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Abstract

We consider the Gaussian free field on Zd, d ≥ 3, and prove that the critical density
for percolation of its level sets behaves like 1/d1+o(1) as d tends to infinity. Our
proof gives the principal asymptotic behavior of the corresponding critical level h∗(d).
Moreover, it shows that a related parameter h∗∗(d) ≥ h∗(d) introduced by Rodriguez
and Sznitman in [24] is in fact asymptotically equivalent to h∗(d).
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0 Introduction

When studying the statistical mechanics of random interfaces which typically arise
between coexisting phases of a (d+ 1-dimensional) physical system in equilibrium, one
often considers so-called effective models, which aim at describing the d-dimensional
surface itself, free from its surroundings. Arguably the most notorious example in this
class is the massless harmonic crystal, or Gaussian free field (precise definitions will
follow, see (0.1) below). A natural approach in trying to gain some insight into the
geometry of this field is to inquire about its level sets, say, above a given height h ∈ R.
In case the underlying space is the cubic lattice Zd, with d ≥ 3, and due to the presence
of strong correlations (the susceptibility is infinite), this gives rise to an interesting
percolation model, which was originally introduced by Lebowitz and Saleur in [16], and
has since then been investigated in [6], [8], [9], [19], [22] and [24], see also [3], [21] for
related results.

Only recently has it been shown in [24] that the associated phase transition is non-
trivial in all dimensions d ≥ 3 (partial results were already obtained in [6] and [9]). Our
main focus in the present work is to examine the limiting behavior of certain critical
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High-dimensional asymptotics for percolation of Gaussian free field level sets

parameters associated to this transition in high dimension. Of fundamental importance
in this context is the heuristic principle by which this percolation model ought to fall
in the “domain of attraction” of a corresponding model on the (2d)-regular tree. Our
results indicate that this is indeed the case, and in fact, this paradigm permeates more
or less explicitly many of the proofs below. Ideally, we would also like to compare these
results with corresponding ones in the tree-case directly. We hope to return to this point
elsewhere.

A first step in the direction of high-dimensional asymptotics is given by Theorem
3.3 of [24], which asserts that the critical height h∗(d) for percolation of Gaussian free
field level sets, defined in (0.3) below, is strictly positive when d is sufficiently large. In
fact, a careful inspection of the proof of this theorem yields that h∗(d)→∞ as d→∞,
which amounts to saying that the critical density for this percolation model converges to
0 as d tends to infinity. We will considerably refine this result by providing the leading
asymptotic behavior of the critical density, as well as principal asymptotics for h∗(d)

and a related critical parameter h∗∗(d) (see (0.4) below) as d becomes large. Our proof
follows in its broad lines the general strategy underlying similar results in Bernoulli
(see [11] and [4], Section 4) and interlacement (see [31] and [32]) percolation. However,
the implementation of this program highly depends on the specific nature of the model,
as it crucially relies on a precise understanding of its dependence structure in high
dimension. In particular, in the present context, the random walk representation of the
Gaussian free field, which will lead us to its “perturbative” expansion around a suitable
independent field, will play a pivotal role in allowing for a precise understanding of the
local connectivity of the level set (we will explain this in greater detail below, see the
discussion around (0.12)). Moreover, a severe technical obstruction is the absence of
a BK-type inequality (companion to the long-range dependence). In the independent
case, this inequality underlies the successful deployment of such elaborate tools as the
lace expansion, see [12] and [25], Chapter 9. In our set-up, as a partial substitute, we
develop suitable decoupling inequalities, much in the spirit of [23], [24], with the notable
difference that they will need to work “uniformly well” for all sufficiently large d. These
inequalities will typically allow for a certain kind of (static) renormalization procedure,
to which the dimension d will be inextricably tied.

We now describe our results and refer to Section 1 for details. We consider the lat-
tice Zd, d ≥ 3, endowed with the usual nearest-neighbor graph structure, and investigate
the Gaussian free field on Zd, with canonical law P on Ω = RZ

d

(equipped with the
product σ-algebra) such that,

under P, the canonical field ϕ = (ϕx)x∈Zd is a centered Gaussian

field with covariance E[ϕxϕy] = g(x, y), for all x, y ∈ Zd,
(0.1)

where g(·, ·) denotes the Green function of simple random walk onZd, see (1.3). Note that,
for fixed d, this model exhibits rather strong correlations, (in particular, the susceptibility
is infinite for all d ≥ 3, cf. (1.4) below). However, as d grows, ϕ “approaches” an
independent field, in a sense to be made precise below.

For any level h ∈ R, we introduce the random subset of Zd

E≥hϕ = {x ∈ Zd; ϕx ≥ h}, (0.2)

often referred to as the excursion set (or level set) of the field ϕ above height h. In order

to study its percolative properties, we set η(h) = P[0
≥h←→ ∞], the probability that the

origin lies in an infinite cluster (i.e. connected component) of E≥hϕ . The function η( · )
being decreasing, we define the critical parameter for level-set percolation as

h∗(d) = inf{h ∈ R ; η(h) = 0} (0.3)
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(with the convention inf ∅ = ∞). Following (0.6) of [24], we also introduce a second
critical point

h∗∗(d) = inf
{
h ∈ R ; lim

L→∞
P[B(0, L)

≥h←→ S(0, 2L)] = 0
}
, (0.4)

where the event {B(0, L)
≥h←→ S(0, 2L)} refers to the existence of a nearest-neighbor

path in E≥hϕ connecting B(0, L), the ball of radius L around 0 in the `∞-norm, to S(0, 2L),
the `∞-sphere of radius 2L around 0 (in fact (0.4) does not exactly coincide with (0.6)
in [24], which requires the relevant probability to decay at least polynomially in L; the
two are in fact equivalent, and (0.4) can be further weakened, see [22], Theorem 2.1).
The definitions (0.3) and (0.4) immediately yield that h∗(d) ≤ h∗∗(d) for all d ≥ 3. It is
presently known that

0 ≤ h∗(d) and h∗∗(d) <∞, for all d ≥ 3, (0.5)

which implies that percolation of E≥hϕ exhibits a non-trivial phase transition (see [6],
Corollary 2 for the former and [24], Theorem 2.6 for the latter result in (0.5); see also
Theorem 3 in [6] for a proof of h∗(3) <∞). In particular, for all h > h∗, E≥hϕ only contains
finite clusters, and a (unique, see [24], Remark 1.6) infinite cluster for all h < h∗. The
parameter h∗∗ is an important quantity because it characterizes a strongly subcritical

regime. For all h > h∗∗ and d ≥ 3, the probability P[0
≥h←→ S(0, L)] decays exponentially

in L as L→∞ (with logarithmic corrections when d = 3), as follows from Theorem 2.1.
in [22]. Moreover, as mentioned in the expository paragraph (see [24], Theorem 3.3),

h∗(d) is strictly positive when d is large enough. (0.6)

Our main goal in this paper is to prove the following asymptotic result concerning the
critical density of this percolation model.

Theorem 0.1.

P[ϕ0 ≥ h∗(d)] =
1

d1+o(1)
, as d→∞. (0.7)

In fact, Theorem 0.1 will be an easy consequence of the following two results regarding
the principal asymptotics of the critical parameters h∗ and h∗∗ in high dimension. For
future reference, we let

has(d) =
√

2g(0) log d, (0.8)

where g(0) refers to the Green function at the origin, cf. (1.3) below. We will show the
following.

Theorem 0.2. (Upper bound)

lim sup
d→∞

h∗∗(d)/has(d) ≤ 1. (0.9)

Theorem 0.3. (Lower bound)

lim inf
d→∞

h∗(d)/has(d) ≥ 1. (0.10)

Moreover, for all ε > 0, there exists a finite positive constant c(ε) such that for all
d ≥ c(ε),

P[E≥has(1−ε)
ϕ ∩ (H+Z2) contains an infinite cluster] = 1, (0.11)

where H
def.
= {0, 1}d and Z2 is viewed as the subset Z2 × {0}d−2 of Zd.
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(N.B.: the presence of the factor
√
g(0) in the definition of has(d) is for esthetic purposes

only, since g(0)→ 1 as d→∞, cf. (1.12) below).
Before describing our methods, we make a few remarks concerning these results

and the heuristics lurking behind them. As alluded to above, a recurrent theme in the
proofs below will be that, in high dimensions, the free field at small scales (at which the
geometry felt by the random walk is roughly tree-like) can be viewed as a perturbation
of an independent Gaussian field, and a considerable effort will go into understanding
the precise effect of this perturbation on the connectivity of the level sets around the
asymptotic value has (see the comments below, and the proofs of Theorems 2.5 and 3.4).
This perturbative behavior was already hinted at in the proof of (0.6) in [24], which
was based on a decomposition of the covariance g(x, y) for x, y belonging to a (lower-
dimensional) subspace Zd

′
, with d′ � d, into the sum of a dominant diagonal part with

entries close to 1 (thus inducing a field of independent Gaussians) and a “small noise” (cf.
Lemma 3.1. of [24] for a precise statement). Admitting this (local) resemblance of ϕ to
an independent field, it is reasonable to compare (0.7) to psite

c (Zd), the critical parameter
for Bernoulli site percolation on Zd, which is known to be asymptotically equal to 1/2d

as d→∞, see [4], [7], [11], [13].
Regarding Theorems 0.2 and 0.3, using h∗ ≤ h∗∗, (0.9) and (0.10) imply that

h∗(d) ∼ h∗∗(d) (∼ has(d)), as d→∞

(we write f(x) ∼ g(x) as x → a if limx→a f(x)/g(x) = 1). It is at present an impor-
tant unresolved question whether both critical parameters are actually equal (in any
dimension).

We now comment on the proofs. The proof of the upper bound follows a strategy
inspired by that used in [24] to prove finiteness of h∗∗(d), for arbitrary, but fixed dimen-
sion d (see also [23], [27], [29], [30], [32] for similar ideas in the context of random
interlacements). In particular, we use a variant of the renormalization scheme developed
therein. However, the present task requires a scheme which works “uniformly in d”
as d becomes large. Using careful estimates on the behavior of the Green function of
simple random walk on a high-dimensional lattice developed in [31, 32], we obtain a
“decoupling inequality,” which enables us to propagate bounds on the relevant crossing
events in E≥hϕ (cf. the definition (0.4) of h∗∗), where h = has(1 + ε) for some ε > 0, at
small scale (the so-called seed estimates) to controls of such crossing probabilities at
arbitrarily large scale in E≥h+ε

ϕ (this is in fact much more than we need). A significant
part of the problem is to produce sufficiently sharp seed estimates, in order to initiate
the renormalization, see Remark 2.3, 2) below (note that, in contrast to the proof of
the finiteness of h∗∗(d) in [24], which allowed one to look for a corresponding regime at
arbitrary large h, we are now constrained to remain in the vicinity of has).

Obtaining the desired bounds at small scales involves controlling the probability to
see a crossing in E≥hϕ from a given point x to the boundary of the `1-ball centered at
x of radius R = c(ε)d, see (2.4) and Theorem 2.5 below (we emphasize that the use of
the `1-norm is essential here, as this distance controls the short-range behavior of g(·)
in high dimensions, where the tree-like nature of the lattice manifests itself, cf. (1.14)).
This is the first instance where the aforementioned (local) perturbative expansion comes
into play. In rough terms, the domain Markov property for the free field ϕ allows us
to “discover” it along any given path (in the present case, one joining x to S1(x,R))
“dynamically,” starting from a suitable independent Gaussian field ψ, and introducing the
required dependence at each step. Specifically, if K = {x1, . . . , xn} ⊂ Zd, n ≥ 1, denotes
the trace of the path in question, we represent

ϕxk “=” ψxk + error(ψx1
, . . . , ψxk−1

), for all 1 ≤ k ≤ n, (0.12)
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where the error term is a suitable linear combination of ψx1
, . . . , ψxk−1

, cf. Lemma
1.3 below for a precise statement. This procedure enables us to “pass” from ϕ to the
independent field ψ, provided we carefully keep track of the error we make in each step.

For the lower bound, Theorem 0.3, our method mimics in its broad lines the approach
of [11] and [4], Section 4, to the corresponding problem in Bernoulli (bond and site)
percolation on Zd, involving ideas of [2] from hypercube percolation (see also [13] for
a completely different solution, and [31] for a corresponding result in interlacement
percolation, following a similar spirit). The proof essentially comprises two parts, which
we briefly detail.

In the first part, we show the following finite-size criterion. Suppose we partition the
set H+Z2 into translates of the hypercube. Roughly speaking, we show in Theorem 3.1
below that if E≥hϕ , with h = has(d)(1− ε), ε > 0,

i) contains a “giant” connected component in each of the sets H and its four neigh-
boring translates, and

ii) all these components are connected in E≥hϕ within the union of H and its four
neighboring translates,

with sufficiently high probability, then E≥h−εϕ percolates (the “additive” sprinkling in h is
more than enough for the sake of proving (0.10)). Due to the long-range dependence,
this reduction step does not follow from standard stochastic domination arguments
(see for example [17]), and Theorem 3.1 is established by means of a (two-dimensional)
renormalization argument.

In the second (and more difficult) part of the proof of Theorem 0.3, we show that this
criterion actually holds. In the independent setting of [11] and [4], the validity of such a
criterion is essentially guaranteed by the analysis in [2] of (independent) percolation in
the hypercube. Our procedure essentially comprises two steps. First, drawing inspiration
from [2], cf. in particular Lemma 1 therein, we grow substantial connected components
in E≥hϕ ∩ H (with h = has(d)(1 − ε)), which have cardinality growing polynomially in
d. To achieve this, we embed into H a deterministic r(ε, d)-regular tree T, rooted at 0,
with r(ε, d) comparable to d for every ε > 0, of depth depending on ε only. Here again,
the “perturbative representation” of (0.12) crucially enters in allowing us to compare
E
≥has(d)(1−ε)
ϕ ∩ T to a certain (supercritical) Galton-Watson process on the same tree

in order to derive a meaningful lower bound for the probability to see a substantial
component at the origin. The precise statement is the object of Theorem 3.4, and an
easy consequence is that most vertices in H are in fact either neighboring or contained
in such a substantial component, see Corollary 3.7.

The second step then consists of gluing all substantial components within the hyper-
cube to a giant one (i.e. a connected component whose closure in H contains at least
(1− d−2)2d points), and subsequently connecting neighboring giant components, which
is achieved in Theorem 3.8 by two successive sprinkling operations. Quantifying that it
is highly unlikely for the substantial components not to merge after sprinkling requires
isoperimetric considerations in H (as were used in the proofs of [2], Theorem 1 and [31],
Theorem 4.2). However, the (wealth of) edges which are hereby deduced to be pivotal
for a giant component to emerge or not, are not necessarily “well spread-out” within H
and might therefore influence each other rather strongly. A slightly careful bookkeeping
of this mutual influence is required in order to show that it is too costly for many pivotal
sites to remain “closed” (cf. the proof of Lemma 3.9). This then completes the proof of
the lower bound (0.10).

Let us now describe the organization of this article. In Section 1, we introduce
some notation and review a few known results concerning simple random walk on a
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high-dimensional lattice and the Gaussian free field. Section 2 is devoted to the proof of
Theorem 0.2. Subsection 2.1 introduces the renormalization scheme. Its main result is
Proposition 2.1, which entails the induction step (one-step renormalization). Subsection
2.2 contains the local estimates on the connectivity of E≥has(1+ε)

ϕ , ε > 0. The main
result, Theorem 2.5, is of independent interest, but it is needed crucially to establish
the required seed estimate which enables us to trigger the renormalization scheme.
Finally, in Subsection 2.3, we put these two ingredients together to complete the proof of
(0.9). The proof of the lower bound (0.10) is the object of Section 3. First, we show the
abovementioned finite-size criterion, which requires another (simpler) renormalization
scheme. The main result is Theorem 3.1, which can be found in Subsection 3.1. Having
established this reduction step, we prove that most points in the hypercube are either
contained or neighboring a substantial component in the level set of interest. This
is done in Subsection 3.2, see in particular Theorem 3.4 and Corollary 3.7 therein.
Finally, Theorem 3.8 in Subsection 3.3 connects these substantial components, thereby
completing the proof of the criterion. The lower bound (0.10) then follows readily by
collecting the pieces, and Subsection 3.3 also contains the proof of Theorem 0.1, which
follows straightforwardly from (0.9) and (0.10).

We conclude this introduction with a remark concerning our convention regarding
constants: we denote by c, c′, . . . positive constants with values changing from place to
place. Numbered constants c0, c1, . . . and c′0, c

′
1, . . . are defined at the place they first

occur within the text and remain fixed from then on until the end of the article. All
constants are numerical, and their dependence on any additional parameter, including,
most importantly, the dimension d, will always appear in the notation. The only exceptions
to this rule are the last two Sections 3.2 and 3.3, in which constants may implicitly depend
on a parameter ε > 0. The Reader will be reminded of this exception in due time.

1 Notation and useful results

In this section, we introduce some notation to be used in the sequel, collect some
important estimates related to simple random walk on a high-dimensional lattice, and
review a few useful facts concerning the Gaussian free field.

We denote byN = {0, 1, 2, . . . } the set of natural numbers, and by Z the set of integers.
We write R for the set of real numbers, abbreviate x∧y = min{x, y} and x∨y = max{x, y}
for any two numbers x, y ∈ R, denote by bxc = max{n ∈ N; n ≤ x} the integer part of x,
for any x ≥ 0, and let dxe = min{n ∈ N n ≥ x}. We consider the lattice Zd, and tacitly
assume that d ≥ 3. Given a subset K of Zd, Kc = Zd \K stands for the complement of
K in Zd, and |K| for the cardinality of K. Moreover, in writing K ⊂⊂ Zd, we mean that
K is a finite subset of Zd. Finally, we denote by K + K ′ = {x + y ; x ∈ K, y ∈ K ′} the
Minkowski sum of arbitrary sets K,K ′ ⊂ Zd.

On Zd, we respectively denote by | · |1, | · |2 and | · |∞ the `1, Euclidean and `∞-norms.
The three norms are equivalent, and satisfy the relations

| · |2 ≤ | · |1 ≤
√
d| · |2, and | · |∞ ≤ | · |2 ≤

√
d| · |∞, for all d (≥ 1). (1.1)

For any x ∈ Zd, r ≥ 0, and p = 1, 2,∞, we let Bp(x, r) = {y ∈ Zd; |y − x|p ≤ r} and
Sp(x, r) = {y ∈ Zd; |y − x|p = r} stand for the the (closed) `p-ball and `p-sphere of radius
r centered at x. We also note for later purposes the following bound on the cardinality of
a d-dimensional `1-sphere,

|S1(0, n)| ≤ en+2d, for all n ≥ 0, d ≥ 3, (1.2)

which is easily computed by considering the generating function of |S1(0, n)|, see for
example [32], Lemma 3.2 (i) for a proof. Given two arbitrary sets K,K ′ ⊂ Zd, we
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define their `p-distance as dp(K,K ′) = inf{|x− y|p; x ∈ K, y ∈ K ′}, for p = 1, 2,∞, and
simply write dp(x,K ′) when K = {x} is a singleton. Moreover, we denote the interior
(`1-)boundary of K as ∂intK = {x ∈ K; ∃y ∈ Kc, |y − x|1 = 1}, the outer boundary of K

as ∂K = ∂int(K
c), and write K = K ∪ ∂outK for the (`1-)closure of K and K

K′

= K ∩K ′
for the relative closure of K in K ′.

We now introduce the discrete-time simple random walk on Zd. We endow the lattice
Zd with the usual nearest-neighbor graph structure, and we will frequently use x ∼ y

instead of |x− y|1 = 1 to denote two neighboring vertices x, y ∈ Zd. Moreover, x, y ∈ Zd
will be called ∗-nearest neighbors if |x− y|∞ = 1. A Zd-valued nearest-neighbor path is
a (finite or infinite) sequence (xn)n of vertices in Zd satisfying xn+1 ∼ xn for all n ≥ 0.
We define its length as the number of edges it traverses. When its length is infinite, we
will often use the term trajectory instead of path. A ∗-path is defined accordingly. Let
W denote the space of nearest-neighbor trajectories, and let W, (Xn)n≥0 and (θn)n≥0,
stand for the canonical σ-algebra, the canonical process and the canonical shifts on W ,
respectively. We write Px for the canonical law of the walk starting at x ∈ Zd and Ex for
the corresponding expectation. We denote by g(·, ·) the Green function of the walk, i.e.

g(x, y) =
∑
n≥0

Px[Xn = y], for x, y ∈ Zd, (1.3)

which is finite (since d ≥ 3) and symmetric. Moreover, g(x, y) = g(x − y, 0)
def.
= g(x − y)

due to translation invariance. We further recall that (see for example [15], Theorem
1.5.4)

g(x) ∼ c(d)|x|2−d2 , as |x|2 →∞, for all d ≥ 3. (1.4)

Given K ⊂ Zd, we denote the entrance time in K by HK = inf{n ≥ 0;Xn ∈ K} and
the hitting time of K by H̃K = inf{n ≥ 1;Xn ∈ K}. This allows us to define the Green
function gK(·, ·) killed outside K as

gK(x, y) =
∑
n≥0

Px[Xn = y, n < HKc ], for x, y ∈ Zd, (1.5)

which is symmetric and vanishes if x /∈ K or y /∈ K. The relation between g and gK for
any K ⊂ Zd is given by the following formula, the proof of which is a mere application of
the strong Markov property (at time HKc),

g(x, y) = gK(x, y) + Ex[HKc <∞, g(XHKc , y)], for x, y ∈ Zd. (1.6)

We now turn to a few aspects of potential theory associated to simple random walk. For
any finite subset K of Zd, we write

eK(x) = Px[H̃K =∞], x ∈ K, (1.7)

for the equilibrium measure (or escape probability) of K, and

cap(K) =
∑
x∈K

eK(x) (1.8)

for its capacity. It immediately follows from the definitions (1.7) and (1.8) that the
capacity is subadditive, i.e.

cap(K ∪K ′) ≤ cap(K) + cap(K ′), for all K,K ′ ⊂⊂ Zd, (1.9)

and one also easily infers that it is monotonous, i.e. that

cap(K) ≤ cap(K ′), for all K ⊆ K ′ ⊂⊂ Zd. (1.10)

EJP 20 (2015), paper 47.
Page 7/39

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3416
http://ejp.ejpecp.org/


High-dimensional asymptotics for percolation of Gaussian free field level sets

The latter follows e.g. by observing that cap(K) = limL→∞
∑
y∈S2(0,L) Py[H̃K < H̃S2(0,L)],

which follows from (1.8) by a straightforward reversibility argument (see for example
[15], Proposition 2.2.1 (a) for more details). Moreover, the entrance probability in K

may be expressed in terms of eK(·) as

Px[HK <∞] =
∑
y∈K

g(x, y) · eK(y), (1.11)

which is a mere consequence of the simple Markov property (see for example [26],
Theorem 25.1, p. 300). We collect some useful estimates on these quantities in high
dimension, which will be used repeatedly in the sequel. We remind the Reader of our
convention regarding constants at the end of the previous section.

Lemma 1.1. (d ≥ 3)

g(0) = 1 +
1

2d
+ o(d−1), as d→∞. (1.12)

g(x) ≤
(
c0d

|x|1

)d/2−2

, for d ≥ 5 and x ∈ Zd \ {0}. (1.13)

sup
|x|1=k

Px[H̃B1(0,k) <∞] ≤ c(k)

d
, for k ≥ 0. (1.14)

g(x) ≤
(
c
√
d

|x|2

)d−2

, for |x|2 ≥ d. (1.15)

cap(B2(0, L)) ≤
(
cL√
d

)d−2

, for L ≥ d. (1.16)

Proof. For (1.12), see [20], pp. 246–247; for (1.13) and (1.14), see [31], Lemma 1.2; for
(1.15) and (1.16), see [32], Lemma 1.1 and (1.22), respectively.

We now turn to the Gaussian free field on Zd, d ≥ 3, as defined in (0.1), and introduce
certain crossing events involving paths of high level. On the space {0, 1}Zd endowed with
its canonical σ-algebra A, let {K ←→ K ′} (∈ A), for K,K ′ ⊂ Zd, denote the event that
there exists a nearest-neighbor path connecting K and K ′ along which the configuration
has value 1. Letting Φh : RZ

d → {0, 1}Zd , ϕ 7→ (1{ϕx ≥ h})x∈Zd , for h ∈ R, we introduce

{K ≥h←→ K ′} = Φ−1
h ({K ←→ K ′}), for K,K ′ ⊂ Zd (1.17)

(part of RZ
d

). In words, this is the event that K and K ′ are connected by a nearest-
neighbor path of vertices in the level set E≥hϕ , cf. (0.2). Note that this event is increasing

upon introducing on RZ
d

the usual partial order (i.e. f ≤ f ′ if and only if fx ≤ f ′x for all

x ∈ Zd). Moreover, the probability P[K
≥h←→ K ′] is a decreasing function of h ∈ R. In

general, we will use the notation

Ah
def.
= Φ−1

h (A), for all A ∈ A and h ∈ R. (1.18)

We will also need the notion of flipping events. Let Yx, x ∈ Zd, denote the canonical
coordinates on {0, 1}Zd . One defines the inversion map ι : {0, 1}Zd → {0, 1}Zd such that

Yx ◦ ι = 1 − Yx, for all x ∈ Zd. Given some event A ⊂ {0, 1}Zd , let A = ι−1(A) = ι(A),
which will be referred to as flipped event. Note that A is decreasing whenever A is
increasing. Moreover, observing that (−ϕx)x∈Zd has the same law as (ϕx)x∈Zd under P,
we obtain, for all A ∈ A and h ∈ R,

P[Ah] = P[(1{ϕx ≥ h})x∈Zd ∈ A] = P[(1{−ϕx ≥ h})x∈Zd ∈ A]

= P[(1{ϕx ≥ −h})x∈Zd ∈ A] = P[A
−h

].
(1.19)
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High-dimensional asymptotics for percolation of Gaussian free field level sets

Next, we collect some classical results concerning the maximum of the Gaussian free
field in a finite set. Let ∅ 6= K ⊂⊂ Zd. First, note that for all d ≥ 3,

E
[
max

x∈Kϕx
]
≤
√

2g(0) log |K|, (1.20)

see for example [33], Proposition 1.1.3 (see also Theorem 1.3.3 in [1] for a much more
general result). Moreover, setting

c1 = (sup
d≥3

2g(0))1/2, (1.21)

which is finite due to (1.12), the Borell-Tsirelson-Ibragimov-Sudakov (BTIS) inequality
(see for example [1], Theorem 2.1.1), together with (1.20), yields the tail estimate, for
all d ≥ 3,

P
[
max

x∈Kϕx > c1α
]
≤ e−(α−

√
log |K|)2 , if α >

√
log |K|. (1.22)

We also recall the following elementary tail estimate of the normal distribution. For
ξ ∼ N (0, σ2) (see for example [1], Ch. 2, p. 49),( 1

h
− 1

h3

)
e−h

2/2 ≤
√

2π · P [ξ > σh] ≤ 1

h
e−h

2/2, for all h > 0. (1.23)

We proceed with a classical fact concerning conditional distributions for the Gaussian
free field on Zd, the proof of which can be found in [24] (see Lemma 1.2 therein).

Lemma 1.2. (d ≥ 3, ∅ 6= K ⊂⊂ Zd)

Let

pKx,y = Px[HK <∞, XHK = y], for x ∈ Zd, y ∈ K, (1.24)

and

µKx = Ex[HK <∞, ϕXHK ] =
∑
y∈K

pKx,y · ϕy, for x ∈ Zd, (1.25)

which is σ(ϕx; x ∈ K)-measurable, and define (ϕ̃Kx )x∈Zd by

ϕx = ϕ̃Kx + µKx , for x ∈ Zd. (1.26)

Then, under P,

(ϕ̃Kx )x∈Zd is a centered Gaussian field, independent from

σ(ϕx; x ∈ K), with covariances E[ϕ̃Kx ϕ̃
K
y ] = gKc(x, y).

(1.27)

(In particular, ϕ̃Kx = 0, P-a.s. whenever x ∈ K).

Lemma 1.2 yields the following choice of regular conditional distributions for (ϕx)x∈Zd

conditioned on the variables (ϕx)x∈K , which will prove very useful in several instances
below. Namely, P-a.s.,

P
[
(ϕx)x∈Zd ∈ ·

∣∣(ϕx)x∈K
]

= P̃
[
(ϕ̃Kx + µKx )x∈Zd ∈ ·

]
, (1.28)

where µKx , x ∈ Zd, is given by (1.25), and (ϕ̃Kx )x∈Zd is a centered Gaussian field under P̃
with covariance structure gKc(·, ·), independent of ϕx, x ∈ K.

The following is an immediate corollary of Lemma 1.2, which provides a way to
construct (ϕx)x∈K inductively from a family of independent Gaussian variables.
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High-dimensional asymptotics for percolation of Gaussian free field level sets

Lemma 1.3. (d ≥ 3, ∅ 6= K ⊂⊂ Zd)

Let x1, x2, . . . , x|K| be an enumeration of the elements of K, and Kn = {xi; 1 ≤ i < n},
for 1 ≤ n ≤ |K| (in particular, K1 = ∅). Let ψx, x ∈ K, be an independent family of
Gaussian random variables, with

ψxn ∼ N (0, gKc
n
(xn, xn)), for 1 ≤ n ≤ |K|, (1.29)

and define recursively (with a slight abuse of notation)

ϕx1
= ψx1

ϕxn = ψxn + µKnxn , for 1 < n ≤ |K|.
(1.30)

Then (ϕx)x∈K has the law of Gaussian free field restricted to K.

Proof. We proceed by induction over n. For n = 1, (1.29) implies that ϕx1
is in-

deed a centered Gaussian variable with E[ϕ2
x1

] = E[ψ2
x1

] = g(0). Suppose now that
(ϕx1

, . . . , ϕxn−1
) = (ϕx)x∈Kn has the law of Gaussian free field restricted to Kn, for

some 1 < n < |K|. In particular, by (1.30), (ϕx)x∈Kn is a (linear) map of (ψx)x∈Kn , it
is therefore independent of ψxn . Thus, Lemma 1.2 (with K = Kn) readily yields that
((ϕx)x∈Kn , ϕxn), with ϕxn as defined in (1.30), has the desired law.

2 Upper bound

In this section, we show Theorem 0.2. As explained in the Introduction, this includes
setting up an appropriate renormalization scheme, which is done in Subsection 2.1, and
deducing suitable recursive bounds for the probability of the relevant crossing events
at different scales. Proposition 2.1 entails the induction step, which is then propagated
inductively in Proposition 2.2 along any increasing sequence of levels (hn)n≥0 satisfying
a mild growth condition (cf. Remark 2.8), provided a suitable bound for the probability of
crossing events at the lowest scale holds. Obtaining the desired seed estimate requires
a substantial amount of work (see also Remark 2.3, 2) below, which details this difficulty
more quantitatively) and is the object of Subsection 2.2. The main result is Theorem
2.5 therein. Finally, Subsection 2.3 brings together the two ingredients to complete the
proof of the upper bound (0.9).

2.1 Renormalization scheme

We start by developing a renormalization scheme, which, in its broad lines, is adapted
from the one described in Section 2 of [24]. We start by introducing an integer parameter
N ≥ 1 and a geometrically increasing sequence of length scales

Ln = ln0L0, for all n ≥ 0, satisfying L0 ≥ d, l0 ≥ 20(
√
d+N), (2.1)

and corresponding renormalized lattices

Ln = LnZ
d, so that Ln+1 ⊂ Ln ⊂ · · · ⊂ L0 (⊂ Zd), for all n ≥ 0. (2.2)

We are interested in the crossing events (cf. (1.17) for notation)

Ahn,x = {B∞(x, Ln)
≥h←→ ∂intBn,x}, for n ≥ 0, x ∈ Ln and h ∈ R, (2.3)

where

Bn,x =

{
B∞(x, 3Ln), if n ≥ 1

B∞(x, L0) +B1(0, NL0), if n = 0
, (2.4)
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for all x ∈ Ln. The case n = 0 requires special treatment due to the following competing
interests. On the one hand, the seed estimate we will need to establish forces B0,x,
x ∈ L0, to be not too small (this is the reason for introducing the additional parameter N ).
On the other hand, B0,x should remain sufficiently “invisible” to a simple random walk
started at `∞-distance of order Ln, for some n ≥ 1, from x (see the proof of Proposition
2.1 below).

Similarly to the approach taken in Section 2 of [24], instead of looking directly at
the whole crossing path above level h needed for Ahn,x to occur, we will consider its
projection onto 2n small and “well-separated” sets at scale n = 0 (translates of B0,0).
These sets will be indexed by the leaves of a binary tree of depth n. We now describe
this “graphical cantor set” construction more precisely. We write T (k) = {1, 2}k for all
k ≥ 0 (with the convention {1, 2}0 = ∅), and Tn =

⋃
0≤k≤n T

(k) for the canonical dyadic

tree of depth n. For arbitrary n ≥ 0, we call a map T : Tn → Zd a proper embedding of
Tn in Zd with root at x ∈ Ln if

i) T (∅) = x,

ii) for all 0 ≤ k < n: if m1,m2 ∈ T (k+1) are the two descendants

of m ∈ T (k), then T (m1) ∈ Ln−k−1 ∩ S∞(T (m), Ln−k), and

T (m2) ∈ Ln−k−1 ∩ S∞(T (m), 2Ln−k).

(2.5)

We denote by Λn,x the set of proper embeddings of Tn in Zd with root at x ∈ Ln, for
n ≥ 0. One easily infers that

|Λn,x| ≤ ((c2l0)d−1)2 · ((c2l0)d−1)22

· · · ((c2l0)d−1)2n ≤ (c2l0)2(d−1)2n , (2.6)

for some constant c2 ≥ 1. Moreover, on account of (2.1), (2.4) and (2.5), if T ∈ Λn,x
for some n ≥ 1 and x ∈ Ln, and if m ∈ T (k) for some 0 ≤ k < n with descendants
m1,m2 ∈ T (k+1), then

Bn−k−1,T (mi) ⊂ Bn−k,T (m), for i = 1, 2. (2.7)

By elementary geometric considerations, and using (2.7), one then deduces that for all
n ≥ 1, x ∈ Ln and h ∈ R,

Ahn,x ⊆
⋃

T ∈Λn,x

Ahn−1,T (1) ∩A
h
n−1,T (2),

see Figure 1 below, and inductively that

Ahn,x ⊆
⋃

T ∈Λn,x

AhT , where AhT =
⋂

m∈T (n)

Ah0,T (m), for n ≥ 0, x ∈ Ln and h ∈ R. (2.8)

Accordingly, we introduce the quantity

pn(h) = sup
T ∈Λn,x

P[AhT ], for n ≥ 0, h ∈ R, (2.9)

which does not depend on x ∈ Ln due to translation invariance, and is a decreasing
function of h ∈ R. We will later apply a union bound in (2.8) in order to bound P[Ahn,x].
Thus, estimates for pn(h) will have to be strong enough to overcome the combinatorial
complexity |Λn,x| coming from the number of trees one can choose. To begin with, the
following proposition provides recursive bounds for pn(hn), n ≥ 0, along a suitable
non-decreasing sequence (hn)n≥0.
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Figure 1: Any nearest-neighbor path in E≥hϕ (represented by the dashed line) connecting
B∞(0, Ln) to S∞(0, 3Ln), for some n ≥ 1, must cross a box Bn−1,x1

, for some x1 ∈
S∞(0, Ln) ∩ Ln−1, as well as Bn−1,x2

, for some x2 ∈ S∞(0, 2Ln) ∩ Ln−1, thus giving rise
to the simultaneous occurrence of Ahn−1,x1

and Ahn−1,x2
.

Proposition 2.1. (d ≥ 3, N ≥ 1, L0 ≥ d, l0 ≥ 20(
√
d+N))

There exists a constant c3 such that, defining

mn(d, L0, N) =
√

log(2n((N + 1)3L0)d), (2.10)

given any positive sequence (αn)n≥0 satisfying

αn > mn(d, L0, N), for all n ≥ 0, (2.11)

and any increasing, real-valued sequence (hn)n≥0 satisfying

hn+1 ≥ hn + αn
(
c3(
√
d+N)

)d−2(
2l
−(d−2)
0

)n+1
, for all n ≥ 0, (2.12)

one has
pn+1(hn+1) ≤ pn(hn)2 + e−(αn−mn(d,L0,N))2 , for all n ≥ 0. (2.13)

The proof of Proposition 2.1 is similar to that of Proposition 2.2 in [24] (see also
Lemma 2.6 in [8] and Proposition 4.1 in [23]), with certain modifications. In particular,
note that the constants appearing in these references all implicitly depend on d. In the
present situation however, it is imperative to have a good control over the “sprinkling”
condition for the sequence (hn)n≥0, cf. (2.12), in terms of d as d grows to infinity.

Proof. Let T be a proper embedding in Λn+1,0, for some n ≥ 0. For i = 1, 2, we denote
by Ti ∈ Λn,T (i) the proper embedding of depth n with root at T (i) “induced” by T ,
i.e. determined by Ti(m) = T (im), for all m ∈ Tn (where im ∈ Tn+1 stands for the
concatenation of {i} ∈ T (1) and m), and define the sets

Ki =
⋃

m∈T (n)

B0,Ti(m), for i = 1, 2. (2.14)

On account of (2.3) and (2.8), we see that AhTi ∈ σ(ϕx ; x ∈ Ki), for i = 1, 2. We introduce
a parameter α > 0, set α′ = c1α (cf. (1.21) for the definition of c1), and write, abbreviating
max

K1
ϕ = max

y∈K1
ϕy,

P[AhT ] = P[AhT1 ∩A
h
T2 ]

≤ P[AhT1 ∩A
h
T2 ∩ {max

K1
ϕ ≤ α′}] + P[max

K1
ϕ > α′]

= E[1AhT1
· 1{max

K1
ϕ ≤α′} · P[AhT2 | (ϕx)x∈K1

]] + P[max
K1
ϕ > α′].

(2.15)
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By (1.28), the conditional probability appearing in the last line of (2.15) can be rewritten
as

P[AhT2 | (ϕx)x∈K1
] = P̃[(1{ϕ̃K1

x + µK1
x ≥ h})x∈Zd ∈ AT2 ], P-a.s., (2.16)

with µK1
x = Ex[HK1

<∞, ϕXHK1
] and where AT2 ∈ A, the canonical σ-algebra on {0, 1}Zd ,

is such that AhT2 = Φ−1
h (AT2) (recall (1.18)). In particular, AT2 is measurable with respect

to the canonical coordinates in K2. We will now estimate the random shift µK1
x , for

x ∈ K2, which will involve the bounds (1.15), (1.16). To this end, we first note that, by
construction,

d2(K1,K2) ≥ Ln+1/2 (> d). (2.17)

Indeed,

inf
yi∈Ki,i=1,2

|y1 − y2|2
(2.5),(2.7)
≥ |T (1)− T (2)|2 −

∑
i=1,2

sup
y∈Bn,T (i)

|y − T (i)|2

(1.1),(2.4)
≥ Ln+1 − 2((

√
d+N)L0 ∨

√
d 3Ln)

(2.1)
≥ (l0 − 2(

√
d+N))Ln ∧ (l0 − 6

√
d))Ln

(in particular, we have used that B0,x ⊂ B2(x, (
√
d+N)L0) for all x ∈ L0 in the second

line), which, together with the constraints L0 ≥ d and l0 ≥ 20(
√
d + N), immediately

yields (2.17). Thus, for arbitrary x ∈ K2 and α > 0, on the event {max
K1
ϕ ≤ α′},

µK1
x ≤ α′ · Px[HK1 <∞]

(1.11)
≤ α′ · cap(K1) · sup

x∈K2, y∈K1

g(x, y)

(1.9),(1.10)
≤ α′2n · cap(B2(0, (

√
d+N)L0)) · sup

x∈K2, y∈K1

g(x, y)

(1.15),(1.16)
≤ α′2n(c(

√
d+N)L0/

√
d)d−2 ·

(
c′
√
d/ln+1

0 L0

)d−2

≤ α2n(c3(
√
d+N))d−2 ·

(
l
−(d−2)
0

)n+1 def.
= γ/2,

(2.18)

where (1.15) applies due to (2.17) and (1.16) because (
√
d + N)L0 > d by assumption,

and where the last line in (2.18) defines the constant c3 appearing in the statement of
Proposition 2.1 above. In particular, on the event {max

K1
ϕ ≤ α′} and for any x ∈ K2, the

inequality ϕ̃K1
x + µK1

x ≥ h implies

ϕ̃K1
x − µK1

x ≥ h− 2µK1
x

(2.18)
≥ h− γ.

Hence, on the event {max
K1
ϕ ≤ α′}, since AT2 is increasing, (2.16) yields

P[AhT2 | (ϕx)x∈K1
] ≤ P̃[(1{ϕ̃K1

x − µK1
x ≥ h− γ})x∈Zd ∈ AT2 ]

= P̃[(1{−ϕ̃K1
x − µK1

x ≥ h− γ})x∈Zd ∈ AT2 ]

= P̃[(1{ϕ̃K1
x + µK1

x < γ − h})x∈Zd ∈ AT2 ]

= P̃[(1{ϕ̃K1
x + µK1

x ≥ γ − h})x∈Zd ∈ AT2 ]
(1.28)

= P[A
γ−h
T2 | (ϕx)x∈K1

],

where AT2 denotes the flipped event (recall the notation from above (1.19)), and where
we have used in the second line that ϕ̃K1 and −ϕ̃K1 have the same law under P̃, cf.
(1.27), and that P̃ does not act on µK1 . Inserting this bound into (2.15), we obtain

P[AhT ] ≤ P[AhT1 ∩A
γ−h
T2 ] + P[max

K1
ϕ > α′]

≤ P[AhT1 ] · P[Ah−γT2 ] + P[max
K1
ϕ > α′],

(2.19)
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and the second step is due to (1.19) and the FKG-inequality for the free field (see for
example [10], Ch. 4), which applies and yields an upper bound, because the event AhT1 is

increasing and A
γ−h
T2 is decreasing, cf. (2.3), (2.8).

It remains to bound the error term. Since B0,0 ⊂ B∞(0, (N + 1)L0), we have by (2.14)
that |K1| ≤ 2n|B∞(0, (N + 1)L0)| < 2n(3(N + 1)L0)d, and (1.22), (2.10) imply that (recall
that α′ = c1α)

P[max
K1
ϕ > α′] ≤ e−(α−mn(d,L0,N))2 , for all α satisfying (2.11).

Substituting this into (2.19) yields, for all αn
def.
= α fulfilling (2.11) and all h′ ≥ h,

P[Ah
′

T ] ≤ P[AhT ] ≤ P[Ah−γT1 ] · P[Ah−γT2 ] + e−(αn−mn(d,L0,N))2 .

The claim (2.13) now readily follows upon taking suprema over all T ∈ Λn+1,0 on

both sides, letting hn
def.
= h − γ ∈ R (h was arbitrary), hn+1

def.
= h′, so that requiring

hn+1 = h′ ≥ h = hn + γ, by virtue of (2.18), is precisely the condition (2.12). This
concludes the proof of Proposition 2.1.

We will now propagate the bounds (2.13) inductively along a suitable sequence
(hn)n≥0, and select to this end

αn = mn(d, L0, N) + 2(n+1)/2
(
n1/2 + k

1/2
0

)
, for n ≥ 0, (2.20)

for some parameter k0 > 0 to be specified later, and with mn(d, L0, N) as defined in
(2.10). In particular, note that (2.20) satisfies the condition (2.11) for every choice of
k0 > 0.

Proposition 2.2. (d ≥ 3, N ≥ 1, L0 ≥ d, l0 ≥ 20(
√
d+N))

Assume h0 ∈ R and k0 ≥ (1− e−1)−1 def.
= b are such that

p0(h0) ≤ e−k0 , (2.21)

and let the sequence (hn)n≥0 satisfy (2.12) with (αn)n≥0 as defined in (2.20). Then,

pn(hn) ≤ e−(k0−b)2n , for all n ≥ 0. (2.22)

On account of Proposition 2.1 and the choice of αn, n ≥ 0, in (2.20), (compare this to
Proposition 2.2 and (2.51) in [24], respectively), the proof of Proposition 2.2 is completely
analogous to that of Proposition 2.4 in [24]. We therefore omit it.

Remark 2.3. 1) Even though we will not need this below, note that the conclusions of
Propositions 2.1 and 2.2 continue to hold for arbitrary increasing (seed) events A0,x ⊂
{0, 1}Zd , for x ∈ L0, which are measurable with respect to the canonical coordinates
in B0,x as defined in (2.4), upon letting Ah0,x = Φ−1

h (A0,x), for all x ∈ L0 and h ∈ R,
defining events AhT , with T ∈ Λn,x for arbitrary n ≥ 0 and x ∈ Ln, as in (2.8), and
taking an additional supremum over x ∈ Ln in the definition (2.9) of pn(h) (no translation
invariance required). Moreover, by symmetry, if instead all events A0,x, x ∈ L0, are
decreasing, under the assumptions of Proposition 2.1, the conclusion (2.13) holds for
the sequence (−hn)n≥0 in place of (hn)n≥0.
2) The condition (2.21) is quite strong. Indeed, by (2.8) and (2.9), we have, for all h ∈ R,
n ≥ 0 and x ∈ Ln,

P[Ahn,x] = P[B∞(x, Ln)
≥h←→ ∂intBn,x] ≤ |Λn,x| · pn(h).
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If the bound (2.22) were to hold for some value of k0 ≥ b, it would yield, together with the
estimate (2.6) on the combinatorial complexity |Λn,x|, that P[Ahn,x] ≤ (c2l

2(d−1)
0 /ek0−b)2n .

Thus k0 will have to satisfy the requirement ek0 ≥ cl2(d−1)
0 for a certain constant c > 0 in

order for this bound to be of any use. Substituting this into (2.21) yields the condition
p0(h0) = P[Ah0

0,0] ≤ c′l
−2(d−1)
0 . For the purpose of proving Theorem 0.2, h0 will be at

most has(1 + ε), for some ε > 0. We will therefore essentially have to prove that the

crossing event Ahas(1+ε)
0,0 decays roughly like exp(−cd log d) for all d ≥ c′(ε) (recall that l0

is required to grow at least like
√
d, cf. (2.1)). �

2.2 The local picture

In this subsection, we provide an estimate regarding the local connectivity properties
of the level set E≥has(1+ε)

ϕ , for arbitrary ε > 0, in high dimension. Here, “local” means
that we only investigate connectivity within an `1-ball having a radius of order at most
d around a given point on the lattice. Specifically, we will consider the probability of a
nearest-neighbor path in E≥has(1+ε)

ϕ connecting the center of such a ball to its boundary.
The resulting bound, cf. Theorem 2.5, is of independent interest, but it will be crucial in
establishing the seed estimate (2.21), thus enabling us to launch the renormalization.
We begin with the following simple lemma, which will be useful in several instances
below.

Lemma 2.4. (d ≥ 3)

There exists a constant c > 0 such that, for all ` > 0, x ∈ Zd, all sets K,U satisfying
U ⊆ K ⊂⊂ Zd \ {x} and |U | ≤ `d, and all ε > 0,

P
[∑
y∈U

pKx,yϕy > εhas

]
≤ exp

{
− c ε2

`(`+ 1)
d log d

}
, (2.23)

with pKx,y as defined in (1.24).

Proof. Let ` > 0, x ∈ Zd, ε > 0, and the sets K,U be fixed as to satisfy the above
assumptions. We abbreviate ζx =

∑
y∈U p

K
x,yϕy, which is a centered Gaussian variable.

We compute, for arbitrary λ > 0,

Var(λζx) = E[(λζx)2] = λ2
∑
y,z∈U

pKx,y p
K
x,z E[ϕyϕz]

= λ2
{
g(0)

∑
y∈U

(pKx,y)2 +
∑
y,z∈U
y 6=z

pKx,y p
K
x,z g(y − z)

}
.

(2.24)

Observe that for all y ∈ U and d ≥ 3,

pKx,y
(1.24)

= Px[HK <∞, XHK = y] ≤ Px[Hy <∞] ≤ c/d, (2.25)

where the last step follows from an elementary application of the strong Markov property
at time HS1(y,1) (recall that x /∈ U ) and (1.14). Moreover, for all z ∈ Zd \ {0} and d ≥ 3,
by the strong Markov property at time Hz,

g(z) = P0[Hz <∞] · g(0)
(1.12),(2.25)
≤ c/d. (2.26)

Inserting the bounds (2.25), (2.26) into (2.24) and using again that g(0) = O(1) as d→∞
(cf. (1.12)) gives

Var(λζx) ≤ cλ2(d−2|U |+ d−3|U |2) ≤ cλ2d−1(`+ `2),
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where the second step follows because |U | ≤ `d by assumption. Thus, by Markov’s
inequality, we obtain, for all λ > 0 and d ≥ 3,

P[ζx > εhas] ≤ e−λεhas · eVar(λζx)/2 ≤ exp
{
− 1

2c`(`+ 1)
d(εhas)

2
}
,

where the last step follows by optimizing over λ, which occurs for the choice λ =

εdhas/c`(` + 1) (with c the constant appearing in the bound for Var(λζx) above). On
account of (0.8), and since g(0) ≥ 1, this implies (2.23), and thus completes the proof of
Lemma 2.4.

We proceed to the main result of this section. For convenience, we introduce the
shorthand

h
(ε)
as = has(1 + ε), for ε > 0. (2.27)

Theorem 2.5. (ε > 0)

There exist constants c4(ε) ≥ 1 and c5 > 0 such that for all N ≥ c4(ε) and d ≥ c(ε,N),

P[0
≥h(ε)

as←→ S1(0, Nd)] ≤ exp{−c5 f(ε,N) · d log d}, (2.28)

where f(ε,N) = ε3
√
N/(1 + ε).

We briefly outline the proof of Theorem 2.5, which essentially comprises three steps.
First, instead of considering the whole path connecting the origin to S1(0, Nd) directly,
we look at the “local traces” it leaves after first visiting each of N0 = cN (for suitable
c ∈ (0, 1)) concentric `1-annuli around the origin having a width of order d (similarly to
what was done in [32] in the context of interlacement percolation). We are led to consider

the probability that N0 “well-separated” paths in E
≥h(ε)

as
ϕ of length b`dc each, for some

0 < ` ≤ 1, all occur simultaneously (which competes against a suitable combinatorial
complexity). The parameter ` will have to be carefully chosen a posteriori. In a second
step, we discover the field along a fixed collection of paths “dynamically,” using Lemma
1.3, as alluded to in the Introduction. Finally, Lemma 2.4 will provide good controls on
the error terms that arise.

Proof. We define

c6 = 2(dc0e+ 1), (see (1.13) for the definition of c0). (2.29)

Let ε > 0 be fixed and assume N ≥ c6 (stronger conditions on N will follow). Instead of
working with N directly, it will be convenient to use

N0 = bN/c6c (≥ 1). (2.30)

We also introduce a parameter

0 < ` = `(ε,N0) ≤ 1 (2.31)

to be specified later. Given a vertex x ∈ Zd, we denote by Π`(x) the set of all self-avoiding
nearest-neighbor paths of length b`dc starting in x (by convention, if b`dc = 0, the set
consists only of the vertex x itself). By construction, any path connecting the origin to
S1(0, Nd) intersects all spheres S1(0, n c6d), for 0 ≤ n ≤ N0. Moreover, any self-avoiding
path π ∈ Π`(x), with x ∈ S1(0, n c6d) for some 0 ≤ n < N0 and 0 < ` ≤ 1, satisfies
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range(π) ⊂ B1(0, Nd). Thus,

P[0
≥h(ε)

as←→ S1(0, Nd)]

≤ P
[ ⋃
xn∈S1(0,nc6d)

0≤n<N0

⋃
πn∈Π`(xn)
0≤n<N0

{
E
≥h(ε)

as
ϕ ⊇ range(πn), 0 ≤ n < N0

}]

≤
∑

xn∈S1(0,nc6d)
0≤n<N0

∑
πn∈Π`(xn)
0≤n<N0

P
[
E
≥h(ε)

as
ϕ ⊇ range(πn), 0 ≤ n < N0

]
,

(2.32)

for all N0 ≥ 1 (i.e. N ≥ c6) and 0 < ` ≤ 1 (see also Figure 2 below). For later reference,
we note that given two paths πn ∈ Π`(xn) and πm ∈ Π`(xm) for some 0 < ` ≤ 1, with
0 ≤ n < m < N0, xn ∈ S1(0, nc6d) and xm ∈ S1(0,mc6d),

d1(πn, πm) ≥ |xm − xn|1 − 2`d ≥ c6d− 2d
(2.29)
≥ 2c0d. (2.33)

Figure 2: The collection (πn)0≤n<N0
of “local traces” left by a self-avoiding path in E

≥h(ε)
as

ϕ

connecting the origin to S1(0, Nd), obtained by considering the first b`dc steps after first
hitting each of the spheres S1(0, nc6d), for 0 ≤ n < N0 (when viewed as starting from 0).
The paths πn, 0 ≤ n < N0, are in fact “well-separated,” as captured by (2.33).

Since |Π`(x)| ≤ (2d)b`dc for all d ≥ 3, 0 < ` ≤ 1 and x ∈ Zd, and using the estimate
(1.2) on the cardinality of `1-spheres, the number of terms appearing in the double sum
of (2.32) is bounded by

N0−1∏
n=0

|S1(0, nc6d)| · (2d)b`dc ≤ exp
{
N0b`dc log(2d) + d

N0−1∑
n=0

(nc6 + 2)
}

= exp
{
N0

(
b`dc log(2d) +

c6(N0 − 1)d

2
+ 2d

)}
≤ exp

{
(1 + ε)N0b`dc log d

}
def.
= Cd(ε,N0, `)

for all N0 ≥ 1, 0 < ` ≤ 1 and d ≥ c(ε,N0, `). Returning to (2.32), this yields

P[0
≥h(ε)

as←→ S1(0, Nd)]

≤ Cd(ε,N0, `) · sup
xn∈S1(0,nc6d)
πn∈Π`(xn)
0≤n<N0

P[E
≥h(ε)

as
ϕ ⊇ range(πn), 0 ≤ n < N0], (2.34)
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for all N0 ≥ 1, 0 < ` ≤ 1 and d ≥ c(ε,N0, `). We now focus on the probability appearing
on the right-hand side of (2.34). Thus, we fix N0 self-avoiding paths

πn = (xn,k)0≤k≤b`dc ∈ Π`(xn,0), with xn,0 ∈ S1(0, nc6d) for all 0 ≤ n < N0,

and define

K =

N0−1⋃
n=0

range(πn), so that |K| = N0d`de. (2.35)

For notational convenience, we introduce the set of labels

I = {0, . . . , N0 − 1} × {0, . . . , b`dc} 3 i = (i1, i2)

(where ik, k = 1, 2, denote the coordinates of i, with values in {0, . . . , N0 − 1} and
{0, . . . , b`dc}, respectively), so that range(πn) = {xi; i ∈ I, i1 = n} for all 0 ≤ n < N0 and
K = {xi; i ∈ I}. We further denote by ≺ the lexicographic order on I. This induces an
ordering of the points in K. Finally, we also set

Ki = {xj ; j ≺ i} (⊂ K), for i ∈ I. (2.36)

The event
{E≥h

(ε)
as

ϕ ⊇ range(πn), 0 ≤ n < N0} =
⋂
i∈I
{ϕxi ≥ h

(ε)
as } (2.37)

is measurable with respect to the σ-algebra generated by ϕx, x ∈ K, and we will now
construct the field (ϕx)x∈K using Lemma 1.3, by adding one variable at a time, according
to the ordering ≺ (thus, Ki as defined in (2.36) denotes the set of points at which the
field has been discovered “before time i”). Specifically, we proceed as follows. Let ψi,
i ∈ I, be an independent family of Gaussian random variables, with

ψi ∼ N (0, gKc
i
(xi, xi)), for all i ∈ I (2.38)

(see (1.5) for the definition of the killed Green function), and recall from (1.24) that
pKix,y = Px[HKi <∞, XHKi

= y], for all x, y ∈ Zd. We define recursively

ϕxi = ψi, for i = (0, 0),

ϕxi = ψi +
∑
y∈Ki

pKixi,y · ϕy, for i ∈ I \ {(0, 0)}. (2.39)

By Lemma 1.3, the law of (ϕxi)i∈I as defined above is precisely that of the Gaussian
free field restricted to K. By (2.33), the main contribution to the sum on the right-hand
side of (2.39) will come from the points which belong to the same path as xi (i.e. to πi1).
Accordingly, we introduce the sets

Ui
def.
= {xj ; j ≺ i and j1 = i1} (⊂ Ki), for i ∈ I, (2.40)

and obtain the decomposition,

ϕxi = ψi + ζi +
∑

y∈Ki\Ui

pKixi,yϕy, with ζi =
∑
y∈Ui

pKixi,yϕy, for all i ∈ I, (2.41)

where the above sums are understood to vanish identically whenever the summation
is over the empty set. Now, observe that for all i ∈ I, on the event {ϕxi ≥ h

(ε)
as } ∩ {ζi ≤

εhas/4},

has(1 + ε) = h
(ε)
as

(2.41)
≤ ψi + ζi +

∑
y∈Ki\Ui

pKixi,yϕy

(1.24)
≤ ψi +

ε

4
has + 1{i1>0}Pxi [HKi\Ui <∞] · sup

y∈Ki\Ui
ϕy.

(2.42)
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In order to bound the hitting probability Pxi [HKi\Ui <∞], we note that, by construction,
cf. (2.33) and (2.40),

d1(xi,Ki \ Ui) ≥ 2c0d, for all i ∈ I with i1 > 0. (2.43)

Thus, we can find c > 0 such that

Pxi [HKi\Ui <∞]
(1.11)
≤ cap(Ki \ Ui) · sup

y∈Ki\Ui
g(y − xi)

(1.13)
≤ |Ki \ Ui| · 2−d/2−2 ≤ e−cd,

(2.44)

for all i ∈ I with i1 > 0 and all d ≥ c′(ε,N0, `), where (1.13) applies because of (2.43),
and we have bounded |Ki \ Ui| ≤ |K| = N0d`de using (1.7), (1.8) and (2.35). Inserting
(2.44) into (2.42) yields that there exists a suitable constant c7 > 0 such that for all i ∈ I
and d ≥ c(ε,N0, `), on the event {ϕxi ≥ h

(ε)
as } ∩ {ζi ≤ εhas/4},

has(1 + ε) = h
(ε)
as ≤ ϕxi ≤ ψi +

ε

4
has +

ε

4
has · e−c7d · sup

y∈Ki\Ui
ϕy

(with the convention sup ∅ = 0, which occurs if Ki \ Ui = ∅, i.e. i1 = 0). Thus, for all i ∈ I
and d ≥ c(ε,N0, `),(

{ϕxi ≥ h
(ε)
as } ∩ {ζi ≤ εhas/4} ∩

{
sup

y∈Ki\Ui
ϕy ≤ ec7d

})
⊆ {ψi ≥ h(ε/2)

as },

and therefore

{ϕxi ≥ h
(ε)
as } ⊆

(
{ψi ≥ h(ε/2)

as } ∪
{

sup
y∈Ki\Ui

ϕy > ec7d
}
∪ {ζi > εhas/4}

)
⊆
(
{ψi ≥ h(ε/2)

as } ∪
{

sup
y∈K

ϕy > ec7d
}
∪
⋃
j∈I
{ζj > εhas/4}

)
.

Going back to our initial event in (2.37), by a union bound, we obtain, for all N0 ≥ 1,
0 < ` ≤ 1 and d ≥ c(ε,N0, `),

P
[
E
≥h(ε)

as
ϕ ⊇ range(πn), 0 ≤ n < N0

]
≤
∏
i∈I
P[ψi ≥ h(ε/2)

as ] + P
[

sup
y∈K

ϕy > ec7d
]

+ |I| · sup
i∈I
P[ζi > εhas/4],

(2.45)

where we also used independence of the variables ψi, i ∈ I, see above (2.38). We consider
each of the three terms in (2.45) separately. Recall the definition of the combinatorial
complexity Cd above (2.34).

Lemma 2.6.∏
i∈I
P[ψi ≥ h(ε/2)

as ] ≤ C−1
d (ε,N0, `) · e−cε

2N0d`de log d, for N0 ≥ 1, 0 < ` ≤ 1, d ≥ c′. (2.46)

P
[

sup
y∈K

ϕy > ed
]
≤ C−2

d (ε,N0, `), for N0 ≥ 1, 0 < ` ≤ 1, d ≥ c(ε,N0, `). (2.47)

Moreover, for the choice of

` = `(ε,N0) = 1 ∧

√
c8ε2

4(1 + ε)N0
, (2.48)

one has

|I| · sup
i∈I
P[ζi > εhas/4] ≤ C−2

d (ε,N0), for all N0 ≥ 1 and d ≥ c(ε,N0). (2.49)
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Proof of Lemma 2.6. First, observe that

E[ψ2
i ]

(2.38)
= gKc

i
(xi, xi)

(1.6)
≤ g(0)

(1.21)
< c21, for all i ∈ I and d ≥ 3.

Hence, the elementary tail estimate (1.23) yields (note that |I| = |K| = N0d`de, cf.
(2.35)), ∏

i∈I
P[ψi ≥ has(1 + ε/2)] ≤

(
c1e
−h2

as(1+ε/2)2/2g(0)
)N0d`de

,

for all N0 ≥ 1, 0 < ` ≤ 1 and d ≥ c, which, upon expanding (1+ε/2)2, immediately implies
(2.46). The estimate (2.47) is also a direct consequence of (1.23) and a union bound (the
ease with which this is obtained merely reflects the fact that for any xi, i = (i1, i2) ∈ I,
the shift produced by points lying on paths discovered “before” πi1 (if any), has little
influence on ϕxi , cf. (2.41) and (2.44)).

It remains to show (2.49). Observe that, by definition of ζi, see (2.41), Lemma 2.4
with K = Ki and U = Ui (which satisfies |Ui| ≤ `d, cf. (2.40)), applies and yields (for a
suitable c8 > 0; this defines the constant appearing in (2.48)),

|I| · P[ζi > εhas/4] ≤ exp{−c8ε2d log d/`(`+ 1)},

for all i ∈ I, N0 ≥ 1, 0 < ` ≤ 1 and d ≥ c(ε,N0, `). Selecting ` as defined in (2.48), which,
in particular, satisfies the requirements of (2.31), ensures that

c8ε
2d log d

`(`+ 1)
≥ 2(1 + ε)b`dcN0 log d (2.50)

(the last term should be read as twice the exponent appearing in the combinatorial
complexity Cd), for all N0 ≥ 1 and d ≥ 3, and (2.49) follows. �

Substituting the bounds (2.46), (2.47) and (2.49) into (2.45), we see that for the value
of ` in (2.48), all N0 ≥ 1 and d ≥ c(ε,N0),

P
[
E
≥h(ε)

as
ϕ ⊇ range(πn), 0 ≤ n < N0

]
≤ C−1

d (ε,N0) · e−c
′ε2N0`d log d

(the contribution from (2.46) is dominating). Finally, inserting this into (2.34), noting
that `(ε,N0) < 1 whenever N0 ≥ c9(ε) for some constant c9(ε) ≥ 1, cf. (2.48), and on

account of (2.30), we readily obtain (2.28), with c4(ε)
def.
= c6 · c9(ε), and for a suitable

value of c5 > 0. This completes the proof of Theorem 2.5.

Remark 2.7. The only feature of the function f(ε,N) which will be of importance below
is that limN→∞ f(ε,N) =∞ for every ε > 0. For the sole purpose of proving Theorem 0.2,
any other function f(ε,N) with this property would have sufficed. Moreover, while the
term `(`+ 1) appearing in the bound (2.23) looks innocent when ` ∈ (0, 1], it is crucially
used in (2.50) to ensure that the resulting function f(ε, ·) indeed grows at least like
a positive power of N (in fact one could even have obtained f(ε, ·) = Θ(N2/3) from
(2.50)). �

2.3 Dénouement

Finally, we complete the proof of Theorem 0.2. This will involve the renormalization
scheme introduced in Section 2.1. As noted in Remark 2.3, 2), the seed estimate (2.21)
needed to initiate the renormalization is rather strong, and Theorem 2.5 will be of crucial
use to establish it.
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Proof of Theorem 0.2. Let ε > 0 be fixed. In order to establish (0.9), we have to show
that

h∗∗(d) ≤ has(d)(1 + ε), for all d ≥ c(ε). (2.51)

To begin with, we select the parameters L0, l0 and N in the renormalization scheme
from Section 2.1, cf. (2.1). We let

L0 = l0 = d, N = N(ε) =

⌈
c4(ε) ∨ 25(2 + ε)62

(c5ε3)2

⌉
(2.52)

(recall the statement of Theorem 2.5 for the definition of c4(ε), c5), so that the constraint
l0 ≥ 20(

√
d+N(ε)) in (2.1) holds for all d ≥ c(ε), and choose k0 appearing in (2.20) as

k0 = b+ log(2(c2l0)2(d−1))
(2.52)

= b+ log(2(c2d)2(d−1)) (2.53)

(see (2.6) for the definition of c2). Lastly, we define the increasing sequence (hn)n≥0

recursively as

h0 = has(1 + ε/2) (= h
(ε/2)
as ),

hn+1 = hn + αn
(
c3(
√
d+N)

)d−2(
2l
−(d−2)
0

)n+1
, for all n ≥ 0,

(2.54)

with αn given by (2.20). In particular, (hn)n≥0 satisfies the “sprinkling” condition (2.12).
To see that the choices in (2.52), (2.53) and (2.54) are judicious, we first check that

h∞ = lim
n→∞

hn ≤ has(1 + ε), for all d ≥ c(ε). (2.55)

Indeed, it follows from (2.20), using (2.10), (2.52) and (2.53), that for all d ≥ c(ε) and
n ≥ 0,

αn =
(

log(2n((N + 1)3d)d)
)1/2

+ 2(n+1)/2
(
n1/2 +

(
b+ log(2(c2d)2(d−1))

)1/2)
≤ c′(ε)(d log d)1/2 2n+1

(2.56)

(the dependence on ε is due to N ). Hence,

h∞
(2.55),(2.54)

= h0 +
∑
n≥0

αn
(
c3(
√
d+N)

)d−2(
2l
−(d−2)
0

)n+1

(2.52),(2.56)
≤ h0 + c(ε) (d log d)1/2 · (c′(ε)d1/2)−(d−2)

∑
n≥0

(
4d−(d−2)

)n
≤ h0 + ε/2,

(2.57)

for all d ≥ c′′(ε). This is more than enough to deduce (2.55) (we comment on this in
Remark 2.8 below).

In order to complete the proof of Theorem 0.2, we apply Proposition 2.2. Except
for the condition (2.21), all its requirements are clearly satisfied by our choices of
parameters in (2.52), (2.53) and (2.54), whenever d ≥ c(ε). To deduce the necessary
seed estimate (2.21), we use the connectivity bound from Theorem 2.5. Observing
that the choice of N = N(ε) in (2.52) guarantees that c5 f(ε/2, N) ≥ 6, for f and c5 as
appearing in (2.28), it follows that

p0(h0)
(2.9), (2.3)

= P[B∞(0, L0)
≥h0←→ ∂intB0,0]

(2.4), (2.54)
≤ 2d(2L0 + 1)d−1 · P[0

≥h(ε/2)
as←→ S1(0, NL0)]

(2.28), (2.52)
≤ ed log 3d−6d log d ≤ d−4d,
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for all d ≥ c′(ε). On the other hand, (2.53) impies that e−k0 ≥ d−3d for all d ≥ c, hence the
condition p0(h0) ≤ e−k0 in (2.21) holds for alld ≥ c′(ε). We may thus apply Proposition 2.2,
thereby obtaining

pn(hn)
(2.22)
≤ e−(k0−b)2n

(2.53)
≤

(
2(c2d)2(d−1)

)−2n

, for all n ≥ 0 and d ≥ c(ε), (2.58)

with (hn)n≥0 as defined in (2.54). Hence, for all n ≥ 1 and d ≥ c(ε), (N.B.: the first of
the following chain of inequalities is obtained by covering B∞(0, 2Ln) with essentially
disjoint `∞-boxes of radius Ln, and performing a union bound)

P[B∞(0, 2Ln)
≥h(ε)

as←→ S∞(0, 4Ln)] ≤ 2dP[B∞(0, Ln)
≥h(ε)

as←→ S∞(0, 3Ln)]

(2.3),(2.4)
= 2dP[A

h(ε)
as
n,0 ]

(2.55)
≤ 2dP[Ahnn,0]

(2.8),(2.9)
≤ 2d|Λn,0| · pn(hn)

(2.6),(2.58)
≤ 2d

(
(c2d)2(d−1)

)2n · ((2c2d)2(d−1)
)−2n ≤ 2−2(d−1)(2n−1) n→∞−−−−→ 0.

In particular, this implies that lim infL→∞P[B∞(0, L)
≥h(ε)

as←→ S∞(0, 2L)] = 0, for all d ≥ c(ε).
Recalling the definition (0.4) of the critical level h∗∗, this yields (2.51), and thus completes
the proof of Theorem 0.2. �

Remark 2.8. Our renormalization scheme is somewhat asymmetrical. On the one hand,
the sprinkling condition (2.12) for the sequence (hn)n≥0 turns out to be very mild, as
it only costs an “additive” ε, cf. (2.57) (obtaining h∞ ≤ h0(1 + ε), for all d ≥ c(ε) would
have sufficed for the purpose of proving Theorem 0.2). On the other hand, the scheme
relies on the strong seed estimate (2.21), and establishing it is what prevents us from
obtaining a more precise result than (0.9). �

3 Lower bound

We proceed to show the lower bound, Theorem 0.3. As described in the Introduction,
the proof comprises two main steps. The first one, which is the subject of Subsection
3.1, reduces the problem of constructing an infinite cluster to a local statement. The
assertion is roughly the following (see Theorem 3.1 below): given δ > 0, if the level h is
such that with high probability, the set E≥h+δ

ϕ possesses a ubiquitous component in each
of the d-dimensional hypercubes 2x+ {0, 1}d, for x ∈ Z2 (⊂ Zd) and |x|1 ≤ 1, which are
all connected, then E≥hϕ percolates whenever d is sufficiently large (depending on δ).

In order to prove the lower bound (0.10), it then suffices to verify that this criterion
holds when h = has(1− ε), for arbitrary ε > 0. This step is split again into two parts, to
which Subsections 3.2 and 3.3 are respectively devoted. First, we construct a wealth
of substantial components in the hypercube, with cardinality growing polynomially in
d, and show that most vertices in {0, 1}d are either contained in or neighboring such a
component. The main result is entailed in Corollary 3.7 below. The second part consists
of patching together these substantial components to form a “giant” one, and to then
connect the latter to the ubiquitous components contained in the neighboring translates
of {0, 1}Zd . This is achieved in Theorem 3.8. All ingredients are put together at the end
of Subsection 3.3 to complete the proof of (0.10).

3.1 Local ubiquity and connectivity are sufficient

We begin by establishing the finite-size criterion that guarantees percolation, The-
orem 3.1 below. To cope with the long-range interactions, we use a renormalization
argument on Z2, which bears some resemblance to the one developed in Section 2.1
above, together with a standard duality argument.
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We view Z2 as a subset of Zd by identifying x = (x1, x2) ∈ Z2 with (x1, x2, 0, . . . , 0) ∈
Zd, and write B

(2)
p (x, r) = Bp(x, r) ∩ Z2, with x ∈ Z2, r ≥ 0, p = 1, 2,∞, for two-

dimensional balls. Similarly, we let S(2)
p (x, r) = ∂intB

(2)
p (x, r). Moreover, we denote the

d-dimensional hypercube and its translates in Z2 by

Hx = 2x+ {0, 1}d, for all x ∈ Z2, (3.1)

and abbreviate H
def.
= H0, so that Hx, x ∈ Z2, forms a partition of H+Z2. The following

definition is essentially borrowed from [32], Section 2 (this will in particular enable us to
reinject certain isoperimetric controls which follow from the results in [5] (see Lemma
4.3 in [32]) directly at a later stage). For arbitrary h ∈ R and x ∈ Z2, we introduce the
(local) event

Ghx =
{
ω ∈ Ω; for all x′ ∈ B(2)

1 (x, 1), the set Hx′ ∩ E≥hϕ (ω) contains a connected

component Cx′ with the property that |CHx′x′ | ≥ (1− d−2)|Hx′ |, and the

sets Cx′ , x
′ ∈ B(2)

1 (x, 1), are connected within E≥hϕ ∩
⋃
x′∈B(2)

1 (x,1)
Hx′

} (3.2)

(recall that C
Hx′
x′ denotes the `1-closure of Cx′ in Hx′). A vertex x ∈ Z2 will be called

h-good if Ghx occurs, for arbitrary h ∈ R, and h-bad otherwise. Note that for all d ≥ 3,
each of the sets Cx′ in (3.2) is necessarily unique in Hx′ : indeed, if C ⊂ H satisfies

|CH| ≥ (1− d−2)|H|, then in fact |C| ≥ |CH| − |∂C ∩H| ≥ (1− d−2)|H| − d|C| (each vertex
has d neighbors in H), and solving for |C| yields |C| ≥ (d − 1)d−2|H| ≥ 2d−2|H|. But

any other set D ⊂ H not connected to C must be contained in H \ CH and thus satisfy
|D| ≤ d−2|H|, hence C is unique. Accordingly, we will henceforth refer to any set Cx′

appearing in (3.2) as the giant component of Hx′ ∩ E≥hϕ . It is then plain from (3.2) that
for all d ≥ 3 and h ∈ R,

{0↔∞ in {y ∈ Z2; y is h-good}} ⊆ {0↔∞ in E≥hϕ ∩ (H+Z2)}, (3.3)

i.e. percolation of h-good sites in Z2 implies percolation of E≥hϕ (in H+Z2). To see this,
observe that if two neighboring vertices x, x+ e ∈ Z2 (with e a unit vector in Z2) are both
h-good, then the corresponding giant clusters Cx ⊂ Hx ∩E≥hϕ and Cx+2e ⊂ Hx+2e ∩E≥hϕ
(cf. (3.1)) are connected to the same (by uniqueness) giant cluster in Hx+e ∩ E≥hϕ , thus
Cx and Cx+2e belong to the same cluster of E≥hϕ . It then follows inductively that an
infinite nearest-neighbor path of h-good vertices in Z2 implies the existence of an infinite
cluster in E≥hϕ ∩ (H+Z2).

We are now ready to proceed to the main result of this section, which has a similar
flavor as Theorem 2.2 of [31].

Theorem 3.1. (ε > 0, a = 1/10)

Given any sequence (h(d))d≥3 such that

lim sup
d→∞

d2+3aP[(G
h(d)+ε
0 )c] = 0, (3.4)

one has

h∗(d) ≥ h(d), for all d ≥ c(ε). (3.5)

Proof. By (3.3) and the definition of h∗ in (0.3), in order to prove (3.5), it suffices to show
that

P[0↔∞ in {y ∈ Z2; y is h(d)-good}] > 0, for all d ≥ c(ε), (3.6)
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for this implies P[0
≥h(d)←→ ∞] > 0 and hence h(d) ≤ h∗(d), for all d ≥ c(ε). The proof

of (3.6) involves a renormalization scheme, which we now describe. We introduce the
integer parameter

L0 ≥ 2, (3.7)

and define an increasing sequence of length scales (Ln)n≥0 recursively as

Ln+1 = lnLn, ln = 20dLane, for n ≥ 0 (3.8)

(this should not be confused with the geometric sequence of length scales appearing in
Section 2.1), together with corresponding renormalized lattices

L(2)
n = LnZ

2 (⊂ Zd), for n ≥ 0. (3.9)

We also introduce, for arbitrary n ≥ 0 and x ∈ L(2)
n , the (bad) events

Dh
n,x = {B(2)

∞ (x, Ln) is connected to S(2)
∞ (x, 3Ln)

by a ∗-path of h-bad vertices (in Z2)}
(3.10)

(recall that y ∈ Z2 is called h-bad if (Ghy)c occurs). By (3.2), the event Dh
n,x is decreasing

(in ϕ). Moreover, by translation invariance, the function

qn(h) = P[Dh
n,x], for n ≥ 0, x ∈ L(2)

n , h ∈ R, (3.11)

is well-defined (i.e. independent of x) and non-decreasing in h, for every n ≥ 0. The key
to establishing (3.6) will be to show that, if L0 is a suitable (increasing) function of d,
and (3.4) holds for some ε > 0, the probability qn(h(d)) decays sufficiently rapidly to 0

as n → ∞, for all d ≥ c(ε), see (3.29) below. Together with a straightforward (planar)
duality argument, which will be detailed below (3.29), this will then yield (3.6).

To obtain good estimates for qn(h(d)), n ≥ 0, we first develop “recursive bounds”
relating the functions qn+1(·) and qn(·), for arbitrary n ≥ 0 (similar in spirit to what was

done in Proposition 2.1 above, but simpler). To this end, we let n ≥ 0 and x ∈ L(2)
n+1 be

fixed, and introduce the sets

Si = L(2)
n ∩ S(2)

∞ (x, i Ln+1), for i = 1, 2. (3.12)

By geometric considerations similar to those leading to (2.8), see also Figure 1, and on
account of (3.8), we deduce that

qn+1(h) ≤ P
[ ⋃
xi∈Si
i=1,2

Dh
n,x1
∩Dh

n,x2

]
≤ c′0l2n sup

xi∈Si
i=1,2

P[Dh
n,x1
∩Dh

n,x2
], (3.13)

for a suitable constant c′0 ≥ 1 and all h ∈ R. We consider the probability on the right-hand
side of (3.13), for fixed xi ∈ Si, i = 1, 2 and h ∈ R. Abbreviating

Ki =
⋃

y∈B(2)
∞ (xi,3Ln)

⋃
z∈B(2)

1 (y,1)

Hz (3.14)

and observing that Dh
n,xi ∈ σ(ϕy; y ∈ Ki), for i = 1, 2, due to (3.2) and (3.10), we write

P[Dh
n,x1
∩Dh

n,x2
] ≤ P[Dh

n,x1
, inf
y∈K1

ϕy ≥ −βn, P[Dh
n,x2
| (ϕy)y∈K1

]]

+ P[ inf
y∈K1

ϕy < −βn]
(3.15)
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for some cut-off value βn > 0 to be selected below. By (1.28),

P[Dh
n,x2
| (ϕy)y∈K1

] = P̃[(1{ϕ̃K1
x + µK1

x ≥ h})x∈Zd ∈ Dn,x2
], P-a.s.

(recall the notation from (1.18)), and we focus on bounding the random shift µK1
x , for

x ∈ K2. By construction, cf. (3.7), (3.8) and (3.14),

d1(K1,K2) ≥ d∞(K1,K2) ≥ Ln+1 − 6Ln − 6 ≥ c′1Ln+1,

for a suitable constant c′1 > 0. Hence, setting

L0 = d(c0/c′1) d e (see (1.13) for the definition of c0), (3.16)

we obtain, on the event {infy∈K1 ϕy ≥ −βn}, for all x ∈ K2 and d ≥ 5,

−µx
(1.25)
≤ βnPx[HK1

<∞]
(1.11)
≤ βn cap(K1) sup

y∈K1

g(y − x)

(1.13)
≤ βn|K1|

( c0d

c′1Ln+1

)d/2−2 (3.16)
≤ cβnL

2
n2dl−(d/2−2)

n
def.
=

δn
2
,

(3.17)

where in the second line, we have used the crude estimate cap(K1) ≤ |K1| (see (1.7),
(1.8)), the bound |K1| ≤ cL2

n2d, which follows immediately from (3.14), and the fact that
Ln+1 ≥ lnL0 ≥ lnc0d/c

′
1 for all n ≥ 0, due to (3.8) and (3.16). We henceforth tacitly

assume that d ≥ 5. By (3.17), on {infy∈K1 ϕy ≥ −βn}, the inequality ϕ̃K1
x + µK1

x ≤ h

implies that ϕ̃K1
x − µK1

x ≤ h+ δn, for arbitrary x ∈ K2, and therefore

P[Dh
n,x2
| (ϕx)x∈K1 ] ≤ P̃[(1{ϕ̃K1

x − µK1
x ≥ h+ δn})x∈Zd ∈ Dn,x2 ]

= P̃[(1{−ϕ̃K1
x − µK1

x ≥ h+ δn})x∈Zd ∈ Dn,x2
]

= P[D
−(h+δn)

n,x2
| (ϕx)x∈K1 ],

(3.18)

on the event {infy∈K1 ϕy ≥ −βn}, where we have used that Dn,x2 is decreasing in the
first line, and the symmetry of ϕ̃K1 in the second line (recall also (1.19)). Inserting (3.18)
into (3.15), applying the FKG-inequality and (1.19), we obtain

P[Dh
n,x1
∩Dh

n,x2
] ≤ P[Dh

n,x1
] · P[Dh+δn

n,x2
] + P[ inf

x∈K1

ϕx < −βn].

Finally, substituting this into (3.13), taking suprema over xi ∈ Si, for i = 1, 2, and using
symmetry yields, in view of (3.11),

qn+1(h) ≤ c′0l2n
(
qn(h+ δn)2 + εn

)
, with εn = P[ sup

x∈K1

ϕx > βn], (3.19)

for all n ≥ 0, h ∈ R and βn > 0. This yields the desired recursive bounds. In order to
propagate them inductively, we select

βn = c1
(√

log(2c′0l
2
nl

3
n+1) +

√
log |K1|

)
, for all n ≥ 0, (3.20)

with c1 as defined in (1.22) and c′0 in (3.13). The key estimate comes in the following
result.

Lemma 3.2. (h ∈ R, ε > 0, and L0, (ln)n≥0, (βn)n≥0 as in (3.16), (3.8), (3.20), respectively)

There exists a constant c′2(ε) ≥ 3 such that, if

q0(h+ ε) ≤ l−3
0 , for all d ≥ c′2(ε) (3.21)

holds, then
qn(h) ≤ l−3

n , for all d ≥ c′2(ε) and n ≥ 0. (3.22)
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Proof of Lemma 3.2. By (3.7) and (3.8), we have l2nl
3
n+1 ≤ cl2nL

3a
n+1 = cl2+3a

n L3a
n ≤

c′L
a(5+3a)
n , for all n ≥ 0. Substituting this into (3.20) and using that |K1| ≤ cL2

n2d, we
obtain the bound βn ≤ c((logLn)1/2 + d1/2), for all d ≥ 3 and n ≥ 0. Inserting this into
the definition of δn, see (3.17), yields∑

n≥0

δn ≤ c2d
∑
n≥0

L2
nl
−(d/2−2)
n ((logLn)1/2 + d1/2)

≤ c′3d
∑
n≥0

L−a(d/2−2−3/a)
n

≤ c′ 3d

Lc
′′d

0

∑
n≥0

(L−ac
′′d

0 )n

for all d ≥ c, where we have used Ln
(3.8)
≥ L

(1+a)n

0 ≥ L1+na
0 in the last line. Due to the

choice of L0 in (3.16), given ε > 0, it follows that∑
n≥0

δn ≤ ε, (3.23)

for all d ≥ c(ε). Moreover (for reasons that will become clear shortly) we observe that

2c′0l
−4
n l3n+1 ≤ c′l−4

n (lnLn)3a ≤ c′′L−a+3a2

n ≤ 1, for all n ≥ 0, (3.24)

whenever d ≥ c, due to the choice of L0 in (3.16) and a in Theorem 3.1 (this is why a
should not be chosen too large). Given ε > 0, we define c′2(ε) appearing in the statement
of Lemma 3.2 in a way that (3.23) and (3.24) simultaneously hold whenever d ≥ c′2(ε).

We now prove (3.22) by induction over n. Let h ∈ R, ε > 0 and d ≥ c′2(ε) be fixed. In
view of (3.23), and because the function qn(·) is non-decreasing for all n ≥ 0, it suffices
to show that

qn

(
h+ ε−

n−1∑
i=0

δi

)
≤ l−3

n , for all n ≥ 0 (3.25)

(with the convention that the sum equals 0 when n = 0). By assumption, cf. (3.21), we
have that (3.25) holds for n = 0. Assume now it holds for some n ≥ 0. By (3.19), we have

qn+1

(
h+ ε−

n∑
i=0

δi

)
≤ c′0l2n

(
qn

(
h+ ε−

n−1∑
i=0

δi

)2

+ εn

)
. (3.26)

We bound each of the two terms appearing on the right-hand side separately. By the
BTIS-inequality (1.22) and the choice of βn in (3.20),

c′0l
2
nεn ≤ (2l3n+1)−1. (3.27)

Moreover,

c′0l
2
nqn

(
h+ ε−

n−1∑
i=0

δi

)2
induction

hypothesis
≤ c′0l

−4
n

(3.24)
≤ (2l3n+1)−1. (3.28)

Substituting (3.27) and (3.28) into (3.26) yields qn+1(h+ ε−
∑n
i=0 δi) ≤ l

−3
n+1, as desired.

This completes the proof of (3.25), and thus of Lemma 3.2. �

We now complete the proof of Theorem 3.1. Let ε > 0 and (h(d))d≥3 be a sequence of
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levels such that (3.4) holds. The latter implies that

l30 q0(h(d) + ε)
(3.11)

= l30 P[D
h(d)+ε
0,0 ]

(3.10)
≤ l30 P

[ ⋃
y∈S(2)

∞ (0,L0)

{y is (h(d) + ε)-bad}
]

(3.8)
≤ cL2+3a

0 P
[(
G
h(d)+ε
0

)c] ≤ 1,

for all d ≥ c(ε), where the last step follows from the choice of L0 in (3.16) and the
assumption (3.4). By Lemma 3.2, we thus obtain

qn(h(d)) ≤ l−3
n , for all n ≥ 0 and d ≥ c(ε). (3.29)

With this estimate at hand, we now prove the assertion (3.6) by a standard planar duality
argument. Let us call a ∗-circuit around 0 any closed ∗-path γ in Z2 such that the origin
is contained in a finite connected component of Zd \ range(γ). Denoting by e1 the unit
vector in the first coordinate, we have, recalling the definition of the events Dh

n,x in
(3.10),{

0 lies in a finite cluster of {y ∈ Z2; y is h(d)-good}
}

⊆
{

0 is h(d)-bad
}
∪
{
∃ ∗-circuit of h(d)-bad vertices around 0 intersecting B(2)

∞ (0, 3L0)
}

∪
⋃
n≥0

{
∃ ∗-circuit of h(d)-bad vertices around 0 intersecting (3Ln, 3Ln+1]e1 ∩Z

}
⊆
[ ⋃
x∈B(2)

∞ (0,3L0)

(Gh(d)
y )c

]
∪
⋃
n≥0

⋃
y∈L(2)

n ∩(3Ln,3Ln+1]e1

Dh(d)
n,y .

By the choice of scales in (3.8) and (3.16), this yields, for all d ≥ c(ε),

P[0 lies in a finite cluster of {y ∈ Z2; y is h(d)-good}]

≤ cL2
0P[(G

h(d)
0 )c] +

∑
n≥0

3ln · qn(h(d))

(3.29)
≤ c′d2P[(G

h(d)
0 )c] + 3

∑
n≥0

l−2
n

≤ c′d2P[(G
h(d)+ε
0 )c] +

∑
n≥0

(c′′d)−2a(1+a)n

(3.4)
< 1,

where we have also used in the penultimate step that Gh0 is decreasing (in ϕ) and

that ln > Lan ≥ L
a(1+a)n

0 for all n ≥ 0. This completes the proof of (3.6), hence of
Theorem 3.1.

Remark 3.3. By a more careful analysis, the condition (3.4) in Theorem 3.1 can be
somewhat relaxed. Indeed, (3.5) continues to hold under the weaker assumption that

lim sup
d→∞

d2+δP[(G
h(d)+ε
0 )c] = 0, for some δ > 0

(using a choice of a in (3.7) depending on δ). However, this will not be of importance,
as our proof will show that for the relevant choice of h(d) = has(d)(1 − 8ε), with ε > 0

arbitrary (the factor of 8 is just for convenience), the above probability decays to 0 as
d→∞ faster than any polynomial, see Theorem 3.8 below. �
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3.2 Constructing substantial components

With Theorem 3.1 at hand, in order to prove the lower bound (0.10), we will check
that condition (3.4) holds at level h(d) = has(d)(1− 8ε), for arbitrary ε > 0 (the factor 8

is immaterial, and merely reflects the fact that a few more sprinkling operations will be
performed on the way). This will involve showing that H contains a giant component
above this level with sufficiently high probability, cf. (3.2). We will construct this
component by gluing together smaller building blocks, so-called substantial components,
which, by definition, have cardinality growing like a polynomial in d of sufficiently high
degree. In this subsection, we show that most vertices in H are either neighboring or
contained in such a substantial component with high probability, see Corollary 3.7 below
for the precise statement. The substantial component neighboring a given point in H will
be built as a connected subset of a (large) deterministic tree embedded in H and rooted
at this point. In particular, the “perturbative” representation of Lemma 1.3 will enable
us to show that, conditionally on an event of high probability, the law of the restriction
of E≥has(1−2ε)

ϕ to this tree dominates a Galton-Watson process (with suitable binomial
offspring distribution) on the same tree, cf. Lemma 3.5 below.

Let ε > 0. For the sake of clarity, in the remainder of this article, the dependence of
constants on ε will be kept implicit. We introduce a parameter

b = b(ε) = 1 +
11

ε
(≥ 1). (3.30)

Given K ⊂ Zd, we call C a substantial component of K if C is a connected subset of K
containing at least bdε/bcb−1 points.

Theorem 3.4. (d ≥ 3, 0 < ε < 1/3, x ∈ H)

P[a neighbor of x is contained in a

substantial component of H ∩ E≥has(1−2ε)
ϕ ] ≥ 1− ce−c

′dε .
(3.31)

Proof. By symmetry, it suffices to consider the case x = 0. We begin with some notation.
Let ε ∈ (0, 1/3). We assume without loss of generality that d ≥ b(ε) = b, with b as defined
in (3.30) (it suffices to show Theorem 3.4 for d ≥ c′, since the remaining cases can be
taken care of by adapting the constant c appearing in (3.31)), and introduce b consecutive
subsets

Ik = {(k − 1)bd/bc+ 1, . . . , kbd/bc}, 1 ≤ k ≤ b,

of {1, 2, . . . , d}. We will interpret a part of H as a tree by considering

T =
{ j∑
k=1

eik ∈ H ; 1 ≤ j ≤ b and ik ∈ Ik for all 1 ≤ k ≤ j
}
, (3.32)

where ei denotes the canonical unit vector in the i-th direction, for 1 ≤ i ≤ d. Given x ∈ T,
we refer to j in the (unique) decomposition of x =

∑j
k=1 eik , with ik ∈ Ik, 1 ≤ k ≤ j, as

the generation of x, and to the set {x + ei; i ∈ Ij+1} (understood as ∅ if j = b) as the
children of x. Thus, every vertex in T in generation smaller than b has precisely bd/bc
children, and b corresponds to the depth of T. Furthermore, it will be convenient to set
T0 = T ∪ {0}. We now show that

P[0 has a neighbor in T contained in a

substantial component of H ∩ E≥has(1−2ε)
ϕ ] ≥ 1− ce−c

′dε ,
(3.33)

for all d ≥ c, which implies (3.31). To this end, we enumerate the elements of T as a
sequence xn, 1 ≤ n ≤ |T| in a hierarchical way, i.e. such that |xn|1 ≤ |xn+1|1 for all
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1 ≤ n < |T|, and set Kn = {x1, . . . , xn−1}, for 1 ≤ n ≤ |T|. We construct the field (ϕx)x∈T
using Lemma 1.3 according to this ordering. Thus, introducing a family (ψx)x∈T of
independent random variables with

ψxn ∼ N (0, gKc
n
(xn, xn)), for all 1 ≤ n ≤ |T|,

we define the field (ϕx)x∈T in terms of (ψx)x∈T as in (1.30). Moreover, letting

c′3 = max
0≤k≤b

c(k), with c(k), k ≥ 0, as appearing in (1.14), (3.34)

we introduce the independent events M̂n = {ψxn ≥ − ε
4c′3
dhas(d)}, for 1 ≤ n ≤ |T|, and

define

Mn =

n⋂
i=1

M̂i =
{

min
x∈Kn+1

ψx ≥ −
ε

4c′3
dhas(d)

}
, for 0 ≤ n ≤ |T|, and M

def.
= M|T| (3.35)

(with the convention M0 = RZ
d

). Thus, the events Mn decrease towards M . Observing
that |T| ≤ cbd/bcb, cf. (3.32), and that Var(ψx) ≥ 1 for all x ∈ T, (1.23) yields that

P[M c] ≤ |T| · sup
x∈T

P[ψx > (4c′3)−1εdhas(d)] ≤ e−cd
2 log d,

for all d ≥ 3. Hence, by looking separately at the intersection of the event

{no neighbor of 0 in T is contained in a substantial component of H ∩ E≥has(1−2ε)
ϕ }

with M and its complement, respectively, we deduce that in order to prove (3.33), it
suffices to show that

P[0 has a neighbor in T which is contained in a

substantial component of H ∩ E≥has(1−2ε)
ϕ |M ] ≥ 1− ce−c

′dε .
(3.36)

holds for d ≥ c. We now show that, conditionally on M , the collection of variables

Yx
def.
= 1{ϕx ≥ has(1− 2ε)}, x ∈ T,

stochastically dominates a Galton-Watson chain on T with suitable (binomial) offspring
distribution. More precisely, we prove the following.

Lemma 3.5. (0 < ε < 1/3)

Let bx, x ∈ T, denote a family of independent Bernoulli variables under some auxiliary
probability measure P such that P[bx = 1] = 1−P[bx = 0] = d−(1− 3

2 ε) for x ∈ T. Then,
for all d ≥ c,

(Yx)x∈T ◦ P[ · |M ] ≥st. (bx)x∈T ◦P. (3.37)

Proof of Lemma 3.5. We begin with the following remark. From (1.30), one immediately
infers that ϕxn =

∑n
k=1 αn,kψxk , for 1 ≤ n ≤ |T|, where

αn,n = 1, αn,k =

n−1∑
l=k

pKnxn,xlαl,k, for 1 ≤ n ≤ |T| and 1 ≤ k < n,

with pKnxn,xl , 1 ≤ l < n, as defined in (1.24). We claim that

n∑
k=1

αn,k ≤ 2, for all 1 ≤ n ≤ |T| and d ≥ c. (3.38)
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Indeed,

n∑
k=1

αn,k = 1 +

n−1∑
l=1

pKnxn,xl

l∑
k=1

αl,k ≤ 1 + Pxn [HKn <∞] · sup
1≤l<n

l∑
k=1

αl,k, (3.39)

for all 1 ≤ n ≤ |T|. Since the elements of the tree T are enumerated in a hierarchical
fashion, Kn ⊂ B1(0, |xn−1|1) for all 1 < n ≤ |T|, and therefore

Pxn [HKn <∞] ≤ Pxn [H̃B1(0,|xn−1|1) <∞]
(1.14),(3.34)
≤ c′3/d (3.40)

(by construction, |z|1 ≤ b, for z ∈ T, and the depth b does not depend on d, cf. (3.30)). In
particular, this probability is less than 1/2, uniformly in n for all 1 < n ≤ |T|, whenever
d ≥ c. Inserting this into (3.39) and a trivial inductive argument yield (3.38).

We proceed with the proof of (3.37). Let

Zx = 1{ψx ≥ has(1−
3

2
ε)}, for x ∈ T.

We first aim at showing that for all d ≥ c,

the law of (Yx)x∈T under P[ · |M ], stochastically

dominates the law of (Zx)x∈T under P[ · |M ].
(3.41)

To this end, we claim that for all d ≥ c and 1 ≤ n ≤ |T|,

{ϕxn ≥ has(1− 2ε)} ⊇Mn−1 ∩ {ψxn ≥ has(1−
3

2
ε)}. (3.42)

Indeed, this is trivial for n = 1 (recall that ϕx1
= ψx1

, cf. (1.30) and M0 = RZ
d

). By
construction, for all 1 < n ≤ |T|, on the event Mn−1 ∩ {ψxn ≥ has(1− 3

2ε)},

ϕxn
(1.30)
≥ ψxn + Pxn [HKn <∞] · min

1≤i<n
ϕxi

≥ ψxn + Pxn [HKn <∞] · min
1≤i<n

[ i∑
k=1

αi,k · min
1≤l<n

ψxl
]

(3.35)
≥ has(1−

3

2
ε)− ε

4c′3
dhas · Pxn [HKn <∞] · max

1≤i<n

i∑
k=1

αi,k.

Inserting the bounds (3.38), (3.40) into the last line immediately yields that ϕxn ≥
has(1 − 2ε), for d ≥ c, and (3.42) follows. But since the sets Mn decrease towards M ,
(3.42) actually implies that,

(M ∩ {ϕxn ≥ has(1− 2ε)}) ⊇ (M ∩ {ψxn ≥ has(1−
3

2
ε)}),

for all 1 ≤ n ≤ |T| and d ≥ c, or, equivalently, that

P[Yx ≥ Zx, for all x ∈ T |M ] = 1, whenever d ≥ c.

By a classical theorem of Strassen, see [28], the existence of this monotone coupling is
equivalent to the asserted stochastic domination in (3.41).

Finally, we explain how (3.37) follows from (3.41). First, notice that by definition
of M , see (3.35), the variables Zx, x ∈ T are still (conditionally) independent under
P[ · |M ]. Next, since 1 ≤ E[ψ2

xn ] ≤ g(0) for all 1 ≤ n ≤ |T|, we can arrange that
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g̃n
def.
= g(0)/E[ψ2

xn ] ≤ (1− 2ε)/(1− 3
2ε)

2 (note that this last quantity is always greater than

1 for ε ∈ (0, 1/3)). Moreover, recalling the definition of M̂n above (3.35), we have that

P[ψxn ≥ has(1− 3
2ε)|M ] = P[ψxn ≥ has(1− 3

2ε)|M̂n]

≥ P[ψxn ≥ has(1− 3
2ε)]

(1.23)
≥ c

has(1− 3
2ε)
· d−g̃n(1− 3

2 ε)
2

≥ d−(1− 3
2 ε),

for all d ≥ c′. A standard coupling then yields that the law of (Zx)x∈T under P[ · |M ]

dominates the law of (bx)x∈T under P, for all sufficiently large d. Together with (3.41),
this implies (3.37), and thus completes the proof of Lemma 3.5. �

We continue with the proof of (3.36). We introduce, for x ∈ T0 ∩B1(0, b− 1), the variable

N(x) =
∑

i∈I|x|1+1

bx+ei ,

which can be interpreted as the number of “existing” children of x in the Galton-Watson
chain (bx)x∈T. We will need the following estimate.

Lemma 3.6. (ε ∈ (0, 1/3), d ≥ c)

P[N(x) < dε/b, for some x ∈ T0 ∩B1(0, b− 1)] ≤ e−cd
ε

. (3.43)

Proof of Lemma 3.6. Fix some x ∈ T0 ∩B1(0, b− 1) and ε ∈ (0, 1). It suffices to show that

P[N(x) < dε/b] ≤ e−cd
ε

, when d ≥ c, (3.44)

for (3.43) then follows with a simple union bound, observing that |T0| ≤ cbd/bcb. Since
N(x) is a sum of independent {0, 1}-valued random variables, a classical Chernov esti-
mate (see for example [14], Ch. 5.3, p.111) gives

P[N(x) < (1− δ)E[N(x)] ] ≤ e−
δ2E[N(x)]

2 .

Observing that E[N(x)] ≥ bdb cd
−(1− 3

2 ε) ≥ cd 3
2 ε, for all x ∈ T, this bound (with, say, δ = 1

2 )
is more than enough to deduce (3.44). �

With Lemmas 3.5 and 3.6 at hand, the claim (3.36) follows readily. First, observe that
if the event {N(x) ≥ dε/b, for all x ∈ T0 ∩B1(0, b− 1)} occurs, then the origin has a
neighbor in T0 (in fact even bdε/bc such) which belongs to a connected component of
{x ∈ T; bx = 1} containing at least

1 +

b∑
k=2

⌊dε
b

⌋k−1

≥
⌊dε
b

⌋b−1

points, i.e., a substantial component of T (recall the definition below (3.30)). Hence, we
obtain, for all d ≥ c, applying Lemmas 3.5 and 3.6,

P[0 has a neighbor in T0 which is contained in a substantial component

of H ∩ E≥has(1−2ε)
ϕ |M ]

(3.37)
≥ P[0 has a child in T0 which is contained in a substantial component

of {x ∈ T; bx = 1}]

≥ P[N(x) ≥ dε/b, for all x ∈ T0 ∩B1(0, b− 1)]
(3.43)
≥ 1− e−cdε ,

which is (3.36). The proof of Theorem 3.4 is now complete.
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For future reference, we introduce the random set

Bε ={x ∈ H; x has no neighbor in H contained

in a substantial component of H ∩ E≥has(1−2ε)
ϕ },

(3.45)

for arbitrary ε ∈ (0, 1/3), and think of the points in Bε as bad points in H. Theorem 3.4
has the following immediate

Corollary 3.7. (d ≥ 3, 0 < ε < 1/3)

P[|Bε| > |H|e−c
′
4d
ε

] ≤ ce−c
′dε . (3.46)

Proof. On account of (3.31), Chebyshev’s inequality in the form

P[|Bε| > λ] ≤ λ−1
∑
x∈H

P[x has no neighbor in H contained in a

substantial component of H ∩ E≥has(1−2ε)
ϕ ],

with λ = |H|e−c′4dε and suitable c′4 > 0, readily yields (3.46).

3.3 Connecting substantial components

In this subsection, we complete the proof of Theorem 0.3. In what follows, and in
accordance with our definition in the paragraph following (3.2), given a (random) set

K ⊂ Hx, we call any connected subset C of K satisfying |CHx | ≥ (1 − d−2)2d a giant
component of K.

We will prove Theorem 0.3 by verifying the finite-size criterion (3.4) when h(d) =

has(d)(1− 8ε), for all sufficiently small ε > 0. In order to deduce that the event Ghas(1−8ε)
0

appearing in this context (recall (3.2)) occurs with sufficiently high probability, we
will use isoperimetry considerations to patch together the substantial components of
E
≥has(1−2ε)
ϕ we have just constructed, see Corollary 3.7 above, first to form a giant

component in E
≥has(1−5ε)
ϕ ∩ H, and then to connect the latter to neighboring giant

components within E
≥has(1−8ε)
ϕ . This is the object of Theorem 3.8. The lower bound

(0.10) then follows readily, by virtue of Theorem 3.1.

Theorem 3.8. (d ≥ 3, 0 < ε < 1/3)

P[G
has(1−8ε)
0 ] ≥ 1− ce−c

′dε . (3.47)

Proof. Fix ε ∈ (0, 1/3). We start by showing

P[E≥has(1−5ε)
ϕ ∩Hx contains a giant component] ≥ 1− ce−c

′dε , (3.48)

for all d ≥ 3 and x ∈ Z2. By translation invariance, it suffices to consider the case x = 0.
We denote by S = (S1, . . . , SNsubst) (with S = ∅ if Nsubst = 0) the collection of substantial

components of H ∩ E≥has(1−2ε)
ϕ (we assume for sake of definiteness that S1, . . . , SNsubst

are enumerated according to a specified procedure, e.g. using the lexicographic order
induced by the points closest to the origin in each component). With a slight abuse of
notation, S will also be used to denote the set

⋃Nsubst

i=1 Si, but the meaning will always be
clear from the context. By definition, see (3.30), the random sets Si satisfy |Si| ≥ d10, for

all 1 ≤ i ≤ Nsubst, whenever d ≥ c, and S
H

i ∩ Sj = ∅ for all i 6= j. We define the following
set of partitions of S,

P(S) =
{
{K,K ′}; K =

⋃
i∈I

Si, K
′ =

⋃
i∈{1,...,Nsubst}\I

Si, for

some I ⊂ {1, . . . , Nsubst}, and |K| ∧ |K ′| ≥ d−4|H|
}
.

EJP 20 (2015), paper 47.
Page 32/39

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3416
http://ejp.ejpecp.org/


High-dimensional asymptotics for percolation of Gaussian free field level sets

Since the number Nsubst of substantial components of H ∩ E≥has(1−2ε)
ϕ is bounded by

d−10|H|, when d ≥ c, the (random) partition set P(S) satisfies

|P(S)| ≤ 2d
−10|H|, for all d ≥ c. (3.49)

The main step towards proving (3.48) will consist of showing that the event

H =
⋂

{K,K′}∈P(S)

{K ≥has(1−5ε)←→ K ′} (3.50)

(with the convention that H is the whole space RZ
d

whenever P(S) = ∅) occurs with
sufficiently high probability. In words, H is the event that for any partition of the
substantial components of H ∩ E≥has(1−2ε)

ϕ into two “sizeable” classes (in the sense
that the cardinality of the respective aggregate unions of substantial components is at
least d−4|H|), one can find a substantial component in each class such that the two are

connected in E≥has(1−5ε)
ϕ .

Lemma 3.9. (d ≥ 3)

P[H] ≥ 1− ce−c
′dε . (3.51)

Proof of Lemma 3.9. Let Π ⊂ 2H denote the set of singletons and nearest-neighbor edges
in H, i.e. if U ∈ Π, then either U = {x} for some x ∈ H or U = {x, y} with x, y ∈ H and
x ∼ y. For U ∈ Π, we define

GU =
{

sup
x∈U

∣∣µUcx ∣∣ < εhas

}
, (3.52)

with µU
c

x =
∑
z∈Uc Px[HUc < ∞, XHUc = z]ϕz, for x ∈ U , as in (1.25). Since a non-

vanishing contribution to the previous sum arises only from the points in ∂outU , and since
|U | ≤ 2, Lemma 2.4 applies (with ` = 4 and K,U appearing therein both equal to ∂outU

here), thus yielding
P[GcU ] ≤ e−cd log d, for all U ∈ Π, d ≥ 3. (3.53)

We also introduce the (good) event

G = {|Bε| ≤ |H|e−c
′
4d
ε

} ∩
⋂
U∈Π

GU , (3.54)

(recall (3.45) for the definition of Bε). On account of (3.46) and (3.53), a union bound
yields, for all d ≥ 3,

P[Gc] ≤ ce−c
′dε + (1 + d)|H| · e−c

′′d log d ≤ c′′′e−c
′dε . (3.55)

It will be convenient to specify configurations of the level set above has(1 − 2ε) in the

hypercube. Thus, given K+ ⊂ H, we abbreviate C(K+) = {E≥has(1−2ε)
ϕ ∩H = K+}, and

write

P[Hc] ≤ P[Gc] +
∑
K+⊂H

P[G, Hc, C(K+)]

(3.50)
≤ P[Gc] +

∑
K+⊂H

|P(SK+
)| sup
{K,K′}∈P(SK+

)

P[G,K = K ′ in E≥has(1−5ε)
ϕ , C(K+)]

(3.49)
≤ P[Gc] + 2d

−10|H| sup
K+⊂H

sup
{K,K′}∈P(SK+

)

P[G,K = K ′ in E≥has(1−5ε)
ϕ | C(K+)],

(3.56)
for all d ≥ c, where the set SK+

in the second and third line refers to the (deterministic)
family of substantial components associated to the configuration C(K+). In order to
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bound the conditional probability appearing on the right-hand side of (3.56), we rely
on isoperimetry considerations for subsets of the hypercube by Bollobás and Leader
[5]. Thus, let K+ ⊂ H be such that P(SK+

) is non-empty and {K,K ′} ∈ P(SK+
) be fixed.

First, observe that Bε is a deterministic set under P[ · | C(K+)]. By construction,

Bε ∪K
H ∪K ′H = H and K ∩K ′H = K ′ ∩KH

= ∅ (3.57)

(recall that K
H

denotes the `1-closure of K in H). Moreover, by definition of P(SK+),
and on the event G, cf. (3.54),

|K| ∧ |K ′| ≥ d−4|H| and |Bε| ≤ e−c
′
4d
ε

|H|. (3.58)

On account of (3.57) and (3.58), Lemma 4.3 in [31] (itself a consequence of Corollary 4
in [5]) yields that for all d ≥ c,

there exist disjoint subsets U ′1, . . . , U
′
m′ in Π ∩ (H \Bε) with m′ ≥ cd−6|H|

such that for all 1 ≤ k ≤ m′, either U ′k = {yk} with yk ∈ ∂outK ∩ ∂outK
′,

or U ′k = {yk, zk} with yk ∈ ∂outK, zk ∈ ∂outK
′ (and |yk − zk|1 = 1).

(3.59)

Among the family U ′k, 1 ≤ k ≤ m′, we may select m ≥ cd−7|H| sets U1, . . . , Um satisfying
the additional assumption

d1(Uk, Ul) ≥ 2, for all 1 ≤ k < l ≤ m. (3.60)

Now, if the event G ∩ {K = K ′ in E≥has(1−5ε)
ϕ } occurs (conditionally on C(K+)), then by

construction, the field value in at least one of the sites in each set Uk cannot exceed
has(1− 5ε), for otherwise Uk forms a path connecting K to K ′ in the level set E≥has(1−5ε)

ϕ ,
cf. (3.59). Thus, setting Fk =

⋃
y∈Uk{ϕy < has(1− 5ε)}, for 1 ≤ k ≤ m, and G̃ =

⋂m
k=1 GUk ,

which contains G, see (3.54), we obtain, for all d ≥ c,

P[G,K = K ′ in E≥has(1−5ε)
ϕ | C(K+)]

≤ P[G̃,Fk, 1 ≤ k ≤ m | C(K+)]

=
( m∏
k=1

P[Fk | G̃, Fl, k < l ≤ m, C(K+)]
)
· P[G̃ | C(K+)].

(3.61)

Next, we consider a single factor P[Fk | G̃, Fl, k < l ≤ m, C(K+)] in this product, and
show that it doesn’t converge too rapidly (in terms of d) to 1 as d→∞. By definition of
GUk , cf. (3.52), and on account of (3.60), the event G̃ is measurable with respect to the
σ-algebra generated by ϕz, z ∈ H \

(⋃
1≤k≤m Uk

)
, (recall that H denotes the `1-closure

of H), hence for every 1 ≤ k ≤ m,

Dk = {G̃,Fl, k < l ≤ m,ϕ|K+
≥ has(1− 2ε), ϕ|H\(K+∪Uk)

< has(1− 2ε)} ∈ σ(ϕz; z ∈ H \ Uk)

(here and in what follows, we use the shorthand {ϕ|K ∈ B} =
⋂
x∈K{ϕx ∈ B}, for any

Borel set B ⊂ R and K ⊂ Zd). Since all elements y ∈ Uk lie on the exterior boundary of
a substantial component of E≥has(1−2ε)

ϕ , we necessarily have that ϕy < has(1− 2ε). Thus,
for all 1 ≤ k ≤ m,

P[Fk | G̃,Fl, k < l ≤ m, C(K+)] = 1−
P[P[ϕ|Uk < has(1− 2ε),Fck | (ϕx)x∈H\Uk ], Dk]

P[P[ϕ|Uk < has(1− 2ε) | (ϕx)x∈H\Uk ], Dk]
.

Recall from (1.28) that P[ · | (ϕx)x∈Zd\Uk ] = P̃[ϕ̃k + µU
c
k ∈ · ], where we have abbreviated

ϕ̃U
c
k by ϕ̃k, which we view as a 2-dimensional Gaussian vector with covariance gUk(·, ·)
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under P̃. Thus, by definition of the event GUk in (3.52), we obtain, for all 1 ≤ k ≤ m, all
decreasing events A ⊂ {0, 1}Uk and h ∈ R, that P-a.s. on GUk ,

P̃[Ah−εhas(ϕ̃k)] ≤ P̃[Ah(ϕ̃k + |µU
c
k |)]

≤ P[Ah | (ϕx)x∈Zd\Uk ] ≤ P̃[Ah(ϕ̃k − |µU
c
k |)] ≤ P̃[Ah+εhas(ϕ̃k)]

(cf. (1.18) for notation). We apply this separately to the numerator and denominator
above. To do this, we note that Dk ⊂ G̃ ⊂ GUk , for all 1 ≤ k ≤ m, and that, despite not
being decreasing, the event {ϕ|Uk < has(1−2ε)}∩Fck = {has(1−5ε) ≤ ϕ|Uk < has(1−2ε)}
appearing in the numerator can be rewritten using 1{ϕ|Uk ∈ [h, h′)} = 1{ϕ|Uk < h′} −
1{
⋃
y∈Uk{ϕ|Uk < h}}, for all h < h′ (the events appearing on the right-hand side are both

decreasing). All in all, we infer, setting a = has(1− 4ε) and b = has(1− 3ε), that

P[Fk | G̃,Fl, k < l ≤ m, C(K+)] ≤ 1− P̃[ϕ̃k ∈ [a, b)] · P[Dk]

P̃[ϕ̃k < has(1− ε)] · P[Dk]

≤ 1− P̃[ϕ̃k ∈ [a, b)],

(3.62)

for all 1 ≤ k ≤ m (in writing P̃[ϕ̃k ∈ [a, b)], we obviously mean that both components of
ϕ̃k should lie in [a, b)). Moreover, letting Uk = {yk, zk}, and denoting by Φ the distribution
function of a standard Gaussian variable, we can bound this probability as

P̃[ϕ̃k ∈ [a, b)] = P̃
[
P̃[a < ϕ̃kyk < b | ϕ̃kzk ], a < ϕ̃kzk < b

]
= Ẽ

[(
Φ
(
b− 1

2d
ϕ̃kzk

)
− Φ

(
a− 1

2d
ϕ̃kzk

))
1{a < ϕ̃kzk < b}

]
≥ (Φ(b)− Φ(a)) · P̃[a < ϕ̃kzk < b] ≥ c

(
(b− a)e−b

2/2
)2 ≥ c′h2

as d
−2 ≥ d−2,

for all d ≥ c and 1 ≤ k ≤ m (here, the first inequality in the third line follows because
the linear shift 1

2d ϕ̃
k
zk

produced by conditioning on ϕ̃kzk is in fact between, say, 0 and 1,
when d is large enough, since ϕ̃hzk ∈ [a, b), while a, b → ∞ as d → ∞). Inserting this
bound into (3.62), and in view of (3.53), (3.61), we obtain, for all d ≥ c, K+ ⊂ H and
{K,K ′} ∈ P(SK+

),

P[G,K = K ′ in E≥has(1−3ε)
ϕ | C(K+)] ≤ (1− d−2)cd

−7|H| ≤ 2−cd
−9|H|,

where we have also used that m as appearing in (3.61) is bounded from below by cd−7|H|,
cf. above (3.60). Finally, going back to (3.56), and on account of (3.55), we see that
P[Hc] ≤ ce−c

′dε , for all d ≥ c′′, and thus for all d ≥ 3 by adjusting the constant c. This
completes the proof of Lemma 3.9. �

As we will now see, (3.48) follows from Lemma 3.9 by virtue of a counting argument.
Specifically, it suffices to show that for all d ≥ c,

(H ∩ {|Bε| ≤ |H|e−c
′
4d
ε

}) ⊆ {E≥has(1−5ε)
ϕ ∩H contains a giant component}, (3.63)

which, on account of (3.46) and (3.51), implies (3.48). We now show (3.63). Recall that
S1, . . . , SNsubst are the (ordered) substantial components of E≥has(1−2ε)

ϕ ∩H, and denote
their union by S. By definition of Bε, cf. (3.45),

|S| = |SH| − |∂outS ∩H| ≥ |H \Bε| − d|S|,

and therefore certainly

|S| ≥ 4d−4|H|, on the event {|Bε| ≤ |H|e−c
′
4d
ε

}, for d ≥ c. (3.64)
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Consider the equivalence relation ∼ on the set {1, . . . , Nsubst} defined as i ∼ j if and only

if {Si
≥has(1−5ε)←→ Sj}, and let π be the (random) partition of {1, . . . , Nsubst} induced by its

equivalence classes. Denoting by Jmax the equivalence class maximizing the quantity∣∣∣⋃j∈J Sj∣∣∣, for J ∈ π, we claim that on the event H ∩ {|Bε| ≤ |H|e−c
′
4d
ε} and for d ≥ c,∣∣∣ ⋃

j∈Jmax

Sj

∣∣∣ ≥ d−4|H|, (3.65)∣∣∣ ⋃
j∈{1,...,Nsubst}\Jmax

Sj

∣∣∣ < d−4|H|. (3.66)

Indeed, if (3.65) did not hold, i.e.
∣∣∣⋃j∈J Sj∣∣∣ < d−4|H| for all J ∈ π, on account of (3.64),

one could easily construct a set I ⊂ {1, . . . , Nsubst} obtained as union of some of the

sets J ∈ π with the property d−4|H| ≤
∣∣∣⋃i∈I Si∣∣∣ < 2d−4|H|. But by (3.64), this would

yield, setting K =
⋃
i∈I Si, K

′ =
⋃
i∈{1,...,Nsubst}\I Si, that {K,K ′} ∈ P(S). Because H is

assumed to occur, this would imply that one could find substantial components S and S′

belonging to K and K ′ respectively, such that {S ≥has(1−5ε)←→ S′}, thus contradicting the
definition of ∼ (observe that by construction, S and S′ belong to different equivalence
classes). Hence (3.65) holds. Similarly, (3.65) implies (3.66), for the joint occurrence
of H, (3.65) and {

∣∣⋃
j∈{1,...,Nsubst}\Jmax

Sj
∣∣ ≥ d−4|H|} would also violate the definition of ∼.

Having established (3.65) and (3.66), we observe that on H ∩ {|Bε| ≤ |H|e−c
′
4d
ε} and for

d ≥ c, ∣∣∣ ⋃
j∈Jmax

Sj
H∣∣∣ ≥ |H| − |Bε| − ∣∣∣ ⋃

j∈{1,...,Nsubst}\Jmax

Sj
H∣∣∣

≥ |H| − |H|e−c
′
4d
ε

− d−3|H|
≥ |H|(1− d−2).

Thus, on the event H ∩ {|Bε| ≤ |H|e−c
′
4d
ε} and for d ≥ c, the set C =

⋃
j∈Jmax

Sj forms a

connected component of E≥has(1−5ε)
ϕ ∩H with |C| ≥ |H|(1− d−2). By definition, cf. (3.2),

it is therefore a giant component of E≥has(1−5ε)
ϕ ∩H. This yields (3.63), which completes

the proof of (3.48) (for x = 0, and thus all x ∈ Z2 by translation invariance).

With (3.48) at hand, we proceed with the proof of (3.47), which is similar, but simpler.
For x ∈ Z2, we denote by Cx the giant component of E≥has(1−5ε)

ϕ ∩Hx, cf. (3.1), whenever
it exists. By (3.2),

P[(G
has(1−5ε)
0 )c] ≤

∑
x∈Z2:|x|1≤1

(P[Cx does not exist]

+ P[C0, Cx exist and C0 = Cx in E≥has(1−8ε)
ϕ ]).

On account of (3.48), it thus suffices to prove that for all d ≥ 3 and x ∈ Z2 with |x|1 = 1,

P[C0, Cx exist and C0 = Cx in E≥has(1−8ε)
ϕ ] ≤ ce−c

′dε . (3.67)

For arbitrary x ∈ Z2 with |x|1 = 1, let Πx denote the singletons and nearest-neighbor

edges in x+{0, 1}Zd , and denote by Ĝ =
⋂
U∈Πx

{supx∈U |µU
c

x | < εhas}, with µU
c

x as defined

in (1.25). As in (3.55), we have P[Ĝc] ≤ ce−c′dε . Thus, we see that (3.67) follows at once
if we show that

sup
K+⊂(H∪Hx)

P[Ĝ, C0 and Cx exist and C0 = Cx in E≥has(1−8ε)
ϕ | Ĉ(K+)] ≤ ce−c

′dε , (3.68)
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for all d ≥ 3, where Ĉ(K+) = {E≥has(1−5ε)
ϕ ∩ (H∪Hx) = K+} specifies the configuration of

E
≥has(1−5ε)
ϕ in H ∪Hx. Fix x ∈ Z2 with |x|1 = 1 and K+ ⊂ H ∪Hx. Letting x+ {0, 1}Zd =

H0 ∪H1, with H0 = (x+ {0, 1}Zd) ∩H, H1 = (x+ {0, 1}Zd) ∩Hx, cf. (3.1), observe that,

whenever C0 and Cx exist, the (disjoint) sets H0 \CH0 and H1 \CHxx each contain at most
d−2|H| elements. Moreover, the joint occurrence of C0 and Cx implies immediately that
for all d ≥ 3,

there exist disjoint sets Uk = {yk, zk} ⊂ (x+ {0, 1}Z
d

), for 1 ≤ k ≤ m,

with m ≥ cd−1(|H|/2− 2d−2|H|) (≥ c′d−1|H|), and such that

xk ∈ C
H

0 ∩H1, yk ∈ C
Hx
x ∩H2, |xk − yk|1 = 1, for all 1 ≤ k ≤ m

and d1(Uk, Ul) ≥ 2 for 1 ≤ k < l ≤ m.

(3.69)

For Uk not to form a path joining C0 and Cx in the level set E≥has(1−8ε)
ϕ , at least one

of the two sites in Uk must have a field value smaller than has(1 − 8ε), i.e. setting
F̂k =

⋃
y∈Uk{ϕy < has(1− 8ε)}, we obtain

P[Ĝ, C0 and Cx exist and C0 = Cx in E≥has(1−8ε)
ϕ | Ĉ(K+)]

≤ P[Ĝ, F̂k, 1 ≤ k ≤ m | Ĉ(K+)].

Now, on account of (3.69), an analysis similar to the one below (3.61) yields that this last
quantity is bounded from above by 2−cd

−3|H|, for all d ≥ c, which is more than enough to
deduce (3.68). This completes the proof of Theorem 3.8.

We now conclude the proof of the lower bound.

Proof of Theorem 0.3. Let ε ∈ (0, 1/3). It follows from Theorem 3.8 that P[G
has(1−8ε)
0 ] ≥

1 − ce−c
′dε , for all d ≥ 3. In particular, lim supd→∞ d2+(3/10)P[(G

has(1−8ε)
0 )c] = 0, and

Theorem 3.1 yields that h∗(d) ≥ has(d)(1 − 9ε), for all d ≥ c (= c(ε)). The claim (0.10)
follows. Moreover, by construction, cf. (3.3), percolation then occurs in H+Z2, which
implies (0.11). �

Proof of Theorem 0.1. The claim (0.7) is a direct consequence of (1.23) and the fact that
h∗(d) = has(d)(1 + o(1)) as d→∞, which follows immediately from (0.9) and (0.10). �

Remark 3.10.

1) A thorough review of the proofs reveals that the long-range dependence present in
the model is a serious impediment and considerably hinders any efforts to obtain more
precise results than the leading exponential order given by Theorem 0.1.
2) The heuristic paradigm requiring for this model to exhibit strong similarities to
a corresponding one on the (2d)-regular tree is evidently inherent to many of the
above proofs. Specifically, this behavior manifests itself when we investigate the local
connectivity of the level set, essentially because the “tree-like” structure of the lattice
determines the behavior of the random walk at short range, see the proofs of Lemma 2.4
and Theorem 2.5 (which crucially rely on (1.14)) for the upper bound, and the proof of
Theorem 3.4 for the lower bound. Accordingly, we would like to compare (0.7) to the
critical density of the same model on this tree. We hope to come back to this point in the
future. �

Note added in proof: a recent preprint of Lupu [18], see Theorem 3 therein, shows that
for any u > 0, there exists a coupling between random interlacements Iu at level u, see
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[29] for the definition, and the free field ϕ such that E≥
√

2u
ϕ ⊆ Vu, where Vu = Zd \ Iu is

the so-called vacant set (at level u). In particular, this readily implies that h∗ ≤
√

2u∗,
where u∗ denotes the critical parameter for interlacement percolation. Together with
our lower bound (0.10), this shows that lim infd→∞ u∗(d)/ log(d) ≥ 1, which matches
precisely the lower bound obtained by Sznitman in [31], and thus provides an alternative
proof of this result. Similarly, the inequality h∗∗ ≤

√
2u∗∗ and Sznitman’s asymptotic

upper bound on u∗∗, cf. [32], Theorem 0.1 and Remark 4.1, yield another proof of (0.9).
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