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Abstract

In a first part, we prove a Lyapunov-type criterion for the ξ1-positive recurrence
of absorbed birth and death processes and provide new results on the domain of
attraction of the minimal quasi-stationary distribution. In a second part, we study the
ergodicity and the convergence of a Fleming-Viot type particle system whose particles
evolve independently as a birth and death process and jump on each others when they
hit 0. Our main result is that the sequence of empirical stationary distributions of the
particle system converges to the minimal quasi-stationary distribution of the birth and
death process.
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1 Introduction

Let X be a stable birth and death process on N = {0, 1, 2, . . .} absorbed when it hits 0.
The minimal quasi-stationary distribution (or Yaglom limit) of X, when it exists, is the
unique probability measure ρ on N∗ = {1, 2, . . .} such that

ρ(·) = lim
t→∞

Px (Xt ∈ · | t < T0) , for all x ∈ N∗,

where T0 = inf{t ≥ 0, Xt = 0} is the absorption time of X. The probability measure ρ is
called a quasi-stationary distribution because it is stationary for the conditioned process,
in the sense that

ρ = Pρ(Xt ∈ · | t < T0), for all t ≥ 0.

These notions and important references on the subject are recalled with more details in
Section 2, with important definitions and well known results on quasi-stationary distribu-
tions. We also provide a new Lyapunov-type criterion ensuring that a probability measure
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µ belongs to the domain of attraction of the minimal quasi-stationary distribution, which
means that

lim
t→∞

Pµ (Xt ∈ · | t < T0) = ρ.

These results are illustrated with several examples.

We use these new results in Section 3 to extend existing studies on the long time and
high number of particles limit of a Fleming-Viot type particle system. The particles of
this system evolve as independent copies of the birth and death process X, but they
undergo rebirths when they hit 0 instead of being trapped at the origin. In particular,
the number of particles that are in N∗ remains constant as time goes on. Our main
result is a sufficient criterion ensuring that the empirical stationary distribution of the
particle system exists and converges to the minimal quasi-stationary distribution of the
underlying birth and death process.

We conclude the paper in Section 4, providing a numerical study of the speed of conver-
gence of the Fleming-Viot empirical stationary distribution expectation to the minimal
quasi-stationary distribution for a linear birth and death process and a logistic birth
and death process. This numerical results suggest that the bias of the approximation is
surprisingly small for linear birth and death processes and even smaller for logistic birth
and death processes.

2 Quasi-stationary distributions for birth and death processes

Let (Xt)t≥0 be a birth and death process on N = {0, 1, 2, . . .} with birth rates (bi)i≥0
and death rates (di)i≥0. We assume that bi > 0 and di > 0 for any i ≥ 1 and b0 = d0 = 0.
The stochastic process X is a N-valued pure jump process whose only absorption point
is 0 and whose transition rates from any point i ≥ 1 are given by

i→ i+ 1 with rate bi,

i→ i− 1 with rate di,

i→ j with rate 0, if j /∈ {i− 1, i+ 1}.

Such processes are extensively studied because of their conceptual simplicity and
pertinence as demographic models. It is well known (see for instance [20, Theorem 10
and Proposition 12]) that X is stable, conservative and hits 0 in finite time almost surely
(for any initial distribution) if and only if

∞∑
n=1

d1d2 · · · dn
b1b2 · · · bn

= +∞. (2.1)

The divergence of this series will be assumed along the whole paper. In particular, for
any probability measure µ on N, the law of the process with initial distribution µ is
well defined. We denote it by Pµ (or by Px if µ = δx with x ∈ N) and the associated
expectation by Eµ (or by Ex if µ = δx with x ∈ N). Setting T0 = inf{t ≥ 0, Xt = 0}, we
thus have

Pµ(T0 <∞) = 1, ∀µ ∈M1(N),

where, for any subset F ⊂ N,M1(F ) denotes the set of probability measures on F .

A quasi-stationary distribution for X is a probability measure ρ on N∗ = {1, 2, . . .} such
that

Pρ (Xt ∈ · | t < T0) = ρ(·), ∀t ≥ 0.
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The probability measure ρ is thus stationary for the conditioned process (and, as a matter
of fact, was called a stationary distribution in the seminal work [7]). The property "ρ is a
quasi-stationary distribution for X" is directly related to the long time behaviour of X
conditioned to not being absorbed. Indeed (see for instance [22] or [20]), a probability
measure ρ is a quasi-stationary distribution if and only if there exists µ ∈M1(N

∗) such
that

ρ(·) = lim
t→∞

Pµ(Xt ∈ · | t < T0). (2.2)

We refer the reader to [25, 20, 10] and references therein for an account on classical
results concerning quasi-stationary distributions for different models.

For a given quasi-stationary distribution ρ, the set of probability measures µ such
that (2.2) holds is called the domain of attraction of ρ. It is non-empty since it contains
at least ρ and may contains an infinite number of elements. In particular, when the limit
in (2.2) exists for any µ = δx, x ∈ N∗, and doesn’t depend on the initial position x, then ρ
is called the Yaglom limit or the minimal quasi-stationary distribution. Thus the minimal
quasi-stationary distribution, when it exists, is the unique quasi-stationary distribution
whose domain of attraction contains {δx, x ∈ N∗}. From a demographical point of view,
the study of the minimal quasi-stationary distribution of a birth and death process aims
at answering the following question: knowing that a population isn’t extinct after a long
time t, what is the probability that its size is equal to n at time t?

One of the oldest and most understood question for quasi-stationary distributions of birth
and death processes concerns their existence and uniqueness. Indeed, van Doorn [22]
gave the following picture of the situation: a birth and death process can have no
quasi-stationary distribution, one unique quasi-stationary distribution or an infinity (in
fact a continuum) of quasi-stationary distributions. In order to determine whether a
birth and death process has 0, one or an infinity of quasi-stationary distributions, one
define inductively the sequence of polynomials (Qn(x))n≥0 for all x ∈ R by

Q1(x) = 1,

b1Q2(x) = b1 + d1 − x and
bnQn+1(x) = (bn + dn − x)Qn(x)− dn−1Qn−1(x), ∀n ≥ 2.

(2.3)

As recalled in [22, eq. (2.13)], one can uniquely define the non-negative number ξ1
satisfying

x ≤ ξ1 ⇐⇒ Qn(x) > 0, ∀n ≥ 1. (2.4)

Also, the useful quantity
S := sup

x≥1
Ex(T0),

can be easily computed (see [1, Section 8.1]), since, for any z ≥ 1,

sup
x≥z

Ex(Tz) =
∑
k≥z+1

1

dkπk

∑
l≥k

πl,

with πk =
(∏k−1

i=1 bi

)
/
(∏k

i=2 di

)
. The following theorem answers the question of exis-

tence and uniqueness of a QSD for birth and death processes.

Theorem 2.1 (van Doorn, 1991 [22]). Let X be a birth and death process satisfying (2.1).

1. If ξ1 = 0, there is no QSD.
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2. If S < +∞, then ξ1 > 0 and the Yaglom limit is the unique QSD.

3. If S = +∞ and ξ1 > 0, then there is a continuum of QSDs, given by the one
parameter family (ρx)0<x≤ξ1 :

ρx(j) =
πj
d1
xQj(x), ∀j ≥ 1,

and the minimal quasi-stationary distribution is given by ρξ1 .

Remark 2.2. Theorem 2.1 gives a complete description of the set of quasi-stationary
distributions for a birth and death process but is not well suited for the numerical com-
putation of the Yaglom limit of a given birth and death process. Indeed, the polynomials
Qn have in most cases quickly growing coefficients, so that the value of ξ1 cannot be
easily obtained by numerical computation.

Theorem 2.1 is quite remarkable since it describes completely the possible outcomes
of the existence and uniqueness problem for quasi-stationary distributions. However,
it only partially answers the crucial problem of finding the domain of attraction of the
existing quasi-stationary distributions and in particular of the minimal quasi-stationary
distribution. The following theorem answers the problem when there exists a unique
quasi-stationary distribution.

Theorem 2.3 (Martínez, San Martín, Villemonais 2013 [19]). Let X be a birth and death
process such that

S = sup
x≥1

Ex(T0) < +∞.

Then there exists γ ∈ [0, 1) such that, for any probability measure µ on N∗,

‖ρ− Pµ (Xt ∈ · | t < T0)‖TV ≤ γ
btc, ∀t ≥ 0,

where ‖ · ‖TV denotes the total variation norm and ρ is the unique quasi-stationary
distribution of the process. In particular, the domain of attraction of the unique quasi-
stationary distribution is the whole setM1(N

∗) of probability measures on N∗.

A weaker form of Theorem 2.3 has also been proved in [28] but the strong form (with
uniform convergence in total variation norm) is necessary to derive the results of the
next section. A generalized version of Theorem 2.3 has been rencently derived in [8],
with complementary results on the so-called Q-process (the process conditioned to never
being absorbed).

The case where there exists an infinity of quasi-stationary distributions is trickier and
can be partially solved, as we will show, when the birth and death process is ξ1-positive
recurrent.

Definition 2.4. The birth and death process X is said to be ξ1-positive recurrent if
ξ1 > 0 in Theorem 2.1 and if, for some i ∈ {1, 2, . . .} and hence for all i ∈ {1, 2, . . .}, we
have

lim
t→∞

eξ1tPi(Xt = i) > 0.

In the following theorem, we provide a new Lyapounov–type criterion ensuring the
ξ1-positive recurrence of a birth and death process. As will be shown in the examples
below, this criterion can be checked on a wide variety of examples and has its own
interest in the domain of ξ1-classification for birth and death processes (see [17] and [24]
for an account on this area).
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Theorem 2.5. Let X be a birth and death process with infinitesimal generator L. We
assume that there exists C > 0, λ1 > d1 and φ : N→ R+ such that φ(i) goes to infinity
when i→∞ and

Lφ(i) ≤ −λ1φ(i) + C, ∀i ≥ 1.

Then X admits a quasi-stationary distribution and the birth and death process X is
ξ1-positive recurrent.

In the next theorem, we assume that the process is ξ1-positive recurrent and we exhibit
a subset of the domain of attraction for the minimal quasi-stationary distribution.

Theorem 2.6. Let X be a ξ1-positive recurrent birth and death process with infinitesimal
generator L. Then the domain of attraction of the minimal quasi-stationary distribution
of X contains the set D defined by

D =

{
µ ∈M1(N

∗),

∞∑
i=1

µiQi(ξ1) < +∞

}
.

Assume moreover that there exists C > 0, λ1 > ξ1 and φ : N→ R+ such that φ(i) goes to
infinity when i→∞ and

Lφ(i) ≤ −λ1φ(i) + C, ∀i ≥ 1.

Then the domain of attraction of the minimal quasi-stationary distribution of X contains
the set Dφ defined by

Dφ =

{
µ ∈M1(N

∗),

∞∑
i=1

µiφ(i) < +∞

}
.

As it will be shown in the proof, we have Dφ ⊂ D for all function φ satisfying the assump-
tions of Theorem 2.6. However, Q·(ξ1) cannot be computed explicitly but in few situations.
As a consequence, we won’t be able to use the first criterion to determine whether a
probability distribution µ belongs or not to the domain of attraction of the minimal
quasi-stationary distribution. On the contrary, we will be able to give explicit functions φ
satisfying the Lyapunov criterion of our theorem for a wide range of situations.

Note that, since d1 ≥ ξ1, our results immediately imply that, if the process X fulfils the
assumptions of Theorem 2.5 with a Lyapunov function φ, then the process is ξ1-positive
recurrent and the domain of attraction of its minimal quasi-stationary distribution
contains Dφ. This consequence is used in the following examples.

Example 2.7. We consider the case where bi = b ia and di = d ia for all i ≥ 1, where
b < d are two positive constants and a > 0 is fixed. Now, defining φ(0) = 0 and

φ(i) =
√
d/b

i
, ∀i ∈ N∗,

one gets

Lφ(i) := bi(φ(i+ 1)− φ(i)) + di(φ(i− 1)− φ(i))

= b ia
(√

d/b
i+1
−
√
d/b

i
)
+ d ia

(√
d/b

i−1
−
√
d/b

i
)

= ia
[(√

db
√
d/b

i
− b
√
d/b

i
)
+
(√

db
√
d/b

i
− d
√
d/b

i
)]

= −ia
(√

d−
√
b
)2√

d/b
i
.
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Since ia →∞ when i→∞, we immediately deduce that there exists C > 0 and λ1 > d1
such that φ satisfies Lφ ≤ −λ1φ + C. Now Theorem 2.5 implies that the process is ξ1-
positive recurrent and Theorem 2.6 implies that the domain of attraction of the minimal
quasi-stationary distribution contains

Dφ =

{
µ ∈M1(N

∗),

∞∑
i=1

µi
√
d/b

i
< +∞

}
.

Example 2.8. We consider now the case where the birth and death rates are constant
for all i ≥ 2, that is bi = b > 0 and di = d > 0 for all i ≥ 2, where b < d are positive
constants. We assume that d1 > 0 is such that (

√
d−
√
b)2 > d1 and the value of b1 > 0

can be chosen arbitrarily. Using the same function as in the previous example, that is

φ(i) =
√
d/b

i
, ∀i ≥ 2,

one gets

Lφ(i) = −(
√
d−
√
b)2
√
d/b

i
, ∀i ≥ 2.

In particular, there exists C > 0 and λ1 > d1 such that φ satisfies Lφ ≤ −λ1φ+ C. Once
again, we deduce from Theorem 2.5 that the process is ξ1-positive recurrent, which was
already known in this case (see [23, eq. (6.6)]). We also deduce the following new result
from Theorem 2.6: the domain of attraction of the minimal quasi-stationary distribution
contains the set

Dφ =

{
µ ∈M1(N

∗),

∞∑
i=1

µi
√
d/b

i
< +∞

}
.

Example 2.9. In the two previous examples, the birth and death rates are non-decreasing
and proportional to each other. This is coincidental and is only useful to get straightfor-
ward calculations. The aim of the present example is to illustrate this on a particular
case without monotony nor proportionality between the birth and death rates: we choose
bi = | sin(iπ/2)|i+ 1 and di = 4i for all i ≥ 1. Now, defining

φ(i) = 2i, ∀i ≥ 1,

we get, for all i ≥ 2,

Lφ(i) = := bi(φ(i+ 1)− φ(i)) + di(φ(i− 1)− φ(i))
= (| sin(iπ/2)|i+ 1)

(
2i+1 − 2i

)
+ 4i(2i−1 − 2i)

≤ 2i (i+ 1− 2i) = −(i− 1)φ(i).

As above, we deduce that the process is ξ1-positive recurrent and that the domain of
attraction of the minimal quasi-stationary distribution contains the set of probability
measures defined by

{
µ ∈M1(N

∗),
∑∞
i=1 µi2

i < +∞
}

.

The end of this section is dedicated to the proof of Theorems 2.5 and 2.6.

Lemma 2.10. We assume that there exists λ1 > ξ1, C > 0 and φ : N→ R+ such that φ(i)
goes to infinity when i→∞ and

Lφ(i) ≤ −λ1φ(i) + C, ∀i ≥ 1.

Then there exists a constant i0 ≥ 1 and α > 0 such that φ(i) ≥ αQi(ξ1), for all i ≥ i0.
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Proof. Since φ(i)→∞ when i→∞, there exists i0 ≥ 1 such that φ(i) ≥ C/λ1 +1 for any
i ≥ i0 − 1. Let us set

φ′(i) = (φ(i)− C/λ1)+ for any i ∈ N∗.

For all i ≥ i0, we have φ′(i) ≥ 1 and

Lφ′(i) = Lφ(i) ≤ −λ1φ(i) + C

≤ −λ1(φ′(i) + C/λ1) + C

= −λ1φ′(i)

Hence, since Qi0(ξ1) > 0 (see [22, eq. (2.13)]) and replacing φ by Qi0(ξ1)φ
′, we can

assume without loss of generality that

φ(i0) ≥ Qi0(ξ1) and L(φ) ≤ −λ1φ, ∀i ≥ i0.

Our aim is now to prove that, for all i ≥ i0, φ(i) ≥ Qi(ξ1). Because of the changes made
with the function φ, this implies the inequality claimed in the lemma with the constant
α = 1/Qi0(ξ1).

Assume the contrary, which means that there exists i1 ≥ i0 such that φ(i1) ≥ Qi1(ξ1)
and φ(i1 + 1) < Qi1+1(ξ1). Now, fix x ∈ (ξ1, λ1] such that

Qi1+1(x)
Qi1(ξ1)

Qi1(x)
> φ(i1 + 1).

This is feasible, since x 7→ Qi(x) is a polynomial function of x and is then continuous in x
for any fixed i. Then the function ϕx : N→ R+ defined by

ϕx(i) = Qi(x)
Qi1(ξ1)

Qi1(x)

satisfies, Lϕx(i) = −xϕx(i) for all i ∈ N, ϕx(i1) = Qi1(ξ1) ≤ φ(i1) and ϕx(i1 + 1) >

φ(i1 + 1).

Let us now prove that this inequality extends to any j ≥ i1+1. Indeed, using the equality
Lϕx = −xϕx and the inequality Lφ ≤ −λ1φ, we have, for all j > i1 + 1,

ϕx(i1 + 1) = Ei1+1

(
e xTj∧Ti1ϕx(XTj∧Ti1

)
)

= Ei1+1

(
e xTj1Tj<Ti1

)
ϕx(j) + Ei1+1

(
e xTi11Ti1

<Tj

)
ϕx(i1)

and

φ(i1 + 1) ≥ Ei1+1

(
eλ1Tj∧Ti1φ(XTj∧Ti1

)
)

= Ei1+1

(
eλ1Tj1Tj<Ti1

)
φ(j) + Ei1+1

(
eλ1Ti11Ti1<Tj

)
φ(i1)

≥ Ei1+1

(
e xTj1Tj<Ti1

)
φ(j) + Ei1+1

(
e xTi11Ti1<Tj

)
ϕx(i1).

We deduce that

Ei1+1

(
e xTj1Tj<Ti1

)
(φ(j)− ϕx(j)) ≤ φ(i1 + 1)− ϕx(i1 + 1) < 0

and thus φ(j) < ϕx(j) for all j ≥ i1 + 1.
As a direct consequence, we deduce that Qn(x) > 0 for all n ≥ 0. But x > ξ1, which is

in contradiction with [22, eq. (2.13)].

Lemma 2.11. Let φ : N → R+ be a function such that φ(0) = 0, φ(1) = 1 and Lφ ≤ 0.
Then

min
i≥1

φ(i) = 1.
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Proof. Under our assumption, (φ(Xt))t≥0 is a super martingale. As a consequence, for
all i ≥ 1,

Ei (φ(XT1
)1T1<∞) ≤ φ(i).

But T1 ≤ T0 <∞ almost surely and XT1
= 1 almost surely, so that

1 ≤ φ(i), ∀i ≥ 1.

Proof of Theorem 2.5. The main difficulty is to prove that the minimal quasi-stationary
distribution ρξ1 for X exists and that

ρξ1(φ) ≤ φ(1) ∨
C

λ1 − d1
. (2.5)

Once this is proved, Lemma 2.10 implies that∑
i≥1

ρξ1(i)Qi(ξ1) <∞,

which is a sufficient condition for X to be ξ1-positive recurrent (see [23, Theorem 5.2]).
Let us prove that (2.5) holds. For any M ≥ 1, let us denote by (PMt )t≥0 the semi-group

of the process XM evolving in {0, 1, . . . ,M} and defined as

XM
t = Xt∧TM

, ∀t ≥ 0,

where TM = inf{t ≥ 0, Xt = M}. We also define φM by φM (M) = 0 and φM (i) = φ(i),
i ∈ {0, 1, . . . ,M − 1}. Now, denoting by LM the generator of the stopped process XM

and setting ϕ(i) = 1i≥1, we thus have

LMφM (i) ≤ −λ1φM (i) + Cϕ(i), ∀i ∈ {0, 1, . . . ,M}

and

LMϕ(i) ≥ −d1ϕ(i), ∀i ∈ {0, 1, . . . ,M}.

Hence, using Kolmogorov equations for the finite state space continuous time Markov
chain XM , we deduce that

d

dt

(
E1

(
φM (XM

t )
)

E1

(
ϕ(XM

t )
) ) ≤ −λ1E1

(
φM (XM

t )
)

E1

(
ϕ(XM

t )
) + C + d1

E1

(
φM (XM

t )
)

E1

(
ϕ(XM

t )
) .

This implies that, for any t ≥ 0, we have

E1

(
φM (XM

t )
)

E1

(
ϕ(XM

t )
) ≤ E1

(
φM (XM

0 )
)

E1

(
ϕ(XM

0 )
) ∨ C

λ1 − d1
.

But XM
0 = 1 under P1, so that

E1

(
φM (XM

t )
)

E1

(
ϕ(XM

t )
) ≤ φM (1) ∨ C

λ1 − d1
= φ(1) ∨ C

λ1 − d1
.

EJP 20 (2015), paper 30.
Page 8/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3482
http://ejp.ejpecp.org/


Minimal QSD approximation

Now, by dominated convergence, we have

E1

(
ϕ(XM

t )
)
−−−−→
M→∞

E1 (ϕ(Xt)) = P(Xt 6= 0).

By monotone convergence, we also deduce that

E1

(
φM (XM

t )
)
−−−−→
M→∞

E1 (φ(Xt)) .

We finally deduce that, for all t ≥ 0,

E1 (φ(Xt) | Xt 6= 0) ≤ φ(1) ∨ C

λ1 − d1
.

The first consequence of this inequality is that the process Xt conditioned on the
event Xt 6= 0 does not diverge to infinity. As a consequence, ξ1 > 0 and there exists a
minimal quasi-stationary distribution ρξ1 for X (see [22, Theorem 4.1]). In particular,
Xt conditioned on Xt 6= 0 converges in law to ρξ1 . Hence, we deduce from the above
inequality that, for any K ≥ 0,

ρξ1(φ ∧K) ≤ φ(1) ∨ C

λ1 − d1
.

By monotone convergence, we obtain by letting K tend to∞ that

ρξ1(φ) ≤ φ(1) ∨
C

λ1 − d1
.

Proof of Theorem 2.6. Let X be a ξ1-positive recurrent birth and death process with
minimal quasi-stationary distribution ρξ1 . We prove that the domain of attraction of ρξ1
contains the set of probability measures

D =

{
µ ∈M1(N

∗), µ(Q·(ξ1) =

∞∑
i=1

µiQi(ξ1) < +∞

}
.

Once this is proved, the second assertion of Theorem 2.6 follows immediately from
Lemma 2.10.

Let µ be a probability measure on N∗ such that µ(Q·(ξ1)) < ∞. It is well known (see
for instance [10, eq. (5.15) and Proposition 5.1]) that there exists a positive measure ψ
whose support is in [ξ1,∞) and such that, for any i, j ≥ 1,

Pi(Xt = j) = πj

∫ ∞
0

extQi(x)Qj(x) dψ(x). (2.6)

But the ξ1-positive recurrence implies that ψ({ξ1}) > 0 (this two properties are in fact
equivalent, see [23, Theorem 5.1]). As a consequence,

eξ1tPi(Xt = j) −−−→
t→∞

Qi(ξ1)ψ({ξ1})πjQj(ξ1) = Qi(ξ1)ψ({ξ1})
d1 ρξ1(j)

ξ1
.

Let us define the function ϕ1 : N → R+ by ϕ1(i) = Qi(ξ1) for all i ≥ 1 and ϕ1(0) = 0.
Then, using the equality Lϕ1 = −ξ1ϕ1, we deduce that

eξ1tPµ(Xt = j) ≤ eξ1tPµ(t < T0)

≤ eξ1tEµ
(

ϕ1(Xt)

mini≥1 ϕ1(i)

)
≤ µ(ϕ1) <∞,

EJP 20 (2015), paper 30.
Page 9/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3482
http://ejp.ejpecp.org/


Minimal QSD approximation

indeed, the minimum of ϕ1 on N∗ is 1 by Lemma 2.11 and µ(ϕ1) = µ(Q·(ξ1)) < ∞ by
assumption.

Hence, by dominated convergence theorem, we deduce that

eξ1tPµ(Xt = j) −−−→
t→∞

µ(Q·(ξ1))ψ
d({ξ1})

d1 ρξ1(j)

ξ1
,

where µ(Q·(ξ1)) = µ(φ1) <∞ by assumption. It is also known that (see [10, eq. (5.21)])

Pi(t < T0) = d1

∫ ∞
0

e−tx

x
Qi(x)dψ(x).

Using the same approach as above, we obtain that

eξ1tPµ(t < T0) −−−→
t→∞

µ(Q·(ξ1))ψ
d({ξ1})

d1
ξ1
.

We finally deduce the convergence

Pµ(Xt = j | t < T0) =
eξ1tPµ(Xt = j)

eξ1tPµ(t < T0)
−−−→
t→∞

ρξ1(j),

which means that µ is in the domain of attraction of the minimal quasi-stationary
distribution.

3 Approximation of the minimal quasi-stationary distribution

This section is devoted to the study of the ergodicity and the convergence of a
Fleming-Viot type particle system.

Fix N ≥ 2 and let us describe precisely the dynamics of this system with N particles,
which we denote by (X1, X2, . . . , XN ). The process starts at a position (X1

0 , X
2
0 , . . . , X

N
0 ) ∈

(N∗)
N and evolves as follows:

- the particles Xi, i = 1, . . . , N , evolve as independent copies of the birth and death
process X until one of them hits 0; this hitting time is denoted by τ1;

- then the (unique) particle hitting 0 at time τ1 jumps instantaneously on the position
of a particle chosen uniformly among the N − 1 remaining ones; this operation is
called a rebirth ;

- because of this rebirth, the N particles lie in N∗ at time τ1; then the N particles
evolve as independent copies of X and so on.

We denote by τ1 < τ2 < · · · < τn < · · · the sequence of rebirths times. Since the rate at
which rebirths occur is uniformly bounded above by N d1,

lim
n→∞

τn = +∞ almost surely.

As a consequence, the particle system (X1
t , X

2
t , . . . , X

N
t )t≥0 is well defined for any time

t ≥ 0 in an incremental way, rebirth after rebirth (see Figure 1 for an illustration of this
construction with N = 2 particles).

This Fleming-Viot type system has been introduced by Burdzy, Holyst, Ingermann and
March in [5] and studied in [6], [12], [27], [13] for multi-dimensional diffusion processes.
The study of this system when the underlying Markov process X is a continuous time
Markov chain in a countable state space has been initiated in [11] and followed by [4],
[2], [14], [3] and [9]. We also refer the reader to [15], where general considerations
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Figure 1: One path of a Fleming-Viot system with two particles.

on the link between the study of such systems and front propagation problems are
considered.

We emphasize that, because of the rebirth mechanism, the particle system (X1, X2, . . . , XN )

evolves in (N∗)
N . For any t ≥ 0, we denote by µNt the empirical distribution of

(X1, X2, . . . , XN ) at time t, defined by

µNt =
1

N

N∑
i=1

δXi
t
∈M1(N

∗),

whereM1(N
∗) is the set of probability measures on N∗. A general convergence result

obtained in [26] ensures that, if µN0 → µ0, then

µNt −−−−→
N→∞

Pµ0(Xt ∈ · | t < T0).

The generality of this result does not extend to the long time behaviour of the particle
system, which is the subject of the present study. We provide a sufficient criterion
ensuring that the process (µNt )t≥0 is ergodic. Denoting by XN its empirical stationary
distribution (a random measure whose law is the stationary distribution of µN ), our
criterion also implies that

XN Law−−−−→
N→∞

ρ, (3.1)

where ρ is the minimal quasi-stationary distribution of the birth and death process
X. Our result applies (1) to birth and death processes with a unique quasi-stationary
distribution (such as logistic birth and death processes) and (2) to birth and death
processes with a minimal quasi-stationary distribution satisfying an explicit Lyapunov
condition (fulfilled for instance by linear birth and death processes). These two different
conditions are summarized in Assumptions H1 and H2 below.

Assumption H1. There exist a function φ : N → R+ and two constants λ1 > d1 and
C ≥ 0 such that φ(0) = 0, φ(i) > 0 for all i ≥ 1 and

φ(x) −−−−→
x→∞

∞ and Lφ(i) ≤ −λ1φ(i) + C, ∀i ≥ 1.
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Assumption H2. The birth and death process X admits a unique quasi-stationary
distribution (S < +∞).

Theorem 3.1. Assume that Assumption H1 or Assumption H2 is satisfied. Then, for any
N > λ1

λ1−d1 under H1 and any N ≥ 2 under H2, the measure process (µNt )t≥0 is ergodic,

which means that there exists a random measure XN on N∗ such that

µNt
Law−−−→
t→∞

XN .

If H1 holds, then
E(φ(XN )) ≤ C/(λ1 − d1N/(N − 1)).

Moreover, if Assumption H1 or H2 is satisfied, then

XN Law−−−−→
N→∞

ρ,

where ρ is the minimal quasi-stationary distribution of X.

Remark 3.2.

1. Assumption H1 is the Lyapunov criterion which is used in Theorem 2.5 to ensure ξ1-
positivity (and hence the existence of a minimal quasi-stationary distribution). This
assumption also implies that the conditions of Theorem 2.6, where we determine
a subset of the domain of attraction of the quasi-stationary distribution, are also
satisfied. For instance, the birth and death processes of Examples 1, 2 and 3 in the
previous section satisfy Assumption H1.

2. Assumption H2 is satisfied for processes that come fast from infinity to compact
sets, as the logistic birth and death process (where bi = b i and di = d i+c i(i−1) for
all i ≥ 1 with b, c, d > 0). Note that, in this particular example, an easy calculation
shows that Assumption H1 is also satisfied with φ(i) = 2i. However, this assumption
is useful for any situation where it is easy to check that S <∞, but difficult to find
an explicit Lyapunov function satisfying Assumption H1.

Remark 3.3. The pure drift birth and death process (bi = b and di = d for all i ≥ 1, where
b < d are two positive constants) does not satisfy Assumption H1 nor Assumption H2.
Note that this process is the same as in Example 2 but does not satisfy (

√
d−
√
b)2 > d1.

In particular, we cannot apply Theorem 2.5 on ξ1-positivity and, in fact, it is known
that the pure drift birth and death process is not ξ1-positive recurrent (see [23]). As
a consequence, the additional difficulty is not a technical one and the following proof
cannot work in the pure drift situation. We emphasize that Theorem 3.1 for pure drift
birth and death processes remains an open problem. See for instance [3] and the
numerical investigation in [18] for more details.

Since the proof of Theorem 3.1 differs whether one assumes H1 or H2, it is split in two
different subsections : in Subsection 3.1, we prove the theorem under Assumption H1
and, in Subsection 3.2, we prove the result under assumption H2.

3.1 Proof under Assumption H1: exponential ergodicity via a Foster–Lyapunov
criterion

Step 1. Proof of the exponential ergodicity by a Forster–Lyapunov criterion
We define the function

f :M1(N
∗)→ R

µ 7→ µ(φ),
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where φ is the Lyapunov function of Assumption H1. Fix N ≥ 2 and let us express
the infinitesimal generator LN of the empirical process (µNt )t≥0 applied to f at a point
µ ∈M1(N

∗) given by

µ =
1

N

N∑
i=1

δxi ,

where (x1, . . . , xN ) ∈ (N∗)N . In order to shorten the notations, we introduce, for any
y ∈ N∗, the probability measure

µxj ,y = µ+
1

N

(
δy − δxj

)
.

We thus have

LNf(µ) =
N∑
i=1

bxi
(f(µxi,xi+1)− f(µ)) + 1xi 6=1dxi

(f(µxi,xi−1)− f(µ))

+

N∑
i=1,xi=1

d1
1

N − 1

N∑
j=1, j 6=i

(
f(µ1,xj )− f(µ)

)
=

N∑
i=1

bxi
(φ(xi+1)− φ(xi)) /N + 1xi 6=1dxi

(φ(xi−1)− φ(xi)) /N

+

N∑
i=1,xi=1

d1
1

N − 1

N∑
j=1, j 6=i

(φ(xj)− φ(1)) /N

Since φ(0) = 0, one gets

LNf(µ) =
N∑
i=1

bxi
(φ(xi+1)− φ(xi)) /N + dxi

(φ(xi−1)− φ(xi)) /N

+

N∑
i=1,xi=1

d1
1

N − 1

N∑
j=1, j 6=i

φ(xj)/N

=
1

N

N∑
i=1

Lφ(xi) +
N∑

i=1,xi=1

d1
1

N − 1

 N∑
j=1

φ(xj)/N − φ(1)/N


≤ 1

N

N∑
i=1

Lφ(xi) +

 1

N

N∑
i=1,xi=1

d1

 1

N − 1

N∑
j=1

φ(xj)


≤µ(Lφ) + N

N − 1
d1µ(φ).

Now, using Assumption H1, we deduce that

LNf(µ) ≤ µ(−λ1φ+ C) +
N

N − 1
d1µ(φ)

≤ −λ1µ(φ) + C +
N

N − 1
d1µ(φ)

≤ −
(
λ1 −

N

N − 1
d1

)
f(µ) + C,

where λ1 − N
N−1d1 is a positive constant for any fixed N > λ1

λ1−d1 .
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For a fixed N > λ1

λ1−d1 and any constant k > 0, the set of probability measures µ =
1
N

∑N
i=1 δxi

such that f(µ) = µ(φ) ≤ k is finite because φ(i)→∞ when i→∞. Moreover
the Markov process (µNt ) is irreducible (this is an easy consequence of the irreducibility
of the birth and death process X). Thus, using the Foster Lyapunov criterion of [21,
Theorem 6.1, p.536] (see also [16, Proposition 1.4] for a simplified account on the
subject), we deduce that the process µN is exponentially ergodic and, denoting by XN a
random measure distributed following its stationary distribution, we also have

E(XN (φ)) = E(f(XN )) ≤ C/
(
λ1 −

N

N − 1
d1

)
. (3.2)

This concludes the proof of the first part of Theorem 3.1.

Step 2. Convergence to the minimal QSD
Since φ(i) goes to infinity when i→∞, we deduce from (3.2) that the family of random
measures (XN )N is tight. In particular, the family admits at least one limiting random
probability measure X , which means that XN converges in law to X , up to a subsequence.

Let µNt be the random position at time t of the particle system with initial (random)
distribution XN . On the one hand, the stationarity of XN implies that µNt ∼ XN for all
t ≥ 0, and thus

µNt
Law−−−−→
N→∞

X , ∀t ≥ 0.

On the other hand, the general convergence result of [26] implies that

µNt
Law−−−−→
N→∞

PX (Xt ∈ · | t < T0).

As an immediate consequence

PX (Xt ∈ · | t < T0)
Law
= X .

But (3.2) also implies that E(f(X )) <∞, so that X (φ) = f(X ) <∞ almost surely. Using
Theorem 2.6, we deduce that X belongs to the domaine of attraction of the minimal QSD
ρ almost surely, that is

PX (Xt ∈ · | t < T0)
almost surely−−−−−−−−−→

t→∞
ρ.

Thus the random measure X converges in law to the deterministic measure ρ, which
implies that

X = ρ almost surely.

In particular, ρ is the unique limiting probability measure of the family (XN )N , which
ends the proof of Theorem 3.1 under Assumption H1.

3.2 Proof under Assumption H2: exponential ergodicity by a Dobrushin coeffi-
cient argument

Fix N ≥ 2 and let us prove that the process is exponentially ergodic. Under assump-
tion (H2), it is well known (see for instance [19]) that the process X comes back in finite
time from infinity to 1, which means that

inf
x∈N∗

Px(X1 = 1) > 0.
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Since the particles of a Fleming-Viot type system are independent up to the first rebirth
time, we deduce that

inf
(x1,...,xN )∈(N∗)N

P((X1
1 , . . . , X

N
1 ) = (1, . . . , 1)) > 0.

This implies that the FV process is exponentially ergodic.

Let us now denotes by XN the empirical stationary distribution of the system (X1, . . . , XN ),
for each N ≥ 2. Theorem 2.3 implies that there exists γ > 0 such that, for any t ≥ tε, any
initial distribution µ0 and any function f : N∗ → R+,

E |ρ(f)− Eµ0
(f(Xt) | t < T0)| ≤ 2γbtc‖f‖∞.

But, for any t ≥ 0, [26] implies that

E

∣∣∣µNt (f)− EµN
0
(f(Xt) | t < T0)

∣∣∣ ≤ 2(1 +
√
2)ed1t‖f‖∞√
N

.

As a consequence,

E
∣∣µNt (f)− ρ(f)

∣∣ ≤ 2(1 +
√
2)ed1t‖f‖∞√
N

+ 2γbtc‖f‖∞.

In particular, for any ε > 0, there exists tε and Nε such that

E
∣∣µNt (f)− ρ(f)

∣∣ ≤ ε‖f‖∞, ∀N ≥ Nε, t ≥ tε.
But µNt converges in law to XN , so that

E
∣∣XN (f)− ρ(f)

∣∣ ≤ ε‖f‖∞, ∀N ≥ Nε.
This inequality being true for any ε > 0, this concludes the proof of Theorem 3.1 under
Assumption (H2).

4 Numerical simulation of the Fleming-Viot type particle system

In this section, we present numerical simulations of the Fleming-Viot particle system
studied in Section 3. Namely, we focus on the distance in total variation norm between
the expectation of the empirical stationary distribution (i.e. E(XN )) and the minimal
quasi-stationary distribution of the underlying Markov process X, when N goes to infinity.
This means that we aim at studying the bias of the approximation method.

We start with the linear birth and death process case in Subsection 4.1. This is one of the
rare situation where explicit computation of the minimal quasi-stationary distribution
can be performed (see for instance [20]). In Subsection 4.2, we provide the results of
numerical simulations in the logistic birth and death case.

4.1 The linear birth and death case

We assume in this section that bi = i and di = 2i for all i ≥ 0. This is a sub-case of
Example 1 and thus one can apply Theorem 3.1: the empirical stationary distribution of
the process XN exists and converges in law, when the number N of particles goes to
infinity, to the minimal quasi-stationary distribution ρ of the process, which is known to
be given by (see [20])

ρ(i) =
1

2i
, ∀i ≥ 1.
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The results of the numerical estimations of ‖E(XN )−ρ‖TV for different values of N (from
2 to 104) are reproduced on Table 1. One interesting point is the confirmation that E(XN )

is a biased estimator of ρ. A second interesting point is that the bias decreases quickly
when N increases. Up to our knowledge, there exists today no theoretical justification of
this fact, despite its practical implications. Indeed, one drawback of the speed of the
numerical simulation is the interaction between the particles of the Fleming-Viot system:
more particles in the system leads to more interaction and thus more communication
between processors, which at the end slows down the simulation. A crucial optimisation
problem for the approximation method is thus to keep the number of particles as small
as possible. In our linear birth and death case, the numerical simulations suggest that
the bias decreases as O(N−1).

Nb of particles
∥∥E (XN)− ρ∥∥

TV
Estimated error

N = 2 0.190 ±10−3

N = 10 4.5× 10−2 ±10−3

N = 102 5.0× 10−3 ±10−4

N = 103 5.1× 10−4 ±10−5

N = 104 2.3× 10−5 ±10−5

Table 1: Estimation of the bias ‖E(XN )− ρ‖TV for a linear birth and death process. In
the rightmost column, "Estimated error" is the order of magnitude of the error that is
made when computing ‖E(XN )− ρ‖TV .

4.2 The logistic birth and death case

We consider now the case where bi = 2i and di = i + i(i − 1), for all i ≥ 1. The
existence and uniqueness of a quasi-stationary distribution ρ is well known for this
process, but no explicit formula for the probability measure ρ exists. Thus, in order to
compute numerically the total variation distance ‖E(XN )− ρ‖TV for different values of
N , we use the approximation

ρ ' E(XN0), where N0 = 104.

The histogram of the estimated quasi-stationary distribution is represented on Figure 2.
The results of the numerical estimations of the bias ‖E(XN )− ρ‖TV are reproduced on
Table 2. The conclusion is the same as in the linear birth and death case : ‖E(XN ) −
ρ‖TV declines very sharply as a function of N . In fact, the phenomenon is even more
spectacular, since the estimated value of

∥∥E (XN)− ρ∥∥
TV

is 2.0× 10−2, even for N = 2.
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