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Abstract

We consider a stationary continuous model of random size population with non-
neutral mutations using a continuous state branching process with non-homogeneous
immigration. We assume the type (or mutation) of the immigrants is random given
by a constant mutation rate measure. We determine some genealogical properties of
this process such as: distribution of the time to the most recent common ancestor
(MRCA), bottleneck effect at the time to the MRCA (which might be drastic for some
mutation rate measures), favorable type for the MRCA, asymptotics of the number of
ancestors.
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1 Introduction

1.1 Motivations

Galton-Watson (GW) processes are branching processes modeling discrete popula-
tions in discrete time. Since (non-degenerate) GW processes either become extinct or
blow up at infinity, one needs to consider a stationary version of the GW process, such
as a sub-critical GW process with immigration to model the stationary population. It is
well known that the rescaled limit in time and space of GW processes are continuous-
state branching (CB) processes, see Lamperti [27], and that the rescaled limit of GW
processes with immigration are CB processes with immigration (CBI), see Kawazu and
Watanabe [26]. Sub-critical CB process becomes extinct a.s., and conditioning this pro-
cess not to become extinct gives a CBI with a particular immigration which is a natural
continuous model for populations with stationary random size. For the study of ge-
nealogical properties of CBI we are interested in, see Chen and Delmas [14] and Bi
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Branching process with non-neutral mutations

[9], for a more general immigration. The aim of this paper is to consider the simplest
CB process (with quadratic branching mechanism) and an immigration taking into ac-
count non-neutral mutations. We shall prove the existence of this stationary continuous
process and give some genealogical properties, such as a bottleneck effect at the time
to the most recent common ancestor (TMRCA), favorable mutation for the most recent
common ancestor (MRCA) of the process.

1.2 Constant size population models

A large literature is devoted to the constant size population: Wright-Fisher model
(discrete time, discrete population), Moran model (continuous time, discrete popula-
tion) and Fleming-Viot process (continuous time, continuum for the population). Neu-
tral models can be described using spatial Fleming-Viot processes, see Dawson [15] and
Donnelly and Kurtz [18].

Non-neutral mutation models in the stationary regime have been considered by
Neuhauser and Krone [31] for discrete population, by Fearnhead [22] for discrete pop-
ulation (possibly with random size) in continuous time, and by Stephens and Donnelly
[32] and Donnelly, Nordborg and Joyce [19] for continuous models in which the type of
the mutant does not depend on the type of the parent. In Fearnhead [21] and Taylor
[33] the MRCA is studied. In particular it is shown in [21] that the expected fitness of
MRCA is greater than that of a randomly chosen individual.

Notice that the non-neutral models studied by Donnelly and Kurtz [17] are non-
stationary. Such models could be made stationary by conditioning on the non-extinction
of all the types, see Foucart and Hénard [25] for a work in this direction. For non-
stationary models see also Bianconi, Ferretti and Franz [10] for constant size discrete
population in discrete time. In those latter models the non-neutral mutations are de-
scribed using an immigration at constant rate but with various fitness.

1.3 Random size population models

Another large literature is devoted to random size population using branching pro-
cesses. Neutral models are now well known, see Bertoin [7, 8] for GW processes,
Champagnat, Lambert and Richard [12] for Crump-Mode-Jagers branching processes
and Abraham and Delmas [2, 3] with a CB process presentation in [2] and a genealog-
ical tree approach using continuous random tree presentation in [3]. Conditioning on
non-extinction will provide a stationary model, see [14] in the CB process setting.

One can also use multi-type processes for non-neutral mutation models; in all those
models the rate of mutation is proportional to the size of the current population. For the
discrete setting, we refer to Athreay and Ney [5] on multi-type GW processes, see also
Buiculescu [11] or Nakagawa [30] for sub-critical multi-type GW processes conditioned
on non-extinction. Those latter processes provide natural stationary models. Similar
results exist for multi-type CB process or non-homogeneous super-processes (which
correspond to infinitely many types) conditioned on non-extinction see Champagnat
and Roelly [13] for the former case and Delmas and Hénard [16] for the more general
latter case. A non-stationary model with non-neutral mutation is also given in Abraham,
Delmas and Hoscheit [1], with a model of immigration with (random) increasing fitness.
In this model, the whole population is again a CB process.

1.4 The model

Our present model of a CB process with non-homogeneous immigration follows the
approach of [22] and [10] as we consider non-neutral mutation provided by an immigra-
tion at constant rate.
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Branching process with non-neutral mutations

For simplicity, we shall restrict our-self to the quadratic branching mechanism ψ(λ) =

βλ2, with β > 0. For θ > 0, let Y θ = (Y θt , t ≥ 0) denote a CB process with branching
mechanism ψθ(λ) = ψ(λ + θ) − ψ(θ). It is well known that Y θ is stochastically larger
than Y q for θ ≤ q. In particular, we shall say that the type (or mutation) θ is more
advantageous than the type q. We shall consider a stationary CBI (Zt, t ∈ R) with
non-homogeneous immigration such that at rate 2β dt there is an immigration of a CB
process starting with an infinitesimal mass and of type θ, with θ chosen according to a
σ-finite measure µ(dθ). We call µ the mutation rate measure.

In [14], the immigration was homogeneous and the mutation rate measure was a
Dirac mass measure; we shall call this model CBI with neutral mutations. In the frame-
work of [14] the process Z is distributed as the initial CB process conditioned on non-
extinction (or Q-process) under its stationary measure. The immigration can also be
seen as the descendants of an immortal individual. This description of the genealogy
using an immortal individual is in the same spirit as the bottom individual in the modi-
fied look-down process in [18]. Even if this interpretation is no more valid in our setting,
we might keep the corresponding vocabulary as MRCA or TMRCA.

The mutation rate measure allows to consider non-neutral mutations. In our model
different CB processes with different branching mechanism coexist at the same time
and all mutations eventually die out. Contrary to [1], who considered only advanta-
geous mutations (that is advantageous immigration with rate proportional to the size
of the population), the type of the immigrants in our model is random and there is no
improvement of the type as time goes on. One of the advantages of our model is that
it has a stationary version, which we shall consider. Notice also that the size of the
population is random (and different from an homogeneous CBI unless the mutation rate
measure is a constant time a Dirac mass).

1.5 Presentation of the results

After some preliminaries on CB processes in Section 2, we define precisely our model
in Section 3. In particular, we give an integrability condition on the mutation rate mea-
sure µ for the process Z to be well defined (Theorem 3.1) and we check that Z is
continuous (Theorem 3.3). We give the expectation of Zt (Corollary 3.4) which might be
infinite and characterize the mutation rate measure for which the population size is al-
ways strictly positive (Proposition 3.5). Notice only this case is biologically meaningful.
We also give (Lemma 3.2) the distribution of time to the most recent common ances-
tor (TMRCA) which is seen as the first immigration time of an ancestor of the current
population living at time t = 0.

We study the type Θ of the MRCA which is the type of the first immigrant having
descendants at time t = 0 in Section 4. In particular, we get that if µ is a probability
measure, then Θ is stochastically more favorable than the type of a random immigrants
given by µ (that is Θ is stochastically less than Θ′ with probability measure µ).

Using arguments close to [14] we give in Section 5 the distribution of the size ZA of
the population at the TMRCA (Proposition 5.3) and check that the size of the population
at the TMRCA is stochastically smaller than the size of the population at fixed time
(which is the stationary measure). This can be interpreted as a bottleneck effect.

In Section 6.1 we give (Lemma 6.1) the asymptotic number of immigrants who still
have descendants in the current population at time t = 0. In Section 6.2, we give a
precise description of the genealogical structure of the population relying on the tree
structure of the Brownian excursion. We study in Section 6.3 the asymptotic number
Ms of ancestors s unit of time in the past of the current population. In particular we get
(Proposition 6.5) that βMs is of order Z0/s, which is similar to the CBI case with neutral
mutation see [14] or Berestycki, Berestycki and Limic [6] for Λ-coalescent models. We
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also give the fluctuations (Theorem 6.6) which are similar to the neutral case if the
mutation rate behaves nicely.

Section 7 is devoted to the stable mutation rate:

µ(dθ) = cθα−1 1{θ>0} dθ,

with c > 0 and α ∈ (0, 1). In this case we have E[Z0] = +∞ and E[ZA] finite iff
α ∈ (1/2, 1). In particular for α ∈ (1/2, 1) we have a drastic bottleneck effect as the ratio
E[ZA]/E[Z0] is equal to 0. We also prove (Proposition 7.2) that the type of the MRCA is
(stochastically) more advantageous than the type of an individual taken at random in
the current population, see also [21] for similar behavior in a different model. We con-
jecture this result holds for any mutation rate measure. We get in Section 7.3 that the
number of families at s unit of time in the past for the model with non-neutral mutations
behave as s−α and that this result can not be compared to the neutral case in [14] even
with stable branching mechanism where the number of families at s unit of time in the
past is of order 1/| log(s)|. Concerning the fluctuations of the number of ancestors, Ms,
we get that results given in Theorem 6.6 holds iff α ∈ (0, 1/2) and we get a determinis-
tic limit for α ∈ (1/2, 1). We interpret this latter phenomenon as a law of large number
effect from the large number of small populations generated by immigrants with very
disadvantageous mutations which is preponderant to the fluctuations of the number of
ancestors in each of the immigrant populations.

2 Preliminaries and notations

We consider a quadratic branching mechanism ψ(λ) = βλ2 for some fixed β > 0. We
will consider a family (ψθ, θ ≥ 0) of (sub)-critical branching mechanism defined by:

ψθ(λ) = ψ(λ+ θ)− ψ(θ) = 2βθλ+ βλ2.

For every fixed θ ≥ 0, let Pψθx be the law of a CB process, Y θ = (Y θt , t ≥ 0), started at
mass x with branching mechanism ψθ. Let Eψθx be the corresponding expectation and
Nψθ be the canonical measure (excursion measure) associated to Y θ. In particular Nψθ

is a σ-finite measure on the set D0 of continuous functions from (0,∞) to [0,∞) having
zero as a trap (for a function f , this means f(s) = 0 implies f(t) = 0 for all t ≥ s).
According to [2], see also Abraham, Delmas and Voisin [4], it is possible to define the
processes (Y θ, θ ≥ 0) on the same space so that a.s. Y θ1 ≥ Y θ2 , for any 0 ≤ θ1 ≤ θ2.

When there is no confusion we shall write Y for Y θ that is for example Eψθx [F (Y )] or
Nψθ [F (Y )] instead of Eψθx [F (Y θ)] or Nψθ [F (Y θ)]. We recall some well known results on
quadratic CB processes. For every t ≥ 0 and λ > −2θ/(1− e−θt), we have:

Eψθx
[
e−λYt

]
= e−xu

θ(λ,t), (2.1)

where

uθ(λ, t) = Nψθ [1− e−λYt ] =
2θλ

(2θ + λ)e2βθt − λ
·

Notice that uθ satisfies the backward and forward equations for λ ≥ 0 and t ≥ 0:

∂tu
θ(λ, t) = −ψθ(uθ(λ, t)), ∂tu

θ(λ, t) = −ψθ(λ) ∂λu
θ(λ, t),

with initial conditions uθ(λ, 0) = λ and uθ(0, t) = 0. It is easy to deduce that for t ≥ 0:

Nψθ [Yt] = e−2βθt and Nψθ
[
Yt e−λYt

]
=

e−2βθt(
1 + λ∆θ

t

)2 , (2.2)
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where we set for t ≥ 0:

∆θ
t =

1− e−2βθt

2θ
· (2.3)

It is easy to get that for t ≥ 0 and λ ≥ 0:

β

∫ t

0

uθ(λ, r) dr = log(1 + λ∆θ
t ) and β

∫ ∞
0

uθ(λ, r) dr = log

(
1 +

λ

2θ

)
. (2.4)

Let
ζ = inf{t > 0;Yt = 0} (2.5)

be the lifetime of Y and set cθ(t) = Nψθ [ζ > t]. Then we have:

cθ(t) = lim
λ→∞

uθ(λ, t) =
2θ

e2βθt − 1
=

e−2βθt

∆θ
t

· (2.6)

Notice that for t, s > 0, we have cθ(t+ s) = uθ(cθ(t), s). We also have for t > 0:

β

∫ ∞
t

cθ(r) dr = − log
(
1− e−2βθt

)
. (2.7)

3 Definition and properties of the total size process

For a Borel measure µ and a measurable non-negative function f defined on the
same space, we will write 〈µ, f〉 =

∫
f(x)µ(dx).

Let µ be a non-zero Borel σ-finite measure on (0,+∞), which we shall call a mutation
rate measure. Consider under P a Poisson point measure (PPM) on R× (0,∞)×D0,∑

i∈I
δ(ti,θi,Y i)(dt, dθ, dY ),

with intensity 2βdtµ(dθ)Nψθ [dY ]. Let E be the expectation corresponding to the proba-
bility measure P. For i ∈ I, we shall call Y i a family, θi its type (or mutation) and ti its
birth time. Define the super-process Z = (Zt, t ∈ R) by:

Zt(dθ) =
∑
i∈I

Y it−tiδθi(dθ)

with the convention that Y it = 0 for t < 0 and δθ denotes the Dirac mass at θ. By
construction Z is a stationary Markovian σ-finite measure-valued process. We shall
consider the corresponding total size process Z = (Zt, t ∈ R) defined by:

Zt = 〈Zt, 1〉 =
∑
i∈I

Y it−ti =
∑
ti<t

Y it−ti .

Notice that Z is stationary but it is not Markovian unless µ is a constant times a Dirac
mass. The process Z is a CB process with a non-homogeneous immigration. It will
represent the evolution of a random size population with non-neutral mutations in a
stationary regime. The genealogy of Z will be defined in Section 6.2.

First we will consider the condition on µ such that Z is well defined.

Theorem 3.1. Let t ∈ R. The random variable Zt is finite a.s. if and only if the following
conditions are satisfied:∫

0+

| log θ|µ(dθ) <∞ and

∫ +∞ µ(dθ)

θ
<∞. (3.1)

The distribution of Zt is characterized by its Laplace transform, for λ ≥ 0:

E[e−λZt ] = exp

(
−2

∫ ∞
0

µ(dθ) log

(
1 +

λ

2θ

))
. (3.2)
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Proof. By the exponential formula, one obtains that, for F non-negative measurable,

E

[
exp

(
−
∑
i∈I

F (ti, θi, Y
i)

)]
= exp

(
−2β

∫ ∞
0

dt

∫ ∞
0

µ(dθ)Nψθ [1− e−F (t,θ,Y )]

)
.

Since Zt = 〈Zt, 1〉 =
∑
ti≤t Y

i
t−ti , we have using (2.4):

E[e−λZt ] = exp

(
−2β

∫ ∞
0

ds

∫ ∞
0

µ(dθ)Nψθ [1− e−λYs ]

)
= exp

(
−2β

∫ ∞
0

ds

∫ ∞
0

µ(dθ)uθ(λ, s)

)
= exp

(
−2

∫ ∞
0

µ(dθ) log

(
1 +

λ

2θ

))
.

Letting λ→ 0 entails that

P(Zt <∞) = 1 ⇔ lim
λ→0

∫ ∞
0

µ(dθ) log

(
1 +

λ

2θ

)
= 0. (3.3)

The right hand side of (3.3) is equivalent to the existence of some λ > 0, such that:∫ ∞
0

µ(dθ) log

(
1 +

λ

2θ

)
<∞. (3.4)

As log(1 + λ/2θ) is equivalent to | log θ| (resp. λ/2θ) as θ goes to 0+ (resp. +∞), we
deduce that (3.4) holds if and only if (3.1) holds.

Before giving other properties of the process Z, we shall study the time A to the first
immigration time of an ancestor (or equivalently the TMRCA) of the current population
living at time 0 which is defined as:

A = sup{|ti|; i ∈ I and Y i−ti > 0} = sup{|ti|; i ∈ I and ti < 0 < ti + ζi}, (3.5)

with ζi the lifetime (see definition (2.5)) of Y i.

Lemma 3.2. We have for all t ≥ 0:

P(A < t) = exp

(
2

∫ ∞
0

log(1− e−2βθt)µ(dθ)

)
.

Under conditions (3.1), we get that A is a.s. finite.

Proof. The property of the Poisson random measure implies that for t ≥ 0:

P(A < t) = P(∀ i ∈ I, ti ≥ −t or ζi + ti < 0)

= exp

(
−2β

∫ ∞
t

ds

∫ ∞
0

µ(dθ)Nψθ [ζ > s]

)
= exp

(
−2β

∫ ∞
0

µ(dθ)

∫ ∞
t

cθ(s) ds

)
= exp

(
2

∫ ∞
0

log(1− e−2βθt)µ(dθ)

)
,

where we used (2.7) for the last equality. Under conditions (3.1), we get that
∫∞

0
log(1−

e−2βθt)µ(dθ) is finite for any t > 0, which implies, thanks to dominated convergence,
that limt→+∞ P(A < t) = 1 that is A is a.s. finite.
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Theorem 3.3. Under conditions (3.1), the process Z is continuous.

In particular, we deduce that under conditions (3.1), Z is a stationary Markov pro-
cess with values in the set of finite measures on R+.

Proof. To prove the continuity of the process Z, we notice that by stationarity, we just
need to prove the continuity of Z on [0, 1]. Let c > 0 be a finite constant and consider
the truncated process Zc = (Zct , t ∈ [0, 1]) defined by:

Zct =
∑
i∈I

Y it−ti1{ti≥−c}.

Notice that Zc and (Zt, t ∈ [0, 1]) coincide on {A ≤ c}. Since A is a.s. finite, to get the
continuity of Z on [0, 1], we just need to prove that Zc is continuous. We shall check the
Kolmogorov criterion for Zc.

Let λ ≥ 0 and γ ≥ 0, 0 ≤ s ≤ t ≤ 1. We have:

E
[
e−λZ

c
t−γZ

c
s

]
= E

[
e−
∑
−c≤ti≤s

(λY it−ti
+γY is−ti

)
]

E
[
e−λ

∑
s<ti≤t

Y it−ti

]
= e−2β

∫ s
−c dr

∫∞
0
µ(dθ)Nψθ [1−e−λYt−r−γYs−r ] e−2β

∫ t
s
dr
∫∞
0
µ(dθ)Nψθ [1−e−λYt−r ]

= e−2β
∫ c+s
0

dr
∫∞
0
µ(dθ)uθ(uθ(λ,t−s)+γ,r) e−2β

∫ t−s
0

dr
∫∞
0
µ(dθ)uθ(λ,r)

= exp−2

∫ ∞
0

µ(dθ)
(
log(1 + (uθ(λ, t− s) + γ)∆θ

c+s) + log(1 + λ∆θ
t−s)

)
= exp−2

∫ ∞
0

µ(dθ) log
(
1 + λ∆θ

t−s + (λ(1− 2θ∆θ
t−s) + γ(1 + λ∆θ

t−s))∆
θ
c+s

)
,

where we used (2.4) for the fourth equality, and the equality uθ(λ, t − s) = λ(1 −
2θ∆θ

t−s)/(1 + λ∆θ
t−s) (see (2.3)) for the fifth. Notice that for fixed r > 0, there exists

a constant Cr > 0 such that for all θ > 0:

0 ≤ ∆θ
r ≤

Cr
θ + 1

and recall 1− 2θ∆θ
r = e−2βθr . (3.6)

Therefore, there exists a constant c1 ≥ 1 such that for λ, γ ∈ R:∣∣λ∆θ
t−s + (λ(1− 2θ∆θ

t−s) + γ(1 + λ∆θ
t−s))∆

θ
c+s

∣∣ ≤ c1
1 + θ

(|λ|+ |γ|+ |λγ|).

We deduce that under conditions (3.1), the function

(λ, γ) 7→
∫ ∞

0

µ(dθ) log
(
1 + λ∆θ

t−s + (λ(1− 2θ∆θ
t−s) + γ(1 + λ∆θ

t−s))∆
θ
c+s

)
is analytic in (λ, γ) in a neighborhood of 0 for example on {(λ, γ); |λ|+ |γ| ≤ 1/4c1}.
Taking γ = −λ, this implies that for |λ| ≤ 1/8c1, we have:

E
[
e−λ(Zct−Z

c
s)
]

= exp−2

∫ ∞
0

µ(dθ) log
(
1 + λ∆θ

t−s(1− 2θ∆θ
c+s)− λ2∆θ

t−s∆
θ
c+s

)
.

Using (3.6), an easy computation yields that there exists a constant c2 such that:

E
[
(Zct − Zcs)4

]
≤ c2

((∫ ∞
0

µ(dθ)∆θ
t−s e−2βθ(c+s)

)4

+

(∫ ∞
0

µ(dθ)

1 + θ
∆θ
t−s

)2

+

∫ ∞
0

µ(dθ)

1 + θ

(
∆θ
t−s
)2)

.
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Then using that
∣∣∆θ

t−s
∣∣ ≤ β(t− s), we get that there exists a constant c3 such that:

E
[
(Zct − Zcs)4

]
≤ c3 |t− s|2 .

This gives the Kolmogorov criterion for Zc. Thus Zc is continuous, which ends the
proof.

We give the first moment of Z.

Corollary 3.4. Under conditions (3.1), we have for t ∈ R:

E[Zt] =

∫ ∞
0

µ(dθ)

θ
∈ [0,∞]. (3.7)

Proof. Using (3.2), we get:

E[Zt] = 2β

∫ ∞
0

ds

∫ ∞
0

µ(dθ)Nψθ [Ys] = 2β

∫ ∞
0

ds

∫ ∞
0

µ(dθ) e−2βθs =

∫ ∞
0

µ(dθ)

θ
·

We give a criterion for Z to reach 0. See also Foucart and Bravo [24] for such a
criterion for CBI.

Proposition 3.5. Under conditions (3.1), we have {t;Zt = 0} = ∅ a.s. if and only if∫ 1

0

dt exp

(
−2

∫ ∞
0

log(1− e−2βθt)µ(dθ)

)
=∞. (3.8)

In particular, {t;Zt = 0} = ∅ a.s. if 〈µ, 1〉 > 1/2 and with probability strictly positive
{t;Zt = 0} 6= ∅ if 〈µ, 1〉 < 1/2.

Proof. Recall that ζi is the lifetime of Y i. By using Theorem 2 in Fitzsimmons, Fristedt
and Shepp [23], we can derive that {t;Zt = 0} = ∅ a.s. if and only if:∫ 1

0

exp

(
2β

∫ ∞
t

ds

∫ ∞
0

µ(dθ)Nψθ [ζ > s]

)
dt =∞.

Thanks to (2.6) and (2.7), this last condition is equivalent to (3.8).
If 〈µ, 1〉 > 1/2, then there exists θ0 ∈ (0,+∞) such that B =

∫ θ0
0
µ(dθ) > 1/2. Then,

we have:

−2

∫ ∞
0

log(1− e−2βθt)µ(dθ) ≥ −2

∫ θ0

0

log(1− e−2βθt)µ(dθ) ≥ −2B log(1− e−2βθ0t).

As 2B > 1, we deduce:∫ 1

0

dt exp

(
−2

∫ ∞
0

log(1− e−2βθt)µ(dθ)

)
≥
∫ 1

0

(1− e−2βθ0t)−2B dt = +∞.

Thus a.s. {t;Zt = 0} = ∅.
If 〈µ, 1〉 < 1/2, then, as 1− e−x ≥ x/2 for x ∈ [0, 1], we have for t ∈ (0, 1/2β]:

−2

∫ ∞
0

log(1− e−2βθt)µ(dθ) ≤ −2

∫ 1

0

log(1− e−2βθt)µ(dθ)− 2 log(1− e−2βt)

∫ ∞
1

µ(dθ)

≤ −2

∫ 1

0

log(βθt)µ(dθ)− 2 log(1− e−2βt)

∫ ∞
1

µ(dθ)

= C − 2 log(t)

∫ 1

0

µ(dθ)− 2 log(1− e−2βt)

∫ ∞
1

µ(dθ),
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where C is a finite constant thanks to (3.1). We deduce that for ε > 0 small enough:∫ ε

0

dt exp

(
−2

∫ ∞
0

log(1− e−2βθt)µ(dθ)

)
≤
∫ ε

0

dt t−2
∫ 1
0
µ(dθ)(1−e−2βt)−2

∫∞
1
µ(dθ) eC < +∞,

as 〈µ, 1〉 < 1/2. This implies that with strictly positive probability {t;Zt = 0} 6= ∅.

4 Type of the MRCA

We assume that conditions (3.1) hold.
Because of the stationarity, we shall focus on the MRCA of the current population

living at time 0. Recall the TMRCA is given by (3.5). We set i0 ∈ I the (unique) index i
such that A = −ti. We shall say that Y i0 is the oldest family. We define the type of the
MRCA that is of the oldest immigrant family as:

Θ = θi0 .

We give the joint distribution of the TMRCA and the type of the MRCA.

Lemma 4.1. We have for every t ∈ R, θ > 0,

P(A ∈ dt,Θ ∈ dθ) =
4βθ

e2βθt−1
exp

(
2

∫ ∞
0

log(1− e−2βθ′t)µ(dθ′)

)
dtµ(dθ). (4.1)

Proof. For f non-negative measurable, we get:

E[f(A,Θ)] = E

[∑
i∈I

f(−ti, θi)1{
Y i−ti

>0,
∑
tj<ti

1
{Y j−tj

>0}
=0
}]

= 2β

∫ ∞
0

ds

∫ ∞
0

µ(dθ) f(s, θ)Nψθ [Ys > 0] P(A < s)

= 2β

∫ ∞
0

ds

∫ ∞
0

µ(dθ) f(s, θ) cθ(s) P(A < s).

We deduce that P(A ∈ dt,Θ ∈ dθ) = 2βcθ(t) P(A < t) dtµ(dθ). Then, using Lemma 3.2, it
follows that:

P(A ∈ dt,Θ ∈ dθ) = 2β dtµ(dθ)
2θ

e2βθt−1
exp

(
2

∫ ∞
0

log(1− e−2βθ′t)µ(dθ′)

)
.

Using Lemma 4.1, we can derive the distribution µMRCA
t of the type of MRCA given

the TMRCA being equal to t:

µMRCA
t (Θ ∈ dθ) = P(Θ ∈ dθ|A ∈ dt) =

θ(e2βθt − 1)−1∫∞
0
θ′(e2βθ′t−1)−1 µ(dθ′)

µ(dθ).

Notice that the function θ 7→ θ(e2βθt − 1)−1 decreases to 0 as θ increases to +∞. Intu-
itively, the distribution of the type of the MRCA is more likely to focus on the favorable
θ (that is θ small which corresponds to large population) than that on the θ large (which
corresponds to small population). In particular if µ is a probability measure then µMRCA

t

is stochastically smaller than µ. This means the type of the MRCA (given {A = t}) is
stochastically less, which means stochastically more favorable, than the type of a ran-
dom immigrant. Notice also that µMRCA

t is stochastically decreasing with t which means
that the type of the oldest family, Y i0 , is stochastically increasing with |ti0 |.
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5 Bottleneck effect

We assume that conditions (3.1) hold.
We consider Z−A, which we shall denote ZA, the size of the population at the TM-

RCA:
ZA = Z−A =

∑
i∈I

Y i−A−ti =
∑
ti<−A

Y i−A−ti .

Let ZO = Y i0−ti0 be the size of the old family at time 0 and ZI = Z0 − ZO be the size of
the population at time 0 not belonging to the old family. Following Theorem 4.1 in [14],
it is easy to get the following result.

Lemma 5.1. The joint distribution of (ZA, ZO, ZI , A,Θ) is characterized by: for λ, γ, η ∈
[0,+∞), and t, θ ∈ (0,+∞),

E[exp(−λZA − γZI − ηZO);A ∈ dt,Θ ∈ dθ]

= 2β dtµ(dθ) (cθ(t)− uθ(η, t)) exp

(
−2β

∫ t

0

ds

∫ ∞
0

uθ
′
(γ, s)µ(dθ′)

)
exp

(
−2β

∫ ∞
0

ds

∫ ∞
0

uθ
′
(λ+ cθ

′
(t), s)µ(dθ′)

)
.

We deduce the following result.

Lemma 5.2. Conditionally on A, (ZO,Θ), ZI and ZA are independent.

Now we concentrate on the population size at the MRCA. Recall ∆θ
t defined in (2.3).

Proposition 5.3. Let t ∈ (0,+∞). We have for η ≥ 0:

E[e−ηZ
A

|A = t] = exp

(
−2

∫ ∞
0

log(1 + η∆θ
t )µ(dθ)

)
, (5.1)

and

E[ZA|A = t] = 2

∫ ∞
0

∆θ
t µ(dθ) < +∞. (5.2)

Furthermore conditionally on A (or not), ZA is stochastically smaller than Z0, that is for
all z > 0:

P(ZA ≤ z|A = t) ≥ P(Z0 ≤ z) and P(ZA ≤ z) ≥ P(Z0 ≤ z). (5.3)

The fact that ZA is stochastically smaller than Z0 corresponds to the bottleneck
effect.

Proof. Using (4.1), we get:

E[e−ηZ
A

|A = t] =
exp

(
−2β

∫∞
0
ds
∫∞

0
uθ(η + cθ(t), s)µ(dθ)

)
exp

(
−2β

∫∞
0
ds
∫∞

0
uθ(cθ(t), s)µ(dθ)

) · (5.4)

Then, using (2.4), (2.7) and (2.3), it is easy to get (5.1). This readily implies (5.2).
We now prove the stochastic order. First notice that ∆θ

t ≤ 1/(2θ). We deduce that
for all η ≥ 0, we have:

E[e−ηZ
A

|A = t] ≥ E[e−ηZ0 ].

This means that ZA is smaller than Z0 in the Laplace transform order. We will however
prove the stronger result on the stochastic order.

We deduce from (5.1) that conditionally on {A = t}, ZA is distributed as
∑
i∈I Y

i,1
−ti ,

with Z1 =
∑
i∈I δY i,1,ti a PPM with intensity 2βdt

∫∞
0
µ(dθ)N

ψ
1/(2∆θt ) [dY ]. As recalled in
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Section 2, it is possible to define on the same space two CB processes Y 1 and Y 2 such

that Y 1 ≤ Y 2 a.e. and Y 1 (resp. Y 2) is distributed under N
ψ

1/(2∆θt ) [dY ] (resp. Nψθ [dY ])
since θ ≤ 1/(2∆θ

t ). We deduce that Z1 can be defined on a possible enlarged space
so that there exists a PPM Z2 =

∑
i∈I δY i,2,ti with intensity 2βdt

∫∞
0
µ(dθ)Nψθ [dY ] and

such that a.s. for all i ∈ I, Y i,1 ≤ Y i,2. This implies that a.s.
∑
i∈I Y

i,1
−ti ≤

∑
i∈I Y

i,2
−ti .

As
∑
i∈I Y

i,2
−ti is distributed as Z0, we deduce that ZA (conditionally on {A = t}) is

stochastically less than Z0. This gives the first part of (5.3). By integrating the first part
of (5.3) with respect to P(A ∈ dt), we deduce the second part of (5.3).

As a direct consequence of (5.2) we can compute the expectation of ZA, which will
be used in Section 7.

Lemma 5.4. We have:

E[ZA] = 2β

∫ ∞
0

dt

∫ ∞
0

µ(dθ)
2θ

e2βθt − 1

∫ ∞
0

µ(dθ′)
1− e−2βθ′t

θ′
e2
∫∞
0

log(1−e−2βθ′′t)µ(dθ′′) .

(5.5)

6 Asymptotics for the number of families and ancestors

We assume that conditions (3.1) hold.

6.1 Asymptotics for the number of families

For s > 0, let Ns be the number of families at time −s which are still alive at time 0:

Ns =
∑
i∈I

1{ti<−s,ζi>−ti} =
∑
i∈I

1{ti<−s,Y i−ti>0}.

We set:

Λ(s) = −2

∫ ∞
0

µ(dθ) log(1− e−2βθs). (6.1)

We have the following result.

Lemma 6.1. We have a.s.:

lim
s↓0

Ns
Λ(s)

= 1.

Proof. Notice that Ns is by construction a Poisson random variable with intensity

2β

∫ −s
−∞

dr

∫ ∞
0

µ(dθ)Nψθ [ζ > −r] = −2

∫ ∞
0

µ(dθ) log(1− e−2βθs) = Λ(s),

where we used (2.6) and (2.7) for the first equality. As s → 0+, Λ(s) goes to infinity.
Then notice that (NΛ−1(s), s ≥ 0) is a Poisson process with parameter 1. We deduce the
result from the strong law of large numbers for Lévy processes.

6.2 The genealogical tree

In order to consider the number of ancestors Ms at time −s of the current population
living at time 0, we need to introduce the genealogical tree for a CB process, see Le Gall
[28] or Duquesne and Le Gall [20]. Since the branching mechanism is quadratic, we
will code the genealogical tree using Brownian excursion. Let W = (Wt, t ∈ R+) be a
Brownian motion. We consider the Brownian motion W θ = (W θ

t , t ∈ R+) with negative
drift and the corresponding reflected process above its minimum Hθ = (Hθ(t), t ∈ R+):

W θ
t =

√
2

β
Wt − 2θt and Hθ(t) = W θ

t − inf
s∈[0,t]

W θ
s .
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We deduce from equation (1.7) in [20] that Hθ is the height process associated to the
branching mechanism ψθ. For a function H, we set:

max(H) = max(H(t), t ∈ R+).

Let Nψθ [dHθ] be the excursion measure of Hθ above 0 normalized such that

Nψθ [max(Hθ) ≥ r] = cθ(r).

Let (Lxt (Hθ), t ∈ R+, x ∈ R+) be the local time of Hθ at time t and level x. Let ζ =

inf{t > 0;Hθ(t) = 0} be the duration of the excursion Hθ under Nψθ [dHθ]. We recall
that (Lrζ(H

θ), r ∈ R+) under Nψθ is distributed as Y θ under Nψθ . From now on we shall

identify Y θ with (Lrζ(H
θ), r ∈ R+) and writeNψθ for Nψθ . When there is no confusion, we

shall write H for Hθ and Y for Y θ. We now recall the construction of the genealogical
tree of the CB process Y from H.

Let f be a continuous non-negative function defined on [0,+∞), such that f(0) = 0,
with compact support. We set ζf = sup{t; f(t) > 0}, with the convention sup ∅ = 0. Let
df be the non-negative function defined by:

df (s, t) = f(s) + f(t)− 2 inf
u∈[s∧t,s∨t]

f(u).

It can be easily checked that df is a semi-metric on [0, ζf ]. One can define the equiva-
lence relation associated to df by s ∼ t if and only if df (s, t) = 0. Moreover, when we
consider the quotient space T f = [0, ζf ]/∼ and, noting again df the induced metric on
T f and rooting T f at ∅f , the equivalence class of 0, it can be checked that the space
(T f , df , ∅f ) is a compact rooted real tree.

The so-called genealogical tree of the CB process Y is the real tree T = (TH , dH , ∅H).
In what follows, we shall mainly present the result using the height process H instead
of the genealogical tree.

6.3 Asymptotics for the number of ancestors

Let a > 0 and (Hk, k ∈ Ka) be the excursions of H above level a. It is well known that∑
k∈Ka δHk is under Nψθ conditionally on (Yr, r ∈ [0, a]) a PPM with intensity YaNψθ [dH].

Let b > a > 0. We define the number Ra,b of ancestors at time a of the population living
at time b as the number of excursions above level a which reach level b:

Ra,b =
∑
k∈Ka

1{max(Hk)≥b−a}.

To emphasize the dependence of Y and R in H, we may write Ya(H) and Ra,b(H).
We give the joint distribution of (Ya, Yb, Ra,b).

Lemma 6.2. Let 0 < a < b. For λ, ρ, η ≥ 0, we have:

Nψθ
[
1− e−ρYa−λYb−ηRa,b

]
= uθ(ρ+ γθb−a(λ, η), a),

with
γθr (λ, η) = (1− e−η)cθ(r) + e−η uθ(λ, r).

Proof. We have:

Nψθ
[
1− e−ρYa−λYb−ηRa,b

]
= Nψθ

[
1− e−ρYa−

∑
k∈Ka (λYb−a(Hk)+η1{max(Hk)≥b−a})

]
= Nψθ

[
1− e−Ya(ρ+N

ψθ [1−exp(−λYb−a−η1{ζ≥b−a})])
]

= Nψθ
[
1− e−Ya(ρ+γ

θ
b−a(λ,η))

]
= uθ(ρ+ γθb−a(λ, η), a),
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where we used the property of the PPM
∑
k∈Ka δHk for the second equality, and

1− e−λYs−η1{ζ≥s} = (1− e−η)1{ζ≥s} + e−η(1− e−λYs)

as Ys = 0 on {ζ < s}, for the third equality.

In order to describe the genealogical structure of Z, following the beginning of
Section 3, we shall consider under P the PPM:∑

i∈I
δ(ti,θi,Hi)(dt, dθ, dH),

with intensity 2βdtµ(dθ)Nψθ [dH].
Let s > 0. We define the super-process for the number of ancestors for the popula-

tion at time 0 of each family:

Ms(dθ) =
∑
i∈I

1{ti<−s}R−s−ti,−ti(H
i) δθi(dθ).

Then the number of ancestors at time −s of the population at time 0, is:

Ms = 〈Ms, 1〉.

We will first consider the joint distribution of (Z0,Z−s,Ms).

Proposition 6.3. Let ρ, λ and η be non-negative measurable functions defined on R+.
We have:

E
[
e−〈Z−s,ρ〉−〈Z0,λ〉−〈Ms,η〉

]
= exp

(
−2

∫ ∞
0

µ(dθ)
(
log
(
1 + λ(θ)∆θ

s

)
+ log

(
1 + wθ(s)

)))
,

with for s > 0:

wθ(s) =
ρ(θ) + γθs (λ(θ), η(θ))

2θ
·

In particular, we deduce that a.s.:

E
[
e−〈Z0,λ〉−〈Ms,η〉 |Z−s

]
= e−2

∫∞
0
µ(dθ) log(1+λ(θ)∆θ

s) e−〈Z−s,γ
·
s(λ(·),η(·))〉 . (6.2)

Proof. We have:

E
[
e−〈Z−s,ρ〉−〈Z0,λ〉−〈Ms,η〉

]
= A ∗ E

[
e−
∑
i∈I 1{−s<ti≤0}λ(θi)Y

i
−ti

]
= A e−2β

∫ s
0
dt
∫∞
0
µ(dθ)uθ(λ(θ),t),

with

A = E

[
exp

(
−
∑
i∈I

1{ti≤−s}(ρ(θi)Y−s−ti(H
i) + λ(θi)Y−ti(H

i) + η(θi)R−s−ti,−ti(H
i))
)]
.

Using Lemma 6.2, we get:

A = exp

(
−2β

∫ ∞
0

dt

∫ ∞
0

µ(dθ) Nψθ [1− exp(−ρ(θ)Yt − λ(θ)Yt+s − η(θ)Rt,t+s)]

)
= exp

(
−2β

∫ ∞
0

dt

∫ ∞
0

µ(dθ) uθ(2θwθ(s), t)

)
.

Then use (2.4) to end the proof.
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Remark 6.4. We get from Proposition 6.3, with ρ(θ) = ρ0, η(θ) = βsη0 and λ = 0, that:

E
[
e−ρ0Z−s−βsη0Ms

]
= exp

(
−2

∫ ∞
0

µ(dθ) log

(
1 +

ρ0 + (1− e−βsη0)cθ(s)

2θ

))
.

We get that:

lim
s↓0

E
[
e−ρ0Z−s−βsη0Ms

]
= e−2

∫∞
0
µ(dθ) log(1+

ρ0+η0
2θ ) = E

[
e−(ρ0+η0)Z0

]
.

We deduce then from the continuity of the process Z that the convergence lims→0+ βsMs =

Z0 holds in probability.

In fact, we shall see that the convergence in the previous Remark is an a.s. conver-
gence.

Proposition 6.5. We have a.s.:

lim
s→0+

βsMs = Z0.

Notice the order of Ms do not depend on µ: the non-neutral mutations do not change
the asymptotics of the number of ancestors.

Proof. Let λ = 0 and η(θ) = η0. We deduce from (6.2) that:

E[e−η0Ms |Z−s] = e−〈Z−s,γs(0,η0)〉 = e−(1−e−η0 )
∑
ti≤−s

cθi (s)Y i−s−ti .

Therefore, conditionally on Z−s, the number of ancestors Ms is a Poisson random vari-
able with mean Ws =

∑
ti≤−s c

θi(s)Y i−s−ti .
We first prove that a.s.:

lim
s→0+

βsWs = Z0. (6.3)

For q > 0, we set Zqt =
∑
i∈I Y

i
t−ti1{θi≤q}. Let ε ∈ (0, 1). For q > 0, there exists sq > 0

such that for all θ ∈ (0, q], s ∈ (0, sq), we have 1 − ε ≤ βscθ(s) ≤ 1. Since Zqs ≤ Zs by
construction, we deduce that, for s ∈ (0, sq):

(1− ε)Zq−s ≤ βsWs ≤ Z−s.

For q > 0 set:
Aq = {(1− ε)Z0 ≤ Zq0}.

Notice that the sets (Aq, q > 0) are non-decreasing and that limq→+∞ P(Aq) = 1 since
a.s. limq→+∞ Zq0 = Z0.

The process Zq = (Zqt , t ∈ R) is distributed as Z with the mutation rate measure
µq(dθ) = µ(dθ)1{θ≤q} instead of µ. Since conditions (3.1) hold for µ, they also hold for
µq. In particular the process Zq is continuous. We deduce that a.s. on Aq:

(1− ε)2Z0 ≤ (1− ε)Zq0 ≤ lim inf
s→0+

βsWs ≤ lim sup
s→0+

βsWs ≤ Z0.

Since (Aq, q > 0) are non-decreasing and limq→+∞ P(Aq) = 1, we get that a.s.:

(1− ε)2Z0 ≤ lim inf
s→0+

βsWs ≤ lim sup
s→0+

βsWs ≤ Z0.

Since ε ∈ (0, 1) is arbitrary, this implies that a.s. (6.3) holds.
Recall that Ms is increasing, is conditionally on Z−s a Poisson random variable with

mean Ws. Then use (6.3) and properties of Poisson distributions to get that a.s.:

lim
s→0+

βsMs/βsWs = 1.

This and (6.3) end the proof.
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We have the following partial result on the fluctuations.

Theorem 6.6. We have the convergence in distribution of ((Z0, (Z0−Z−s)/
√
βs), s ≥ 0)

towards (Z0,
√

2Z0G) with G a standard Gaussian random variable independent of Z0.
Under the conditions:

lim
A→+∞

√
A

∫ ∞
A

µ(dθ)

θ
= 0 and lim

A→+∞

1√
A

∫ A

0

µ(dθ) = 0, (6.4)

we have the convergence in distribution of ((Z0, (Z0−Z−s)/
√
βs, (βsMs−Z−s)/

√
βs), s ≥

0) towards (Z0,
√
Z0 (G+G′),

√
Z0G) with G and G′ two independent standard Gaussian

random variables independent of Z0.

If conditions (6.4) do not hold, we may have a very different behavior, see the stable
case in Section 7.

Proof. Let η, λ ≥ 0, s ∈ (0,min(1/2, 1/(4βη2))) and ρ > max(λ, η)/2
√
βs. We deduce from

Proposition 6.3 that:

E

[
exp

(
−ρZ−s −

λ√
βs

(Z0 − Z−s)−
η√
βs

(βsMs − Z−s)
)]

= exp

(
−2

∫ ∞
0

µ(dθ) log
(

1 +
σ

2θ
+ Λs(θ)

))
, (6.5)

with

σ = ρ− (λ2 + λη +
η2

2
),

Λs(θ) =
λ(λ+ η)

2θ

(
1− ∆θ

s

βs

)
+
ρλ
√
βs

2θ

∆θ
s

βs
+

η

2θ
√
βs
A(η

√
βs, 2βθs),

and

A(x, y) =
1− e−x

x

y

ey −1
− 1 +

x

2
·

We have for y > 0 and x ∈ (0, 1/2):

−min(1, y) ≤
(

1− x

2

)( y

ey −1
− 1

)
≤ A(x, y) ≤ x2

6
·

Recall that for x ≥ 0, we have x− x2/2 ≤ 1− e−x ≤ x. We deduce that:

Λs(θ) ≤
λ(λ+ η)

2θ
min(1, βθs) +

ρλ
√
βs

2θ
+
η3
√
βs

12θ
≤ λ(λ+ η) + (ρλ+ η3)

√
β

2θ
· (6.6)

We also have:

Λs(θ) ≥ −
η

2θ
√
βs

min(1, 2βθs) ≥ −ηmin

(
1

2θ
√
βs
,
√
βs

)
. (6.7)

In particular, we have:
lim
s→0

Λs(θ) = 0. (6.8)

Let M0 > 0 large, ε0 > 0 small, and s0 > 0 small enough such that ε0 −M2
0

√
βs0 > 0

and M0

√
βs0 < 1/2. Set I0 = [0,M0]3

⋂
{ρ − (λ2 + λη + (η2/2)) > ε0}. Notice that Λs(θ)

is analytic in (ρ, λ, η). We deduce that the integral

Fs(ρ, λ, η) =

∫ ∞
0

µ(dθ) log
(

1 +
σ

2θ
+ Λs(θ)

)
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is well defined in (ρ, λ, η) ∈ I0 for all s ∈ (0, s0]. For fixed ρ > ε0 > 0, it is not difficult
to check that there exists s1 > 0 smaller than s0 such that for s ∈ (0, s1], Fs(ρ, λ, η) is
also analytic in (λ, η) such that λ2 + λη+ η2/2 < ρ− ε0. We deduce that (6.5) is valid for
ρ > λ2 + λη + (η2/2) and s small (and not only for ρ > max(λ, η)/2

√
βs).

If η = 0, we have 0 ≤ Λs(θ) ≤ λ(λ + ρ
√
β)/(2θ). By dominated convergence, we get,

using (6.8), that for ρ > λ2:

lim
s→0

∫ ∞
0

µ(dθ) log

(
1 +

ρ− λ2

2θ
+ Λs(θ)

)
=

∫ ∞
0

µ(dθ) log

(
1 +

ρ− λ2

2θ

)
.

Thanks to (6.5), we obtain that for ρ > λ2:

lim
s→0

E
[
e
−ρZ−s− λ√

βs
(Z0−Z−s)

]
= e
−2
∫∞
0
µ(dθ) log

(
1+ ρ−λ2

2θ

)
= E[e−ρZ0−λ

√
2Z0 G]

with G a standard Gaussian random variable independent of Z0. This implies the
convergence in distribution of the sequence ((Z−s, (Z0 − Z−s)/

√
βs), s ≥ 0) towards

(Z0,
√

2Z0G). Then use that Z is continuous to get the first part of the Theorem.

We assume η > 0. Let (ρ, λ, η) ∈ I0. Set

F0(ρ, λ, η) =

∫ ∞
0

µ(dθ) log
(

1 +
σ

2θ

)
.

We shall prove that under (6.4), we have lims→0 Fs(ρ, λ, η) = F0(ρ, λ, η). Notice that
σ > ε0 > 0. We have:

Hs = |Fs(ρ, λ, η)− F0(ρ, λ, η)| ≤
∫ ∞

0

µ(dθ)

∣∣∣∣log

(
1 +

2θΛs(θ)

σ + 2θ

)∣∣∣∣ .
We shall denote by Ck for k ∈ N some finite positive constants which depend only on
M0, ε0 and s0. We deduce from (6.6) and (6.7) that for all (ρ, λ, η) ∈ I0 and s ∈ (0, s0]:

|Λs(θ)| ≤ C1

(√
s

θ
+ min

(
1

θ
√
s
,
√
s

))
.

Thus, there exists s1 > 0 small enough and less than s0 such that for all (ρ, λ, η) ∈ I0
and s ∈ (0, s1]:∣∣∣∣log

(
1 +

2θΛs(θ)

σ + 2θ

)∣∣∣∣ ≤ C2

√
s1[0,1/s](θ) + C3

1

θ
√
s
1[1/s,+∞)(θ).

Then, we deduce from (6.4) that lims→0Hs = 0. This implies that:

lim
s→0

E
[
e
−ρZ−s− λ√

βs
(Z0−Z−s)− η√

βs
(βsMs−Z−s)

]
= e−2

∫∞
0
µ(dθ) log(1+ σ

2θ )

= E
[
e−σZ0

]
= E

[
e−(ρ−(λ2+λη+ η2

2 ))Z0

]
= E

[
e−ρZ0−λ

√
Z0 G−(λ+η)

√
Z0 G

′
]
,

with G′ distributed as G and independent of Z0 and G. This gives the second part of the
Theorem.

We have the following representation of the limit in Theorem 6.6.
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Lemma 6.7. Let G be a standard Gaussian random variable independent of Z0. We
have that

√
Z0G is distributed as Z ′0 − Z ′′0 , with Z ′0 and Z ′′0 independent and distributed

as Z0 with mutation rate measure µ′ defined by 〈µ′, ϕ〉 =
∫∞

0
µ(dθ)ϕ(θ2).

Proof. Assume first there exists θ0 > 0 such that µ((0, θ0]) = 0. Then, we deduce from
(3.2) that Z0 has positive exponential moments, that is (3.2) holds for λ ≥ −θ0. We
obtain for |λ| ≤ θ0:

E[e−λ(Z′0−Z
′′
0 )] = exp

(
−2

∫ ∞
0

µ′(dθ) log

(
1− λ2

4θ2

))
= E[e−λ

√
Z0 G].

To conclude, use that Z0 is the limit in distribution of Z0 with mutation rate measure
1{θ≥θ0}µ(dθ) as θ0 goes down to 0.

7 Stable mutation rate measure

Let c > 0 and α ∈ (0, 1). In this Section, we will consider the stable mutation rate:

µ(dθ) = cθα−1 1{θ>0} dθ.

Notice that µ satisfies conditions (3.1). In addition, notice that E[Z0] = +∞ and that
〈µ, 1〉 = +∞ which in turn implies that {t;Zt = 0} = ∅ a.s. thanks to Proposition 3.5.

7.1 Bottleneck effect

We present a drastic bottleneck effect which was not observed in [14].

Lemma 7.1. We have E[ZA] = +∞ if α ∈ (0, 1/2] and E[ZA] < +∞ if α ∈ (1/2, 1).

In the case α ∈ (1/2, 1), we observe a drastic bottleneck effect as E[ZA]/E[Z0] = 0.

Proof. By (5.5), we have:

E[ZA] = 2βc2
∫ ∞

0

dt

∫ ∞
0

2θα

e2βθt − 1
dθ

∫ ∞
0

1− e−2βθ′t

θ′2−α
dθ′ e2c

∫∞
0

log(1−e−2βθ′′t)θ′′α−1dθ′′ .

We get:

2βc2
∫ ∞

0

2θα

e2βθt − 1
dθ = C1t

−1−α with C1 = 4βc2
∫ ∞

0

xα

e2βx−1
dx,

2βc2
∫ ∞

0

1− e−2βθ′t

θ′2−α
dθ′ = C2t

1−α with C2 = 2βc2
∫ ∞

0

1− e−2βx

x2−α dx,

and

2c

∫ ∞
0

log(1− e−2βθ′′t)θ′′α−1dθ′′ = −C3t
−α with C3 = −2c

∫ ∞
0

log(1− e−2βx)xα−1 dx.

(7.1)
Notice that C1, C2 and C2 are positive finite constants. We deduce that:

E[ZA] = C1C2

∫ ∞
0

dt t−2α e−C3t
−α

=
C1C2

α

∫ ∞
0

dr r1− 1
α e−C3r .

This implies that E[ZA] = +∞ if α ∈ (0, 1/2] and that E[ZA] < +∞ if α ∈ (1/2, 1).
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7.2 Type of the MRCA and type of a random individual

Recall from Section 2 that a CB process Y θ has type θ and that Y θ is stochastically
larger than Y q if θ ≤ q. We shall say that the type (or mutation) θ is more advanta-
geous than the type q. The following proposition states that the type of the MRCA is
(stochastically) more advantageous than the type of an individual taken at random at
the current time.

Recall from Section 3 that the type of an individual in family Y i is θi. We define the
type Θ∗ of an individual taken at random at time 0 as follows: conditionally on Z, Θ∗ is
equal to θi with probability Y i−ti/Z0.

Proposition 7.2. We have that Θ is stochastically smaller than Θ∗: for all q ≥ 0,

P(Θ∗ ≤ q) ≤ P(Θ ≤ q).

Proof. Firstly, we give the distribution of Θ. We have for θ > 0:

P(Θ ∈ dθ)
dθ

= cθα−1

∫ ∞
0

dt
4βθ

e2βθt−1
exp

(
2c

∫ ∞
0

log(1− e−2βqt) qα−1dq

)
= 2cθα−1

∫ ∞
0

ds

es−1
e−2c a1θ

αs−α ,

where we used (4.1) for the first equality, the change of variables r = 2βqt (t fixed) and
s = 2βθt as well as

a1 = −
∫ ∞

0

log
(
1− e−r

)
rα−1 dr

for the second equality. Set Q = 2cΘα so that for q > 0:

P(Q ∈ dq)
dq

=
1

αa1

∫ ∞
0

sαds

es−1
a1s
−α e−a1s

−αq .

Then we deduce that Q is distributed as ESα/a1, where E is an exponential random
variable with mean 1 independent of the random variable S whose density is:

f(s) =
1

αa1

sα

es−1
1{s>0}.

Secondly, we give the distribution of Θ∗. Let F be a non-negative measurable func-
tion, we have:

E [F (Θ∗)] = E

[∑
i∈I

Y i−ti
Z0

F (θi)

]

=

∫ ∞
0

dλE

[∑
i∈I

F (θi)Y
i
−ti e−λY

i
−ti e

−λ
∑
j∈I\{i} Y

j
−tj

]

= 2cβ

∫ ∞
0

dλ

∫ ∞
0

dt

∫ ∞
0

θα−1dθ F (θ)Nψθ
[
Yt e−λYt

]
E
[
e−λZ0

]
= 2cβ

∫ ∞
0

dλ

∫ ∞
0

dt

∫ ∞
0

θα−1dθ F (θ)
e−2βθt(

1 + λ∆θ
t

)2 e−2c
∫∞
0

log(1+ λ
2q ) qα−1dq,

where we used the definition of Θ∗ for the first equality, the PPM properties for the
third equality, (2.2) and (3.2) for the fourth equality. Set

a2 =

∫ ∞
0

log

(
1 +

1

2q

)
qα−1dq
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and use the change of variables q = λr (λ fixed), u = 1− e−2βθt (θ fixed) and s = aθ/λ (θ
fixed) with aα = a1/a2 and b = 2/a to get:

E [F (Θ∗)] = 2c

∫ ∞
0

θα−1dθ F (θ)

∫ ∞
0

ds

s(1 + bs)
e−2c a1s

−αθα .

Set Q∗ = 2cΘα
∗ and we deduce that:

P(Q∗ ∈ dq)
dq

=
1

αa1

∫ ∞
0

sαds

s(1 + bs)
a1s
−α e−a1s

−αq .

Then similarly Q∗ is distributed as ESα∗ /a1 with S∗ a random variable independent of E
and with density:

f∗(s) =
1

αa1

sα

s(1 + bs)
1{s>0}.

Thirdly, define

h(s) =
f∗(s)

f(s)
=

es−1

s(1 + bs)
1{s>0},

so that E[H(S∗)] = E[H(S)h(S)]. A study of the continuous function h and the condition
that E[h(S)] = 1 yield that h(0) = 1, lims→+∞ h(s) = +∞ and there exists s0 such that
h ≤ 1 on [0, s0] and h ≥ 1 on [s0,+∞). We deduce that P(S∗ ≤ s) ≤ P(S ≤ s) for all s ≥ 0,
that is S∗ is stochastically larger than S. This implies that Q∗ (resp. Θ∗) is stochastically
larger than Q (resp. Θ).

7.3 Number of families

We compare the number of families with the neutral case (quadratic and stable
branching mechanism). Recall Λ(s) defined in (6.1). We deduce from (7.1) that Λ(s) =

C3s
−α. Lemma 6.1 implies that a.s.:

lim
s→0+

sαNs = C3. (7.2)

We can compare (7.2) with the stationary stable case with immigration, see [14],
that is ψ(λ) = λa + bλ with 1 < a ≤ 2 and b > 0. According to Section 6 in [14], we
have that the number N∗s of families alive at time −s which are still alive at time 0 is
a.s. equivalent, as s goes down to 0, to Λ∗ defined by (31) in [14]. Using that:

c(r) =
e−br

[b−1(1− e−(a−1)br)]
1
a−1

,

see Example 3.1 in Li [29], it is easy to get that:

Λ∗(s) = − a

a− 1
log(1− e−(a−1)bs).

Notice that Λ∗(s) is equivalent to (a/a− 1)| log(s)| as s goes down to 0. This implies that
a.s.

lim
s→0+

| log(s)|−1N∗s =
a− 1

a
·

Therefore the number of families for stable case with neutral mutation is much smaller
than that of CB process with non-neutral mutations (that is with stable rate of mutation).
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7.4 Fluctuations of the number of ancestors

We consider the fluctuations of the number of ancestors. Recall notations from
Theorem 6.6. If α < 1/2, then conditions (6.4) hold and the fluctuations of Ms are
given in Theorem 6.6. For α ≥ 1/2, conditions (6.4) do not hold and the fluctuations of
Ms are given in the next Proposition. We define for α ≥ 1/2:

h(α) = c21−α
∫ ∞

0

dq

q2−α
eq −1− q

eq −1
·

Proposition 7.3. Let α ∈ [1/2, 1). We have the following convergence in distribution of
((Z0, (βs)

α−1(βsMs − Z−s), s ≥ 0) towards (Z0,
√
Z0G − h(1/2)) if α = 1/2 and towards

(Z0,−h(α)) if α ∈ (1/2, 1), with G a standard Gaussian random variable independent of
Z0.

We explain the contribution of −h(α) as a law of large number effect produced by
the large number of (small) populations with large parameter θ. This effect is negligible
if conditions (6.4) hold that is α ∈ (0, 1/2) but is significant for α ∈ [1/2, 1).

Proof. Mimicking the first part of the proof of Theorem 6.6, we get that for η ≥ 0,
ρ > η2/2 (or ρ > 0 if α > 1/2) and s > 0 small:

E
[
exp

(
−ρZ−s − η(βs)α−1 (βsMs − Z−s)

)]
= e−21−αcB(βs),

with B defined for t small by:

B(t) = 2α
∫ ∞

0

dθ

θ1−α log

(
1 +

ρ

2θ
+
ηtα

2θt

(
1− e−ηt

α

ηtα
2θt

e2θt−1
− 1

))
.

Use q = 2θt to get:

B(t) =

∫ ∞
0

dq

q1−αD(q, t) with D(q, t) = t−α log

(
1 +

ρt

q
+
ηtα

q

(
1− e−ηt

α

ηtα
q

eq −1
− 1

))
.

Notice that B(t) is well defined for η > 0, ρ > η21{α=1/2}/2 and t > 0 small (depending
on ρ, η).

Let ε > 0 be small and a ∈ (0, ε) such that for all q ∈ (0, a], we have:∣∣∣∣1q
(

q

eq −1
− 1

)
+

1

2

∣∣∣∣ < ε

4
· (7.3)

We first consider q ≥ a. For t small enough (depending on ρ, η, ε, a), we have for all
q ≥ a:

|D(q, t)| < 4(η + 1)

q
.

Since limt→0D(q, t) = −η(eq −1 − q)/q(eq −1), we deduce by dominated convergence
that:

lim
t→0+

∫ ∞
a

dq

q1−αD(q, t) = −η
∫ ∞
a

dq

q2−α
eq −1− q

eq −1
· (7.4)

Secondly, we consider q ∈ (0, a). Notice that:

D(q, t) = t−α log

(
1 + E(q, t) +

F (q, t)

q

)
,

with

E(q, t) = ηtα
1− e−ηt

α

ηtα
1

q

(
q

eq −1
− 1

)
and F (q, t) = ρt+ ηtα

(
1− e−ηt

α

ηtα
− 1

)
.
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We get that for t small enough (depending on ρ, η, ε) and q ∈ (0, a):

ρt− η2

2
t2α(1 + ε) ≤ F (q, t) ≤ ρt− η2

2
t2α(1− ε) (7.5)

as well as, using (7.3),

−ηt
α

2
(1 + ε) ≤ E(q, t) ≤ −ηt

α

2
(1− ε).

This implies that:
D+ε(q, t) ≤ D(q, t) ≤ D−ε(q, t), (7.6)

with for given z and t small (depending on ρ, η, z):

Dz(q, t) = t−α log

(
1− ηtα

2
(1 + z) +

ρt− η2

2 t
2α(1 + z)

q

)
.

Since∫ a

0

dq

q1−α log

(
1− a1 +

a2

q

)
= log (1− a1)

∫ a

0

dq

q1−α+
aα2

(1− a1)α

∫ (1−a1)
a2

a

0

dq

q1−α log

(
1 +

1

q

)
,

we deduce that for z ∈ {+ε,−ε}:

lim
t→0

∫ a

0

dq

q1−α Dz(q, t)

= −η
2

(1 + z)

∫ a

0

dq

q1−α +

(
ρ− η2

2
(1 + z)1{α=1/2}

)α ∫ ∞
0

dq

q1−α log

(
1 +

1

q

)
= −η

2
(1 + z)

∫ a

0

dq

q1−α +

∫ ∞
0

dq

q1−α log

(
1 +

ρ− η2

2 (1 + z)1{α=1/2}

q

)
.

Since ε can be arbitrarily small and that a < ε, we deduce from (7.4), (7.6) and the
previous convergence that:

lim
t→0

B(t) = lim
t→0

∫ ∞
0

dq

q1−α D(q, t) = −ηh(α)

c21−α +

∫ ∞
0

dq

q1−α log

(
1 +

ρ− η2

2 1{α=1/2}

q

)
.

This implies that:

lim
s→0

E
[
exp

(
−ρZ−s − η(βs)α−1 (βsMs − Z−s)

)]
= E

[
exp

(
−
(
ρ− η2

2
1{α=1/2}

)
Z0 + h(α)η

)]
.

This and the continuity of Z give the result.
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