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Abstract

Small-space and large-time estimates and asymptotic expansion of the distribution
function and (the derivatives of) the density function of hitting times of points for
symmetric Lévy processes are studied. The Lévy measure is assumed to have com-
pletely monotone density function, and a scaling-type condition inf ξΨ′′(ξ)/Ψ′(ξ) > 0
is imposed on the Lévy–Khintchine exponent Ψ. Proofs are based on generalised
eigenfunction expansion for processes killed upon hitting the origin.
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1 Introduction and statement of the results

Let X be a one-dimensional Lévy process, that is, a real-valued stochastic process
with stationary and independent increments, càdlàg paths, and initial value X0 = 0. The
process X is completely characterised by its Lévy–Khintchine exponent Ψ, which is given
by the Lévy–Khintchine formula:

Ψ(ξ) = − log(EeiξX1) = aξ2 − ibξ +

∫
R\{0}

(1− eiξz + iξz1(−1,1)(z))ν(dz)

for ξ ∈ R, where a ≥ 0 is the Gaussian component, b ∈ R is the drift coefficient and ν is
a non-negative measure such that

∫
R\{0}min(1, z2)ν(dz) <∞, called Lévy measure. The

first hitting time of a point x ∈ R is defined by the formula

τx = inf{t ≥ 0 : Xt = x}.

In this article estimates and asymptotic formulae, in terms of the Lévy–Khintchine
exponent Ψ, for the tail and the density function of τx are derived, under a number of
conditions on the process X.
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Hitting times of points for symmetric Lévy processes

The distribution of τx plays an important role in various contexts: local times and
excursion theory ([2, 7, 18, 29]), potential theory ([3]), penalisation problems ([19, 28,
30, 31]). The estimates of τx may also prove useful in the study of one-dimensional
unimodal Lévy processes, developed recently in [5, 6, 9]. More precisely, description
of τx is the limiting case of a more general problem of finding the time and place the
process X first hits a (small) ball, see [6] and a recent preprint [10].

Surprisingly little is known about the properties of τx for general Lévy processes.
By [23, Theorem 43.3 and Remark 43.6], if 1/|Ψ| is integrable at infinity, then∫

R

eiξxEe−λτxdx =
cλ

λ+ Ψ(ξ)
, with cλ =

(∫
R

1

λ+ Ψ(ξ)
dξ

)−1

. (1.1)

The inversion of the Laplace and Fourier transforms in (1.1) is often problematic. An
application of the inverse Fourier transform to both sides of (1.1) leads to an expression
for Ee−λτx in terms of an oscillatory integral. In fact,

uλ(x) = c−1
λ Ee−λτx (1.2)

is a well-studied object, the λ-potential density of X. Nevertheless, a closed-form
expression for uλ is known only in some special cases, e.g. when X is stable and λ = 0,
or when X is relativistic with β = 2 (with the notation of Example 1.4 below) and
λ = 1. Therefore, in order to invert the Laplace transform in (1.2), one needs additional
regularity of Ψ. This is the rough idea of the proof of the main result of [13], which is
recalled as Theorem 1.9 below, and which is the starting point for our development.

There are essentially two classes of Lévy processes for which the description of τx
simplifies dramatically and has been studied. When X is an α-stable process, τx is equal
in distribution to xατ1 (scaling), so the originally two-dimensional problem becomes
one-dimensional. Numerous results are available in this case. In particular, a complete
series expansion of the distribution function of τx is known (see [20] for processes with
one-sided jumps, [4, 7, 21, 30] for the symmetric case, and [11] for the general result).
Other closely related results for the stable case (unimodality, distributional identities,
applications) can be found in [16, 26, 31].

The distribution of τx for x > 0 is rather well-studied also for Lévy processes with
negative jumps only (also known as spectrally negative processes). Then τx is equal
to the first passage time through the level x, τx = inf{t ≥ 0 : Xt ≥ x}, and fluctuation
theory for Lévy processes can be used to study the properties of τx. We refer to [23,
Chapter 9] for more information.

For non-stable Lévy processes with two-sided jumps, we are aware of no estimates or
asymptotic formulae similar to the main results of this article.

Throughout the article, X is assumed to be symmetric, that is, b = 0 and ν(E) = ν(−E)

for all Borel E ⊆ R. In this case Ψ is a real function with non-negative values. We impose
two additional restrictions: we require X to have completely monotone jumps and satisfy
a certain scaling-type condition. These notions are briefly discussed below.

Recall that a function f : (0,∞)→ R is said to be completely monotone if it is infinitely
differentiable and (−1)nf (n)(ξ) ≥ 0 for all ξ > 0 and n = 0, 1, 2, . . . By Bernstein’s
theorem, this is equivalent to f being the Laplace transform of a non-negative Radon
measure on [0,∞). Similarly, we say that a process X has completely monotone jumps
if its Lévy measure ν is absolutely continuous with respect to the Lebesgue measure,
and its density is a completely monotone function on (0,∞). Note that due to symmetry,
the density of ν on (−∞, 0) is absolutely monotone: its derivatives of all orders are
non-negative.

Lévy processes with completely monotone jumps (without the symmetry condition)
were introduced by Rogers in [22], see also [14]. In the symmetric case, an equivalent
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Hitting times of points for symmetric Lévy processes

condition can be given in terms of Ψ. Recall that ψ is a complete Bernstein function if
and only if

ψ(ξ) = c1 + c2ξ +

∫
(0,∞)

ξ

s+ ξ

µ(ds)

s

for ξ ≥ 0, where c1, c2 ≥ 0 and µ is a non-negative measure for which the above integral
converges (see [24]). A symmetric Lévy process X has completely monotone jumps if
and only if Ψ(ξ) = ψ(ξ2) for a complete Bernstein function ψ (see [12, 22]). The most
prominent examples of symmetric processes with completely monotone jumps are stable
processes, with Ψ(ξ) = c|ξ|α for some c > 0 and α ∈ (0, 2]. This class includes also
mixtures of stable processes and relativistic Lévy processes (discussed later in this
section), as well as variance gamma process and geometric stable processes (which with
probability one do not hit single points and thus are not considered here; see [25] for
definitions and properties of these processes).

The aforementioned scaling-type condition of order α requires that

ξΨ′′(ξ)

Ψ′(ξ)
≥ α− 1 (1.3)

for all ξ > 0. Here α is an arbitrary real number, although in our main theorems we
assume that α ∈ (1, 2]. The scaling-type condition plays a crucial role in our development.
By integration, (1.3) implies that (and in fact, it is equivalent to)

Ψ′(ξ2)

Ψ′(ξ1)
≥
(
ξ2
ξ1

)α−1

for all ξ2 > ξ1 > 0. In Lemma 2.2 we will see that (1.3) also gives (but it is essentially
stronger than)

Ψ(ξ2)

Ψ(ξ1)
≥
(
ξ2
ξ1

)α
(1.4)

for all ξ2 > ξ1 > 0. This explains why we call (1.3) a scaling-type condition.
We note that the scaling-type condition of order α > 1 implies that P(τx <∞) = 1 for

all x ∈ R. Indeed, by (1.4), 1/|Ψ| is not integrable near 0, so X is recurrent by Chung–
Fuchs criterion ([23, Theorem 37.5]). Furthermore, again by (1.4), 1/|Ψ| is integrable
at infinity, so P(τx <∞) > 0 by [23, Remark 43.6]. Now P(τx <∞) = 1 follows by [23,
Remark 43.12].

The scaling-type condition (1.3) with α ∈ (1, 2] is satisfied by the typical examples of
symmetric Lévy processes with completely monotone jumps which hit single points with
probability 1: stable, mixed stable (see Example 1.5) and relativistic (see Example 1.4).
An equivalent form of (1.3), as well as a sufficient condition in terms of the Lévy measure,
are given in Remark 1.8. Nevertheless, (1.3) is rather restrictive, see Example 1.7.
We conjecture that the estimates of P(τx > t) hold in greater generality, for example,
with (1.3) replaced by Ψ(ξ2)/Ψ(ξ1) ≥ C(ξ2/ξ1)α for some C > 0 and α > 1 (a more
general version of (1.4), see [5, 6, 9]). However, with the present methods, we were
unable to significantly relax the assumption that (1.3) holds with α > 1.

For symmetric processes with completely monotone jumps, Ψ is an increasing function
on (0,∞). Let Ψ−1 denote the inverse function of the restriction of Ψ to (0,∞). Our first
main result provides large t and small x estimates of P(τx > t) and its time derivatives.
A corollary that follows extends the estimate of P(τx > t) (with no time derivative) to the
full range of t > 0 and x ∈ R \ {0}. The constants in these estimates are given explicitly,
see Remark 5.5.

Below we state the main results of the paper.
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Theorem 1.1. Suppose that X is a symmetric Lévy process with completely monotone
jumps, which satisfies the scaling-type condition (1.3) for some α ∈ (1, 2]. Then there
are positive constants C1(α, n), C2(α, n), C3(α, n) such that

C1(α, n)

tn+1|x|Ψ(1/|x|)Ψ−1(1/t)
≤ (− d

dt )
nP(τx > t) ≤ C2(α, n)

tn+1|x|Ψ(1/|x|)Ψ−1(1/t)
(1.5)

for all n ≥ 0, t > 0 and x ∈ R \ {0} such that tΨ(1/|x|) ≥ C3(α, n).

Corollary 1.2. For n = 0, the conclusion of Theorem 1.1 can be rewritten as follows:
there are positive constants C̃1(α) and C̃2(α) such that

C̃1(α)

1 + t|x|Ψ(1/|x|)Ψ−1(1/t)
≤ P(τx > t) ≤ C̃2(α)

1 + t|x|Ψ(1/|x|)Ψ−1(1/t)
(1.6)

for all t > 0 and x ∈ R \ {0}.
Under an additional regularity condition, the above two-sided estimates can be

turned into asymptotic formulae for P(τx > t) as t→∞ or x→ 0. Recall that a function
ψ : (0,∞) → R is regularly varying at infinity with index α if limξ→∞ ψ(kξ)/ψ(ξ) = kα

for all k > 0. If the same equation holds with the limit as ξ → 0+ instead of ξ → ∞,
ψ is said to be regularly varying at zero with index α. Observe that if Ψ satisfies the
scaling-type condition (1.3) and it is regularly varying with index γ at infinity or at zero,
then, by (1.4), we have γ ≥ α.

Theorem 1.3. Suppose that X is a symmetric Lévy process with completely monotone
jumps, which satisfies the scaling-type condition (1.3) for some α ∈ (1, 2].

(a) If Ψ is regularly varying at infinity with index γ ∈ (1, 2], then the limit

lim
x→0

(
|x|Ψ( 1

|x| )(−
d
dt )

nP(τx > t)
)

exists and belongs to (0,∞) for all n ≥ 0 and t > 0.

(b) If Ψ is regularly varying at zero with index δ ∈ (1, 2], then the limit

lim
t→∞

(
tn+1Ψ−1( 1

t )(−
d
dt )

nP(τx > t)
)

exists and belongs to (0,∞) for all n ≥ 0 and x ∈ R \ {0}.

The limits in the above theorem are given explicitly by rather complicated expressions,
see Remark 5.6. In the following examples, application of Theorems 1.1 and 1.3 to three
types of symmetric Lévy processes with completely monotone jumps is given. Technical
details, such as verification of (1.3), are left to the reader.

Note that our main results for symmetric stable processes follow immediately from
the full series expansion given in [11]: Theorem 1.3 gives the first term, and two-sided
estimates of Theorem 1.1 follow easily by a scaling argument. On the other hand,
Theorems 1.1 and 1.3 seem to be completely new for non-stable processes.

Example 1.4. Suppose that 1 < α < β ≤ 2 and let X be the Lévy process with Lévy–
Khintchine exponent Ψ(ξ) = (1 + |ξ|β)α/β − 1 (sometimes X is called the relativistic Lévy
process). Then

c1(α, n)|x|α−1(1 + |x|)β−α

tn+1−1/α(1 + t)1/α−1/β
≤
(
− d

dt

)n
P(τx > t) ≤ c2(α, n)|x|α−1(1 + |x|)β−α

tn+1−1/α(1 + t)1/α−1/β

for all n ≥ 0, t > 0 and x ∈ R \ {0} such that t/min(|x|α, |x|β) ≥ c3(α, n). Furthermore,
finite and positive limits

lim
x→0

(
|x|1−α(− d

dt )
nP(τx > t)

)
, lim

t→∞

(
tn+1−1/β(− d

dt )
nP(τx > t)

)
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exist for all n ≥ 0, t > 0 and x ∈ R \ {0}. Note that the restriction α > 1 is required by
the scaling-type condition (1.3). Otherwise, if α ≤ 1, we have that P(τx <∞) = 0.

Example 1.5. Suppose that 1 < α < β ≤ 2, and let X be the Lévy process with Lévy–
Khintchine exponent Ψ(ξ) = |ξ|α + |ξ|β (that is, X is the sum of independent stable Lévy
processes). Then

c1(α, n)|x|β−1(1 + t)1/α−1/β

tn+1−1/β(1 + |x|)β−α
≤
(
− d

dt

)n
P(τx > t) ≤ c2(α, n)|x|β−1(1 + t)1/α−1/β

tn+1−1/β(1 + |x|)β−α

for all n ≥ 0, t > 0 and x ∈ R \ {0} such that t/max(|x|α, |x|β) ≥ c3(α, n). Furthermore,
finite and positive limits

lim
x→0

(
|x|1−β(− d

dt )
nP(τx > t)

)
, lim

t→∞

(
tn+1−1/α(− d

dt )
nP(τx > t)

)
exist for all n ≥ 0, t > 0 and x ∈ R \ {0}. As in the previous example, the restriction α > 1

is required by the scaling-type condition (1.3). If α ≤ 1 < β, then 0 < P(τx <∞) < 1 and
the estimates of P(τx < t) are unknown. When β ≤ 1, then P(τx <∞) = 0.

Example 1.6. Let X be the pure-jump Lévy process with Lévy–Khintchine exponent
Ψ(ξ) = ξ2(log(1 + ξ2))−1 − 1 (see [17]). Since Ψ is regularly varying with index 2 both at
0 and at infinity, it can be checked that both large-time and small-time scaling limits:

(k−1/2Xkt : t ≥ 0) as k →∞,

((2k)−1/2Xk log(1/k)t : t ≥ 0) as k → 0+,

are standard Wiener processes (cf. [8]). Let ϕ(t) = 1 for t ≥ 1
e and ϕ(t) = (te−W−1(−t))1/2

when 0 < t < 1
e (where W−1 is the lower branch of the Lambert W function). We have

c1(n)|x| log(2 + 1
|x| )

tn+1/2ϕ(t)
≤
(
− d

dt

)n
P(τx > t) ≤

c2(n)|x| log(2 + 1
|x| )

tn+1/2ϕ(t)

for all n ≥ 0, t > 0 and x ∈ R \ {0} such that t/(|x|2 log(2 + 1
|x| )) ≥ c3(n). Furthermore,

finite and positive limits

lim
x→0

(− d
dt )

nP(τx > t)

|x| log(2 + 1
|x| )

, lim
t→∞

(
tn+1/2(− d

dt )
nP(τx > t)

)
exist for all n ≥ 0, t > 0 and x ∈ R \ {0}.
Example 1.7. Let X be the sum of a standard Wiener process and a compound Poisson
process with Lévy measure ce−|x|dx. Then X is symmetric, has completely monotone
jumps and Ψ(ξ) = 1

2ξ
2 + cξ2/(1 + ξ2). By a direct calculation,

ξΨ′′(ξ)

Ψ′(ξ)
= 1− 8cξ2

((1 + ξ2)2 + 2c)(1 + ξ2)
.

The right-hand side decreases with c ≥ 0, and for c = 2 we have

inf

{
ξΨ′′(ξ)

Ψ′(ξ)
: ξ ∈ (0,∞)

}
=

Ψ′′(1)

Ψ′(1)
= 0.

It follows that X satisfies the scaling-type condition (1.3) with α ∈ (1, 2] if and only if
c ∈ [0, 2). We remark that the restriction c < 2 is apparently the limitation of our method,
there is no reason to believe that for c ≥ 2 the conclusions of Theorems 1.1 and 1.3 no
longer hold.
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Remark 1.8. The scaling-type condition (1.3) with α ∈ (1, 2] is easily shown to be
equivalent to concavity of Ψ(ξ1−ε) for some ε ∈ (0, 1

2 ] (with α − 1 = ε
1−ε ). A sufficient

condition for (1.3) with α ∈ (1, 2] in terms of the Lévy measure of X is described below.
Let X be a symmetric Lévy process with completely monotone jumps, and denote the

density function of the Lévy measure ν of X by the same symbol ν. Then

Ψ(ξ) = aξ2 + 2

∫ ∞
0

(1− cos(ξz))ν(z)dz = aξ2 + 2

∫ ∞
0

(1− cos s) 1
ξ ν( sξ )ds.

Assuming that d
dξ ( 1

ξ ν( sξ )) ≥ 0 and d2

dξ2 ( 1
ξ ν( sξ )) ≥ 0, differentiation in ξ under the integral

sign is permitted. It follows that

ξ2Ψ′′(ξ)− (α− 1)ξΨ′(ξ) = 2a(2− α)ξ2

+ 2

∫ ∞
0

(1− cos s) 1
ξ (( sξ )2ν′′( sξ ) + (3 + α) sξν

′( sξ ) + (1 + α)ν( sξ ))ds.

The right-hand side is non-negative if z2ν′′(z) + (3 + α)zν′(z) + (1 + α)ν(z) ≥ 0 for all

z > 0, which is equivalent to d2

dz2 (z−1/αν(z−1/α)) ≥ 0. This condition alone implies that
d2

dξ2 ( 1
ξ ν( sξ )) ≥ 0, and if z−1/αν(z−1/α) is increasing, then also d

dξ ( 1
ξ ν( sξ )) ≥ 0.

The above argument shows that if α ∈ (1, 2] and z−1/αν(z−1/α) is convex and nonde-
creasing in z > 0, then (1.3) holds.

Since the proofs of main theorems are rather technical, below we outline the main
idea and briefly discuss the structure of the article. Our starting point is the following
generalised eigenfunction expansion, proved in [13]. Note that in the original statement
the condition ξΨ′′(ξ) ≤ Ψ′(ξ) was erroneously given as 2ξΨ′′(ξ) ≤ Ψ′(ξ) (the proof,
however, used the correct condition). In the statement, as well as in the remaining
part of the article, by Ff(ξ) =

∫∞
−∞ f(s)e−isξds we denote the Fourier transform of

an integrable function f . Occasionally, the distributional Fourier transform is used:
if f is a Schwartz distribution, then Ff is again a Schwartz distribution, defined by
〈Ff, ϕ〉 = 〈f,Fϕ〉 for all ϕ in the Schwartz class.

Theorem 1.9 ([13, Theorem 1.1 and Remark 1.2]). Suppose that X is a symmetric Lévy
process. If 1/Ψ is integrable at infinity and

Ψ′(ξ) > 0,
ξΨ′′(ξ)

Ψ′(ξ)
≤ 1 (1.7)

for all ξ > 0 (cf. (1.3)), then

(− d
dt )

nP(t < τx <∞) =
1

π

∫ ∞
0

cosϑλe
−tΨ(λ)Ψ′(λ)(Ψ(λ))n−1Fλ(x)dλ (1.8)

for all n ≥ 0 and t > 0, and almost all x ∈ R. Here Fλ is a bounded, continuous function,
defined by

Fλ(x) = sin(λ|x|+ ϑλ)−Gλ(x)

for all x ∈ R, where

ϑλ = arctan

(
1

π

∫ ∞
0

(
Ψ′(λ)

Ψ(ξ)−Ψ(λ)
− 2λ

ξ2 − λ2

)
dξ

)
(1.9)

and Gλ is an L2(R) ∩ C0(R) function with (integrable) Fourier transform

FGλ(ξ) = cosϑλ

(
Ψ′(λ)

Ψ(ξ)−Ψ(λ)
− 2λ

ξ2 − λ2

)
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for all ξ ∈ R \ {−λ, λ}. The distributional Fourier transform of Fλ is given by

〈FFλ, ϕ〉 = cosϑλ pv

∫ ∞
−∞

Ψ′(λ)ϕ(ξ)

Ψ(λ)−Ψ(ξ)
dξ + π sinϑλ(ϕ(λ) + ϕ(−λ))

for ϕ in the Schwartz class (here pv
∫

stands for the Cauchy principal value integral).

As it is explained right after formula (1.11) below, symmetric Lévy processes with
completely monotone jumps automatically satisfy (1.7), so Theorem 1.9 can be applied
whenever 1/Ψ is integrable at infinity. The latter condition holds, for example, if the
scaling-type condition (1.3) is satisfied with α ∈ (1, 2].

The main idea of the proof of Theorems 1.1 and 1.3 is taken from [15], where a similar
problem for first passage times was studied. The generalised eigenfunctions Fλ(x) are
oscillatory due to the sin(λ|x|+ ϑλ) term, but Fλ(x) > 0 when λ|x| is small enough, and
two-sided estimates for Fλ(x) can be given in this case. Thanks to the exponential term
e−tΨ(λ) in (1.8), the main contribution to the integral comes from λ ∈ (0, c

|x| ), provided
that t is large enough, or |x| is small enough. This essentially gives Theorem 1.1. The
proof of Theorem 1.3 requires in addition an asymptotic expression for Fλ(x) as x→ 0

or λ→ 0.
We collect some simple technical results in Section 2, so that they do not distract

attention of the reader at a later point. In Section 3 the properties of ϑλ are studied. In
Lemma 3.1 it is proved that the scaling-type condition (1.3) implies ϑλ ≤ π

α −
π
2 for all

λ > 0. The asymptotic behaviour of ϑλ as λ→ 0+ or λ→∞ is given in Lemma 3.2.
The estimates and asymptotic properties of Fλ are given in Section 4. Lemma 4.3

contains a rather general estimate, which is then simplified in Lemma 4.4 for processes
satisfying the scaling-type condition (1.3). Asymptotic expansions of Fλ are given in
Lemmas 4.5 and 4.6.

The final Section 5 contains proofs of main theorems, preceded by two propositions
of more general nature and two technical lemmas. Proposition 5.2 extends (1.8) to all
x ∈ R \ {0}. Lemmas 5.4 and 5.3 contain estimates of the main part (λ < c

|x| ) and the
remainder part (λ > c

|x| ) of the integral in (1.8).
Instead of using the Lévy–Khintchine exponent Ψ, it is convenient to work with

ψ(ξ) = Ψ(
√
ξ). Recall that when X has completely monotone jumps, then ψ is a complete

Bernstein function. In the remaining part of the article Ψ is virtually dropped from the
notation. For reader’s convenience, we note that

Ψ(ξ) = ψ(ξ2),
ξΨ′(ξ)

Ψ(ξ)
= 2

ξ2ψ′(ξ2)

ψ(ξ2)
,

ξΨ′′(ξ)

Ψ′(ξ)
= 1 + 2

ξ2ψ′′(ξ2)

ψ′(ξ2)
, (1.10)

so that the scaling-type condition (1.3) translates to

−ξψ′′(ξ)
ψ′(ξ)

≤ 2− α
2

.

To facilitate extensions, all intermediate results are stated for rather general functions ψ.
For this reason, statements of the results often contain assumptions, such as differen-
tiability or monotonicity of ψ, which are automatically satisfied when ψ corresponds to
a symmetric Lévy process with completely monotone jumps (that is, ψ is a complete
Bernstein function). In particular, in this more general setting, a two-sided scaling-type
condition

2− β
2
≤ −ξψ

′′(ξ)

ψ′(ξ)
≤ 2− α

2
(1.11)

is often imposed. When ψ is a complete Bernstein function, the lower bound in (1.11)
always holds with β = 2 (see [12, Proposition 2.21]).
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It should be pointed out that although we follow closely the approach of [15], there
are essential differences between the present problem and the one considered therein.
The overall form of the generalised eigenfunctions is similar (sine term plus completely
monotone correction Gλ), but the expressions for ϑλ and Gλ are different, and thus
require different methods. For example, the estimates of Gλ in [15] follow easily from
the expression for the Laplace transform of Gλ. We were unable to follow the same
approach and needed to use Fourier transform instead. Also the technical details of the
arguments are different, so virtually no part of [15] can be re-used in our setting.

2 Preliminaries

Throughout the article, by c, c1, c2, etc. we denote positive constants. Dependence
on a parameter α is always indicated by writing c(α), etc.

Following [15], for λ > 0 and a continuous function ψ : (0,∞) → (0,∞) such that
ψ(ξ) 6= ψ(λ2) when ξ 6= λ2, we define

ψλ(ξ) =
1− ξ

λ2

1− ψ(ξ)
ψ(λ2)

for ξ > 0, ξ 6= λ2. This definition is extended continuously at ξ = λ2 by ψλ(λ2) =

ψ(λ2)/(λ2ψ′(λ2)) whenever ψ is differentiable at λ2 and ψ′(λ2) > 0. In this case we say
that ψλ is well-defined.

If for some λ > 0 the function ψλ is well-defined and ψλ(ξ) 6= ψλ(λ2) for ξ 6= λ2, then
(ψλ)λ can be defined, and

1

(ψλ)λ(ξ2)
=

λ2ψ′(λ2)

ψ(ξ2)− ψ(λ2)
− λ2

ξ2 − λ2
(2.1)

for ξ > 0, ξ 6= λ2. Note that if ψ : (0,∞) → (0,∞) is twice differentiable and ψ′(ξ) > 0,
ψ′′(ξ) < 0 for all ξ > 0, then ψλ is strictly increasing for every λ > 0, and hence
(ψλ)λ is well-defined and positive. Furthermore, if ψ is a complete Bernstein function
(equivalently, if Ψ(ξ) = ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy
process with completely monotone jumps), then also ψλ and (ψλ)λ are complete Bernstein
functions (see [13, 24]).

Below we list some rather elementary results used in the proofs of main results.

Lemma 2.1. If ψ, ψ̃ : (0,∞) → (0,∞) are twice differentiable, ψ′(ξ), ψ̃′(ξ) > 0 and
ψ′′(ξ), ψ̃′′(ξ) ≤ 0 for all ξ > 0, and furthermore

−ψ′′(ξ)
ψ′(ξ)

≤ −ψ̃
′′(ξ)

ψ̃′(ξ)
(2.2)

for all ξ > 0, then

(ψλ)λ(ξ2) ≥ (ψ̃λ)λ(ξ2) (2.3)

for all λ, ξ > 0.

Proof. Integration of (2.2) in ξ gives

ψ′(ζ)

ψ′(ξ1)
≥ ψ̃′(ζ)

ψ̃′(ξ1)

when 0 < ξ1 < ζ. By another integration in ζ,

ψ(ξ2)− ψ(ξ1)

ψ′(ξ1)
≥ ψ̃(ξ2)− ψ̃(ξ1)

ψ̃′(ξ1)
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when 0 < ξ1 < ξ2. Substituting ξ1 = λ2 and ξ2 = ξ2, one gets

λ2ψ′(λ2)

ψ(ξ2)− ψ(λ2)
− λ2

ξ2 − λ2
≤ λ2ψ̃′(λ2)

ψ̃(ξ2)− ψ̃(λ2)
− λ2

ξ2 − λ2
,

that is, (2.3), provided that 0 < λ < ξ. A similar argument can be given when 0 < ξ < λ.
The case λ = ξ > 0 follows by continuity.

Lemma 2.2. If ψ : (0,∞)→ (0,∞) is twice differentiable, ψ′(ξ) > 0 for all ξ > 0, and the
scaling-type condition (1.11) holds for some α, β > 0 and all ξ > 0, then

α

2
≤ ξψ′(ξ)

ψ(ξ)− ψ(0+)
≤ β

2
(2.4)

for all ξ > 0, and(
ξ1
ξ2

)1−α2
≤ ψ′(ξ2)

ψ′(ξ1)
≤
(
ξ1
ξ2

)1− β2
,

(
ξ2
ξ1

)α
2

≤ ψ(ξ2)− ψ(0+)

ψ(ξ1)− ψ(0+)
≤
(
ξ2
ξ1

) β
2

(2.5)

whenever 0 < ξ1 < ξ2.

Proof. By (1.11), if 0 < ξ1 < ξ2,

log

(
ξ2
ξ1

)1−α2
=

∫ ξ2

ξ1

1− α
2

ζ
dζ ≥

∫ ξ2

ξ1

−ψ′′(ζ)

ψ′(ζ)
dζ = log

ψ′(ξ1)

ψ′(ξ2)
,

proving the lower bound in the first part of (2.5). Hence,

ξ2
α
2

=

∫ ξ2

0

(
ξ2
ξ1

)1−α2
dξ1 ≥

∫ ξ2

0

ψ′(ξ1)

ψ′(ξ2)
dξ1 =

ψ(ξ2)− ψ(0+)

ψ′(ξ2)
,

which shows the lower bound in (2.4). Furthermore,

log

(
ξ2
ξ1

)α
2

=

∫ ξ2

ξ1

α
2

ζ
dζ ≤

∫ ξ2

ξ1

ψ′(ζ)

ψ(ζ)− ψ(0+)
dζ = log

ψ(ξ2)− ψ(0+)

ψ(ξ1)− ψ(0+)
,

proving the other lower bound in (2.5). The upper bounds are proved in the same way.

When ψ(ξ2) is the Lévy–Khintchine exponent of a Lévy process, then ψ(0+) = 0.
Hence, the latter part of (2.5) takes the simpler form(

ξ2
ξ1

)α
2

≤ ψ(ξ2)

ψ(ξ1)
≤
(
ξ2
ξ1

) β
2

.

Note that in this case (
t2
t1

) 2
β

≤ ψ−1(t2)

ψ−1(t1)
≤
(
t2
t1

) 2
α

(2.6)

for all t1, t2 > 0 such that t1 < t2.

Lemma 2.3. If g : (0,∞)→ (0,∞) is integrable and decreasing, then

lim
ξ→∞

(ξg(ξ)) = 0.

Proof. As an integrable and decreasing function, g(ξ) converges to 0 as ξ →∞. Since
g(ξ)1(0,ξ)(ζ) ≤ g(ζ) for all ξ, ζ > 0, by the Dominated Convergence Theorem,

lim
ξ→∞

(ξg(ξ)) = lim
ξ→∞

∫ ∞
0

g(ξ)1(0,ξ)(ζ)dζ = 0.
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Lemma 2.4. If g : R→ (0,∞) is integrable and decreasing on (0,∞), and g(ξ) = g(−ξ)
for ξ > 0, then

1

2

∫ ∞
0

min(ξ2x2, 4)g(ξ)dξ ≤ Fg(0)−Fg(x) ≤
∫ ∞

0

min(ξ2x2, 4)g(ξ)dξ (2.7)

for all x ∈ R. Furthermore,

|Fg(x1)−Fg(x2)| ≤
∫ ∞

0

min(ξ|x1 − x2|, 2) min(ξ|x1 + x2|, 2)g(ξ)dξ (2.8)

for all x1, x2 ∈ R.

Proof. Fix x > 0. By symmetry of g,

Fg(0)−Fg(x) = 2

∫ ∞
0

(1− cos(ξx))g(ξ)dξ.

Clearly, 1− cos(ξx) ≤ 2 and 1− cos(ξx) = 2 sin( ξx2 )2 ≤ 1
2ξ

2x2. Therefore,

Fg(0)−Fg(x) ≤
∫ 2

x

0

ξ2x2g(ξ)dξ +

∫ ∞
2
x

4g(ξ)dξ.

For the lower bound, integration by parts gives

Fg(0)−Fg(x) = 2 lim
ξ→∞

(
(ξ − 1

x sin(ξx))g(ξ)
)

+ 2

∫ ∞
0

(ξ − 1
x sin(ξx))(−dg(ξ)),

where the integral in the right-hand side is a Lebesgue–Stieltjes one (if g is differen-
tiable, then (−dg(ξ)) = (−g′(ξ))dξ). By Lemma 2.3, the limit in the right-hand side is 0.
Furthermore, (−dg(ξ)) is a non-negative measure on (0,∞), and one easily verifies that
ξ − 1

x sin(ξx) ≥ 1
8ξ

3x2 for ξ ∈ (0, 2
x ) and ξ − 1

x sin(ξx) ≥ ξ − 1
x for ξ ∈ ( 2

x ,∞). Hence,

Fg(0)−Fg(x) ≥
∫ 2

x

0

ξ3x2

4
(−dg(ξ)) +

∫ ∞
2
x

2(ξ − 1
x )(−dg(ξ)).

The function 1
4ξ

3x21(0,2/x)(ξ) + 2(ξ − 1
x )1[2/x,∞)(ξ) is continuous at ξ = 2

x . Therefore,
another integration by parts gives

Fg(0)−Fg(x) ≥
∫ 2

x

0

3
4ξ

2x2g(ξ)dξ +

∫ ∞
2
x

2g(ξ)dξ.

It follows that

Fg(0)−Fg(x) ≥ 1

2

(∫ 2
x

0

ξ2x2g(ξ)dξ +

∫ ∞
2
x

4g(ξ)dξ

)
,

as desired. The estimates (2.7) for x < 0 follow by symmetry.
In a similar manner, for x1, x2 ∈ R,

|Fg(x1)−Fg(x2)| ≤ 2

∫ ∞
0

|cos(ξx1)− cos(ξx2)|g(ξ)dξ

= 4

∫ ∞
0

|sin ξx1−ξx2

2 ||sin ξx1+ξx2

2 |g(ξ)dξ,

and (2.8) follows from |sin s| ≤ min(s, 1) for s > 0.
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Lemma 2.5. If ψ : (0,∞)→ (0,∞) and ξ/ψ(ξ) is increasing in ξ > 0, then∫ ξ

0

ζ2

ψ(ζ2)
dζ ≤ ξ2

∫ ∞
ξ

1

ψ(ζ2)
dζ (2.9)

for all ξ > 0.

Proof. When 0 < ζ < ξ, then ζ2/ψ(ζ2) ≤ ξ2/ψ(ξ2), and so∫ ξ

0

ζ2

ψ(ζ2)
dζ ≤

∫ ξ

0

ξ2

ψ(ξ2)
dζ =

ξ3

ψ(ξ2)
.

When 0 < ξ < ζ, then ζ/ψ(ζ2) ≥ ξ2/ψ(ξ2), so that∫ ∞
ξ

1

ψ(ζ2)
dζ ≥

∫ ∞
ξ

ξ2

ζ2ψ(ξ2)
dζ =

ξ

ψ(ξ2)
.

Formula (2.9) follows.

Lemma 2.6. If g : R→ R is integrable and regularly varying at infinity with index −γ
for γ ∈ (1, 3), and g(x) = g(−x) for x > 0, then

lim
x→0+

(
x

g(1/x)
(Fg(0)−Fg(x))

)
=

π

Γ(γ)|cos γπ2 |
.

Proof. Clearly, Fg(x) = 2
∫∞

0
g(ξ) cos(ξx)dξ. By [27, Theorem 5],

lim
x→0+

(
x

g(1/x)
(Fg(x)−Fg(0))

)
= 2Γ(1− γ) sin γπ

2 ,

where for γ = 2 it is understood that the right-hand side is equal to π. Furthermore,
Γ(1− γ)Γ(γ) = π/ sin(γπ).

3 Estimates of ϑλ

Recall that

ϑλ = arctan

(
1

π

∫ ∞
0

2

λ

1

(ψλ)λ(ξ2)
dξ

)
(3.1)

for λ > 0.

Lemma 3.1. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
ψ′(ξ) > 0 for all ξ > 0 and the scaling-type condition (1.11) holds for some α, β ∈ [1, 2]

and all ξ > 0, then

π

β
− π

2
≤ ϑλ ≤

π

α
− π

2

for all λ > 0.

Proof. If ψ̃(ξ) = ξα/2, then −ξψ̃′′(ξ)/ψ̃′(ξ) = 1− α
2 . Hence, by Lemma 2.1,

(ψλ)λ(ξ2) ≥ (ψ̃λ)λ(ξ2)

for all λ, ξ > 0. By (3.1), it follows that ϑλ ≤ ϑ̃λ, where ϑ̃λ is defined as ϑλ, but using ψ̃
instead of ψ. By [15, Example 5.1], ϑ̃λ = π

α −
π
2 . This proves the upper bound. The lower

one is obtained in a similar manner.
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Lemma 3.2. Suppose that ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy
process, ψ′(ξ) > 0 for all ξ > 0, and the scaling-type condition (1.11) holds for some
α, β ∈ [1, 2] and all ξ > 0. If ψ′ is regularly varying at zero with index δ

2 − 1 for some
δ ∈ [1, 2], then

lim
λ→0+

ϑλ =
π

δ
− π

2
.

Similarly, if ψ′ is regularly varying at infinity with index γ
2 − 1 for some γ ∈ [1, 2], then

lim
λ→∞

ϑλ =
π

γ
− π

2
.

Proof. Suppose that ψ′ is regularly varying at zero with index δ
2 − 1 and let ψ̃(ξ) =

ξα/2, so that −ξψ̃′′(ξ)/ψ̃′(ξ) = 1 − α
2 . By Karamata’s theorem [1, Theorem 1.5.11],

limλ→0+(λ2ψ′(λ2)/ψ(λ2)) = δ
2 and ψ is regularly varying at zero with index δ

2 .
By a substitution ξ = λs,

lim
λ→0+

ϑλ = arctan

(
1

π
lim
λ→0+

∫ ∞
0

2

(ψλ)λ(λ2s2)
ds

)
= arctan

(
1

π
lim
λ→0+

∫ ∞
0

(
2λ2ψ′(λ2)/ψ(λ2)

ψ(λ2s2)/ψ(λ2)− 1
− 2

s2 − 1

)
ds

)
.

As λ→ 0+, the integrand converges pointwise to δ/(sδ − 1)− 2/(s2 − 1). Furthermore, it
is positive and bounded above by 2/(ψ̃λ)λ(λ2s2) = α/(sα − 1)− 2/(s2 − 1) by Lemma 2.1.
Note that this upper bound does not depend on λ > 0 and it is integrable in s ∈ (0,∞).
Hence, by the Dominated Convergence Theorem and [13, Example 5.1],

lim
λ→0+

ϑλ = arctan

(
1

π

∫ ∞
0

(
δ

sδ − 1
− 2

s2 − 1

)
ds

)
=
π

δ
− π

2
.

The other statement is proved in an analogous way.

4 Estimates of Fλ(x)

Recall that

FGλ(ξ) =
2 cosϑλ

λ

1

(ψλ)λ(ξ2)
with

1

(ψλ)λ(ξ2)
=

λ2ψ′(λ2)

ψ(ξ2)− ψ(λ2)
− λ2

ξ2 − λ2

for λ > 0, ξ ∈ R, and

Fλ(x) = sin(λ|x|+ ϑλ)−Gλ(x)

for λ > 0, x ∈ R.

Lemma 4.1. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 + ψ(ξ2)) is integrable, λ > 0 and (ψλ)λ(ξ) is well-defined and increasing in ξ > 0,
then

1

4π

∫ ∞
0

min(ξ2x2, 4)FGλ(ξ)dξ ≤ Gλ(0)−Gλ(x) ≤ 1

2π

∫ ∞
0

min(ξ2x2, 4)FGλ(ξ)dξ

for all x ∈ R. Furthermore,

|Gλ(x1)−Gλ(x2)| ≤ 1

2π

∫ ∞
0

min(ξ|x1 − x2|, 2) min(ξ|x1 + x2|, 2)FGλ(ξ)dξ

for all x1, x2 ∈ R.
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Proof. Due to symmetry of Gλ, F(FGλ) = 2πGλ. Furthermore, FGλ is differentiable
and decreasing on (0,∞). Hence, the result follows by Lemma 2.4.

Lemma 4.2. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 + ψ(ξ2)) is integrable, λ > 0, (ψλ)λ(ξ) is well-defined and (ψλ)λ(ξ) and ξ/(ψλ)λ(ξ)

are increasing in ξ > 0, then

1

π

∫ ∞
2
|x|

FGλ(ξ)dξ ≤ Gλ(0)−Gλ(x) ≤ 4

π

∫ ∞
2
|x|

FGλ(ξ)dξ

for all x ∈ R.

Proof. Since ξ/(ψλ)λ(ξ) is increasing in ξ > 0, by Lemma 2.5,∫ 2
|x|

0

ξ2x2FGλ(ξ)dξ ≤
∫ ∞

2
|x|

4FGλ(ξ)dξ.

The result follows now from Lemma 4.1.

Lemma 4.3. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 + ψ(ξ2)) is integrable, λ > 0, (ψλ)λ(ξ) is well-defined and (ψλ)λ(ξ) and ξ/(ψλ)λ(ξ)

are increasing in ξ > 0, then

cosϑλ
π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ ≤ Fλ(x) ≤ 4

π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ

for λ, x > 0 satisfying λx < π
2 − ϑλ. The upper bound holds when λx < 2.

Proof. Suppose that λ, x > 0 and write

Fλ(x) = (sin(λx+ ϑλ)− sin(ϑλ)) + (Gλ(0)−Gλ(x)). (4.1)

By Lemma 4.2, Gλ(0)−Gλ(x) is bounded below and above by a constant times (see (2.1))∫ ∞
2
x

FGλ(ξ)dξ = cosϑλ

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ

= cosϑλ

∫ ∞
2
x

(
2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
− 2λ

ξ2 − λ2

)
dξ

Observe that d
ds (log(1 + s)− log(1− s)) ≥ 2 for s ∈ (0, 1). Therefore, if λx < 2, then∫ ∞

2
x

2λ

ξ2 − λ2
dξ = log(1 + λx

2 )− log(1− λx
2 ) ≥ λx ≥ sin(λx+ ϑλ)− sin(ϑλ).

Hence,

Fλ(x) ≤
∫ ∞

2
x

2λ

ξ2 − λ2
dξ +

4 cosϑλ
π

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ

≤ 4

π

∫ ∞
2
x

2λ

ξ2 − λ2
dξ +

4

π

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ =

4

π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ.

The lower bound is found in a similar manner. Observe that log(1 + s) − log(1 − s) is
convex on (0, 1). Hence, if λx

2 < π
4 , then∫ ∞

2
x

2λ

ξ2 − λ2
dξ = log(1 + λx

2 )− log(1− λx
2 )

≤ (log(1 + π
4 )− log(1− π

4 )) 4
π
λx
2 = 2

π (log 4+π
4−π )λx.
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Furthermore, by concavity, sin(s+ϑλ)− sinϑλ ≥ s(1− sinϑλ)/(π2 −ϑλ) for s ∈ (0, π2 −ϑλ).
It follows that if λx < π

2 − ϑλ, then∫ ∞
2
x

2λ

ξ2 − λ2
dξ ≤ 2

π (log 4+π
4−π )

π
2 − ϑλ

1− sinϑλ
(sin(λx+ ϑλ)− sin(ϑλ))

≤
4 log 4+π

4−π
π cosϑλ

(sin(λx+ ϑλ)− sin(ϑλ));

the last inequality follows from the inequality 1− cos s ≥ 1
2s sin s for s ∈ (0, π2 ) (which is

easily proved by differentiation) with s = π
2 − ϑλ. This gives the desired lower bound,

Fλ(x) ≥ π cosϑλ

4 log 4+π
4−π

∫ ∞
2
x

2λ

ξ2 − λ2
dξ +

cosϑλ
π

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ

≥ cosϑλ
π

∫ ∞
2
x

2λ

ξ2 − λ2
dξ +

cosϑλ
π

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ

=
cosϑλ
π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ.

Lemma 4.4. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process, λ > 0,
(ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are increasing in ξ > 0, and the scaling-type condition (1.11)
holds for some α, β ∈ (1, 2] and all ξ > 0, then

α− 1

π

λψ′(λ2)

xψ(1/x2)
≤ Fλ(x) ≤ 40

π(α− 1)

λψ′(λ2)

xψ(1/x2)
(4.2)

for λ, x > 0 satisfying λx < π − π
α . The upper bound holds when λx < 2. Furthermore,

|Fλ(x1)− Fλ(x2)| ≤ 3λ|x1 − x2|+
2λψ′(λ2)

π

∫ ∞
2λ

min(ξ|x1 − x2|, 2) min(ξ|x1 + x2|, 2)

ψ(ξ2)
dξ

(4.3)

for λ > 0 and x1, x2 ∈ R.

Note that the scaling-type condition (1.11) implies that 1/(1 +ψ(ξ2)) is integrable (by
Lemma 2.2) and that (ψλ)λ(ξ) is well-defined.

Proof. By Lemma 3.1, ϑλ ≤ π
α −

π
2 . Hence, by Lemma 4.3,

sin π
α

π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ ≤ Fλ(x) ≤ 4

π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ

for λ, x > 0 such that λx < π − π
α . In this case ξ > 2

x implies ξ > 2(π − π
α )−1λ > 4

πλ, and
hence, by Lemma 2.2, ψ(λ2) ≤ (π4 )αψ(ξ2). Therefore,∫ ∞

2
x

2λψ′(λ2)

ψ(ξ2)
dξ ≤

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ ≤ 1

1− (π4 )α

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)
dξ.

Finally, again by Lemma 2.2,∫ ∞
2
x

1

ψ(ξ2)
dξ ≤ 1

ψ(1/x2)

∫ ∞
2
x

1

(ξx)α
dξ =

1

(α− 1)2α−1xψ(1/x2)
,

and a similar lower bound is valid with α replaced by β. By combining the above
estimates, one obtains

sin π
α

π

2λψ′(λ2)

(β − 1)2β−1xψ(1/x2)
≤ Fλ(x) ≤ 4

π

1

1− (π4 )α
2λψ′(λ2)

(α− 1)2α−1xψ(1/x2)
,
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and (4.2) follows by elementary estimates: sin π
α ≥ (α − 1), (β − 1)2β−1 ≤ 2, 2α−1 ≥ 1,

1− (π4 )α ≥ 1− π
4 ≥

1
5 .

Formula (4.3) is proved in a similar way. By Lemma 4.1 and (4.1), for λ > 0 and
x1, x2 ∈ R,

|Fλ(x1)− Fλ(x2)| ≤ λx+
1

2π

∫ ∞
0

2

λ(ψλ)λ(ξ2)
min(ξx, 2) min(ξy, 2)dξ

where for brevity x = |x1 − x2| and y = |x1 + x2|. Since (ψλ)λ(ξ) ≥ (ψλ)λ(0) = 1 for
ξ ∈ (0, 2λ), and 1/(ψλ)λ(ξ) ≤ λ2/(ψ(ξ2)− ψ(λ2)) for ξ > 2λ,

|Fλ(x1)− Fλ(x2)| ≤ λx+

∫ 2λ

0

2ξx

πλ
dξ +

1

π

∫ ∞
2λ

λψ′(λ2)

ψ(ξ2)− ψ(λ2)
min(ξx, 2) min(ξy, 2)dξ

≤ 3λx+
λψ′(λ2)

(1− ( 1
2 )α)π

∫ ∞
2λ

min(ξx, 2) min(ξy, 2)

ψ(ξ2)
dξ;

here the last inequality follows by Lemma 2.2.

Lemma 4.5. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
λ > 0, (ψλ)λ(ξ) is well-defined, and ψ is regularly varying at infinity with index γ

2 for
some γ ∈ (1, 2], then

lim
x→0+

(xψ(1/x2)Fλ(x)) =
λψ′(λ2) cosϑλ
Γ(γ)|cos γπ2 |

.

Note that 1/(1 + ψ(ξ2)) is integrable, because it is regularly varying at infinity with
index −γ.

Proof. Recall that

FGλ(ξ) =
2 cosϑλ

λ

1

(ψλ)λ(ξ2)
=

2λψ′(λ2) cosϑλ
ψ(ξ2)− ψ(λ2)

− 2λ cosϑλ
ξ2 − λ2

,

and that Gλ = 1
2πF(FGλ). Let a = limξ→∞(ψ(ξ2)/ξ2); necessarily a ∈ [0,∞). Then

lim
ξ→∞

(ψ(ξ2)FGλ(ξ)) = 2λ(ψ′(λ2)− a) cosϑλ.

Therefore, FGλ(ξ) is regularly varying at infinity with index −γ, and by Lemma 2.6,

lim
x→0+

(xψ(1/x2)(Gλ(0)−Gλ(x)) = 2λ(ψ′(λ2)− a) cosϑλ lim
x→0+

x(Gλ(0)−Gλ(x))

FGλ(1/x)

=
λ(ψ′(λ2)− a) cosϑλ

Γ(γ)|cos γπ2 |
.

Furthermore,

lim
x→0+

(xψ(1/x2)(sin(λx+ ϑλ)− sinϑλ)) = λa cosϑλ,

and Fλ(x) = (sin(λx + ϑλ) − sinϑλ) + (Gλ(0) −Gλ(x)). The result clearly follows when
a = 0. If a > 0, then necessarily γ = 2, and hence Γ(γ)|cos γπ2 | = 1.

Recall that the compensated potential kernel v of X is defined by

v(x) =

∫ ∞
0

(pt(0)− pt(x))dt,
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where pt(x) is the density function of the distribution of Xt. Since Fpt(ξ) = e−tψ(ξ2), the
distributional Fourier transform of v satisfies

〈Fv, ϕ〉 =

∫ ∞
0

∫ ∞
−∞

e−tψ(ξ2)(ϕ(0)− ϕ(ξ))dξdt

=

∫ ∞
0

∫ ∞
0

e−tψ(ξ2)(2ϕ(0)− ϕ(ξ)− ϕ(−ξ))dξdt

=

∫ ∞
0

2ϕ(0)− ϕ(ξ)− ϕ(−ξ)
ψ(ξ2)

dξ

for ϕ in the Schwartz class (the Fubini theorem is used in the last equality).

Lemma 4.6. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process, λ > 0,
(ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are increasing in ξ > 0, and the scaling-type condition (1.11)
holds for some α, β ∈ (1, 2] and all ξ > 0, then

lim
λ→0+

Fλ(x)

2λψ′(λ2) cosϑλ
= v(x)

locally uniformly in x ∈ R, where v(x) is the compensated potential kernel of X.

Noteworthy, convergence in the space of tempered distributions holds in full gen-
erality, that is, with the hypotheses of Theorem 1.9. Under the assumptions of the
lemma, one also has ϑλ → π

γ −
π
2 as λ→ 0+ by Lemma 3.2. As before, the scaling-type

condition (1.11) implies that 1/(1 +ψ(ξ2)) is integrable (by Lemma 2.2) and that (ψλ)λ(ξ)

is well-defined.

Proof. By Theorem 1.9, for ϕ in the Schwartz class,〈
FFλ

λψ′(λ2) cosϑλ
, ϕ

〉
= 2 pv

∫ ∞
−∞

ϕ(ξ)

ψ(λ2)− ψ(ξ2)
dξ +

π tanϑλ
λψ′(λ2)

(ϕ(λ) + ϕ(−λ))

= 2 pv

∫ ∞
−∞

ϕ(ξ)

ψ(λ2)− ψ(ξ2)
dξ − 2 pv

∫ ∞
0

ϕ(λ) + ϕ(−λ)

ψ(λ2)− ψ(ξ2)
dξ

= 2

∫ ∞
0

ϕ(ξ)− ϕ(λ) + ϕ(−ξ)− ϕ(−λ)

ψ(λ2)− ψ(ξ2)
dξ.

As λ→ 0+, the integrand converges pointwise to (2ϕ(0)−ϕ(ξ)−ϕ(−ξ))/ψ(ξ2). We claim
that the Dominated Convergence Theorem applies to the above limit. Indeed,

|ϕ(ξ)− ϕ(λ) + ϕ(−ξ)− ϕ(−λ)| ≤ |ξ − λ| sup{|ϕ′(s)− ϕ′(−s)| : 0 < s < ξ + λ}
≤ |ξ − λ|(ξ + λ)‖ϕ′′‖∞ = |ξ2 − λ2|‖ϕ′′‖∞,

for all λ, ξ > 0, and since ψ′ is decreasing,

|ψ(λ2)− ψ(ξ2)| ≥ |ξ2 − λ2|ψ′(2)

for all λ ∈ (0, 1) and ξ ∈ (0, 2). Hence,∣∣∣∣ϕ(ξ)− ϕ(λ) + ϕ(−ξ)− ϕ(−λ)

ψ(λ2)− ψ(ξ2)

∣∣∣∣ ≤ ‖ϕ′′‖∞ψ′(2)

for all λ ∈ (0, 1) and ξ ∈ (0, 2). On the other hand,∣∣∣∣ϕ(ξ)− ϕ(λ) + ϕ(−ξ)− ϕ(−λ)

ψ(λ2)− ψ(ξ2)

∣∣∣∣ ≤ 4‖ϕ‖∞
ψ(ξ2)− ψ(1)
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for all λ ∈ (0, 1) and ξ ≥ 2. The upper bound found above is integrable in ξ ∈ (0,∞), and
the claim is proved. It follows that

lim
λ→0+

〈
FFλ

λψ′(λ2) cosϑλ
, ϕ

〉
= 2 〈Fv, ϕ〉

for every ϕ in the Schwartz class. This proves the desired result, but with locally uniform
convergence replaced by convergence in the space of tempered distributions.

By Lemmas 4.4 and 3.1, for all λ > 0 and x1, x2 ∈ R,

|Fλ(x1)− Fλ(x2)|
λψ′(λ2) cosϑλ

≤ 3|x1 − x2|
ψ′(λ) sin π

α

+
2

π sin π
α

∫ ∞
2λ

min(ξ|x1 − x2|, 2) min(ξ|x1 + x2|, 2)

ψ(ξ2)
dξ.

Hence, if λ ∈ (0, λ0) and x1, x2 ∈ [−x0, x0], then

|Fλ(x1)− Fλ(x2)|
λψ′(λ2) cosϑλ

≤ 3|x1 − x2|
ψ′(λ0) sin π

α

+
2

π sin π
α

∫ ∞
0

min(ξ|x1 − x2|, 2) min(2ξx0, 2)

ψ(ξ2)
dξ.

The right-hand side is finite and converges to 0 as |x2 − x1| → 0+ by the Dominated
Convergence Theorem. Hence, the functions Fλ(x)/(λψ′(λ2) cosϑλ) are equicontinuous
in x ∈ [−x0, x0] for λ ∈ (0, λ0). It remains to note that on a bounded interval, distributional
convergence and equicontinuity imply uniform convergence.

5 Estimates of hitting times

We begin with two technical results.

Proposition 5.1. If X is a symmetric Lévy process with Lévy–Khintchine exponent Ψ,
and 1/(1 + Ψ(ξ)) is integrable, then P(t < τx < ∞) is jointly continuous in t > 0 and
x ∈ R.

Proof. By [23, Theorem 43.5 and Remark 43.6], Ee−λτx is a continuous function of x ∈ R
for every λ > 0. Therefore, the distributions of τx are continuous in x with respect to
vague convergence of measures. It follows that the function P(t < τx <∞) is continuous
in x at every point (t, x) at which it is continuous in t.

Since P(τx = t) ≤ P(Xt = x) = 0, the function P(t < τx < ∞) is continuous and
non-increasing in t > 0 for every x ∈ R. This implies that it is in fact jointly continuous
in t > 0 and x ∈ R.

Proposition 5.2. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 +ψ(ξ2)) is integrable, (ψλ)λ is well-defined and (ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are increas-
ing in ξ > 0 for all λ > 0, then equation (1.8) in Theorem 1.9 holds for all x ∈ R (and not
just for almost all x ∈ R).

Proof. It suffices to consider n = 0, the result for n > 0 follows then by differentiation,
see [13, Remark 1.2]. Let t > 0. By Proposition 5.1, the left-hand side of (1.8) is a
continuous function of x ∈ R \ {0}. For each t > 0, the integrand in the right-hand side
of (1.8) is continuous in x ∈ R \ {0}. Therefore, it remains to show that the Dominated
Convergence Theorem can be applied to prove continuity of the right-hand side of (1.8)
in x > 0 (equality for x = 0 is trivial, and the result for x < 0 follows by symmetry).

Fix [a, b] ⊆ (0,∞). By Lemma 4.3, for x ∈ [a, b] and λ ∈ (0, 1
b ),∣∣∣cosϑλe

−tψ(λ2)2λψ′(λ2)(ψ(λ2))−1Fλ(x)
∣∣∣ ≤ 4

π

(2λψ′(λ2))2

ψ(λ2)

∫ ∞
2
b

1

ψ(ξ2)− ψ(1/b2)
dξ,
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while for x ∈ [a, b] and λ ≥ 1
b ,∣∣∣cosϑλe

−tψ(λ2)2λψ′(λ2)(ψ(λ2))−1Fλ(x)
∣∣∣ ≤ 4λψ′(λ2)

ψ(λ2)
e−tψ(λ2),

because |Fλ(x)| ≤ 2 (indeed, |Fλ(x)| ≤ 1 + |Gλ(x)|; since FGλ(ξ) ≥ 0 for all ξ ∈ R, one
has |Gλ(x)| ≤ Gλ(0); finally, Gλ(0) = sinϑλ ≤ 1; see [13, Theorem 1.9(a)]). Clearly,∫ ∞

2
b

4λψ′(λ2)

ψ(λ2)
e−tψ(λ2)dλ =

∫ ∞
ψ(4/b2)

2e−ts

s
ds <∞.

Furthermore, λ2ψ′(λ2)/ψ(λ2) = 1/ψλ(λ2) ≤ 1/ψλ(0) = 1, and therefore∫ 2
b

0

(
4

π

(2λψ′(λ2))2

ψ(λ2)

∫ ∞
2
b

1

ψ(ξ2)− ψ(1/b2)
dξ

)
dλ

≤ 16

π

∫ 2
b

0

ψ′(λ2)dλ

∫ ∞
2
b

1

ψ(ξ2)− ψ(1/b2)
dξ <∞,

which completes the proof.

By Proposition 5.2, under appropriate assumptions, for n ≥ 0, t > 0 and x ∈ R \ {0},(
− d

dt

)n
P(t < τx <∞) =

2

π

∫ ∞
0

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1Fλ(x)dλ.

Throughout this section we denote

In(t, x, a) =
2

π

∫ ∞
a

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1Fλ(x)dλ,

Jn(t, x, a) =
2

π

∫ a

0

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1Fλ(x)dλ.

(5.1)

In the remaining part of the article, γ(k; z) and Γ(k; z) denote the lower and the upper
incomplete gamma functions, respectively.

Lemma 5.3. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 + ψ(ξ2)) is integrable, (ψλ)λ(ξ) is well-defined and (ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are
increasing in ξ > 0 for all λ > 0, and the scaling-type condition (1.11) holds for some
α, β ∈ (1, 2] and all ξ > 0, then

|In(t, x, a)| ≤ 2
π t
−nΓ(n; (α− 1)βtψ(1/x2))

for all n ≥ 0, t, x > 0 and a ≥ (π − π
α )/x.

Proof. Fix t, x > 0 and let a0 = (π − π
α )/x and b0 = tψ(a2

0). Using |Fλ(x)| ≤ 2 (see the
proof of Proposition 5.2) and a substitution s = tψ(λ2), one finds that

|In(t, x, a)| ≤ 4

π

∫ ∞
a0

e−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1dλ =
2

πtn

∫ ∞
b0

e−ssn−1ds =
2Γ(n; b0)

πtn
.

Furthermore, b0 = tψ(a2
0) ≥ tψ(1/x2) if α > π

π−1 , and b0 = tψ(a2
0) ≥ (π − π

α )βtψ(1/x2)

otherwise (by Lemma 2.2). In either case, b0 ≥ (α− 1)βtψ(1/x2).

Lemma 5.4. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
(ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are increasing in ξ > 0 for all λ > 0, and the scaling-type
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condition (1.11) holds for some α, β ∈ (1, 2] and all ξ > 0, then there are constants
c1(α, β, n), c2(α, β, n) > 0 such that

c1(α, β, n)

tn+1xψ(1/x2)
√
ψ−1(1/t)

≤ Jn(t, x, (π − π
α )/x) ≤ c2(α, β, n)

tn+1xψ(1/x2)
√
ψ−1(1/t)

for n ≥ 0 and t, x > 0 such that tψ(1/x2) ≥ 1. Here

c1(α, β, n) =
(α− 1)2γ(n+ 1− 1

β ; (α− 1)β)

2π2
,

c2(α, β, n) =
40(γ(n+ 1− 1

α ; 1) + Γ(n+ 1− 1
β ; 1))

π2(α− 1)
.

(5.2)

As before, the scaling-type condition (1.11) implies that 1/(1 + ψ(ξ2)) is integrable
(by Lemma 2.2) and that (ψλ)λ(ξ) is well-defined.

Proof. Fix t, x > 0 and let a = (π − π
α )/x and b = tψ(a2). Denote J = Jn(t, x, a). Observe

that when λ < a, then λx < π − π
α and Lemma 4.4 applies. Hence,

J ≥ 2(α− 1)

π2

∫ a

0

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1 λψ′(λ2)

xψ(1/x2)
dλ.

Using cosϑλ ≥ cos(πα−
π
2 ) ≥ (α−1), λ2ψ′(λ2) ≥ α

2ψ(λ2) (by Lemma 2.2) and a substitution
s = tψ(λ2),

J ≥ α(α− 1)2

π2xψ(1/x2)

∫ a

0

e−tψ(λ2)ψ′(λ2)(ψ(λ2))ndλ =
α(α− 1)2

π2tn+1xψ(1/x2)

∫ b

0

e−ssn

2
√
ψ−1(s/t)

ds.

By Lemma 2.2 and (2.6),

J ≥ α(α− 1)2

2π2tn+1xψ(1/x2)

∫ b

0

e−ssn√
max(s2/β , s2/α)ψ−1(1/t)

ds

≥
α(α− 1)2γ(n+ 1− 1

β ; min(b, 1))

2π2tn+1xψ(1/x2)
√
ψ−1(1/t)

.

Finally, as in the proof of Lemma 5.3, b ≥ (α− 1)βtψ(1/x2). This proves the desired lower
bound. The upper bound is shown in a similar manner,

J ≤ 80

π2(α− 1)

∫ a

0

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1 λψ′(λ2)

xψ(1/x2)
dλ

≤ 40β

π2(α− 1)xψ(1/x2)

∫ a

0

e−tψ(λ2)ψ′(λ2)(ψ(λ2))ndλ

=
40β

π2(α− 1)tn+1xψ(1/x2)

∫ b

0

e−ssn

2
√
ψ−1(s/t)

ds

≤ 20β

π2(α− 1)tn+1xψ(1/x2)

∫ b

0

e−ssn√
min(s2/β , s2/α)ψ−1(1/t)

ds

≤
20β(γ(n+ 1− 1

α ; 1) + Γ(n+ 1− 1
β ; 1))

π2(α− 1)tn+1xψ(1/x2)
√
ψ−1(1/t)

.

As observed in the introduction, with the hypotheses of Theorems 1.1 and 1.3,
ψ(ξ) = Ψ(

√
ξ) is a complete Bernstein function (see [24]), and hence ψλ and (ψλ)λ are

complete Bernstein functions (see [13]). In particular, (ψλ)λ is well-defined and (ψλ)λ(ξ)
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and ξ/(ψλ)λ(ξ) are increasing in ξ > 0 for all λ > 0. Furthermore, if ψ is regularly
varying at zero or at infinity with index α

2 , then ψ′ is regularly varying at the same point
with index α

2 − 1. The scaling-type condition (1.3) implies the upper bound of (1.11), and
the lower bound is automatically satisfied with β = 2. Finally, Ψ−1(t) = (ψ−1(t))1/2, and
the relation between the derivatives of ψ and Ψ is given in (1.10).

Observe that the distributions of τx and τ−x are equal, and Fλ are even functions.
Hence, only x > 0 needs to be considered in the proofs of main theorems.

Proof of Theorem 1.1. Let β = 2. Choose c > 1 large enough, so that for s ≥ c,
2
π sΓ(n; (α− 1)βs) ≤ 1

2c1(α, β, n),

where c1(α, β, n) is defined in (5.2) in Lemma 5.4 (this is possible, because Γ(n; (α−1)βs)

decays exponentially fast with s at infinity). Fix t, x > 0 such that tψ(1/x2) ≥ c, and let
a = (π − π

α )/x. Observe that

x2ψ−1( 1
t ) =

ψ−1(1/t)

ψ−1(ψ(1/x2))
≤ ψ−1(1/t)

ψ−1(c/t)
≤ 1.

Hence, by Lemmas 5.3 and 5.4, if tψ(1/x2) ≥ c, then

tn|In(t, x, a)| ≤ 2
πΓ(n; (α− 1)βtψ(1/x2)) ≤ c1(α, β, n)

2tψ(1/x2)
,

tnJn(t, x, a) ≥ c1(α, β, n)

txψ(1/x2)
√
ψ−1(1/t)

≥ c1(α, β, n)

tψ(1/x2)
,

so that |In(t, x, a)| ≤ 1
2Jn(t, x, a). It follows that

1
2Jn(t, x, a) ≤

(
− d

dt

)n
P(t < τx <∞) ≤ 3

2Jn(t, x, a),

and the theorem follows now directly from Lemma 5.4, with C1(α, n) = 1
2c1(α, β, n),

C2(α, n) = 3
2c2(α, β, n) (see (5.2) in Lemma 5.4) and C3(α, n) = c.

Proof of Corollary 1.2. For brevity, denote the constants of Theorem 1.1 by Cj = Cj(α, 0)

for j = 1, 2, 3; recall that C3 ≥ 1. Suppose first that tψ(1/x2) ≥ C3. By (2.6),

txψ(1/x2)
√
ψ−1(1/t) = tψ(1/x2)

√
ψ−1(1/t)

ψ−1(ψ(1/x2))
≥ tψ(1/x2)

(tψ(1/x2))1/α
≥ C1−1/α

3 ≥ 1.

Hence, estimate (1.6) follows from (1.5) with arbitrary C̃1(α) ≤ C1 and C̃2(α) ≥ 2C2.
Consider now the case tψ(1/x2) ≤ C3. Again by (2.6),

txψ(1/x2)
√
ψ−1(1/t) ≤ tψ(1/x2)

√
ψ−1(C3/t)

ψ−1(ψ(1/x2))
≤ tψ(1/x2)

(tψ(1/x2)/C3)1/α
≤ C3.

Hence,

P(τx > t) ≤ 1 ≤ 2C3

1 + txψ(1/x2)
√
ψ−1(1/t)

.

Finally, by (1.5),

P(τx > t) ≥ P(τx > C3/ψ(1/x2)) ≥ C1

C3x
√
ψ−1(ψ(1/x2)/C3)

=
C1

C3

√
ψ−1(1/x2)

ψ−1(ψ(1/x2)/C3)
≥ C1

C3
≥ C1

C3

1

1 + txψ(1/x2)
√
ψ−1(1/t)

.

Therefore, (1.5) holds with arbitrary C̃1(α) ≤ C1/C3 and C̃2(α) ≥ 2C3.
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Remark 5.5. From the proof of Theorem 1.1 it follows that the constants in this result
are given by

C1(α, n) =
(α− 1)2γ(n+ 1

2 ; (α− 1)2)

4π2
,

C2(α, n) =
60(γ(n+ 1− 1

α ; 1) + Γ(n+ 1
2 ; 1))

π2(α− 1)
,

and C3(α, n) > 1 is large enough, so that for s ≥ C3(α, n),

2
π sΓ(n; (α− 1)2s) ≤ C1(α, n).

In a similar way, in Corollary 1.2,

C̃1(α) =
C1(α, 0)

C3(α, 0)
, C̃2(α) = 2C2(α, 0) + 2C3(α, 0).

Proof of Theorem 1.3. Part (a). As before, let β = 2. We claim that by the Dominated
Convergence Theorem,

lim
x→0+

(xψ(1/x2)Jn(t, x, 2
x ))

=
2

πΓ(γ)|cos γπ2 |

∫ ∞
0

(cosϑλ)2e−tψ(λ2)λ2(ψ′(λ2))2(ψ(λ2))n−1dλ

for all n ≥ 0 and t > 0. Indeed, the left-hand side is the limit of integrals (see (5.1)), with
integrands convergent pointwise to the integrand in the right-hand side by Lemma 4.5.
Furthermore, by Lemma 4.4, the integrands in the left-hand side are bounded by

80

π(α− 1)
cosϑλe

−tψ(λ2)λ2(ψ′(λ2))2(ψ(λ2))n−1,

which is easily shown to be integrable in λ ∈ (0,∞), because λ2ψ′(λ2) ≤ β
2ψ(λ2). The

claim is proved.
On the other hand, by Lemma 5.3, for x ∈ (0, 1),

xψ(1/x2)|In(t, x, 2
x )| ≤ 2xψ(1/x2)Γ(n; (α− 1)βtψ(1/x2))

πtn
≤ c(α, β, n, t)x.

Part (b). Again let β = 2. Fix x > 0 and a = 2
x . Observe that

tn+1
√
ψ−1(1/t)Jn(t, x, a)

=
4

π
tn+1

√
ψ−1(1/t)

∫ a

0

e−tψ(λ2)ψ′(λ2)(ψ(λ2))n
Fλ(x)

2λψ′(λ2) cosϑλ
(cosϑλ)2 λ

2ψ′(λ2)

ψ(λ2)
dλ

for all n ≥ 0 and t > 0. By Lemmas 4.6 and 3.2, and Karamata’s theorem [1, Theo-
rem 1.5.11],

lim
λ→0+

Fλ(x)

2λψ′(λ2) cosϑλ
= v(x), lim

λ→0+
ϑλ =

π

δ
− π

2
, lim

λ→0+

λ2ψ′(λ2)

ψ(λ2)
=
δ

2
.

We claim that

lim
t→∞

(
4

π
tn+1

√
ψ−1(1/t)e−tψ(λ2)ψ′(λ2)(ψ(λ2))n1(0,a)(λ)dλ

)
=

2Γ(n+ 1− 1
δ )

π
δ0(dλ),
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with the vague limit of measures in the left-hand side. Indeed, the density function
converges to 0 uniformly on [ε, a) for every ε > 0. Furthermore, by a substitution
s = tψ(λ2),

lim
t→∞

(
4

π
tn+1

√
ψ−1(1/t)

∫ a

0

e−tψ(λ2)ψ′(λ2)(ψ(λ2))ndλ

)
= lim
t→∞

(
2

π

∫ tψ(a2)

0

√
ψ−1(1/t)

ψ−1(s/t)
e−ssnds

)
=

2

π

∫ ∞
0

e−ssn−1/δds =
2Γ(n+ 1− 1

δ )

π
;

the second equality follows by the Dominated Convergence Theorem, because ψ−1 is
regularly varying at zero with index 2

δ , and ψ−1(1/t)/ψ−1(s/t) ≤ max(s−2/α, s−2/β) for
s, t > 0 by Lemma 2.2 and (2.6). The claim is proved.

It follows that

lim
t→∞

(
tn+1

√
ψ−1(1/t)Jn(t, x, a)

)
= 2

πΓ(n+ 1− 1
δ )v(x)(cos(πδ −

π
2 ))2 δ

2 .

Finally, by Lemma 5.3,

tn+1
√
ψ−1(1/t)|In(t, x, a)| ≤ 2

π t
√
ψ−1(1/t) Γ(n; (α− 1)βtψ(1/x2)),

and the right-hand side converges to 0 as t→∞.

Remark 5.6. From the proof Theorem 1.3 it follows that in part (a),

lim
x→0

(
|x|Ψ( 1

|x| )(−
d
dt )

nP(τx > t)
)

=
1

2πΓ(γ)|cos γπ2 |

∫ ∞
0

(cosϑλ)2e−tΨ(λ)(Ψ′(λ))2(Ψ(λ))n−1dλ,

with ϑλ given by (1.9). Also, in part (b),

lim
t→∞

(
tn+1Ψ−1( 1

t )(−
d
dt )

nP(τx > t)
)

=
δΓ(n+ 1− 1

δ )(sin π
δ )2

π
v(x),

for all n ≥ 0 and x ∈ R \ {0}, where v(x) is the compensated potential kernel of X.

Remark 5.7. The proofs clearly indicate that the hypotheses of Theorem 1.1 can be
slightly relaxed to the following: ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric
Lévy process; 1/(1 + ψ(ξ2)) is integrable; (ψλ)λ(ξ) is well-defined and (ψλ)λ(ξ) and
ξ/(ψλ)λ(ξ) are increasing in ξ > 0 for all λ > 0; scaling-type condition (1.3) holds for
some α ∈ (1, 2] and all ξ > 0, and a similar upper bound ξΨ′′(ξ)/Ψ′(ξ) ≤ β − 1 holds
for some β ∈ (1, 2] and all ξ > 0 (the upper bound is now non-trivial also for β = 2).
Apparently, these conditions can be further weakened at the price of more technical
arguments. Since many important examples already belong to the class considered in
this article, we decided to focus on simplicity rather than complete generality.
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