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Abstract

We construct and describe the extremal process for variable speed branching Brown-
ian motion, studied recently by Fang and Zeitouni, for the case of piecewise constant
speeds; in fact for simplicity we concentrate on the case when the speed is σ1 for
s ≤ bt and σ2 when bt ≤ s ≤ t. In the case σ1 > σ2, the process is the concatenation
of two BBM extremal processes, as expected. In the case σ1 < σ2, a new family of
cluster point processes arises, that are similar, but distinctively different from the
BBM process. Our proofs follow the strategy of Arguin, Bovier, and Kistler.
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1 Introduction

A standard branching Brownian motion (BBM) is a continuous-time Markov branch-
ing process that is constructed as follows: start with a single particle which performs a
standard Brownian motion x(t) with x(0) = 0 and continues for a standard exponentially
distributed holding time T , independent of x. At time T , the particle splits indepen-
dently of x and T into k offspring with probability pk, where

∑∞
i=1 pk = 1,

∑∞
k=1 kpk = 2

and K =
∑∞
k=1 k(k − 1)pk < ∞. These particles continue along independent Brownian

paths starting from x(T ) and are subject to the same splitting rule. And so on.
Branching Brownian motion has received a lot of attention over the last decades,

with a strong focus on the properties of extremal particles. We mention the seminal
contributions of McKean [18], Bramson, Lalley and Sellke, and Chauvin and Rouault
[7, 6, 15, 8] on the connection to the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP)
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Two speed branching Brownian motion

equation and on the distribution of the rescaled maximum. In recent years, their has
been a revival of interest in BBM with numerous contributions, including the construc-
tion of the full extremal process [3, 1]. For a review of these developments see, e.g.,
the recent survey by Guéré [13].

BBM can be seen as a Gaussian process with covariances depending on an ultramet-
ric distance, in this case the ultrametric associated to the genealogical structure of an
underlying Galton-Watson process. In that respect it is closely related to another class
of Gaussian processes, the Generalised Random Energy Models (GREM) introduced by
Derrida and Gardner [12]. While in BBM the covariance of the process is a linear func-
tion of the ultrametric distance, in the GREM one considers more general functions.
One of the reasons that makes BBM interesting in this context is the fact that the linear
function appears as a borderline where the correlation starts to modify the behaviour
of extremes [4, 5].

In the context of BBM, different covariances can be achieved by varying the speed
(i.e. diffusivity) of the Brownian motions as a function of time (see also [5]). This model
was introduced by Derrida and Spohn [9] and has recently been investigated by Fang
and Zeitouni [11, 10], see also [16, 17]. The entire family of models obtained as time
changes of BBM is a splendid test ground to further develop the theory of extremes
of correlated random variables. Understanding fully the possible extremal processes
that arise in this class should also provide us with candidate processes for even wider
classes of random structures.

1.1 Results

In [11], Fang and Zeitouni showed that in the case when the covariance is a piece-
wise linear function, the maximum of BBM is tight and behaves as expected from the
analogous GREM. In this paper we refine and extend their analysis: we obtain the pre-
cise law of the maximum, and we give the full characterisation of the extremal process.

For simplicity we consider the following variable speed BBM. Fix a time t. Then we
consider the BBM model where at time s, all particles move independently as Brownian
motions with variance

σ2(s) =

{
σ2

1 0 ≤ s < bt

σ2
2 t ≤ s ≤ t , 0 < b ≤ 1. (1.1)

We normalise the total variance by assuming

σ2
1b+ σ2

2(1− b) = 1. (1.2)

Note that in the case b = 1, σ2 =∞ is allowed.
We denote by n(s) the number of particles at time s and by {xi(s); 1 ≤ i ≤ n(s)} the

positions of the particles at time s.

Remark 1.1. Strictly speaking, we are not talking about a single stochastic process,
but about a family {xk(s), k ≤ n(s)}t∈R+

s≤t of processes with finite time horizon, indexed
by that horizon, t.

In this case, Fang and Zeitouni [10] showed that

max
k≤n(t)

xk(t) =

{√
2t− 1

2
√

2
log t+O(1), if σ1 < σ2,√

2t(bσ1 + (1− b)σ2)− 3
2
√

2
(σ1 + σ2) log t+O(1), if σ1 > σ2.

(1.3)

The second case has a simple interpretation: the maximum is achieved by adding to
the maxima of BBM at time bt the maxima of their offspring at time (1 − b)t later. The
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Two speed branching Brownian motion

first case looks simpler even, but is far more interesting. The order of the maximum is
that of the REM, a fact to be expected by the corresponding results in the GREM (see
[12, 4]). But what is the law of the rescaled maximum and what is the corresponding
extremal process? The purpose of this paper is primarily to answer this question.

For standard BBM, x̄(t), (i.e. σ1 = σ2), Bramson [7] and Lalley and Sellke [15] show
that

lim
t↑∞

P

(
max
k≤n(t)

x̄k(t)−m(t) ≤ y
)

= ω(x) = Ee−CZe
−
√

2y

, (1.4)

where m(t) ≡
√

2t− 3
2
√

2
log t, Z is a random variable, the limit of the so called derivative

martingale, and C is a constant.
In [3] (see also [1] for a different proof) it was shown that the extremal process,

lim
t↑∞
Ẽt ≡ lim

t↑∞

n(t)∑
k=1

δx̄k(t)−m(t) = Ẽ , (1.5)

exists in law, and Ẽ is of the form

Ẽ =
∑
k,j

δ
ηk+∆

(k)
j
, (1.6)

where ηk is the k-th atom of a mixture of Poisson point process with intensity mea-
sure CZe−

√
2ydy, with C and Z as before, and ∆

(k)
i are the atoms of independent and

identically distributed point processes ∆(k), which are the limits in law of∑
j≤n(t)

δx̃i(t)−maxj≤n(t) x̃j(t), (1.7)

where x̃(t) is BBM conditioned on maxj≤n(t) x̃j(t) ≥
√

2t.
The main result of the present paper is similar but different.

Theorem 1.2. Let xk(t) be branching Brownian motion with variable speed σ2(s) as
given in (1.1). Assume that σ1 < σ2. Then

(i)

lim
t↑∞

P

(
max
k≤n(t)

xk(t)− m̃(t) ≤ y
)

= Ee−C
′Y e−

√
2y

, (1.8)

where m̃(t) =
√

2t − 1
2
√

2
log t, C ′ is a constant and Y is a random variable that is

the limit of a martingale (but different from Z!).

(ii) The point process
Et ≡

∑
k≤n(t)

δxk(t)−m̃(t) → E , (1.9)

as t ↑ ∞, in law, where
E =

∑
k,j

δ
ηk+σ2Λ

(k)
j
, (1.10)

where ηk is the k-th atom of a mixture of Poisson point process with intensity mea-
sure C ′Y e−

√
2ydy, with C ′ and Y as in (i), and Λ

(k)
i are the atoms of independent

and identically distributed point processes Λ(k), which are the limits in law of∑
j≤n(t)

δx̃i(t)−maxj≤n(t) x̃j(t), (1.11)

where x̃(t) is BBM of speed 1 conditioned on maxj≤n(t) x̃j(t) ≥
√

2σ2t.
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Two speed branching Brownian motion

To complete the picture, we give the result for the limiting extremal process in the
case σ1 > σ2. This result is much simpler and totally unsurprising.

Theorem 1.3. Let xk(t) be as in Theorem 1.1, but σ2 < σ1. Let Ẽ ≡ Ẽ0 and Ẽ(i), i ∈ N
be independent copies of the extremal process (1.6) of standard branching Brownian
motion. Let

m(t) ≡
√

2t(bσ1 + (1− b)σ2)− 3

2
√

2
(σ1 + σ2) log t− 3

2
√

2
(σ1 log b+ σ2 log(1− b)), (1.12)

and set
Et ≡

∑
k≤n(t)

δxk(t)−m(t). (1.13)

Then
lim
t↑∞
Et = E , (1.14)

exists in law, and
E =

∑
i,j

δ
σ1ei+σ2e

(i)
j
, (1.15)

where ei, e
(i)
j are the atoms of the point processes Ẽ and Ẽ(i), respectively.

Remark 1.4. In the case σ1 < 1, we see that the limiting process depends only on the
values of σ1 (through the martingale Y ) and on σ2 (through the processes of clusters
σ2Λ(k)). As σ2 grows, the clusters become spread out, and in the limit σ2 = ∞, the
cluster processes degenerate to the Dirac mass at zero. Hence, in that case the extremal
process is just a mixture of Poisson point processes. When σ1 = 0, and b > 0, the
martingale limit is just an exponential random variable, the limit of the martingale
n(t)e−t. The case b = 1, σ1 = 0 corresponds to the random REM, where there is just a
random number of iid random variables of variance one present.

Remark 1.5. We have decided to write this paper only for the case of two speeds. It
is fairly straightforward to extend our results to the general case of piecewise constant
speed with a fixed number of change points. The details will be presented in a separate
paper [14]. The general case of variable speed still offers more challenges, in spite of
recent progress [16, 17].

1.2 Outline of the proof

The proof of our result follows the strategy used in [3]. The main difference is that
we show that particles that will reach the level of the extremes at time t must, at the
time of the speed change, tb, lie in a

√
t-neighbourhood of a value

√
2(σ2−1)bt below the

straight line of slope
√

2. This is the done in Section 2. Then two pieces of information
are needed: in Section 3 we get precise bounds on the probabilities of BBM to reach
values at excessively large heights, and more generally we control the behaviour of so-
lutions of the F-KPP equations very much ahead of the travelling wave front. The final
results comes from combining this information with the precise distribution of particles
at the time of the speed change. This is done in Section 4 by proving the convergence
of a certain martingale, analogous, but distinct from the derivative martingale that
appears in normal BBM. The identification and the proof of L1 convergence of this mar-
tingale is the key idea. Using this information in Sections 5 and 6, the convergence of
the maximums, respectively the Laplace functional of the extremal process are proven,
much along the lines on [3]. Section 7 provides various characterisations of the limit-
ing process, as in [3]. In particular, we describe the extremal process in terms of an
auxiliary process, constructed from a Poisson point process with a strange intensity to
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Two speed branching Brownian motion

those atoms we add BBM’s with negative drift. Interestingly, the process of the cluster
extremes of this auxiliary process is again Poisson with random intensity driven by the
new martingale. The results stated above follow then from looking at the clusters from
their maximal points. In the final Section 8, we give the simple proof of Theorem 1.3

2 Localisation of paths

The key to understanding the behaviour of the two speed BBM is to control the
positions of particle at time bt which are in the top at time t. This is done using Gaussian
estimates.

Proposition 2.1. Let σ1 < σ2. For any d ∈ R and any ε > 0, there exists a constant
A > 0 such that for all t large enough

P
[
∃j≤n(t) s.t. xj(t) > m̃(t)− d and xj(bt)−

√
2σ2

1bt 6∈ [−A
√
t, A
√
t]
]
≤ ε. (2.1)

Proof. Using a first order Chebyshev inequality we bound (2.1) by

etE
[
1{σ1

√
btw1−

√
2σ2

1bt6∈[−A
√
t,A
√
t]}Pw2

(
σ2

√
(1− b)tw2 > m̃(t)− d− σ1

√
btw1

)]
= etE

[
1{w1−

√
2σ1

√
bt6∈[−A′,A′]}Pw2

(
w2 >

√
2t−σ1

√
bw1

σ2

√
1−b − log t

2
√

2σ2

√
(1−b)t

− d

σ2

√
(1−b)t

)]
≡ (R1) + (R2), (2.2)

where w1, w2 are independent N (0, 1)-distributed, A′ = 1√
bσ1

A, Pw2 denotes the law of
the variable w2. Introducing into the last line the identity in the form

1 = 1{
√

2t−σ1

√
bw1<log t} + 1{

√
2t−σ1

√
bw1≥log t} (2.3)

we can write it as (R1) + (R2).
We first show limt→∞(R1) = 0. Using the standard Gaussian tail estimate∫ ∞

u

e−x
2/2dx ≤ u−1e−u

2/2, (2.4)

(R1) is bounded from above by

etP
[√

2t− σ1

√
bw1 < log t

]
≤ et(1−1/bσ2

1)+t1/2 log t/bσ2
1 → 0 as t→∞. (2.5)

For (R2) we can use again (2.4) to show that (R2) is smaller than

et(2π)−1

∫
w−
√

2σ1
√
bt 6∈[−A′,+A′]√

2t−σ1
√
bw1≥log t

e−w
2/2

√
2t√

1−bσ2
− σ1

√
b

σ2

√
1−bw

(2.6)

× exp

(
− 1

2

(√
2t−σ1

√
bw−log t/(2

√
2
√
t)−d/

√
t√

1−bσ2

)2
)

dw.

We change variables w =
√

2σ1

√
bt+ z. Then the integral in (2.6) can be bounded from

above by
M√

2πσ2
2(1− b)

∫
z 6∈[−A′,A′]

e
− z2

2σ2
2(1−b) dz, (2.7)

where M is some positive constant. (2.7) can be made as small as desired by taking A

(and thus A′) sufficiently large.
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Two speed branching Brownian motion

Remark 2.2. The point here is that since σ2
1 < σ1, these particles are way below

maxk≤n(bt) xk(bt), which is near
√

2σ1bt. The offspring of these particles that want to be

top at time will have to race much faster (at speed
√

2σ2
2, rather than just

√
2σ2) than

normal. Fortunately, there are lots of particles to choose from. We will have to control
precisely how many.

We need a slightly finer control on the path of the extremal particle until the time
of speed change. To this end we define two sets on the space of paths, X : R+ → R,
The first controls that the position of the path is in a certain tube up to time s and the
second the position of the particle at time s.

Ts,r =
{
X
∣∣∀0≤q≤s|X(q)− q

sX(s)| ≤ ((q ∧ (s− q)) ∨ r)γ
}

Gs,A,γ =
{
X
∣∣X(s)−

√
2σ2

1s ∈ [−Asγ ,+Asγ ]
}

(2.8)

Recall [7] that the ancestral path form 0 to xk(s) can be written as xk(q) = q
sxk(s)+zk(s),

where zk is a Brownian bridge from 0 to 0 in time s, independent of xk(s). We need the
following simple fact about Brownian bridges.

Lemma 2.3. Let z(q) be a Brownian bridge starting in zero and ending in zero at time
s. Then for all γ > 1/2, the following is true. For all ε > 0 there exists r such that

lim
s↑∞

P (|z(q)| < ((q ∧ (s− q)) ∨ r)γ ,∀ 0 ≤ q ≤ s) > 1− ε. (2.9)

Proposition 2.4. Let σ1 < σ2. For any d ∈ R, A > 0 , γ > 1
2 and any ε > 0, there exists

constants B > 0 such that, for all t large enough,

P
[
∃j≤n(t) : xj(t) > m̃(t)− d ∧ xj ∈ Gbt,A, 12 ∧ xj 6∈ Gb

√
t,B,γ

]
≤ ε. (2.10)

Proof. For B and t sufficiently large the probability in (2.10) is bounded from above by

P
[
∃j≤n(t) : xj(t) > m̃(t)− d ∧ xj ∈ Gbt,A, 12 ∧ xj 6∈ Tbt,r

]
(2.11)

Let w1 and w2 be independent N (0, 1)-distributed random variables and z a Brownian
bridge starting in zero and ending in zero at time bt. Using a first moment method as
in the proof of Proposition 2.1 together with the independence of the Brownian bridge
from its endpoint, one sees that (2.11) is bounded from above by

etE
[
1{σ1

√
btw1−

√
2σ2

1bt∈[−A
√
t,A
√
t]}Pw2

(
σ2

√
(1− b)tw2 > m̃(t)− d− σ1

√
btw1

)]
×P [z 6∈ Tbt,r] < ε, (2.12)

where the last bound follows from Lemma 2.3 (with ε replaced by ε/M ) and the bound
(2.7) obtained in the proof of Proposition 2.1.

Proposition 2.5. Let σ1 < σ2. For any d ∈ R, A,B > 0, γ > 1
2 and any ε > 0, there

exists a constant r > 0 such that for all t large enough

P
[
∃j≤n(t) : xj(t) > m̃(t)− d ∧ xj ∈ Gbt,A, 12 ∩ Gb

√
t,B,γ

∧xj(b
√
t+ ·)− xj(b

√
t) 6∈ Tb(t−√t),r

]
≤ ε. (2.13)

Proof. The proof of this proposition is essentially identical to the proof of Proposition
2.4.
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3 Asymptotic behaviour of BBM

Let x̃(t) denote a standard BBM. We are interested in the asymptotic behavior of

P

[
max

1≤i≤n(t)
x̄i(t) > x+

√
2t

]
(3.1)

for x = at+ b
√
t, a ∈ R+, b ∈ R. Recall that P

(
maxk≤n(t) x̄k(t) > x

)
is the solution of the

F-KPP equation

∂tu(t, x) =
1

2
∂2
xu(t, x) + (1− u(t, x))−

∞∑
k=1

pk(1− u(t, x))k. (3.2)

with initial condition u(0, x) = 1x<0. We are more generally interested in the behaviour
of solutions for such large values of x. The following proposition is an extension of
Lemma 4.5 in [3] for these values of x.

Proposition 3.1. Let u be a solution to the F-KPP equation with initial data satisfying
(i) 0 ≤ u(0, x) ≤ 1;

(ii) for some h > 0, lim supt→∞
1
t log

∫ t(1+h)

t
u(0, y)dy ≤ −

√
2;

(iii) for some v > 0, M > 0, N > 0, it holds that
∫ x+N

x
u(0, y)dy > v for all x ≤ −M ;

(iv) moreover,
∫∞

0
u(0, y)ye2ydy <∞.

Then we have for x = at+ o(t)

lim
t→∞

e
√

2xex
2/2tt1/2u(t, x+

√
2t) = C(a), (3.3)

where C(a) is a strictly positive constant. The convergence is uniform for a in compact
intervals.

Define for r > 0 the function Ψ(r, t, x+
√

2t) by

Ψ(r, t, x+
√

2t) = (3.4)

e−
√

2x√
2π(t− r)

∫ ∞
0

u(r, y +
√

2r)e
√

2ye−
(y−x)2

2(t−r)

1− e
−2y

(
x+ 3

2
√

2
log t

t−r

)dy.

Lemma 3.2. For x = at+ o(t) we have, under the assumptions of Proposition 3.1,

lim
t→∞

e
√

2xex
2/2tt1/2Ψ(r, t, x+

√
2t) (3.5)

=
1√
2π

∫ ∞
0

e−a
2r/2u(r, y +

√
2r)e(

√
2+a)y

(
1− e−2ay

)
dy ≡ C(r, a).

The convergence is uniform for a in a compact set.

Proof. Using (3.4) we have

lim
t→∞

e
√

2xex
2/2tt1/2Ψ(r, t, x+

√
2t)

= lim
t→∞

√
t√

2π(t− r)
ex

2/2t

∫ ∞
0

u(r, y +
√

2r)e
√

2ye−
(y−x)2

2(t−r)

×

[
1− exp

(
−2y

(
x+ 3

2
√

2
log t

t− r

))]
dy. (3.6)
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Next we show that we can use dominated convergence to take the limit t→∞ into the
integral. First, the integrand is bounded by

Be−a
2r/2u(r, y +

√
2r)e(

√
2+a+1)y, (3.7)

where B > 0. As was shown by Bramson [6] (and used in [3]), the solution of the F-KPP
equation can be bounded by the solution u(2)(t, x) of the linearised F-KPP equation

∂tu
(2) =

1

2
u(2)
xx − u(2) (3.8)

with the same initial condition u(2)(0, x) = u(0, x). Moreover there exists y0 such that
for any x > 0

u(2)(t, x) ≤ ete−x
2/2tey0x/t (3.9)

Thus we get that ∫ ∞
0

Be−a
2r/2u(r, y +

√
2r)e(

√
2+a+1)ydy

≤
∫ ∞

0

B(r)e−a
2r/2e−y

2/2re(a+1)ydy <∞. (3.10)

where B(r) is a constant that only depends on r. Hence we can apply dominated con-
vergence to (3.6) and obtain

1√
2π

∫ ∞
0

u(r, y +
√

2r)e
√

2y lim
t→∞

e√2ye−
(y−x)2

2(t−r)

1− e
−2y

(
x+ 3

2
√

2
log t

t−r

)dy

=
1√
2π

∫ ∞
0

e−a
2r/2u(r, y +

√
2r)e(

√
2+a)y

(
1− e−2ay

)
dy. (3.11)

This proves the lemma.

Proof of Proposition 3.1. Due to the assumptions (i),(ii),(iii) and (iv) we can use Propo-
sition 4.3 of [3] for t > 8r and x > 8r − 3

2
√

2
log t and r large enough:

γ−1(r)Ψ(r, t, x+
√

2t) ≤ u(t, x+
√

2t) ≤ γ(r)Ψ(r, t, x+
√

2t), (3.12)

where γ(r) does not depend x and t and limr→∞ γ(r) = 1. Since γ(r)→ 1 as r →∞ this
implies

lim sup
t→∞

e
√

2xex
2/2tt1/2u(t, x+

√
2t) ≤ lim inf

r→∞
C(r, a) (3.13)

and
lim inf
t→∞

e
√

2xex
2/2tt1/2u(t, x+

√
2t) ≥ lim sup

r→∞
C(r, a) (3.14)

Hence limr→∞ C(r, a) = C(a) exists. Moreover,

lim
t→∞

e
√

2xex
2/2tt1/2u(t, x+

√
2t) (3.15)

exists and is equal to C(a). It is left to show that C(a) 6= 0 for a > 0. If C(a) = 0 we
would have

lim
t→∞

e
√

2xex
2/2tt1/2u(t, x+

√
2t) = 0, (3.16)

but
lim
t→∞

e
√

2xex
2/2tt1/2u(t, x+

√
2t) ≥ C(r, a)γ(r)−1, (3.17)

for r large enough, by (3.12). This contradicts (3.16). The same proposition implies

lim
t→∞

e
√

2xex
2/2tt1/2u(t, x+

√
2t) ≤ C(r, a)γ(r). (3.18)

Hence C(a) 6=∞. Proposition 3.1 is proven.
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Two speed branching Brownian motion

4 The McKean martingale

In this section we pick up the idea of [15] and consider a suitable convergent mar-
tingale for the time inhomogeneous BBM with σ1 < σ2. Let xi(s), 1 ≤ i ≤ n(s) be the
particles of a BBM where the Brownian motions have variance σ2

1 with σ2
1 < 1. Define

Ys =

n(s)∑
i=1

e−s(1+σ2
1)+
√

2xi(s). (4.1)

This turns out to be a uniformly integrable martingale that converges almost surely to
a positive limit Y .

Remark 4.1. Note that in terms of statistical mechanics, Ys can be thought of as a
normalised partition function at inverse temperature σ1

√
2 (for ordinary BBM). Here

the critical temperature is
√

2, so that we are in the high-temperature case. In the case
of the GREM, where the underlying tree is deterministic, this quantity is known to even
converge to a constant [4].

Theorem 4.2. The limit lims→∞ Ys exists almost surely and in L1, is finite and strictly
positive.

The assertion of this theorem follows immediately from the following proposition.

Proposition 4.3. If σ1 < 1, Ys is a uniformly integrable martingale with E[Ys] = 1

Remark 4.4. We would like to call this martingale McKean martingale, since McKean
[18] had originally conjectured that this martingale (with σ1 = 1) was the martingale
in the representation of the extremal distribution of BBM, which, as Lalley and Sellke
showed is wrong as it is actually the derivative martingale that appears there. We find
it nice to see that in the time-inhomogeneous case with σ1 < 1, KcKean turns out to be
right! We will see in the proof that the uniform integrability of this martingale breaks
down at σ1 = 1.

Remark 4.5. Note further that if σ1 = 0, then Yt = e−tn(t) which is well known to
converge to an exponential random variable.

Proof. Clearly,

E[Ys] = esE
[
e−(1+σ2

1)s+
√

2x1(s)
]

= 1. (4.2)

Next we show that Ys is a martingale. Let 0 < r < s. Then

E[Ys|Fr] =

n(r)∑
i=1

E

nj(s−r)∑
j=1

e−s(1+σ2
1)+
√

2(xij(s−r)+xi(r)) | Fr

 , (4.3)

where for 1 ≤ i ≤ r:
{
xij(s− r), 1 ≤ j ≤ ni(s− r)

}
are the particles of independent

BBM’s with variance σ2
1 at time s− r. (4.3) is equal to

n(r)∑
i=1

e−r(1+σ2
1)+
√

2xi(r) = Yr, (4.4)

as desired.
It remains to show that Ys is uniformly integrable. We will write abusively xk(r) for

the ancestor of xk(s) at time r ≤ s and write xk for the entire ancestral path of xk(s).
Define the truncated variable

Y As =

n(s)∑
i=1

e−(1+σ2
1)s+

√
2xi(s)1{xi∈Gs,A,1/2,xi∈Ts,r}. (4.5)
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Two speed branching Brownian motion

First Ys − Y As ≥ 0, and a simple computation using the independence of xk(s) and
xk(r)− r

sxk(s) together with Lemma 2.3 shows that

E
[
Ys − Y As

]
≤ es

∫ ∞
−∞

e−(1+σ2
1)s+

√
2sσ1x1{x−

√
2sσ1 6∈[−A,A]}e

−x2/2 dx√
2π

+ ε

=

∫
|z|>A

e−z
2/2 dz√

2π
+ ε, (4.6)

which can be made as small as desired by taking A and r to infinity. The key point is
that the the second moment of Y As is uniformly bounded in s.

E
[
(Y As )2

]
= E

[(
n(s)∑
i=1

e−(1+σ2
1)s+

√
2xi(s)1{xi∈Gs,A,1/2∩Ts,r}

)2]
≡ (T1) + (T2), (4.7)

where

(T1) = E

[
n(s)∑
i=1

e−2((1+σ2
1)s−

√
2xi(s))1{xi∈Gs,A,1/2∩Ts,r}

]

(T2) = E

[∑
i,j=1

i 6=j

e−2(1+σ2
1)s+

√
2(xi(s)+xj(s))1{xi,xj∈Gs,A,1/2∩Ts,r}

]
(4.8)

We start by controlling (T1).

(T1) ≤ e(s−2s(1+σ2
1)

√
2π

∫ √2sσ1+A/σ1

√
2sσ1−A/σ1

e2
√

2sσ1xe−x
2/2dx

=
e−(1−σ2

1)s

√
2π

∫ A/σ1

−A/σ1

e−x
2/2dx ≤ e−(1−σ2

1)s → 0 as s→∞. (4.9)

Now we control (T2). By the sometimes so-called "many-to-two lemma" (see e.g.[6],
Lemma 10), and dropping the useless parts of the conditions on the Brownian bridges

(T2) ≤ Kes
∫ s

0

es−q
∫ √2σ2

1q+I1(q,s)

√
2σ2

1q−I1(q,s)

(∫ √2σ2
1s+A

√
s−x

√
2σ2

1s−A
√
s−x

e−s(1+σ2
1)+
√

2(x+y)

×e
− y2

2σ2
1(s−q) dy

σ1

√
2π(s−q)

)2

e
− x2

2qσ2
1

dxdq√
2πσ2

1q
, (4.10)

where K =
∑∞
i=1 pkk(k − 1) and I1(q, s) = Aq/

√
s+ ((q ∧ (s− q)) ∨ r)γ . Moreover We

change variables x = z +
√

2σ2
1q and obtain

Kes
∫ s

0

es−q
∫ +I1(q,s)

−I1(q,s)

(∫ √2σ2
1(s−q)+A

√
s−z

√
2σ2

1(s−q)−A
√
s−z

e−s(1+σ2
1)+
√

2(z+
√

2σ2
1q+y)

×e
− y2

2σ2
1(s−q) dy

σ1

√
2π(s−q)

)2

e
− (z+

√
2σ2

1q)
2

2σ2
1q

dzdq√
2πσ2

1q
, (4.11)

Now we change variables w = y
σ1
√
s−q −

√
2σ1
√
s− q. (4.11) is equal to

K

∫ s

0

e−q(1−2σ2
1)

∫ +I1(q,s)

−I1(q,s)

e+2
√

2z

(∫ +A
√
s−z

σ1
√
s−q

−A
√
s−z

σ1
√
s−q

e−w
2/2 dw√

2π

)2

e
− (z+

√
2σ2

1q)
2

2σ2
1q

dzdq√
2πσ2

1q
. (4.12)
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Two speed branching Brownian motion

Now the integral with respect to w is bounded by 1. Hence (4.12) is bounded from
above by

K

∫ s

0

e−q(1−2σ2
1)

∫ +I1(q,s)/σ1
√
q

−I1(q,s)/σ1
√
q

e−
(z−
√

2σ1
√
q)2

2
dzdq√

2π
. (4.13)

We split the integral over q into the three parts R1, R2, and R3 according to the integra-
tion from 0 to r, r to s− r, and s− r to r, respectively. Then

R2 ≤ K
∫ s−r

r

e−q(1−2σ2
1) e−

1
2 (I1(q,s)/σ1

√
q−
√

2σ1
√
q)

2

√
2π
(√

2σ1
√
q − I1(q, s)/σ1

√
q
)dq (4.14)

This is bounded by

K

∫ s−r

r

e−(1−σ2
1)q+O(qγ)dq ≤ C

1− σ2
1

e−c(1−σ
2
1)r. (4.15)

For R1 the integral over z can only be bounded by one. This gives

R1 ≤ K
∫ r

0

e(2σ2
1−1)qdq ≡ D1(r), (4.16)

R3 can be treated the same way as R2 and we get

R3 ≤ K
∫ s

s−r
e−(1−σ2

1)q+O(rγ)dq ≤ K

1− σ2
1

e−(1−σ2
1)(s−r)+O(rγ) → 0 as s→∞. (4.17)

Putting all three estimates together, we see that supsE
[(
Y As
)2] ≤ D2(r). From this it

follows that Ys is uniformly integrable. Namely,

E[Ys1Ys>z] = E[Y As 1Ys>z] + E[(Ys − Y As )1Ys>z] (4.18)

= E
[
Y As 1Y As >z/2

]
+ E

[
Y As

(
1Ys>z − 1Y As >z/2

)]
+ E[(Ys − Y As )1Ys>z].

For the first term we have

E
[
Y As 1Y As >z/2

]
≤ 2

z
E
[(
Y As
)2] ≤ 2

z
D2(r). (4.19)

For the second, we have

E
[
Y As

(
1Ys>z − 1Y As >z/2

)]
≤ E

[
Y As 1Ys−Y As ≥z/21Y As ≤z/2

]
(4.20)

≤ z

2
P
[
(Ys − Y As ) > z/2

]
≤ E

[
Ys − Y As

]
.

The last term in (4.18) is also bounded by E
[
Ys − Y As

]
. Choosing now A and r such that

E
[
Ys − Y As

]
≤ ε/3, and then z so large that 2

zD2(r) ≤ ε/3, we obtain that E[Ys1Ys>z] ≤ ε,
for large enough z, uniformly in s. Thus Ys is uniformly integrable, which we wanted to
show.

Proof of Theorem 4.2. By Proposition 4.3 Ys is a positive uniformly integrable martin-
gale. By Doob’s martingale convergence theorem we have that limYs = Y exists almost

surely and is finite. Moreover Y is positive and Ys
L1

→ Y . In particular, this implies
Y 6≡ 0.

We will also need to control the processes Ỹ As,γ =
∑n(s)
i=1 e

−(1+σ2
1)s+

√
2xi(s)1xi∈Gs,A,γ .

Lemma 4.6. The family of random variables Ỹ As,γ , s,A ∈ R+, 1 > γ > 1/2 is uniformly
integrable and converges, as s ↑ ∞ and A ↑ ∞, to Y , both in probability and in L1.
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Proof. The proof of uniform integrability is a rerun of the proof of Proposition 4.3,
noting that the bounds on the truncated second moments are uniform in A. Moreover,
the same computation as in Eq. (4.6) shows that E|Ys − Ỹ As,γ | ≤ ε, uniformly in s, for A
large enough. Therefore,

lim
A↑∞

lim sup
s↑∞

E|Ys − Ỹ As,γ | = 0, (4.21)

which implies that Ys − Ỹ As,γ converges to zero in probability. Since Ys converges to Y
almost surely, we arrive at the second assertion of the lemma.

5 Convergence of the maximum of two-speed BBM

Using the results established in the last three sections, we show now the conver-
gence of the law the of the maximum of two-speed BBM in the case σ1 < σ2.

Theorem 5.1. Let {xk(t), 1 ≤ k ≤ n(t)} be the particles of a time inhomogeneous BBM
with σ1 < σ2 and the normalising assumption σ2

1b+ σ2
2(1− b) = 1. Then, with m̃(t) as in

Theorem 1.1,

lim
t→∞

P

[
max

1≤k≤n(t)
xk(t)− m̃(t) ≤ y

]
= E

[
exp

(
−σ2C(a)Y e−

√
2y
)]
. (5.1)

Y is the limit of the McKean martingale from the last section, and C(a) is the positive
constant given by

C(a) = lim
r→∞

∫ ∞
0

e−a
2r/2P

[
max
k≤n(t)

x̄k(r) > z +
√

2r

]
e(
√

2+a)z
(
1− e−2az

)
dz, (5.2)

where {x̄k(t), k ≤ n(t)} are the particles of a standard BBM and a =
√

2(σ2 − 1).

Proof. Denote by {xi(bt), 1 ≤ i ≤ n(bt)} the particles of a BBM with variance σ1 at
time bt and by Fbt the σ-algebra generated this BBM. Moreover, for 1 ≤ i ≤ n(bt), let
{xij((1−b)t), 1 ≤ j ≤ ni((1−b)t)} denote the particles of independent BBM with variance
σ2 at time (1− b)t.

Let us first observe that by the analog of Theorem 1.1. of [10] for two-speed BBM1

we know that the maximum of our process is not too small, namely that for any ε > 0,
there exists d <∞, such that

P

[
max

1≤k≤n(t)
xk(t)− m̃(t) ≤ −d

]
≤ ε/2. (5.3)

Therefore,

P

[
−d ≤ max

1≤k≤n(t)
xk(t)− m̃(t) ≤ y

]
≤ P

[
max

1≤k≤n(t)
xk(t)− m̃(t) ≤ y

]
(5.4)

≤ P

[
−d ≤ max

1≤k≤n(t)
xk(t)− m̃(t) ≤ y

]
+ +ε/2

1As pointed out in [11], the arguments used for branching random walks carry all over to BBM.
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On the other hand, by Proposition 2.1, we have that there exists A <∞, such that

P
[
∀1≤k≤n(t){−d ≤ xk(t)− m̃(t) ≤ y} ∩ {xk ∈ Gbt,A, 12 }

]
(5.5)

≤ P
[
−d ≤ max

1≤k≤n(t)
xk(t)− m̃(t) ≤ y

]
= P

[
∀1≤k≤n(t){−d ≤ xk(t)− m̃(t) ≤ y} ∩ {xk ∈ Gbt,A, 12 }

]
+P

[
∃1≤k≤n(t){−d ≤ xk(t)− m̃(t) ≤ y} ∩ {xk 6∈ Gbt,A, 12 }

]
≤ P

[
∀1≤k≤n(t){−d ≤ xk(t)− m̃(t) ≤ y} ∩ {xk ∈ Gbt,A, 12 }

]
+ ε/2

Combining (5.4) and (5.5), we have that

P
[
∀1≤k≤n(t){−d ≤ xk(t)− m̃(t) ≤ y} ∩ {xk ∈ Gbt,A, 12 }

]
≤ P

[
∀1≤k≤n(t){−d ≤ xk(t)− m̃(t) ≤ y}

]
(5.6)

≤ P
[
∀1≤k≤n(t){−d ≤ xk(t)− m̃(t) ≤ y} ∩ {xk ∈ Gbt,A, 12 }

]
+ ε

Thus we obtain

P

[
max

1≤k≤n(t)
xk(t)− m̃(t) ≤ y

]
= P

[
max

1≤i≤n(bt)
max

1≤j≤ni((1−b)t)
xi(bt) + xij((1− b)t)− m̃(t) ≤ y

]

= E

 ∏
1≤i≤ni(bt)

P

[
max

1≤j≤ni((1−b)t)
xij((1− b)t) ≤ m̃(t)− xi(bt) + y | Fbt

]
≤ E

[ ∏
1≤i≤n(bt)

xi∈Gbt,A, 1
2

P

[
max

1≤j≤ni((1−b)t)
σ−1

2 xij((1− b)t) ≤ σ−1
2 (m̃(t)− xi(tb) + y) | Ftb

]]

+ε. (5.7)

Of course the corresponding lower bound holds without the ε.
Observe that the last probability in (5.7) is equal to

1− P
[

max
1≤j≤ni((1−b)t)

x̄ij((1− b)t) > σ−1
2 (m̃(t)− xi(tb) + y) | Ftb

]
, (5.8)

where x̄ij((1− b)t) are the particles of a standard BBM. Using Proposition 3.1 for (1− b)t
and u(t, x) = P

(
max x̄ij(t) > x

)
, and setting

Ct(x) ≡ e
√

2x+x2/2tt1/2u(t, x+
√

2t), (5.9)

we can write the probabilities in the last line of (5.8) as

u
(
(1− b)t, σ−1

2 (m̃(t)− xi(bt) + y)
)

(5.10)

= C(1−b)t

(
σ−1

2 (m̃(t)− xi(bt) + y)− t
√

2(1− b))
)

×e−
√

2
(
m̃(t)−xi(bt)+y

σ2
−
√

2(1−b)t
)
e
− 1

2(1−b)t

(
m̃(t)−xi(bt)+y

σ2
−
√

2(1−b)t
)2

((1− b)t)−1/2

Now all the xi(bt) that appear are of the form xi(bt) =
√

2σ2
1bt+O(

√
t), so that

C(1−b)t

(
σ−1

2 (m̃(t)− xi(bt) + y)−
√

2(1− b)t)
)

= C(1−b)t(a(1− b)t+O(
√
t)), (5.11)
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with (using (1.2))

a ≡ 1

1− b

(√
2−
√

2σ2
1b

σ2
−
√

2(1− b)

)
=
√

2(σ2 − 1), (5.12)

But then, by Proposition 3.1,

lim
t↑∞

C(1−b)t

(
σ−1

2 (m̃(t)− xi(bt) + y)−
√

2(1− b)t)
)

= C(a), (5.13)

with uniform convergence for all i appearing in (5.7) and C(a) is the constant given by
(5.2). Thus we can rewrite the expectation in (5.7) as

E

[ ∏
1≤i≤n(bt)

xi∈Gbt,A,1/2

P

[
max

1≤j≤ni((1−b)t)
σ−1

2 xij((1− b)t) ≤ σ−1
2 (m̃(t)− xi(tb) + y) | Ftb

]]

= E

[ ∏
1≤i≤n(bt)

xi∈Gbt,A,1/2

{
1− C(a)e

−
√

2

(
m̃(t)−xi(bt)+y

σ2
−
√

2(1−b)t
)

×e
− 1

2(1−b)t

(
m̃(t)−xi(bt)+y

σ2
−
√

2(1−b)t
)2

((1− b)t)−1/2(1 + o(1))
}]
. (5.14)

This is equal to

E

[ ∏
1≤i≤n(bt)

xi∈Gbt,A,1/2

{
1− C(a)((1− b)t)−1/2e

(1−b)t−
(m̃(t)+y−xi(bt))2

2(1−b)tσ2
2 (1 + o(1))

}]
. (5.15)

Using that xi(bt)−
√

2σ2
1tb ∈ [−A

√
t, A
√
t] we have the uniform bounds

exp
(

(1− b)t− (m̃(t)+y−xi(bt))2

2(1−b)tσ2
2

)
≤ exp

(
(1− σ2

2)(1− b)t+ log t+A
√
t
)
. (5.16)

Observe that the right-hand side of Eq. (5.16)→ 0 as t ↑ ∞, since σ2
2 > 1. Hence (5.15)

is equal to

E

[ ∏
1≤i≤n(bt)

xi∈Gbt,A,1/2

exp

(
−C(a)((1− b)t)−1/2e

(1−b)t−
(m̃(t)+y−xi(bt))2

2(1−b)tσ2
2 (1 + o(1))

)]
. (5.17)

Expanding the square in the exponent in the last line and keeping only the relevant
terms yields

√
2y + tσ2

2(1− b) + 2σ2
1bt−

√
2xi(bt) +

(√
2tσ2

1b− xi(bt)
)2

2(1− b)σ2
2t

. (5.18)

The terms up to the last one would nicely combine to produce the McKean martingale as
coefficient of C(a). However, the last terms are of order one and cannot be neglected.
To deal with them, we split the process at time b

√
t. We write somewhat abusively

xi(bt) = xi(b
√
t) + x

(i)
l (b(t −

√
t)), where we understand that xi(b

√
t) is the ancestor at

time b
√
t of the particle that at time t is labeled i if we think backwards from time t,

while the labels of the particles at time b
√
t run only over the different ones, i.e. up to

n(b
√
t), if we think in the forward direction. No confusion should occur if this is kept in

mind.
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Using Proposition 2.4 and Proposition 2.5 we can further localise the path of the
particle. Recall the definition of Gs,A,γ and Tr,s, we rewrite (5.17), up to a term of order
ε, as

E

[ ∏
1≤i≤n(b

√
t)

xi∈Gb√t,B,γ

E

[ ∏
1≤l≤n(i)

l
(b(t−

√
t))

xi∈Gbt,A, 1
2

;x
(i)
l ∈Tb(t−√t),r

exp

(
−C(a)((1− b)t)−1/2 (5.19)

× exp

(
(1− b)t− (m̃(t)+y−xi(b

√
t)−x(i)

l (b(t−
√
t)))2

2(1−b)tσ2
2

)
(1 + o(1))

)∣∣F√tb
]]
.

Using that xi(b
√
t) + x

(i)
l (b(t−

√
t))−

√
2σ2

1tb ∈ [−A
√
t, A
√
t] and m̃ =

√
2− 1

2
√

2
log t, we

can re-write the terms multiplying C(a) in (5.19) as

exp
(
− (1 + σ2

1)bt+
√

2(xi(b
√
t) + x

(i)
l (b(t−

√
t)))− 1

2
log(1− b)−

√
2y

− (xi(b
√
t)+x

(i)
l (b(t−

√
t))−
√

2σ2
1bt)

2

2(1−b)σ2
2t

+O(1/
√
t)
)

≡ E(xi, x
(i)
l ) = E(xi(b

√
t), x

(i)
l (b(t−

√
t))) = E(xi(b

√
t), xi(bt)− xi(b

√
t)).

(5.20)

Now (5.19) takes the form

E

[ ∏
1≤i≤n(b

√
t)

xi∈Gb√t,B,γ

E

[
exp

{
−

∑
1≤l≤n(i)

l
(b(t−

√
t))

xi∈Gbt,A, 1
2

;x
(i)
l ∈Tr,b(t−√t)

C(a)E(xi, x
(i)
l )(1 + o(1))

}∣∣Fb√t]
]
. (5.21)

Using the inequalities

1− x ≤ e−x ≤ 1− x+
1

2
x2, x > 0, (5.22)

for

x =
∑

1≤l≤n(i)
l

(b(t−
√
t))

xi∈Gbt,A, 1
2

;x
(i)
l ∈Tr,b(t−√t)

C(a)E(xi, x
(i)
l )(1 + o(1)) (5.23)

we are able to bound (5.21) from below and above. First,

E[x2|Fb√t] ≤ e
−2(1+σ2

1)b
√
t+2
√

2xi(b
√
t)−2

√
2yE

[(
Y A
b(t−
√
t)

)2
]

(1 + o(1)) , (5.24)

where Y A
b(t−
√
t)

is the truncated McKean martingale defined in (4.1). Note that its second

moment is bounded by D2(r) (see (4.19)). Second, computing the conditional expecta-
tion given Fb√t yields, up to factors 1 + o(1),

E[x|Fb√t] = E
[ ∑

1≤l≤n(i)
l

(b(t−
√
t))

xi∈Gbt,A, 1
2

;x
(i)
l ∈Tr,b(t−√t)

C(a)E(xi, x
(i)
l )
∣∣∣Fb√t] (5.25)

≤ eb(σ
2
1t−
√
t)−
√

2y

∫ Kt+A
√
t

Kt−A
√
t

e

√
2(z+xi(b

√
t))− (z+xi(b

√
t)−
√

2σ2
1bt)

2

2σ2
2(1−b)t e−z

2/2σ2
1b(t−

√
t)dz√

2πσ2
1b(t−

√
t)
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where Kt =
√

2tbσ2
1 − xi(b

√
t). Performing the change of variables z = w + Kt this is

equal to

e−(1+σ2
1)b
√
t+
√

2xi(b
√
t)− 1

2 log(1−b)−
√

2y

∫ A
√
t

−A
√
t

e
− w2

2σ2
1b(t−

√
t)
− w2

2σ2
2(1−b)t dw√

2πσ2
1b(t−

√
t)

(1 + o(1))

= e−(1+σ2
1)b
√
t+
√

2xi(b
√
t)− 1

2 log(1−b)−
√

2y
(

σ2
2(1−b)

1−σ2
1b/
√
t

)1/2
∫ A

√
t

−A
√
t

e−w
2/2t dw√

2πt
(1 + o(1))

= e−(1+σ2
1)b
√
t+
√

2xi(b
√
t)−
√

2y
(

σ2
2

1−σ2
1b/
√
t

)1/2

(1− ε)(1 + o(1)), (5.26)

where o(1) ≤ O(tγ−1). Using Lemma 2.3 together with the independence of the Brown-
ian bridge from its endpoint, we obtain that the right hand side of (5.26) multiplied by
an additional factor (1 − ε) is also a lower bound. Comparing this to (5.27), one sees
that

E[x2|Fb√t]
E[x|Fb√t]

≤ D2(r)e−(1+σ2
1)b
√
t+
√

2xi(b
√
t) ≤ Ce−(1−σ2

1)b
√
t+0(tγ/2), (5.27)

which tends to zero uniformly as t ↑ ∞. Thus the second moment term is negligible.
Hence we only have to control

E

[ ∏
1≤i≤n(b

√
t)

xi∈Gb√t,B,γ

(
1− C(a)e−(1+σ2

1)b
√
t+
√

2xi(b
√
t)−
√

2y
(

σ2
2

1−σ2
1b/
√
t

)1/2 )]

= E

[
exp

(
−

∑
1≤i≤n(b

√
t)

xi∈Gb√t,B,γ

C(a)e−(1+σ2
1)b
√
t+
√

2xi(b
√
t)−
√

2y
(

σ2
2

1−σ2
1b/
√
t

)1/2
)

(1 + o(1))

]

= E

[
exp

(
−C(a)

(
σ2

2

1−σ2
1b/
√
t

)1/2

e−
√

2yỸ B
b
√
t,γ

)
(1 + o(1))

]
(5.28)

where

Ỹ B
b
√
t,γ

=

n(b
√
t)∑

i=1

e−(1+σ2
1)b
√
t+
√

2xi(b
√
t)
1xi(b

√
t)−
√

2σ2
1b
√
t∈[−Btγ/2,Btγ/2]. (5.29)

Now from Lemma 4.6, Ỹ B
b
√
t,γ

converges in probability and in L1 to the random variable

Y , when we let first t and then B tend to infinity. Since Y B
b
√
t,γ
≥ 0 and C(a) > 0, it

follows

lim
B↑∞

lim inf
t↑∞

E

[
exp

(
−C(a)

(
σ2

2

1−σ2
1b/
√
t

)1/2

Ỹ B
b
√
t,γ
e−
√

2y

)]
= lim

B↑∞
lim sup
t↑∞

E
[
exp

(
−σ2C(a)Ỹ B

b
√
t,γ
e−
√

2y
)]

= E
[
exp

(
−σ2C(a)Y e−

√
2y
)]
. (5.30)

Finally, letting r tend to +∞, all the ε-errors (that are still present implicitly, vanish.
This concludes the proof of Theorem 5.1.

6 Existence of the limiting process

The following existence theorem is the basic step in the proof of Theorem 1.1.

Theorem 6.1. Let σ1 < σ2. Then, the point processes Et =
∑
k≤n(t) δxk(t)−m̃(t) con-

verges in law to a non-trivial point process E .
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Two speed branching Brownian motion

Proof. It suffices to show that, for φ ∈ Cc(R) positive, the Laplace functional

Ψt(φ) = E

[
exp

(
−
∫
φ(y)Et(dy)

)]
, (6.1)

of the processes Et converges. First observe that this limit cannot be zero, since the
maximum of the time inhomogeneous BBM converges by Theorem 5.1. As for standard
BBM (see e.g. [3]), it follows

lim
N→∞

lim
t→∞

P [Et(B) > N ] = 0, for any boundedB ⊂ R, (6.2)

which implies the locally finiteness of the limiting point process. As in [3] we decompose

Ψt(φ) = Ψ<δ
t (φ) + Ψ>δ

t (φ), (6.3)

where

Ψ<δ
t (φ) = E

[
exp

(
−
∫
φ(y)Et(dy)

)
1max Et≤δ

]
Ψ>δ
t (φ) = E

[
exp

(
−
∫
φ(y)Et(dy)

)
1max Et>δ

]
. (6.4)

Here we write shorthand max Et ≤ δ for maxk≤n(t)(xk(t)−m(t) ≤ δ. By Theorem 5.1 we
have

lim sup
δ→∞

lim sup
t→∞

Ψ>δ
t (φ) ≤ lim sup

δ→∞
lim sup
t→∞

P[max Et > δ] = 0. (6.5)

Hence it remains to analyse the behaviour of Ψ<δ
t (φ). We claim that

lim
δ→∞

lim
t→∞

Ψ<δ
t (φ) = Ψ(φ) (6.6)

exists and is strictly smaller than 1. To see this set

φ̄(z) = φ(σ2z) (6.7)

and
gδ(z) = e−φ̄(−z)

1{−zσ2≤δ}. (6.8)

Moreover, define

uδ(t, z) = 1− E

 ∏
j≤n(t)

gδ(z − x̄j(t))

 . (6.9)

where {x̄j(t), 1 ≤ j ≤ n(t)} are the particles of a standard BBM with variance 1.
We observe that by [18] uδ(t, x) solves the F-KPP equation (3.2) with initial condition
uδ(0, x) = 1 − gδ(x). Next we verify Assumptions (i)-(iv) of Proposition 3.1. (i) is clear.
Moreover, gδ(x) = 1 for x large enough in the positive , and gδ(x) = 0 for −x large
enough, so that Conditions (ii)-(iv) of Proposition 3.1 are satisfied. Now

Ψ<δ
t (φ) = E

 ∏
i≤n(bt)

E

 ∏
xij≤ni((1−b)t)

gδ((m̃(t)− xi(bt)− xij((1− b)t))/σ2)
∣∣Fbt


= E

 ∏
i≤n(bt)

E

 ∏
x̄ij≤ni((1−b)t)

gδ((m̃(t)− xi(bt))/σ2 − x̄ij((1− b)t))
∣∣Fbt

 ,
(6.10)
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where for each i, x̄ij are the particles of iid standard BBMs. By Proposition 3.1 and the
same calculations as in the proof Theorem 5.1 we have that this converges, as t → ∞,
to

E [exp (−σ2C(a, φ, δ)Y )] , (6.11)

where C(a, φ, δ) is the constant that appears in Lemma 3.2, with initial condition gδ(z),
i.e.

C(a, φ, δ) = lim
t→∞

1√
2π

∫ ∞
0

uδ(t, z +
√

2t)e(
√

2+a)z−a2t/2(1− e−2za)dz, (6.12)

where a =
√

2(σ2 − 1) and uδ is the solution to the F-KPP equation (3.2) with initial
condition uδ(0, z) = 1 − e−φ̄(z)

1{zσ2≤δ}. Thus the limit limt→∞Ψ<δ
t (φ) = Ψ<δ(φ) exists.

The limit δ ↑ ∞ then exists by the same argument as in the proof of Theorem 3.1 of [3]:
the function

δ → Ψ<δ(φ) (6.13)

is increasing and bounded, Moreover, the maximum is an atom of Et and φ is nonnega-
tive, and so

Ψ<δ
t (φ) ≤ E

[
exp (−φ(max Et))1{max Et≤δ}

]
(6.14)

The limit as t → ∞ and δ → ∞ of the right hand side of (6.14) exists by Theorem 5.1.
Hence

Ψ(φ) = lim
δ→∞

Ψδ(φ) < 1, (6.15)

by monotone convergence. This implies the existence of the limiting process.

Proposition 6.2. Let v(t, x), vδ(t, x) be solutions of the F-KPP equation with initial data
v(0, x) = 1− e−φ̄(−x) and vδ(0, x) = 1− e−φ̄(−x)

1{−xσ2≤δ} respectively. Set

C(a, φ, δ) = lim
t→∞

1√
2π

∫ ∞
0

vδ(t, z +
√

2t)e(
√

2+a)z−a2t/2
(
1− e−2az

)
dz (6.16)

Then limδ→∞ C(a, φ, δ) exists and is given by

C(a, φ) = lim
δ→∞

C(a, φ, δ) = lim
t→∞

1√
2π

∫ ∞
0

v(t, z +
√

2t)e(
√

2+a)z−a2t/2dz. (6.17)

Moreover,
lim
t→∞

Ψt(φ) = E [exp (−σ2C(a, φ)Y )] . (6.18)

Proof. First we note that

C(a, φ.δ) = lim
t→∞

1√
2π

∫ ∞
0

vδ(t, z +
√

2t)e(
√

2+a)z−a2t/2dz. (6.19)

To see this, note that for any K <∞,

lim
t→∞

1√
2π

∫ K

0

vδ(t, z +
√

2t)e(
√

2+a)z−a2t/2dz ≤ lim
t→∞

1√
2π
Ke−a

2t/2e(
√

2+a)K = 0. (6.20)

Obviously,

C(a, φ, δ) ≤ lim inf
t→∞

1√
2π

∫ ∞
0

vδ(t, z +
√

2t)e(
√

2+a)z−a2t/2dz. (6.21)

Due to (6.20), for any K <∞,

C(a, φ, δ)− lim sup
t→∞

1√
2π

∫ ∞
0

vδ(t, z +
√

2t)e(
√

2+a)z−a2t/2dz

≥ −e−aK lim sup
t→∞

1√
2π

∫ ∞
0

vδ(t, z +
√

2t)e(
√

2+a)z−a2t/2dz. (6.22)
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Since this holds for all K, and since the finiteness of the limsup in (6.22) follows from
the finiteness of C(a, φ, δ), we also have that

C(a, φ, δ) ≥ lim sup
t→∞

1√
2π

∫ ∞
0

vδ(t, z +
√

2t)e(
√

2+a)z−a2t/2dz, (6.23)

and Eq. (6.19) follows. It remains to control the limit as δ ↑ ∞ of the right-hand side
of (6.19). But an exact rerun of the proof of Lemma 4.10 in [3] using Lemma 6.4 below
instead of Lemma 4.8 of [3] yields that

lim
δ↑∞

lim
t↑∞

∫ ∞
0

vδ(t, x+
√

2t)e(
√

2+a)z−a2t/2dz ≡ lim
δ↑∞

F (δ) ≡ F (6.24)

exists. By (6.11) and (6.24) we have

lim
t→∞

Ψ<δ
t (φ) = E [exp (−σ2C(a, φ, δ)Y )] = E

[
exp

(
− σ2√

2π
F (δ)Y

)]
. (6.25)

This converges for δ →∞ to

E

[
exp

(
− σ2√

2π
FY

)]
. (6.26)

Hence F = 0 would imply
lim
δ→∞

lim
t→∞

Ψt(φ) = 1, (6.27)

which contradicts (6.15) and Theorem 6.1. Hence F > 0. Moreover, (6.26) implies
(6.18), which concludes the proof of Proposition 6.2.

We recall the following estimate for the tail probabilities of standard BBM.

Lemma 6.3 ([2], Corollary 10). There exists t0 <∞, such that for z > 1 and t ≥ t0

P

[
max
k≤n(t)

x̄k(t)−
√

2t+
3

2
√

2
log t ≥ z

]
≤ ρz exp

(
−
√

2z − z2

2t
+

3z

2
√

2

log t

t

)
, (6.28)

for some constant ρ > 0.

Lemma 6.4. Let u be a solution of the F-KPP equation with initial data satisfying As-
sumptions (i)-(iv) of Proposition 3.1. Let

C(a) = lim
t→∞

1√
2π

∫ ∞
0

u(t, z +
√

2t)e(
√

2+a)z−a2t/2dz. (6.29)

Then for any x ∈ R:

lim
t→∞

1√
2π

∫ ∞
0

u(t, x+ z +
√

2t)e(
√

2+a)z−a2t/2dz = C(a)e−(
√

2+a)x. (6.30)

Moreover, for any bounded continuous function h(x), that is zero for x small enough

lim
t→∞

∫ 0

−∞
E
[
h
(
y + max x̄i(t)−

√
2t
)] 1√

2π
e−(
√

2+a)y−a2t/2dy

= C(a)

∫
R

h(z)(
√

2 + a)e−(
√

2+a)zdz, (6.31)

where {x̄i(t), i ≤ n(t)} are the particles of a standard BBM with variance 1. Here C(a)

is the constant from (6.29) for u satisfying the initial condition 1{x≤0}.
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Proof. We have by a simple change of variables

1√
2π

∫ ∞
0

u(t, z +
√

2t)e(
√

2+a)z−a2t/2dz (6.32)

=
e(
√

2+a)x

√
2π

∫ ∞
−x

u(t, x+ z +
√

2t)e(
√

2+a)z−a2t/2dz.

Moreover, limt→∞ u(t, x+ z +
√

2t) = 0 implies

lim
t→∞

1√
2π

∫ 0

−x
u(t, x+ z +

√
2t)e(

√
2+a)z−a2t/2dz = 0, (6.33)

which proves (6.30). Moreover, (6.30) with initial condition 1{x≤0} implies that (6.31)
holds for h(x) = 1[b,∞), b ∈ R. For general h (6.31) follows in the same way as Lemma
4.11 in [3] by linearity and a monotone class argument.

7 The auxiliary process

We define the following auxiliary process that has the same limiting behaviour as
that of the two-speed BBM. We will denote the law of these processes by P and expec-
tations by E. If desired, all ingredients of the auxiliary process can be thought of to
be defined on a new probability space. Let (ηi; i ∈ N) be the atoms of a Poisson point
process η on (−∞, 0) with intensity measure

σ2√
2π
e−(
√

2+a)ze−a
2t/2dz. (7.1)

For each i ∈ N consider independent standard BBMs x̄i. The auxiliary point process
of interest is the superposition of the i.i.d BBMs with drift shifted by ηi + 1√

2+a
log Y ,

where a is the constant defined in (5.12):

Πt =
∑
i,k

δ(
ηi+

1√
2+a

log Y+x̄ik(t)−
√

2t
)
σ2
. (7.2)

Remark 7.1. The form of the auxiliary process is similar to the case of standard BBM,
but with a different intensity of the Poisson process. In particular, the intensity decays
exponentially with t. This is a consequence of the fact that particles at the time of the
speed change were forced to be O(t) below the line

√
2t, in contrast to the O(

√
t) in the

case of ordinary BBM. The reduction of the intensity of the process with t forces the
particles to be selected at these locations.

Theorem 7.2. Let Et be the extremal process of the two-speed BBM. Then

lim
t→∞

Et
law
= lim

t→∞
Πt. (7.3)

Proof. Using the notation φ̄(z) = φ(σ2z) and by the form of the Laplace functional of a
Poisson point process we have

E

[
exp

(
−
∫
φ(x)Πt(dx)

)]

= E

[
exp

(
−σ2

∫ 0

−∞

{
1− E

exp

− ∑
k≤n(t)

φ̄

(
z + x̄k(t)−

√
2t+

log Y√
2 + a

)}

×e−(
√

2+a)ze−a
2t/2dz

)]

= E

[
exp

(
σ2√
2π

∫ ∞
0

u

(
t, z +

√
2t− 1√

2 + a
log Y

)
e(
√

2+a)ze−a
2t/2dz

)]
, (7.4)
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with

u(t, x) = 1− E

exp

− ∑
k≤n(t)

φ̄(−x+ x̄k(t)

 . (7.5)

By Lemma 6.4 we have

lim
t→∞

1√
2π

∫ ∞
0

u

(
t, z +

√
2t− 1√

2 + a
log Y

)
e(
√

2+a)ze−a
2t/2dz

= Y lim
t→∞

1√
2π

∫ ∞
0

u(t, z +
√

2t)e(
√

2+a)ze−a
2t/2dz, (7.6)

which exists and is strictly positive by Proposition 6.2. This implies that the Laplace
functionals of limt→∞Πt and of the extremal process of the two-speed BBM are equal.

The following proposition shows that in spite of the different Poisson ingredients,
when we look at the process of the extremes of each of the xi(t), we end up with a
Poisson point process just like in the standard BBM case.

Proposition 7.3. Define the point process

Πext
t ≡

∑
i

δ(
ηi+

1√
2+a

log Y+maxk≤ni(t) x̄
i
k(t)−

√
2t
)
σ2
. (7.7)

Then
lim
t→∞

Πext
t

law
= PY ≡

∑
i∈N

δpi , (7.8)

where PY is the Poisson point process on R with intensity measure σ2C(a)Y
√

2e−
√

2xdx.

Proof. We consider the Laplace functional of Πext
t . Let M (i)(t) = max x̄

(i)
k (t) and as

before φ̄(z) = φ(σ2z). We want to show

lim
t↑∞

E

[
exp

(
−
∑
i

φ̄(ηi +M (i)(t)−
√

2t

)]

= exp

(
−σ2C(a)

∫ ∞
−∞

(
1− e−φ(x)

)√
2e−
√

2xdx

)
. (7.9)

Since ηi is a Poisson point process and the M (i) are i.i.d. we have

E

[
exp

(
−
∑
i

φ̄(ηi +M (i)(t)−
√

2t

)]

= exp

(
−σ2

∫ 0

−∞
E
[
1− e−φ̄(z+M(t)−

√
2t)
]
e−(
√

2+a)z−a2t/2 dz√
2π

)
, (7.10)

where M(t) has the same distribution as one the variables M (i)(t). Now we apply
Lemma 6.4 with h(x) = 1− e−φ̄(z). Hence the result follows by using that φ̄(z) = φ(σ2z)

and
√

2 + a =
√

2σ2 together with the change of variables x = σ2z.

The following proposition states that the Poisson points of the auxiliary process con-
tribute to the limiting process come from a neighbourhood of −at.

Proposition 7.4. Let z ∈ R, ε > 0. Let ηi be the atoms of a Poisson point process with
intensity measure Ce−(

√
2+a)x−a2t/2dx on (−∞, 0]. Then there exists B <∞ such that

sup
t≥t0

P
(
∃i, k : ηi + x̄ik(t)−

√
2t ≥ z, ηi 6∈ [−at−B

√
t,−at+B

√
t]
)
≤ ε. (7.11)
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Proof. By a first order Chebychev inequality we have

P
(
∃i, k : ηi + x̄

(i)
k (t)−

√
2t ≥ z, ηi > −at+B

√
t
)

≤ C

∫ 0

−at+B
√
t

P
(

max x̄k(t) ≥
√

2t− x+ z
)
e−(
√

2+a)xe−a
2t/2dx

= C

∫ at−B
√
t

0

P
(

max x̄k(t) ≥
√

2t+ x+ z
)
e(
√

2+a)xe−a
2t/2dx, (7.12)

by the change of variables x→ −x. Using the asymptotics of Lemma 6.3 we can bound
(7.12) from above by

ρC

∫ at−B
√
t

0

t−1/2e−
√

2(x+z)e−(x+z)2/2te(
√

2+a)xe−a
2t/2dx

≤ ρC

∫ −B
−a
√
t

ez
2/2dz(1 + o(1)), (7.13)

by changing variables x→ x/
√
t− a

√
t. This is a Gaussian integral and can be made as

small as we want by choosing B large enough. Similarly one bounds

P
(
∃i, k : ηi + xik(t)−

√
2t ≥ z, ηi < −at−B

√
t
)
≤ Cρ

∫ ∞
B

ez
2/2dz(1 + o(1)). (7.14)

This concludes the proof.

The next proposition describes the law of the clusters x̄
(i)
k . This is analogous to

Theorem 3.4 in [3].

Proposition 7.5. Let x = at + o(t) and {x̃k(t), k ≤ n(t)} be a standard BBM under the
conditional law P

(
·
∣∣{max x̃k(t)−

√
2t− x > 0}

)
. Then the point process∑

k≤n(t)

δx̃k(t)−
√

2t−x (7.15)

converges in law under P
(
·
∣∣{max x̃k(t)−

√
2t− x > 0}

)
as t→∞ to a well defined point

process Ē . The limit does not depend on x − at and the maximum of Ē shifted by x has
the law of an exponential random variable with parameter

√
2 + a.

Proof. Set Ēt =
∑
k δx̃k(t)−

√
2t and max Ēt = max x̃k(t) −

√
2t. First we show that for

X > 0

lim
t→∞

P
(
max Ēt > X + x|max Ēt > x

)
= e−(

√
2+a)X . (7.16)

To see this we rewrite the conditional probability as
P [max Ēt>X+x]
P [max Ēt>x]

and use the uniform

bounds of Proposition 4.3 in [3]. Observing that

lim
t→∞

Ψ(r, t,X + x+
√

2t)

Ψ(r, t, x+
√

2t)
= e−(

√
2+a)X , (7.17)

where Ψ is defined in Equation (3.4), we get (7.16) by first taking t → ∞ and then
r → ∞. The general claim of Proposition 7.5 follows in exactly the same way from
(7.16) as Theorem 3.4. in [3].

Define the gap process
Dt =

∑
k

δx̃k(t)−maxj x̃j(t). (7.18)
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Denote by ξi the atoms of the limiting process Ē , i.e. Ē ≡
∑
j δξj and define

D ≡
∑
j

δΛj , Λj = ξj −max
i
ξi. (7.19)

D is a point process on (−∞.0] with an atom at 0.

Corollary 7.6. Let x = −at + o(t). In the limit t → ∞ the random variables Dt and
x + max Ēt are conditionally independent on the event {x + max Ēt > b} for any b ∈ R.
More precisely, for any bounded function f, h and φ̄ ∈ Cc(R),

lim
t→∞

E

[
f

(∫
φ̄(z)Dt(dz)

)
h(x+ max Ē)

∣∣x+ max Ē > b

]
= E

[
f

(∫
φ̄(z)D(dz)

)] ∫∞
b
h(z)(

√
2 + a)e−(

√
2+a)zdz

e−(
√

2+a)b
. (7.20)

Proof. The proof is essentially identical to the proof of Corollary 4.12 in [3]. Let us
outline, for the benefit of the readers, the structure of the proof. First, by Proposition
7.5 the pair (Ēt,max Ēt − x), converge under the law conditioned on max Ēt − x > 0 to
(E , e), where e is an exponential random variable with parameter

√
2 + a and E is inde-

pendent of the precise value of the conditioning. A general continuity lemma, stated
and proven as Lemma 4.13 in [3], shows that this implies the convergence of the pro-
cesses (Dt,max Ēt − x) to a pair (D, e) where Dt is given in (7.18) is related to Ēt by
a random shift of its atoms. The fact that D and e are independent follows from an
explicit computation, just as in the proof of Corollary 4.12 in [3]. We do not repeat the
details.

Finally we come to the description of the extremal process as seen from the Poisson
process of cluster extremes, which is the formulation of Theorem 1.1.

Theorem 7.7. Let PY be as in (7.8) and let {D(i), i ∈ N} be a family of independent

copies of the gap-process (7.19) with atoms Λ
(i)
j . Then the point process Et converges

in law as t→∞ to a Poisson cluster point process E given by

E law=
∑
i,j

δ
pi+σ2Λ

(i)
j
. (7.21)

Proof. Also this proof is now very close to that of Theorem 2.1 in [3]. First note that the
Laplace functional of the process E is given by

E

[
exp

(
−
∫
φ(x)E(dx)

)]
(7.22)

= E

[
exp

(
−σ2C(a)Y

∫
R

E
[
1− e−

∫
φ(y+x)D(dx)

]√
2e−
√

2ydy

)]
.

Thus, by Theorem 7.2, we have to show that the Laplace functional of the processes Πt

converge to this expression. In the proof of that theorem, we have seen that

lim
t↑∞

E

[
exp

(
−
∫
φ(x)Πt(dx)

)]
(7.23)

= E

[
exp

(
−σ2Y lim

t↑∞

∫ 0

−∞
E

[
1− exp

(
−
∫
φ̄(z + x)Ēt(dx)

)]
e−(
√

2+a)z−a2t/2

√
2π

dz

)]
.
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We rewrite ∫ 0

−∞
E

[
1− exp

(
−
∫
φ̄(z + x)Ēt(dx)

)]
1√
2π
e−(
√

2+a)z−a2t/2dz

=

∫ 0

−∞
E

[
f

(∫ {
Tz+max Ēt φ̄(x)

}
Dt(dx)

)]
1√
2π
e−(
√

2+a)z−a2t/2dz, (7.24)

where f(x) = 1 − e−x, Tzφ̄(x) = φ̄(z + x), f(0) = 0. Using the localisation estimate of
Proposition 7.4 we have that (7.24) is equal to

Ωt(B) +

∫ −at+B√t
−at−B

√
t

E

[
f

(∫ {
Tz+max Ēt φ̄(x)

}
Dt(dx)

)]
1√
2π
e−(
√

2+a)z−a2t/2dz, (7.25)

where limB→∞ supt≥t0 Ωt(B) = 0. Let mφ̄ be the minimum of the support of φ̄. we
observe that

f

(∫ {
Tz+max Ēt φ̄(x)

}
Dt(dx)

)
= 0, (7.26)

when z + max Ēt < mφ̄. Moreover, P
[
z + max Ēt = mφ̄

]
= 0. Hence

E

[
f

(∫ {
Tz+max Ēt φ̄(x)

}
Dt(dx)

)]
(7.27)

= E

[
f

(∫ {
Tz+max Ēt φ̄(x)

}
Dt(dx)

)
1{z+max Ēt>mφ̄}

]
= E

[
f

(∫ {
Tz+max Ēt φ̄(x)

}
Dt(dx)

) ∣∣z + max Ēt > mφ̄

]
P
[
z + max Ēt > mφ̄

]
.

Now by Corollary 7.6, for z in the range of integration in (7.25), on the event we are
conditioning on in (7.27), the random variables Dt and max Ēt + z − mφ̄ converge to

independent random variables (D, e), where e is exponential with parameter
√

2 + a.
Hence

lim
t↑∞

E

[
f

(∫ {
Tz+max Ēt φ̄(x)

}
Dt(dx)

) ∣∣z + max Ēt > mφ̄

]
=

∫ ∞
0

(
√

2 + a)e−(
√

2+a)uE

[
f

(∫
φ̄(u+mφ̄ + x)D(dx)

)]
du (7.28)

=

∫ ∞
mφ̄

(
√

2 + a)e−(
√

2+a)(u−mφ̄)E

[
f

(∫
φ̄(u+ x)D(dx)

)]
du.

Note that this expression is independent of z. Thus it remains to compute the integral of
P
[
z + max Ēt > mφ̄

]
. But this converges to e−(

√
2+a)mφ̄ by (6.30) in Lemma 6.4, together

with the localisation estimates of Proposition 7.4 (which this time allows to re-extend
the range of integration). Putting this together with (7.28) and changing variables
x = σ2z shows that the right-hand side of (7.23) is indeed equal to the right-hand side
of (7.22). This proves the theorem.

8 The case σ1 > σ2

In this section we proof Theorem 1.3. The existence of the process E from (1.15) will
be a byproduct of the proof.

The following result is contained in the calculation of the maximal displacement in
[10].

EJP 19 (2014), paper 18.
Page 24/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2982
http://ejp.ejpecp.org/


Two speed branching Brownian motion

Lemma 8.1. ([10]) For all ε > 0, d ∈ R there exists a constant D large enough such that
for t sufficiently large

P [∃k ≤ n(t) : xk(t) > m(t) + d and xk(bt) < m1(bt)−D] < ε. (8.1)

Proof of Theorem 1.3. First we establish the existence of a limiting process. Note that
m(t) = m1(bt) +m2((1− b)t), where mi(s) =

√
2σis− 3

2
√

2
σi log s. Recall

φ̄(z) = φ(σ2z) (8.2)

and

gδ(z) = e−φ̄(−z)
1{−z≤δ}. (8.3)

Using that the maximal displacement is m(t) in this case we can proceed as in the proof
of Theorem 6.1 up to (6.9) and only have to control

Ψ<δ
t (φ) = E

 ∏
i≤n(tb)

E

 ∏
j≤ni((1−b)t)

gδ((m(t)− xi(bt))/σ2 − x̄ij((1− b)t))
∣∣Ftb

 , (8.4)

where x̄ij((1− b)t) are the particles of a standard BBM at time (1− b)t and xi(bt) are the
particles of a BBM with variance σ1 at time bt. Using Lemma 8.1 and Theorem 1.2 of
[10] as in the proof of Theorem 5.1 above, we obtain that (8.4), for t sufficiently large,
equals

E

 ∏
i≤n(bt)

xi(bt)>m1(bt)−D

E

 ∏
j≤ni((1−b)t)

gδ(
(m(t)−xi(bt))

σ2
− x̄ij((1− b)t))

∣∣Ftb

+O(ε). (8.5)

The rest of the proof has an iterated structure. In a first step we show that conditioned
on Fbt for each i ≤ n(bt) the points {xi(bt) + xij((1 − b)t) − m(t)|xi(bt) > m1(bt) − D}
converge to the corresponding points of the point process xi(bt)−m1(bt)+σ2Ẽ(i), where
Ẽ(i) are independent copies of the extremal process (1.6) of standard BBM. To this end
observe that

uδ((1− b)t, z) = 1− E

 ∏
j≤n((1−b)t)

gδ(z − x̄ij((1− b)t))

 (8.6)

solves the F-KPP equation (3.2) with initial condition uδ(0, z) = 1 − e−φ̄(−z)
1{−z≤δ}.

Moreover, the assumptions of Lemma 4.9 in [3] are satisfied. Hence (8.5) is equal to

ε+ E

 ∏
i≤n(bt)

xi(bt)>m1(bt)−D

(
E

[
e−C(φ̄,δ)Ze

−
√

2
m1(bt)−xi(bt)

σ2
∣∣Fbt] (1 + o(1))

) . (8.7)

Here C(φ̄, δ) is from standard BBM, i.e.

C(φ̄, δ) = lim
t↑∞

√
2
π

∫ ∞
0

uδ(t, y +
√

2t)ye
√

2ydy, (8.8)

see Eq. 4.49 in [3]. Note furthermore that already in (8.7) the concatenated structure
of the limiting point process becomes visible. In a second step we establish that the
points xi(bt)−m1(t) that have a descendant in the lead at time t converge to Ẽ .
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Define

hδ,D(y) ≡

{
E
[
exp

(
−C(φ̄, δ)Ze−

√
2
σ1
σ2
y
)]
, if σ1y < D,

1, if σ1y ≥ D.
(8.9)

Then the expectation in (8.7) can be written as (we ignore the error term o(1) which is
easily controlled using that the probability that the number of terms in the product is
larger than N tends to zero as N ↑ ∞, uniformly in t)

E

 ∏
i≤n(bt)

hδ,D(m1(bt)/σ1 − x̄i(t))

 , (8.10)

where now x̄ is standard BBM. Defining

vδ,D(t, z) = 1− E

 ∏
i≤n(t)

hδ,D(z − x̄i(bt))

 , (8.11)

vδ,D is a solution of the F-KPP equation (3.2) with initial condition vδ,D(0, z) = 1−hδ,D(z).
But this initial condition satisfies the assumptions of Bramson’s Theorem A in [6] and
therefore,

vδ,D(t,m(t) + x)→ E
[
e−C̃(D,Z,C(φ̄,δ))Z̃e−

√
2x
]
. (8.12)

where Z̃ is an independent copy of Z and

C̃(D,Z,C(φ̄, δ)) = lim
t↑∞

√
2
π

∫ ∞
0

vδ,D(t, y +
√

2t)ye
√

2ydy. (8.13)

By the same argumentation as in standard BBM setting (see [3]) one obtains that

C̃(Z,C(φ̄, δ)) ≡ lim
D↑∞

C̃(D,Z,C(φ̄, δ)) = lim
t↑∞

√
2
π

∫ ∞
0

vδ(t, y +
√

2t)ye
√

2ydy, (8.14)

where vδ is the solution of the F-KPP equation with initial condition v(0, z) = 1 − hδ(z)
with

hδ(z) = E
[
exp

(
−C(φ̄, δ)Ze−

√
2
σ1
σ2
z
)]
. (8.15)

The next step is to take the limit δ →∞. Using Lemma 4.10 of [3] we have that C(φ̄, δ)

is monotone decreasing in δ and limδ→∞ C(φ̄, δ) = C(φ̄), exists and is strictly positive,
where

C(φ̄) = lim
t↑∞

√
2
π

∫ ∞
0

u(t, y +
√

2t)ye
√

2ydy. (8.16)

Here u(t, x) is a solution to the F-KPP equation (3.2) with initial condition u(0, x) =

1− e−φ̄(−x). Using the same monotonicity arguments shows that also

lim
δ→∞

C̃(Z,C(φ̄, δ)) = C̃(Z,C(φ̄)). (8.17)

Therefore, taking the limit first as D ↑ ∞ and then δ ↑ ∞ in the left-hand side of (8.12),
we get that

lim
t→∞

Ψt(φ(·+ x)) = lim
δ↑∞

lim
t→∞

Ψ<δ
t (φ(·+ x)) (8.18)

= lim
δ↑∞

lim
D↑∞

lim
t→∞

vδ,D(t,m(t) + x) = E
[
e−C̃(Z,C(φ̄))Z̃e−

√
2x
]
.
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To see that the constants C̃(Z,C(φ̄)) are strictly positive, one uses the Laplace function-
als Ψt(φ) are bounded from above by

E

[
exp

(
−φ
(

max
i≤n(bt)

xi(bt) + max
j≤n1((1−b)t)

x1
j ((1− b)t)−m(t)

))]
(8.19)

Here we used that the offspring of any of the particles at time bt has the same law. So
the sum of the two maxima in the expression above has the same distribution as the
largest descendent at time t off the largest particle at time bt. The limit of Eq. (8.19) as
t ↑ ∞ exists and is strictly smaller than 1 by the convergence in law of the recentered
maximum of a standard BBM. But this implies the positivity of the constants C̃. Hence
a limiting point process exists. Finally, one may easily check that the right hand side
of (8.18) coincides with the Laplace functional of the point process defined in (1.15) by
basically repeating the computations above.

Remark 8.2. Note that in particular, the structure of the variance profile is contained
in the constant C̃(D,Z,C(φ̄, δ)) and that also the information on the structure of the
limiting point process is contained in this constant. In fact, we see that in all cases we
have considered in this paper, the Laplace functional of the limiting process has the
form

lim
t↑∞

Ψt(φ(·+ x)) = E exp
(
−C(φ)Me−

√
2x
)
, (8.20)

where M is a martingale limit (either Y of Z) and C is a map from the space of positive
continuous functions with compact support to the real numbers. This function contains
all the information on the specific limiting process. This is compatible with the finding
in [16] in the case where the speed is a concave function of s/t. The universal form
(8.20) is thus misleading and without knowledge of the specific form of C(φ), (8.20)
contains almost no information.
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