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Abstract

We introduce a Voter Model variant, inspired by social evolution of musical preferences.
In our model, agents have preferences over a set of songs and upon meeting update
their own preferences incrementally towards those of the other agents they meet.
Using the spectral gap of an associated Markov chain, we give a geometry dependent
result on the asymptotic consensus time of the model.
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1 Introduction

The terminology of Finite Markov Information Exchange (FMIE) models has been
introduced [1] [3] as a catch-all for the interpretation of Interacting Particle Systems
(IPS) models as stochastic social dynamics. Many important and classical models fit
under this two-level framework; the bottom level a meeting model among agents, and
the top level an information exchange algorithm performed at each meeting.

For classic IPS models, such as the Voter Model, with a simple meeting algorithm the
FMIE perspective is perhaps unnecessary. Coupling and comparison to random walks,
among other methods, suffice[2]. In this paper however, we will introduce and study
a (much) generalized Voter Model - inspired by the evolution of musical preferences
among a group of friends - as an FMIE process.

1.1 The iPod Model

Here we introduce the iPod FMIE model. The underlying framework of the stochastic
process is a weighted graphs G on N vertices. We will refer to each vertex as an agent
and occasionally to our vertex set as I. Associated to the edges are symmetric meeting
rates νi,j for 1 ≤ i 6= j ≤ N . We assume that all meeting rates are normalized, i.e.∑

j

νi,j = 1
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The iPod Model

for all agents i.
Each agent i is equipped at each time twith a probability measureXt(i) on {1, 2, . . . , σ}

which we will reference by its distribution Xk
t (i) for 1 ≤ k ≤ σ.

We consider σ as a fixed number of songs and Xk
t (i) the preference of agent i at time

t for song k. The stochastic process Xt updates over time as follows. Between every pair
of agents i, j we associate a Poisson process with rate νi,j whose times we refer to as
meetings between i and j. At a meeting time t between agents i and j, each agent picks
a song σi and σj independently and distributed according to Xt−(i) and Xt−(j).

We interpret this as each agent choosing a song to play to the other agent based on
their preferences. After agent i hears the song chosen by j he updates his preferences
according to

X
σj
t (i) = (1− η)Xσj

t−(i) + η

and
Xk
t (i) = (1− η)Xk

t−(i)

for all other k 6= σj . Here 0 < η < 1 is a fixed interaction parameter. Agent j updates her
preferences similarly. It is immediate that if Xt−(i) is a probability measure then so is
Xt(i). Note that we are implicitly working with cadlag paths.

Analogous to results on the consensus time of the Voter Model - for instance [7] or
more generally [12] - in this paper we will estimate the fixation time (to be defined) of
the iPod process. Interestingly, again similar to the Voter Model our proof will explore a
connection between this process and the Wright-Fisher diffusion [7].

A special feature of the model (Proposition 2.3) is that the average (over agents)
preference for a given song evolves as a martingale, analogous to the total proportion of
agents with a given opinion on the voter model. This distinguishes the iPod model from
many other variants of the voter model that have been studied [4].

Similar models, but with unidirectional updating of opinions, have been studied in
the context of language evolution [11]. Our bounds (on the analogous consensus time as
a function of the spectral gap) in our setting are sharper by a factor of ln(N), but we are
unsure whether our methods would apply in their setting.

1.2 Fixation Time

We will be focused on estimating the fixation time Tfix of the iPod process. Every time
two agents meet at least one distinct song is played between them and so at least one of
the σ songs is played infinitely often. Given that only one song is played infinitely often,
we define Tfix to be the last time any other song is played.

We note that Tfix is not a stopping time and a priori could be infinite, i.e. if more than
one song is played infinitely often. However, we will show that this is not the case and in
fact Tfix has finite expectation, the bounding of which will be our primary goal.

Theorem 1.1. There exists a constant C(η) so that from any initial configuration of σ
songs, the fixation time Tfix has expectation

ETfix ≤ C(η)
N

λ
,

where λ is the spectral gap of G.

The spectral gap λ of reversible Markov chain is interpreted as its asymptotic rate of
convergence to its stationary distribution, and can be defined by the second eigenvalue
of the chain’s transition matrix [10]. In our setting, we define the spectral gap λ in terms
of the edge weights νi,j . First, for any function f : I → R we define the Dirichlet form
ε(f, f) by

ε(f, f) =
∑
i,j

νi,j
2N

(f(i)− f(j))2 .
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The iPod Model

The spectral gap λ is then defined in our context by the extremal characterization

λ = inf
f : I→R |Var(f) 6=0

ε(f, f)

Var(f)
.

There is extensive literature [10] giving order of magnitude bounds on the N →∞
asymptotic behaviour of λN for particular families of N -vertex graphs. For such families,
Theorem 1.1 gives an order of magnitude upper bound on the asymptotic fixation time,
for fixed η and σ. Similar results are known relating λ to the time of ‘voting completion’
in the classical Voter model [6]. We will show (Theorem 7.1) the tightness of this bound
in the case of a particular special family of graphs.

2 Projection on a Single Song

We begin by focusing on the projection of our system to a single song. For some
fixed (arbitrary) song k we will consider only Xk(i) which we will write simply as x(i)
dropping the k. When two agents i, j meet, each independently chooses to either play
song k or not; with probability x(i) and x(j) respectively. Writing Ber(x(i)) and Ber(x(j))

for independent Bernoulli variables with given success parameters, we see that if i and j
meet at time t then

xt(i) = (1− η)xt−(i) + ηBer(xt−(j)),

with x(j) updating similarly. At such a meeting, for all other agents k 6= i, j, x(k) remains
unchanged.

This implies that the evolution of any given song can be considered separately from
the others - though not independently. We will therefore focus first on the FMIE system
{xt(i)}i∈I,t≥0 evolving as above and then later return to the original multi-song model.
The primary object of study in our one song model will be the average preference for the
song, written

Mt =
∑
i∈I

xt(i)

N
.

Our goal in this section will be to estimate M2
t using martingales. We will use the

shorthand xt = {xt(i) : 1 ≤ i ≤ N} for the configuration at time t. In particular, we
will often use x0 for an arbitrary initial configuration. By comparison, we will use Xt

(respectively X0) for a configuration of the multi-song model.
We will begin by analysing a few quantities derived from xt.

2.1 Derived Quantities

For ease of notation we will occasionally drop t. Our primary object of study will be
the (L1) average of the preferences x(i), denoted Mt which is introduced above. We will
repeatedly make use of the following lem on the step sizes of Mt.

Lemma 2.1. If t is a meeting time then

|Mt −Mt−| ≤
2η

N
.

Proof. If agent i is involved in a meeting at t, then either

xt(i) = (1− η)xt−(i) or xt(i) = (1− η)xt−(i) + η,

and so
|xt(i)− xt−(i)| ≤ η.

As only two agents are involved in any meeting, our bound follows easily.
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As a warm-up for the more complicated quantities to appear later, we begin by
showing that Mt evolves as a continuous time martingale. We here implicitly use the
filtration Ft generated by {xt(i)}i∈I,t≥0. Also, note that we may clearly assume that
almost surely meeting times between agents are unique and that the set of meeting
times has no accumulation point.

We will make use of the process dynamics notation

E (dAt|Ft−) = (resp. ≥,≤)Btdt

to mean that

At −A0 −
∫ t

0

Brdr

is a martingale (respectively submartingale, supermartingale). Clearly this notation is
compatible with arithmetic operations. To calculate a process’s dynamics, we make
repeated use of the following lem, the proof of which is straightforward.

Lemma 2.2. Let At be a function of the xt(i). Then

E (dAt|Ft−) =
∑
i,j

νi,j E (At −At−|i and j meet at t) dt

In particular, for the average preference Mt we have the following dynamics.

Proposition 2.3. With respect to the filtration Ft, Mt is a continuous time martingale.

Proof. To begin we note that since EBer(xt(j)) = xt(j) we have that

E (xt(i)|i and j meet at time t,Ft−) = (1− η)xt−(i) + ηxt−(j),

and similarly for xt(j). Summing both we find that

E (xt(i) + xt(j)|i and j meet at time t,Ft−) = xt−(i) + xt−(j).

As only x(i) and x(j) change at such a time t, this gives us that

E (Mt|i and j meet at time t,Ft−) =Mt−,

which clearly implies that

E (dMt|Ft−) = 0,

i.e. Mt is a martingale.

We next look at the process dynamics of M2
t . To do so we introduce the quantity Qt

given by

Qt =
∑
i∈I

xt(i)(1− xt(i))
N

.

In particular we use Lemma 2.2 to calculate the following.

Proposition 2.4. The variation M2
t satisfies

E
(
dM2

t |Ft−
)
=

2η2

N
Qtdt.
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Proof. As before, we begin by calculating that for k 6= i, j, since x(k) does not change
after a meeting between i and j that:

E (xt(k)(xt(i) + xt(j))|i and j meet at time t,Ft−) = xt−(k)(xt−(i) + xt−(j)).

Next we calculate that

E(x2
t (i)|i and j meet at t,Ft−)

= (1− η)2x2
t−(i) + 2η(1− η)xt−(i)xt−(j) + η2xt−(j),

and similarly for x2(j). Finally we have that

E(xt(i)xt(j)|i and j meet at t,Ft−)

= (1− η)2xt−(i)xt−(j) + η(1− η)[x2
t−(i) + x2

t−(j)] + η2xt−(i)xt−(j).

Putting this all together we find that

E((
∑
i

xt(i))
2|i and j meet at t,Ft−)

= (
∑
i

xt−(i))
2 + η2(xt−(i)− x2

t−(i) + xt−(j)− x2
t−(j)).

Using Lemma 2.2, summing over i, j and normalizing by N2 we find that

E
(
dM2

t |Ft−
)
=

2η2

N
Qtdt.

Instead ofM2, we will often be more concerned withMt(1−Mt). AsMt is a martingale,
from Proposition 2.4 we easily have that

E (dMt(1−Mt)|Ft−) = −
2η2

N
Qtdt.

A central tool for the study of the underlying Markov Chain on G is the Dirichlet form
ε. We recall that the Dirchilet form ε(f, f) for a function f : I → R is defined as

ε(f, f) =
∑
i,j

νij
2N

(f(i)− f(j))2.

We will write ε(xt, xt) for the Dirichlet form of the function i 7→ xt(i).
The main fact that we will need about the Dirichlet form is its relationship to the

spectral gap. We recall the definition of the spectral gap of a Markov Chain is given by

λ = inf
f : I→R |Var(f) 6=0

ε(f, f)

Var(f)
,

where Var(f) is the variance of the function f(i) with respect to the uniform measure on
I. A simple but important fact we make repeated use of is that 0 < λ ≤ 1.

Following Lemma 2.2 we can calculate dQ.

Proposition 2.5. The sum Qt satisfies

E (dQt|Ft−) = 4η(1− η)ε(xt, xt)dt− 2η2Qtdt,

as well as

E (dQt|Ft) ≥ 4λη(1− η)Mt(1−Mt)dt−
(
2η2 + 4λη(1− η)

)
Qtdt.
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Proof. We begin by noting that Qt =Mt −
∑
i
x2
t (i)
N and so

E (dQt|Ft−) = E

(
d

(∑
i

x2
t (i)

N

)
|Ft−.

)
We have from Proposition 2.4 that

E(x2
t (i)|i and j meet at t,Ft−)

= (1− η)2x2
t−(i) + 2η(1− η)xt−(i)xt−(j) + η2xt−(j).

When agents i and j meet, only x(i) and x(j) change and so

E(Qt −Qt−|i and j meet at t,Ft−)

= −E
(
x2
t (i)− x2

t−(i)

N
+
x2
t (j)− x2

t−(j)

N
|i and j meet at t,Ft−

)
= (2η − η2)

x2
t−(i) + x2

t−(j)

N
− 4η(1− η)xt−(i)xt−(j)

N

− η2xt−(j) + xt−(i)

N

=
4η(1− η)

2N
(xt−(i)− xt−(j))2

− η2

N
(xt−(i)(1− xt−(i)) + xt−(j)(1− xt−(j)).

Summing over i and j our first equation for dQt is done. The second is an immediate
consequence of the first using the identity

ε(x, x)t ≥ λVar(x)t = λ(Mt(1−Mt)−Qt).

2.2 Within an small Neighborhood

Next we focus our attention on Mt stuck within the neighborhood (M0 − ε,M0 + ε)

for some small (unspecified for now) ε. Let τ be the escape time of the interval, i.e.

τ = inf{t ≥ 0: Mt /∈ (M0 − ε,M0 + ε)},

and ς any stopping time with ς ≤ τ almost surely.
For ease of notation in this section we will often write E for Ex0 - that is the expecta-

tion starting from some initial condition x0, perhaps with some (to be specified) condition
on M0.

Our main goal now is to give a lower bound on the quadratic variation of Mt until
time ς.

2.3 A Lower Bound

First we look for a bound on the heterozygosity Mt(1−Mt). We will make repeated
use of the following calculus exercise.

Lemma 2.6. For a fixed x0, if

ε ≤ x0(1− x0)

2
and x0 − ε ≤ x ≤ x0 + ε then

x(1− x) ≥ 1

2
x0(1− x0).
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Using our process dynamics calculations we may now begin to bound ς.

Lemma 2.7. There exist positive constants C(η), D(η) so that

E

∫ ς

0

Qrdr ≥ C(η)λM0(1−M0)E ς −D(η)(EQς −Q0).

Proof. First we recall that from Proposition 2.5 we have a submartingale

Yt = Qt −Q0 − 4λη(1− η)
∫ t

0

Mr(1−Mr)dr + (2η2 + 4λη(1− η))
∫ t

0

Qrdr.

The Optional Stopping Theorem shows EYς ≥ EY0 = 0, so

EQς−Q0 +
(
2η2 + 4λη(1− η)

) ∫ ς

0

Qrdr

≥ 4λη(1− η)E
∫ ς

0

Mr(1−Mr)dr

≥ 4λη(1− η)E
∫ ς

0

1

2
M0(1−M0)dr by Lemma 2.6

≥ 2λη(1− η)M0(1−M0)E ς.

Next, we note that since λ ≤ 1

2η2 + 4λη(1− η) ≤ 4η − 2η2.

Substituting this in and rearranging the inequality

(4η − 2η2)E

∫ ς

0

Qrdr ≥ 2λη(1− η)M0(1−M0)E ς − EQτ +Q0

and so

E

∫ τ

0

Qrdr ≥ C(η)λM0(1−M0)E τ −D(η)(EQτ −Q0)

for C(η) = 2η(1−η)
4η−2η2 and D(η) = 1

4η−2η2 .

Using this we are ready for our lower bound.

Lemma 2.8. There exist positive constants A(η), B(η) with

EM2
ς −M2

0 ≥
1

N
(A(η)λM0(1−M0)E ς −B(η) (EQς − EQ0)) .

Proof. Proposition 2.4 shows

M2
t −M2

0 −
2η2

N

∫ t

0

Qrdr

is a martingale. The Optional Stopping Theorem and Lemma 2.7 show

EM2
ς −M2

0 ≥
2η2

N
(C(η)λM0(1−M0)E ς −D(η)(EQς −Q0)) ,

which finishes our proof.
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3 Escaping an small Neighborhood

Write Mk
t for the family of martingales given by the average preferences for songs

1 ≤ k ≤ σ and Mt for
Mt = (M1

t , . . . ,M
σ
t )

which lives in the simplex

Sσ = {(x1, . . . , xσ) :

σ∑
i=1

xi = 1 and xi ≥ 0 for all i}.

Define φ : Rσ → R by

φ(x1, . . . , xσ) =

σ∑
i=1

xi(1− xi),

and φ∗ : R
σ → R by

φ∗(x1, . . . , xσ) = min
1≤i≤σ

xi(1− xi).

We now consider the escape time of the martingale Mt from an ε-ball around M0.
Define

τ = inf{t ≥ 0: |Mt −M0| ≥ ε}.

In particular, we will consider ε sufficiently small, that is, ε satisfying

η

4N
≤ ε ≤ φ∗(M0)

2
. (3.1)

The importance of the lower bound will be clear later.
For simplicity of notation, write

Qt =
σ∑
i=1

Qit,

where Qit is the quantity as before for song i. Our main result in this section is the
following.

Proposition 3.1. There exists a constant A(η) such that, for φ∗(M0) and ε satisfying
Equation (3.1) we have

E τ ≤ A(η) Nε2

λφ(M0)
+
B(η)

λ
E(Qτ −Q0).

We will prove Proposition 3.1 by considering the quadratic variation of the martingale
Mt, that is 〈M〉t given by

〈M〉t =
σ∑
i=1

(
M i
t −M i

0

)2
.

We will need the following easy lem on the step sizes of Mt, which can be proven
similarly to Lemma 2.1.

Lemma 3.2. For any time t we have

|Mt −Mt−| ≤
3η

N
.

We now give our proof of Proposition 3.1.
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Proof. First, for each song i, by Lemma 2.8 we have

E
(
M i
τ −M i

0

)2 ≥ A(η)λ

N
M i

0(1−M i
0)E τ −

B(η)

N

(
EQiτ − EQi0

)
,

where Qit is the corresponding term for song i.
Combining these, we therefore have that

E〈M〉τ ≥
A(η)λ

N
φ(M0)E τ −

B(η)

N

∑
i

(
EQiτ − EQi0

)
.

For the upper bound of E〈M〉t, by Lemma 3.2 and the definition of τ we have that

〈M〉τ ≤
(
ε+

3η

N

)2

≤ 132ε2

using assumption that ε ≥ η
4N .

Combining these two facts

132ε2 ≥ A(η)λ

N
φ(M0)E τ −

B(η)

N
E(Qτ −Q0)

from which our claim follows easily

4 Approaching the Boundary

Our goal in this section is to apply Proposition 3.1 to give an upper bound on the first
time S that Mt approaches an extreme point of Sσ. From any initial configuration, define
the stopping time S by

S = inf{t ≥ 0: M i
t ≥ 1− η

2N
for some song i.}.

Of course at S, all other songs j 6= i must have

M j
S ≤

η

2N
.

The main result on S is the following.

Proposition 4.1. There exists A(η) so that from any initial configuration X0

EX0
S ≤ A(η)N

λ
φ(M0).

We begin by approximating S by a sequence of stopping times, then recall some basic
facts about the Wright-Fisher diffusion, and finally use a coupling argument to estimate
the stopping times.

4.1 The Sequence τk

We will consider the series of stopping times τk for the martingale Mt defined
inductively as follows. Let τ0 = 0 and for k ≥ 1 define τk

τk = inf

{
t ≥ τk−1 : |Mt −Mτk−1

| ≥
φ∗(Mτk−1

)

2

}
,

that is the first time after τk−1 that Mt exits the ball of radius
φ∗(Mτk−1

)

2 around Mτk−1
.

Using Proposition 3.1, we have the following bound on the expectation of the incre-
ments of our stopping times.
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Lemma 4.2. There exists a constant A(η) so that, from any initial X0, if K ≥ k then for
all songs i:

E
(
τk − τk−1|Fτk−1

)
≤ A(η)N

λ

φ2
∗(Mτk−1

)

φ(Mτk−1
)
+
B(η)

λ
E(Qτk −Qτk−1

).

Proof. This is an immediate application of Proposition 3.1 and the Strong Markov
property at time τk−1.

We will see that the first term in Lemma 4.2 matches the equivalent estimate for a
certain Brownian diffusion.

4.2 The Wright-Fisher Diffusion

We will now make use of some basic facts about the neutral σ-allele Wright-Fisher
diffusion

Wt = (W 1
t , . . . ,W

σ
t ),

taking values in the simplex Sσ. An excellent introduction to the WF diffusion and its
place in genetics can be found in [9]. In the classical Voter model, the Wright-Fisher
diffusion appears as a limit of the voter density process [5]. Here we take a slightly
different approach and embed our finite process Mt directly into the diffusion.

To begin our comparison between the iPod model and the WF diffusion, we first need
a bound on the escape time of the WF process from a small ball.

Lemma 4.3. From any initial W0 = w0, for ε < φ∗(w0)
2 the first escape τ of Wt from the

ε-ball about w0 satisfies

Ew0 τ ≥
ε2

2φ(w0)
.

Proof. This follows immediately from a standard calculation of the quadratic variation of
Wt and the fact that for ε < φ∗(w0)

2 , if x is in ε-ball around w0 we have

φ(x) ≥ φ(w0)

2

by Lemma 2.6.

We will also need the classical bound for the absorption time of the σ-allele Wright-
Fisher diffusion, that is

Tabs = inf{t ≥ 0: W i
t = 1 for some i}.

Lemma 4.4. (Theorem 8.2 [9]) Starting from W0 = x, we have

Ex Tabs = −2
σ∑
i=1

(1− xi) ln(1− xi)

An immediate corollary to Lemma 4.4, by an application of Jensen’s inequality, is the
fact that Ex Tabs is uniformly bounded above, for all σ and x, by 1.
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4.3 The Comparison Calculation

Let Wt be a σ-allele Wright-Fisher diffusion started at W0 = M0. The discrete
martingale {Mτk}k≥0 is clearly square integrable and so [8] we can find a sequence of
stopping times τ̃k for Wt so that

{Mτk}k≥0 =d {Wτ̃k}k≥0. (4.1)

We will focus on the first time that Mt approaches one of the extreme points of Sσ.
Recall the stopping time S defined by

S = inf{t ≥ 0: M i
t ≥ 1− η

2N
for some i}, (4.2)

and let
K = inf{k ≥ 0: τk ≥ S}.

Martingale arguments give us the following.

Lemma 4.5. K <∞ almost surely.

Proof. This follows immediately from the fact that before τK we have

φ∗
2
(Mt) ≥

η

8N

and so the discrete time martingale M0,Mτ1 ,Mτ2 , . . . has step sizes

|Mτk −Mτk−1
| ≥ η

8N
.

Thus on the bounded region Sσ, K must occur after finitely many steps almost surely.

Next, let K̃ be the equivalent index for Wt, that is

K̃ = inf{k ≥ 0: Wi
τ̃k
≥ 1− η

2N
for some i}.

For Mt we have clearly that
S ≤ τK . (4.3)

Furthermore, if M0 is in the interior of Sσ then so is Mt for all t ≥ 0 as a non-zero
preference Xk(i) for some song k by an agent i decreases geometrically and so is never
actually zero. Thus, Mτk is also in the interior of Sσ and therefore so must be Wτ̃K̃

by
their equivalence in distribution. Therefore,

τ̃K̃ ≤ Tabs,

as for t ≥ Tabs, Wt has already absorbed and is constant.

Lemma 4.6. The hitting times τ̃k, k ≥ 1 satisfies

E
(
τ̃k − τ̃k−1|Fτ̃k−1

)
≥ 1

8
φ(Wτk−1

).

Proof. Note that starting at w0 = Wτ̃k−1
, the time τ̃k can only occur after Wt leaves

the ball of radius 1
2φ∗(wo) around w0 as Wτ̃k is already outside this interval and Wt is

continuous. Write τ for the first exit time of this interval. Applying the Strong Markov
Property we see that

E
(
τ̃k − τ̃k−1|Fτ̃k−1

)
≥ Ew0

(
τ |Fτ̃k−1

)
≥ 1

8

φ2
∗(Wτk−1

)

φ(Wτk−1
)

by Lemma 4.3,

completing our proof.
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We are now ready to prove Proposition 4.1.

Proof. We recall by Equation (4.3), ES ≤ E τK and so we will focus on bounding E τK .
As K <∞ almost surely by Lemma 4.5 we have that

E τK = E

( ∞∑
k=1

(τk − τk−1)1K≥k

)
.

By Lemma 4.2

E
(
τk − τk−1|Fτk−1

)
≤ A(η)N

λ

φ2
∗(Mτk−1

)

φ(Mτk−1
)
+
B(η)

λ
E(Qτk −Qτk−1

),

for some constants A(η), B(η) depending only on η. Therefore we can calculate using
the Strong Markov property that

E ((τk − τk−1)1K≥k) = E
(
E
(
(τk − τk−1)1K≥k|Fτk−1

))
= E

(
1K≥k Exτk−1

(τk − τk−1)
)

≤ A(η)N
λ
E

(
1K≥k

φ2
∗(Mτk−1

)

φ(Mτk−1
)

)
+
B(η)

λ
E(Qτk −Qτk−1

),

using that 1K≥k ≤ 1 for the second term.
From Equation (4.1) {Mτk}k≥0 and {Wτ̃k}k≥0 are equivalent in distribution, so

E

(
1K≥k

φ2
∗(Mτk−1

)

φ(Mτk−1
)

)
= E

(
1K̃≥k

φ2
∗(Wτk−1

)

φ(Wτk−1
)

)
.

By Lemma 4.3
1

8

φ2
∗(Wτk−1

)

φ(Wτk−1
)
≤ E

(
τ̃k − τ̃k−1|Fτ̃k−1

)
,

so we can calculate

E

(
1K≥k

φ2
∗(Mτk−1

)

φ(Mτk−1
)

)
≤
(
E 1K̃≥k8E

(
τ̃k − τ̃k−1|Fτ̃k−1

))
= 8E

(
E
(
(τ̃k − τ̃k−1)1K̃≥k|Fτ̃k−1

))
= 8E

(
(τ̃k − τ̃k−1)1K̃≥k

)
.

Therefore we see that

E τK ≤ 8
N

λ
A(η)

∑
k≥0

E
(
(τ̃k − τ̃k−1)1K̃≥k

)
+
B(η)

λ

∑
k≥0

E(Qτk −Qτk−1
)

≤ 8
N

λ
A(η)E τ̃K̃ +

B(η)

λ

≤ 8
N

λ
A(η)ETabs +

B(η)

λ
,

since the sum ∑
k≥0

E(Qτk −Qτk−1
)

is telescoping and Qt is bounded by 1.
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By Equation (4.3) we have S ≤ τK and using Lemma 4.4 to bound ETabs we can
conclude that

ES ≤ 8
N

λ
A(η)EW0

Tabs +
B(η)

λ

= A′(η)
N

λ
φ(W0)

= A′(η)
N

λ
φ(M0)

for some other constant A′(η) since the first term dominates for N >> 0. Our conclusion
follows.

5 The Fixation Time

We are now ready to prove our bound on the fixation time of the general iPod model
with σ songs. We recall that for each agent i, we write their preference for song k by
Xk
t (i).

We begin by estimating the fixation time given that the preference Mk
t for some

(fixed but arbitrary) song k has approached the boundary 1. Specifically, we will consider
starting from an initial configuration X0 with

Mk
0 ≥ 1− η

2N
,

or equivalently S = 0 for the stopping time S as above. Of course all other songs j 6= k

then have

M j
0 ≤

η

2N
.

As long as Mk
t is near 1, the fixation time Tfix can only be the last time any song other

than k plays. Projecting on k, this is the last time one of the Bernoulli trials for k has
failed. We begin by showing that from such an initial configuration, Tfix has with positive
probability already occurred.

Proposition 5.1. From an initial configuration X0 with Mk
0 ≥ 1− η

2N , we have

PX0
(Tfix = 0) ≥ 1

2

Proof. We will consider the stopping time R, the first time any song other than k plays.
Before R, each Xk(i) can only increase. Therefore at time R - without loss of generality,
a meeting of agents i and j - if another song is played by only one of i, j then

Xk
R(i) +Xk

R(j) = (1− η)(XR−(i) +XR−(j)) + η (5.1)

≤ 2(1− η) + η (5.2)

= 2− η. (5.3)

If both agents play a different song, then Xk(i) +Xk(j) is even smaller at R.

This then implies that on {R <∞}

Mk
R ≤ 1− η

N
.
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Now, applying the Optional Stopping Theorem to R ∧ t, we find that

1− η

2N
≤M0 (5.4)

= EMk
R∧t (5.5)

= E
(
Mk
R1R≤t +Mk

t 1t<R
)

(5.6)

≤ (1− η

N
)(1− P (t < R)) + 1P (t < R) . (5.7)

Solving for P (t < R) we find that

P (t < R) ≥ 1

2
.

As this is true for arbitrary t, we have P (R =∞) ≥ 1
2 from which our result follows.

Next we need to consider what happens when Mk
t approaches 1, but the song k fails

to play at a meeting.

Proposition 5.2. Consider the stopping time R given by

R = inf{t ≥ 0: some song other than k plays at t}.

From any initial configuration Mk
0 ≥ 1− η

2N , we have

E (R1R<∞) ≤ 1

8η
.

Proof. Let Tn, 1 ≤ n <∞ be the n-th meeting time. We first define

R̃ = inf{n ≥ 0: some song other than k plays at Tn}.

We will calculate how Mk
t changes after the first meeting time, given that song k is

played by both agents at the meeting time T1.
If agents i and j meet and both play k at T1 then

Xk
T1
(i) = (1− η)Xk

0 (i) + η

and similarly for Xk(j). So given that i and j meet and play k

Mk
T1

=Mk
0 −

η(Xk
0 (i) +Xk

0 (j))

N
+

2η

N
.

Summing over pairs of agents we find that

E
(
Mk
T1
| both agents play k at T1,F0

)
=
∑
i,j

E
(
Mk
T1
| i meets j, both play k at T1,F0

)
P ( i meets j at T1|F0)

=
∑
i,j

νij
N
E

(
Mk

0 −
η(Xk

0 (i) +Xk
0 (j)− 2)

N
| i & j both play k at T1,F0

)

=
∑
i,j

νij
N

(Mk
0 −

η(Xk
0 (i) +Xk

0 (j)− 2)

N
)

=Mk
0 +

2η

N
−
∑
i,j

νij
N

η(Xk
0 (i) +Xk

0 (j))

N

=Mk
0 +

2η

N
− 2ηMk

0

N

= (1− 2η

N
)Mk

0 +
2η

N
.
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By the same calculation we find that

E
(
Mk
T2
|both agents play k at T2,FT1

)
= (1− 2η

N
)Mk

T1
+

2η

N

and so

E
(
Mk
T2
| both agents play k at T1 and T2,F0

)
= (1− 2η

N
)

(
(1− 2η

N
)Mk

0 +
2η

N

)
+

2η

N

= (1− 2η

N
)2Mk

0 + 1− (1− 2η

N
)2

= 1− (1− 2η

N
)2(1−Mk

0 ).

Continuing the same easy inductive calculation we find that

E
(
Mk
Tn |S̃ > n,F0

)
= 1− (1− 2η

N
)n(1−Mk

0 ).

Next, we need to know the chance of some song other than k being played at time Tn
given Mk

Tn−1
. We will need the identity

1− xy ≤ (1− x) + (1− y)

for x, y ≤ 1 - which follows easily from 1 + (1 − x)(1 − y) ≥ 1. Using that, and that the
probability of at least one of i, j not playing k is 1−Xk(i)Xk(j), we have

P
(

A song other than k is played at Tn|Mk
Tn−1

)
=
∑
i,j

νij
N
P
(

Another song is played at Tn|Mk
Tn−1

, i meets j at Tn
)

=
∑
i,j

νij
N

(
1−Xk

Tn−1
(i)Xk

Tn−1
(j)
)

≤
∑
i,j

νij
N

(
1−Xk

Tn−1
(i) + 1−Xk

Tn−1
(j)
)

≤ 2(1−Mk
Tn−1

).

Therefore we have that

P
(
R̃ = n|F0

)
= P

(
R̃ > n− 1,Another song is played at Tn|F0

)
≤ P

(
Another song is played at Tn|R̃ > n− 1,F0

)
≤ E

(
2(1−Mk

Tn−1
)|R̃ > n− 1,F0

)
= 2(1− 2η

N
)n−1(1−Mk

0 ).

For the first inequality here we used the simple bound

P (A ∩B) ≤ P (A|B) .
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This allows us to calculate that

E
(
R̃1R̃<∞|F0

)
=
∑
n≥0

nP
(
R̃ = n|F0

)
≤
∑
n≥0

n2(1− 2η

N
)n−1(1−Mk

0 )

= 2(1−Mk
0 )
∑
n≥0

n(1− 2η

N
)n−1

≤ η

2N

N2

4η2

=
N

8η
,

using our assumption that Mk
0 ≥ 1− η

2N and the Taylor series expansion

∑
n≥0

nxn−1 =
1

(1− x)2
,

for |x| < 1.

Our result then follows since meetings occur independently at rate 1
N and so

E (R1R<∞|F0) =
1

N
E
(
R̃1R̃<∞|F0

)
.

We are finally prepared to prove Theorem 1.1.

Proof. We will calculate here an upper bound for

max
X0

EX0
Tfix

i.e. the upper bound over all initial configurations X0.

Let S be as above, i.e. the first time that some song k has Mk
t ≥ 1− η

2N and let K be
that song. Note that this defines K uniquely as 1− η

2N ≥
1
2 . Let R be stopping time (as

above) defined by

R = inf{t ≥ S| some song other than K is played}.

We first recall from Proposition 5.1 that at time S, we have

PXS (Tfix = 0) ≥ 1

2
.

Also, at time S, if Tfix has not yet occurred, then some song other than K will play again
and so R <∞.

From Proposition 4.1 we have that there exists a constant C(η) so that from any
initial configuration X0

EX0 S ≤ C(η)
N

λ
.
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We then have for any initial X0:

EX0
Tfix = EX0

E ((Tfix − S) + S|FS)
= EX0

S + EX0
(EXS Tfix)

= EX0 S + EX0 (EXS (Tfix1Tfix>0))

= EX0 S + EX0 (EXS ((Tfix −R)1R<∞ +R1R<∞))

= EX0
S + EX0

(EXS R1R<∞) + EE ((Tfix −R)1R<∞|R)

= EX0 S +
1

8η
+ E (1R<∞EXR Tfix)

≤ C(η)N
λ

+
1

8η
+ E (1R<∞m)

≤ 2C(η)
N

λ
+

1

2
max
x0

Ex0
Tfix.

Here the 1
8η is clearly dominated by the first term for N >> 0. Therefore, we have

that

max
X0

EX0 Tfix ≤ 2C ′(η)
N

λ
+

1

2
max
X0

EX0 Tfix

for some other constant C ′(η) and so

EX0
Tfix ≤ 4C ′(η)

N

λ

from which our conclusion follows.

6 The Interaction Parameter η

Next we consider the asymptotic of our bound with respect to η. Tracing through
the steps of our proof of Proposition 4.1, we may actually prove the following improved
bound.

Proposition 6.1. There exists a constant C so that from any initial configuration x0, the
first escape time S satisfies

Ex0 S ≤
C

η3(1− η)
N

λ
.

Then, repeating the arguments in Section 5, we may improve our bound in Theo-
rem 1.1 on the expectation of the fixation time Tfix.

Theorem 6.2. There exists a constant C so that from any initial X0 the fixation time Tfix

satisfies

ETfix ≤
C

η3(1− η)
N

λ
.

We conj that this can actually be improved to depend on η as 1
η(1−η) .

7 The Complete Graph Case

As an example of a geometry in which more can be said than Theorem 1.1, we look
at the complete graph KN on N vertices. Specifically, we have uniform meeting rates
between agents, that is νij =

1
N−1 for all pairs of agents i, j. It is standard fact that the

spectral gap λKN = 1 and so Theorem 1.1 shows that the fixation time has

ETfix = O(N).

A simple argument will show that this order of magnitude bound is in fact tight.
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7.1 A Lower Bound

Throughout this section we assume that there are at least two songs, i.e. σ ≥ 2. To
achieve any reasonable lower bound, we need to ignore starting conditions that are
likely already at fixation by time t = 0. We call an initial configuration non-trivial if
there exists at least one song k with

1

2σ
≤Mk

0 ≤ 1− 1

2σ
,

and will consider only non-trivial initial configurations. The choice of the factor of 1
2 here

is of course arbitrary.

Theorem 7.1. There exists a constant C(η, σ) such that for KN started from any non-
trivial initial configuration, the fixation time Tfix has

ETfix ≥ C(η, σ)N.

Proof. Recalling Proposition 4.1, first consider any one song and consider its average
preference Mt, t ≥ 0. From the proof of Proposition 2.4

E (dMt(1−Mt)|Ft−) = −
2η2

N
Qtdt,

which combined with Q ≤ 1
4 gives that

Mt(1−Mt)−M0(1−M0) +
η2

2N
t

is a sub-martingale.
By assumption, there exists at least one song k with Mk

0 (1−Mk
0 ) ≥ 1

4σ . Let

T2 = inf
t≥0
{Mk

t /∈
(

1

8σ
, 1− 1

8σ

)
},

be the first time that Mk
t leaves the interval

(
1

8σ , 1−
1

8σ

)
. Then applying the Optional

Stopping Theorem

EMk
T2
(1−Mk

T2
) +

η2

2N
ET2 ≥M0(1−M0) ≥

1

4σ
.

At time T2, we have

Mk
T2
(1−Mk

T2
) ≤ 1

8σ
,

and so we can conclude that

ET2 ≥
N

4η2σ
.

To complete the proof, we need only show that the fixation time Tfix is with high proba-
bility the same order of magnitude as T2.

Consider the first meeting after time T2, between some agents i and j. If two different
songs are played at that meeting, then by definition Tfix must not have yet occurred.
The probability that at a meeting at time t that agent i plays song k and j does not, or
vis-versa, is

Xk
t (i)(1−Xk

t (j)) +Xk
t (j)(1−Xk

t (i)).
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Therefore, on the complete graph, the probability that two different songs play at a
meeting at time t is∑

i6=j

(
N

2

)−1 (
Xk
t (i)(1−Xk

t (j)) +Xk
t (j)(1−Xk

t (i))
)

=
∑
i 6=j

Xk
t (i)(1−Xk

t (j))

N(N − 1)

=
N

N − 1
Mk
t (1−Mk

t )−
∑
i

Xk
t (i)

2

N(N − 1)

≥Mk
t (1−Mk

t )−
1

N − 1
.

Recalling Lemma 2.1, at time T2 we still have

Mk
T2
∈
(

1

8σ
− 2η

N
, 1− 1

8σ
+

2η

N

)
and so at time T2 we have

Mk
T2
(1−Mk

T2
) ≥

(
1

8σ
− 2η

N

)2

Thus, the probability at time T2 that fixation has occurred is bounded by

PX(T2)(Tfix ≥ 0) ≥Mk
T2
(1−Mk

T2
)− 1

N − 1

≥
(

1

8σ
− 2η

N

)2

− 1

N − 1
.

Applying the Strong Markov property, we can conclude that

ETfix ≥ ET21(Tfix ≥ T2)

= ET2E(1(Tfix ≥ T2)|T2)

= ET2

((
1

8σ
− 2η

N

)2

− 1

N − 1

)

≥ N

4η2σ

((
1

8σ
− 2η

N

)2

− 1

N − 1

)
finishing the proof.

8 Further Directions

We conclude by presenting a few possible further directions for research on the iPod
model.

8.1 Improve the Fixation Time Bound

Heuristically, from any initial configuration the processes Xk
t mixes on a time scale

of the order of the relaxation time λ−1. Then, for any song k, when xt(i) ≈Mt we have
Qt ≈Mt(1−Mt) and so

E(dMt(1−Mt)|Ft−) ≈ −
2η2

N
Mt(1−Mt)dt.
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Following through the same embedding and comparison arguments, we then find a
fixation time of O(N). Therefore we conj that for any initial configuration

ETfix = O(λ−1 +N) = O(max(λ−1, N).

8.2 Lower Bound and Improved Coupling

The heart of our proof of an upper bound for ETfix in Theorem 1.1 is the approximate
lower bound

E (d〈M〉t|Ft−) &
λ

N
φ(Mt)dt

which enables the comparison to the Wright-Fisher diffusion. Jensen’s inequality applied
to Proposition 2.4 gives the easy upper bound

E (d〈M〉t|Ft−) ≤
2η2

N
φ(M)dt

which gives a lower bound for ETfix of order N , which is likely not tight. A better
approximate upper bound - matching the order of magnitude of the lower bound - would
allow a direct coupling of Mt to the σ-allele Wright-Fisher diffusion, at least in the
N →∞ limit, analogous to results in [5].
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