1}{8 \sigma}\right)$. Then applying the Optional Stopping Theorem

$$
\mathbb{E} M_{T_{2}}^{k}\left(1-M_{T_{2}}^{k}\right)+\frac{\eta^{2}}{2 N} \mathbb{E} T_{2} \geq M_{0}\left(1-M_{0}\right) \geq \frac{1}{4 \sigma}
$$

At time T_{2}, we have

$$
M_{T_{2}}^{k}\left(1-M_{T_{2}}^{k}\right) \leq \frac{1}{8 \sigma}
$$

and so we can conclude that

$$
\mathbb{E} T_{2} \geq \frac{N}{4 \eta^{2} \sigma}
$$

To complete the proof, we need only show that the fixation time $T_{\text {fix }}$ is with high probability the same order of magnitude as T_{2}.

Consider the first meeting after time T_{2}, between some agents i and j. If two different songs are played at that meeting, then by definition $T_{\text {fix }}$ must not have yet occurred. The probability that at a meeting at time t that agent i plays song k and j does not, or vis-versa, is

$$
X_{t}^{k}(i)\left(1-X_{t}^{k}(j)\right)+X_{t}^{k}(j)\left(1-X_{t}^{k}(i)\right)
$$

Therefore, on the complete graph, the probability that two different songs play at a meeting at time t is

$$
\begin{aligned}
\sum_{i \neq j}\binom{N}{2}^{-1} & \left(X_{t}^{k}(i)\left(1-X_{t}^{k}(j)\right)+X_{t}^{k}(j)\left(1-X_{t}^{k}(i)\right)\right) \\
& =\sum_{i \neq j} \frac{X_{t}^{k}(i)\left(1-X_{t}^{k}(j)\right)}{N(N-1)} \\
& =\frac{N}{N-1} M_{t}^{k}\left(1-M_{t}^{k}\right)-\sum_{i} \frac{X_{t}^{k}(i)^{2}}{N(N-1)} \\
& \geq M_{t}^{k}\left(1-M_{t}^{k}\right)-\frac{1}{N-1}
\end{aligned}
$$

Recalling Lemma 2.1, at time T_{2} we still have

$$
M_{T_{2}}^{k} \in\left(\frac{1}{8 \sigma}-\frac{2 \eta}{N}, 1-\frac{1}{8 \sigma}+\frac{2 \eta}{N}\right)
$$

and so at time T_{2} we have

$$
M_{T_{2}}^{k}\left(1-M_{T_{2}}^{k}\right) \geq\left(\frac{1}{8 \sigma}-\frac{2 \eta}{N}\right)^{2}
$$

Thus, the probability at time T_{2} that fixation has occurred is bounded by

$$
\begin{aligned}
\mathbb{P}_{X\left(T_{2}\right)}\left(T_{\text {fix }} \geq 0\right) & \geq M_{T_{2}}^{k}\left(1-M_{T_{2}}^{k}\right)-\frac{1}{N-1} \\
& \geq\left(\frac{1}{8 \sigma}-\frac{2 \eta}{N}\right)^{2}-\frac{1}{N-1}
\end{aligned}
$$

Applying the Strong Markov property, we can conclude that

$$
\begin{aligned}
\mathbb{E} T_{\mathrm{fix}} & \geq \mathbb{E} T_{2} 1\left(T_{\mathrm{fix}} \geq T_{2}\right) \\
& =\mathbb{E} T_{2} \mathbb{E}\left(1\left(T_{\mathrm{fix}} \geq T_{2}\right) \mid T_{2}\right) \\
& =\mathbb{E} T_{2}\left(\left(\frac{1}{8 \sigma}-\frac{2 \eta}{N}\right)^{2}-\frac{1}{N-1}\right) \\
& \geq \frac{N}{4 \eta^{2} \sigma}\left(\left(\frac{1}{8 \sigma}-\frac{2 \eta}{N}\right)^{2}-\frac{1}{N-1}\right)
\end{aligned}
$$

finishing the proof.

8 Further Directions

We conclude by presenting a few possible further directions for research on the iPod model.

8.1 Improve the Fixation Time Bound

Heuristically, from any initial configuration the processes X_{t}^{k} mixes on a time scale of the order of the relaxation time λ^{-1}. Then, for any song k, when $x_{t}(i) \approx M_{t}$ we have $Q_{t} \approx M_{t}\left(1-M_{t}\right)$ and so

$$
\mathbb{E}\left(d M_{t}\left(1-M_{t}\right) \mid F_{t-}\right) \approx-\frac{2 \eta^{2}}{N} M_{t}\left(1-M_{t}\right) d t
$$

Following through the same embedding and comparison arguments, we then find a fixation time of $O(N)$. Therefore we conj that for any initial configuration

$$
\mathbb{E} T_{\mathrm{fix}}=O\left(\lambda^{-1}+N\right)=O\left(\max \left(\lambda^{-1}, N\right)\right.
$$

8.2 Lower Bound and Improved Coupling

The heart of our proof of an upper bound for $\mathbb{E} T_{\text {fix }}$ in Theorem 1.1 is the approximate lower bound

$$
\mathbb{E}\left(d\langle\mathbf{M}\rangle_{t} \mid \mathfrak{F}_{t-}\right) \gtrsim \frac{\lambda}{N} \phi\left(\mathbf{M}_{t}\right) d t
$$

which enables the comparison to the Wright-Fisher diffusion. Jensen's inequality applied to Proposition 2.4 gives the easy upper bound

$$
\mathbb{E}\left(d\langle\mathbf{M}\rangle_{t} \mid \mathfrak{F}_{t-}\right) \leq \frac{2 \eta^{2}}{N} \phi(\mathbf{M}) d t
$$

which gives a lower bound for $\mathbb{E} T_{\text {fix }}$ of order N, which is likely not tight. A better approximate upper bound - matching the order of magnitude of the lower bound - would allow a direct coupling of \mathbf{M}_{t} to the σ-allele Wright-Fisher diffusion, at least in the $N \rightarrow \infty$ limit, analogous to results in [5].

References

[1] David Aldous. Interacting particle systems as stochastic social dynamics. Bernoulli, 19(4):1122-1149, 09 2013. MR-3102546
[2] David Aldous and James Allen Fill. Reversible markov chains and random walks on graphs, 2002. Chapter 14. Unfinished monograph, recompiled 2014.
[3] David Aldous and Daniel Lanoue. A lecture on the averaging process. Probability Surveys, 9:90-102, 2012. MR-2908618
[4] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social dynamics. Rev. Mod. Phys., 81:591-646, May 2009.
[5] Y.-T. Chen, J. Choi, and J. T. Cox. On the convergence of densities of finite voter models to the Wright-Fisher diffusion. ArXiv e-prints, November 2013.
[6] Colin Cooper, Robert Elsässer, Hirotaka Ono, and Tomasz Radzik. Coalescing random walks and voting on connected graphs. SIAM J. Discrete Math., 27(4):1748-1758, 2013. MR-3116640
[7] J Theodore Cox. Coalescing random walks and voter model consensus times on the torus in zd. The Annals of Probability, pages 1333-1366, 1989. MR-1048930
[8] Lester E. Dubins. On a theorem of skorohod. The Annals of Mathematical Statistics, 39(6):2094-2097, 12 1968. MR-0234520
[9] R. Durrett. Probability Models for DNA Sequence Evolution. Probability and its applications. Springer, 2002. MR-1903526
[10] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and mixing times. American Mathematical Soc., 2009. MR-2466937
[11] Hariharan Narayanan and Partha Niyogi. Language evolution, coalescent processes, and the consensus problem on a social network. J. Math. Psych., 61:19-24, 2014. MR-3270812
[12] Roberto Imbuzeiro Oliveira. Mean field conditions for coalescing random walks. The Annals of Probability, 41(5):3420-3461, 09 2013. MR-3127887

[^0]: *University of California, Berkeley, USA. E-mail: dlanoue@math.berkeley.edu

