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Abstract

There exists a Lipschitz embedding of a d-dimensional comb graph (consisting of
infinitely many parallel copies of Zd−1 joined by a perpendicular copy) into the open
set of site percolation on Zd, whenever the parameter p is close enough to 1 or
the Lipschitz constant is sufficiently large. This is proved using several new results
and techniques involving stochastic domination, in contexts that include a process
of independent overlapping intervals on Z, and first-passage percolation on general
graphs.
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1 Introduction

The following natural generalization of percolation theory is prompted by the results
of [3, 10]. Let G and H be graphs. For p ∈ [0, 1], consider the site percolation model
on H, in which each vertex is open with probability p, and otherwise closed, indepen-
dently for different vertices. An embedding of G in the open set of H is an injective
map from the vertex set of G to the set of open vertices of H, such that neighbours in
G map to neighbours in H. Define the critical probability

pc(G,H) := inf
{
p : P

(
∃ an embedding of G in the open set of H

)
> 0
}
.

If Z+ is a singly-infinite path then pc(Z+, H) is simply the usual critical probability
pc(H) of site percolation on H (see e.g. [6] for background). For the doubly-infinite path
Z, it was proved in [13, Proof of Theorem 3.9] that pc(Z, H) also equals pc(H) for any
infinite connected H. Observe that if G,H are subgraphs of G′, H ′ respectively then
pc(G,H

′) ≤ pc(G′, H).
We focus on the question: for which graphs is it the case that pc(G,H) < 1? Let Zd

be the usual cubic lattice, with vertex set also denoted Zd, and with vertices x, y joined
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Stochastic domination and comb percolation

Figure 1: Part of the comb graph Kd in dimension d = 2 (left) and d = 3 (right).

by an edge whenever ‖x− y‖1 = 1. Also let Zd
[M ] denote the spread-out lattice, in which

vertices x, y ∈ Zd are joined whenever 0 < ‖x− y‖∞ ≤M . It was proved in [3] and [10]
respectively that pc(Zd−1,Zd

[1]) < 1, while on the other hand pc(Zd,Zd
[M ]) = 1 for all M .

An embedding of G into Zd
[M ] may also be regarded as an M -Lipschitz embedding of

G into Zd. In that language, the results mentioned in the previous paragraph say that
M -Lipschitz embeddings of Zd−1 into Zd are possible whenever p or M is large enough,
while Lipschitz embeddings of Zd into Zd are never possible for p < 1.

In this article we address a case lying between the last two mentioned above. Define
the d-dimensional comb graph Kd to have vertex set Zd, and edges (z, z+ ei) for every
z ∈ Zd and all iwith 1 ≤ i ≤ d−1, together with (z, z+ed) for all z such that z1 = 0 (where
e1, . . . , ed are the standard basis vectors). Thus, Kd consists of a stack of parallel copies
of Zd−1 (perpendicular to the dth coordinate), connected by a single perpendicular copy
of Zd−1 (perpendicular to the 1st coordinate). For d > 2,Kd is isomorphic to the product
of the 2-dimensional comb K2 with Zd−2. See Figure 1 for illustrations of K2 and K3.

Theorem 1.1 (Comb percolation). We have pc(Kd,Zd
[2]) < 1 for all d ≥ 2.

Corollary 1.2. For all d ≥ 2 we have pc(Kd,Zd
[M ])→ 0 as M →∞.

The statement of Theorem 1.1 is far from obvious even in dimension d = 2. Our proof
gives an explicit upper bound for pc(Kd,Zd

[2]), but we have not attempted to optimize

it. The spread-out lattice Zd
[2] in Theorem 1.1 cannot be replaced with the nearest-

neighbour lattice Zd. Indeed, it was proved in [10] that pc(Z2,Zd) = 1 for all d ≥ 2;
since Z2 is a subgraph of Kd this implies pc(Kd,Zd) = 1 for d ≥ 3. It is also easy to see
that pc(K2,Z2) = 1, since the backbone of K2 would have to be embedded as a straight
line in Z2. On the other hand, our techniques may be adapted to prove pc(Kd, H) < 1 for
some graphs H with edge sets intermediate between those of Zd and Zd

[2] – in particular

it seems plausible that this could be done for the “star lattice” Zd
[1], but we have not

pursued this. Such questions reflect details of the local lattice geometry, whereas the
fact that pc(Kd,Zd

[M ]) < 1 for large enough M (as implied by Theorem 1.1) is more
fundamental.

A related family of questions concerns embeddings mapping open sites to open sites
and closed sites to closed sites. For a recent survey see [7]. Such questions are sub-
tle even in dimension 1. It was recently proved by Basu and Sly [2] that a monotone
M -Lipschitz embedding exists from one i.i.d. sequence on Z to another independent
copy; it is reported in [2] that the same problem has been solved independently by V.
Sidoravicius.

Our proof of Theorem 1.1 will make use of several new results and techniques in-
volving stochastic domination, which we believe are of independent interest and wider
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Stochastic domination and comb percolation

applicability. Stochastic domination by i.i.d. processes is a powerful technique for prov-
ing results of this kind, because it enables facts proved for the i.i.d. case to be trans-
ferred to other settings. One widely used tool is the result of [12] that a k-dependent
Bernoulli process with sufficiently high marginals dominates any given i.i.d. product
measure. However, the key process that we will need to control (of “bad points”) is
not k-dependent, and in fact is not dominated by any product measure. Therefore the
methods we use are of a different nature.

Background on stochastic domination may be found in [11, Ch. II, §2], for example.
For our purposes, the following definition via coupling will suffice. Let X and Y be
random variables taking values in the same partially ordered space. Then we say that
X stochastically dominates Y if there exist X ′, Y ′ on some probability space with X ′

and X equal in law, Y ′ and Y equal in law, and X ′ ≥ Y ′ almost surely. The underlying
partial order will be inclusion (in the case of random sets) or pointwise ordering (for
real functions).

Our first tool is a simple but useful stochastic domination result on overlapping
intervals in a one-dimensional setting. For c ∈ (0, 1), say that a random variable X has
geometric distribution with parameter c, denoted Geom(c), if P(X = r) = (1 − c)cr
for r = 0, 1, 2, . . . . (Note that the value 0 is included, and that c is the probability of
a “failure” rather than a “success”). In the following, the interval (a, b) is taken to be
empty if a = b.

Theorem 1.3 (One-dimensional domination). Let (Gn)n∈Z be i.i.d. Geom(c) random
variables. The random set Z∩

⋃
n∈Z

(
n−Gn, n+Gn

)
is stochastically dominated by the

open set of i.i.d. site percolation on Z with parameter min(4
√
c, 1).

Our second tool concerns first-passage percolation. As we explain in Section 2, it
can be regarded as unifying and generalizing ideas in [1, 5, 9]. Let V be a countable
vertex set. For every pair of distinct vertices x, y ∈ V , the directed edge e = (x, y) is
assigned a random passage time W (e) = W (x, y) taking values in [0,∞]. The passage
times of different edges are independent but not necessarily identically distributed. (We
can model a process on a graph other than the complete graph by taking some passage
times to be∞ almost surely.) In addition, each vertex x ∈ V has a deterministic source
time t(x) ∈ (−∞,∞] at which it is “switched on”. (For example, to model growth
started at a single source a we would take t(a) = 0 and t(x) = ∞ for all other x.) The
occupation time of x ∈ V is the time it is first reached:

T (x) := inf
y0,y1,...,ym:

ym=x

{
t(y0) +

m∑
k=1

W (yk−1, yk)

}
.

We now consider a collection of countably many first-passage percolation models on
the same vertex set, indexed by i ∈ I. Different models have identically distributed
passage times, and are independent of each other, but may have different source times.
Write ti(x) for the source time of x in model i, and Ti(x) for the occupation time of
vertex x in this model. Let

T̃ (x) := inf
i
Ti(x).

Finally, consider another model with source times given by

t(x) := inf
i
ti(x), x ∈ V,

and with the same passage time distributions as the other models. Write T (x) for the
occupation time of x in this model.
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Stochastic domination and comb percolation

Theorem 1.4 (First-passage percolation domination). Under the above assumptions,
(T̃ (x))x∈V is stochastically dominated by (T (x))x∈V .

We prove Theorems 1.3 and 1.4 at the end of the article. In the next section we
explain how these results are used in the proof of Theorem 1.1.

2 Outline of Proof

In this section we describe the main ideas behind the proof of Theorem 1.1, starting
with a short summary emphasizing how Theorems 1.3 and 1.4 apply. Vertices of Zd will
sometimes be called sites.

Our starting point is a strengthening of a result of [3] that for p sufficiently close to
1, we may find a collection of open sites which forms the graph of a Lipschitz function
from Zd−1 to Z+ (a “Lipschitz surface”). We extend this to obtain an infinite stack of
disjoint Lipschitz surfaces. The proof is a short but rather non-obvious extension of the
duality methods of [3].

Our aim is then to weave these Lipschitz surfaces together using another Lipschitz
surface in a perpendicular direction. This surface will be composed of sites that lie on
one of the stacked surfaces; such sites do not form an i.i.d. percolation process, nor
do they dominate one. However, we will show that the process of sites that do not lie
in the stack (and which must hence be avoided) is dominated by a union of random
“obstacles”, whose radii have exponential tails.

The obstacles are not independent of each other, but the first-passage percolation
result Theorem 1.4 will show that they can be dominated by independent obstacles.
The union of these new obstacles is still not an i.i.d. percolation process, since it is
their radii and not their volumes that decay exponentially. However, the nature of
the perpendicular Lipschitz surface that we seek means that each obstacle may be
replaced by a one-dimensional “stick” of twice the radius. Finally, we can apply the one-
dimensional result Theorem 1.3 to dominate the stick process by a percolation process.
The result of [3] may then be applied to construct the perpendicular surface.

We believe that our results and methods provide a useful toolkit for analysis of prob-
abilistic models via stochastic domination, complementing the results of [12]. Comb
percolation provides one illustrative application.

We now present some more details. We will prove the following strengthening of
a result of [3] (the latter has been applied in [4, 8], and extended in other directions
in [9]). For x = (x1, . . . , xd−1) ∈ Zd−1 and z ∈ Z we denote their concatenation thus:
(x, z) := (x1, . . . , xd−1, z) ∈ Zd.

Theorem 2.1 (Stacked Lipschitz surfaces). Consider site percolation on Zd with d ≥ 2.
If the parameter p is sufficiently close to 1 then a.s. there exist (random) functions
Ln : Zd−1 → Z, indexed by n ∈ Z, with the following properties.

(L1) The site (x, Ln(x)) ∈ Zd is open for all x ∈ Zd−1 and n ∈ Z.
(L2) For each n, the function Ln is 1-Lipschitz in the sense that |Ln(x) − Ln(x′)| ≤ 1

whenever ‖x− x′‖∞ = 1.

(L3) Ln(x) > 2n for all x and n.
(L4) Ln−1(x) < Ln(x) for all x and n.
(L5) (Ln+m(x+ y)− 2m)n,x and (Ln(x))n,x are equal in law for all y and m.

For each n, the graph
{

(x, Ln(x)) : x ∈ Zd−1} of Ln is a “Lipschitz surface”, and
Theorem 2.1 asserts the existence of an ordered stack of disjoint open Lipschitz sur-
faces. See Figure 2. This strengthens the result of [3] that one such surface exists for
p sufficiently close to 1. Our Lipschitz surfaces differ from those in [3, 9] in that we
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closed sites;

stacked Lips-
chitz surfaces
Ln avoiding
closed sites;

good sites
(where Ln

is as low as
possible);

perpendicular
Lipschitz sur-
face H avoid-
ing bad sites;

three selected
sites y;

obstacles Ay

at those sites
y.

Figure 2: Skiing through a pine forest: the main objects used in the construction of the
embedding. Here d = 2 and p = 0.885.

use the∞-norm rather than the 1-norm in (L2) – this is relatively unimportant, but will
be convenient for our construction. The condition (L3) will be helpful in keeping track
of the typical position of each surface. The stationarity property (L5) is not required
for our proof of Theorem 1.1, but is interesting in its own right. (The question of the
existence of similar stationary ensembles of paths was raised in the related setting of
interpolation percolation by Zerner – see Open Problem 6 of [15].)

In proving Theorem 2.1 we will define a particular family of functions (Ln) having
additional desirable properties. In fact, (Ln) will be the minimal family satisfying (L1)–
(L4) in the sense that for any other such family (L′n) we have Ln(x) ≤ L′n(x) for all
x, n.

As remarked earlier, our aim is to weave these Lipschitz surfaces together using an-
other Lipschitz surface perpendicular to the stack. Observe that the minimum possible
value of Ln(x) is 2n+ 1. We pay particular attention to those positions where this mini-
mum is attained. Let Zeven be the set of even integers and Zodd the set of odd integers.
We call the site (x, 2n + 1) ∈ Zd−1 × Zodd good if Ln(x) = 2n + 1, and otherwise bad.
Note that these definitions apply only to sites whose last coordinate is odd, and depend
on the choice of the functions Ln. Since (x, Ln(x)) is always open, every good site is
open.

Theorem 2.2 (Perpendicular Lipschitz surface). Fix d ≥ 2. For p sufficiently close to
1, the functions Ln of Theorem 2.1 may be chosen so that almost surely there exists a
function H : Zd−2 ×Zodd → Z with the following properties.

(H1) (H(u), u) is good for all u ∈ Zd−2 ×Zodd.

(H2) |H(u)−H(u′)| ≤ 1 whenever: |ud−1 − u′d−1| ≤ 2, and |ui − u′i| ≤ 1 for i ≤ d− 2.
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See Figure 2. The set {(H(u), u) : u ∈ Zd−2 ×Zodd} forms a kind of Lipschitz surface
perpendicular to the 1st coordinate direction. (The “≤2” in (H2) reflects the appearance
of Zodd in the domain of H. Note that the (d − 1)th coordinate of u becomes the dth
coordinate of (H(u), u).) It is relatively straightforward to check that any functions Ln

and H satisfying (L1)–(L4) and (H1)–(H2) give rise to an embedding of Kd in the open
set of Zd

[2], as required for Theorem 1.1. This is verified in Section 6; the function H

gives the backbone of the comb, while the Ln’s give the fins. Therefore our main task
is to prove Theorems 2.1 and 2.2.

We will prove Theorem 2.1 via an extension of the methods of [3]: the Lipschitz
surfaces will be constructed as duals to paths of a certain type, called Λ-paths. Now,
since the property (H2) required for H is essentially property (L2) of our Lipschitz
function L0 (modulo a change of coordinate system), an appealing idea is to try to
deduce Theorem 2.2 from Theorem 2.1. The problem, of course, is that the process of
good sites is not i.i.d. It is also not dominated by any i.i.d. process (because a vertical
column of k consecutive closed sites gives rise to a bad set with volume of order kd).
Nonetheless, we will indeed deduce Theorem 2.2 from Theorem 2.1, using stochastic
domination in more subtle ways.

We will proceed by re-expressing the process of bad sites. For each y ∈ Zd−1×Zeven

we will define a random finite set Ay, called the obstacle at y, in such a way that

{x : x is bad} =
⋃
y

Ay.

The field of obstacles will have the stationarity property that (Ay + z)y is equal in law
to (Ay+z)y for all z. The obstacle at y will be the set of points that can be reached from
y by Λ-paths satisfying certain conditions.

The random sets Ay will not be independent of each other (since the paths used in
their construction are shared between different y’s). However, we will prove that they
can be replaced with independent sets in the following sense. Let (Ãy)y be mutually

independent random sets, with Ãy equal in law to Ay for each y. We will show⋃
y

Ay is stochastically dominated by
⋃
y

Ãy. (2.1)

A similar fact was proved in [9] in the context of a Lipschitz percolation model. An
analogous property for a continuum percolation model was obtained in [1], and related
ideas appeared earlier in [5]. We will prove (2.1) by expressing Ay in terms of a first-
passage percolation model (via the paths involved in its definition), and appealing to
the much more general Theorem 1.4.

Our task is now reduced to proving the existence of a Lipschitz surfaceH (as in (H2))
avoiding a collection of independent sets Ãy. The ideas behind the proof of Theorem 2.1

will easily show that the radius around y of the random obstacle Ay (and thus Ãy) has
exponential tails for p sufficiently close to 1. However, for d ≥ 2, this is not enough to
allow domination of

⋃
y Ãy by an i.i.d. percolation process, since there the probability of

a closed ball of radius r decays exponentially in rd.
The final ingredient is a deterministic observation which allows us to reduce to a

one-dimensional process and hence overcome the above dimensionality problem. Here
it is important that the object we seek is a Lipschitz surface. For x ∈ Zd and r > 0

define the ball B(x, r) := {z ∈ Zd : ‖x − z‖∞ < r} and the one-dimensional stick
S(x, r) := {x+ aed : a ∈ Z and |a| < r}.

Lemma 2.3 (Balls and sticks). Suppose h : Zd−1 → Z is 1-Lipschitz (i.e. |h(x)−h(x′)| ≤ 1

whenever ‖x−x′‖∞ ≤ 1). If the graph {(x, h(x)) : x ∈ Zd−1} does not intersect the stick
S(y, 2r − 1) then it does not intersect the ball B(y, r).
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Figure 3: A Lipschitz surface avoids a ball provided it avoids a stick.

See Figure 3 for an illustration. Using Lemma 2.3, it suffices to construct a Lip-
schitz surface that avoids a union of sticks

⋃
x∈Zd S(x,Gx) with i.i.d geometric sizes

Gx. This union consists of independent one-dimensional processes in each vertical line.
Therefore we can use Theorem 1.3 to dominate it by an i.i.d. percolation process (with
parameter that tends to 0 as p → 1), and deduce Theorem 2.2 from Theorem 2.1, and
hence complete the proof of Theorem 1.1.

In the next four sections we carry out the steps outlined above to prove Theorem 1.1.
The stacked surfaces Ln are constructed in Section 3. Obstacles are defined and dom-
inated by independent sets in Section 4, and their radii are bounded in Section 5. The
remaining details (including the stick argument) are completed in Section 6. Finally
we prove the general domination results, Theorems 1.3 and 1.4, in Sections 8 and 7
respectively. The first-passage percolation result is proved via dynamic coupling. For
the one-dimensional domination result we employ a queueing interpretation.

3 Stacked Lipschitz surfaces

In this section we prove Theorem 2.1. We first construct the functions Ln, and
then prove that they have the required properties. We sometimes refer to the positive
and negative senses of the dth coordinate as up and down respectively, and the other
coordinates as horizonal.

Define a Λ-path to be a sequence of sites z(0), z(1), . . . , z(m) ∈ Zd such that for each
i < m,

z(i+ 1)− z(i) ∈ {ed} ∪∆, (3.1)

where

∆ :=

{
−ed +

d−1∑
i=1

αiei : (α1, α2, . . . , αd−1) ∈ {−1, 0, 1}d−1
}
.

That is, each step is up or down, but the down-steps may also be diagonal; there are 3d−1

different types of down-step since each of the first d−1 coordinates is allowed to remain
the same or change by 1 in either direction. (Our definition of a Λ-path differs slightly
from that in [3], where only 2d + 1 types of down-step were allowed. The difference
reflects our use of the ∞-norm in (L2).) For an integer r ≥ 0, we call a Λ-path r-open
if its up-steps have distinct locations, and at most r of them end with an open site, i.e.
among the indices i < m for which z(i+ 1)− z(i) = ed, the sites z(i+ 1) are all distinct,
and at most r of them are open. We write y

r→ z if there is an r-open Λ-path from y to z.
Now define the random set of sites Sn by

Sn :=
{
z : y

r→ z for some r and some y with yd = 2(n− r)
}
. (3.2)

Then let Ln be the function whose graph lies just above Sn:

Ln(x) := min
{
` ∈ Z : (x, `) 6∈ Sn

}
, (3.3)

(where min ∅ :=∞).
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Proposition 3.1. Let the functions Ln be defined as above. If p is sufficiently close to
1, then a.s. Ln(x) < ∞ for all n and x, and the properties (L1)–(L5) in Theorem 2.1 all
hold.

Proof. The definition and the underlying stationarity of the percolation process imme-
diately imply the stationarity property (L5). Hence for the first claim it is enough to
show that L0(0) <∞ a.s.

In fact we will show that L0(0) has exponential tails. For h > 0, we have P(L0(0) >

h) = P((0, h) ∈ S0), and this is at most the expected number of r-open Λ-paths from
the hyperplane Zd−1 × {−2r} to (0, h), summed over all r. For such a path, let C be
the number of up-steps that end in a closed site, let U be the number of up-steps that
end in an open site, and let D be the number of down-steps (including diagonal steps).
Since the path is from Zd−1 × {−2r} to (0, h) we must have C + U −D = h− (−2r), i.e.
U = D − C + h + 2r. Since the path is r-open we have U ≤ r, or equivalently A ≥ 0

where A := r − U .
For given U,C,D, the number of ways to choose a Λ-path ending at (0, h) together

with an assignment of states open and closed to its up-steps is at most KU+C+D, where
K := 3d−1 + 2. (There are 3d−1 possible directions for a down-step, and two possible
states for an up-step). For any such choice, the probability that the chosen states match
the percolation configuration is pUqC ≤ qC , where q := 1− p.

Therefore

P(L0(0) > h) ≤
∑

U,C,D,r≥0:
C+U−D=h+2r,

U≥r

KU+C+DqC

≤
∑

A,D,r≥0

K2D+h+2rqD+h+r+A

=
(
Kq
)h ∑

A≥0

qA
∑
D≥0

(
K2q

)D∑
r≥0

(
K2q

)r
,

which converges (exponentially fast) to 0 as h→∞ whenever q < K−2. (For the second
inequality above, we rewrote U and C in terms of A and dropped the conditions U ≥ 0

and C ≥ 0.)
Now we verify properties (L1)–(L4). For (L1), observe that, for some y, r as in the

definition of Sn, there is an r-open path to the site (x, Ln(x)−1), but there is none to the
site (x, Ln(x)). Thus the site (x, Ln(x)) must be open – if it were closed, the r-open path
to (x, Ln(x) − 1) could be extended one step upward (or else it already passed through
that site).

Next, note that from the definition of Sn, if z ∈ Sn then z + v ∈ Sn for all v ∈ ∆. This
gives the Lipschitz property for Ln as required for (L2). For (L3) note that certainly
(x, 2n) ∈ Sn for all x and n. Finally, if z ∈ Sn then z + ed ∈ Sn+1, giving (L4).

Proof of Theorem 2.1. This is immediate from Proposition 3.1 above.

4 Obstacles

In this section we define obstacles, and show that they can be dominated by inde-
pendent versions. Let the functions Ln be defined as in (3.3). As mentioned earlier, we
say that

site (x, 2n+ 1) ∈ Zd−1 ×Zodd is good if Ln(x) = 2n+ 1,

and otherwise it is bad. For y ∈ Zd−1 ×Zeven we define the obstacle at y to be

Ay :=
{
z ∈ Zd−1 ×Zodd : y

zd−yd−1

2−−−−−−→ z
}
. (4.1)
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Note that Ay is defined only for y of even height, while it consists of a set of sites of odd
heights.

Lemma 4.1. We have{
x ∈ Zd−1 ×Zodd : x is bad

}
=

⋃
y∈Zd−1×Zeven

Ay.

Proof. From (3.2),(3.3) it follows that z = (x, 2n + 1) ∈ Zd−1 × Zodd is bad if and only
if z ∈ Sn, which in turn is equivalent to the existence of y ∈ Zd−1 × Zeven such that

y
(zd−yd−1)/2−−−−−−−−→ z.

Now let (Ãy)y∈Zd−1×Zeven
be mutually independent random sets, with Ãy equal in law

to Ay for each y.

Proposition 4.2. With the above definitions,
⋃

y Ay is stochastically dominated by⋃
y Ãy.

Proof. We rephrase the definition of obstacles in terms of a first-passage percolation
model. Let each upward directed edge (z, z + ed), z ∈ Zd have passage time 1 if z + ed
is open, and 0 if z + ed is closed. Each downward directed edge (z, z + v), v ∈ ∆ has
passage time 0. All other edges have passage time ∞. Note that all the passage times
are independent. We assign source time t(y) = yd/2 to each site y ∈ Zd−1 × Zeven,
and source time ∞ to all sites in Zd−1 × Zodd. From the definition of r-open paths, for
z ∈ Zd−1 ×Zodd, we have

z ∈
⋃
y

Ay ⇐⇒ T (z) ≤ zd − 1

2
. (4.2)

Now consider a countable family of models indexed by y ∈ Zd−1 × Zeven. All models
have the same distribution of passage times as described above, and are independent
of each other, but in model y, the only source is y, with t(y) = yd/2 (all other sites
have source time ∞). Write Ty(z) for the passage time to z in model y. The set of sites

z ∈ Zd−1×Zodd with Ty(z) ≤ (zd− 1)/2 has the same law as Ay; let us define it to be Ãy.

Thus the family (Ãy) has precisely the distribution required. Writing T̃ (z) := infy Ty(z)

and using (4.2), we have

z ∈
⋃
y

Ãy ⇐⇒ T̃ (z) ≤ zd − 1

2
. (4.3)

Theorem 1.4 tells us that (T̃ (z)) is stochastically dominated by (T (z)). Using (4.2)
and (4.3), this implies that

⋃
y Ay is stochastically dominated by

⋃
y Ãy, as required.

5 Radii of obstacles

Let Ry be the radius of the obstacle at y, by which we mean the smallest r such that
Ay ⊆ B(y, r) (recall that B(y, r) := {z ∈ Zd : ‖y − z‖∞ < r}). So Ry = 0 if and only if
Ay is empty. Since all sites in Ay must have dth coordinate strictly greater than yd, we
observe that Ry is never equal to 1, and also that Ay ⊆ B(y + ed, Ry). Recall that our
geometric random variables are supported on the non-negative integers.

Lemma 5.1. If p is sufficiently close to 1 then for each y ∈ Zd−1 × Zeven, the radius Ry

of the obstacle at y is stochastically dominated by a Geom(c) random variable, where
c = c(p)→ 0 as p→ 1.
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Proof. Since as observed above, Ry never takes the value 1, it will be enough to show
that P(Ry > r) < cr+1 for all r ≥ 1. We use a path-counting argument similar to that
already used in the proof of Proposition 3.1.

Suppose that Ry > r. Then by the definition of Ay there exists z with ‖y − z‖∞ ≥ r

and y
(zd−yd−1)/2−−−−−−−−→ z. Consider some (zd − yd − 1)/2-open Λ-path from y to such a z, and

as before let it have U up-steps ending in open sites, C up-steps ending in closed sites,
and D (diagonal- or) down-steps. Since the path is (zd − yd − 1)/2-open we have

U ≤ (zd − yd − 1)/2 = (U + C −D − 1)/2,

and so C − U − D − 1 ≥ 0. Since ‖y − z‖∞ ≥ r, either zd − yd ≥ r, in which case
U + C − D ≥ r, or else z and y differ by at least r in some other coordinate, in which
case D ≥ r (since only down-steps permit horizontal movement). Using the earlier
inequality, in either case we have U + C − r ≥ 0.

As before, let K := 3d−1 + 2 and q := 1− p. Then, bounding via the expected number
of paths,

P(Ry > r) ≤
∑

U,C,D≥0:
C−U−D−1≥0
U+C−r≥0

KU+C+DqC

≤
∑

X,Y,D≥0

KY+D+rq(X+Y+D+r+1)/2

= (K
√
q)r
√
q
∑
X≥0

√
qX
∑
Y≥0

(K
√
q)Y

∑
D≥0

(K
√
q)D,

where in the second inequality we wrote X := C − U −D − 1 and Y := U + C − r and
dropped the conditions U,C ≥ 0. The last expression equals

√
q

(1−
√
q)(1−K

√
q)2

(K
√
q)r = Aar, say,

(where A = A(K, q) and a = a(K, q) are defined by the last equality), provided a < 1.
Finally, we have Aar ≤ max(A, a)r+1, and max(A, a)→ 0 as q → 0.

6 Completing the embedding

In this section we conclude the proof of Theorem 1.1 by combining the various in-
gredients together with some geometric arguments. We start by proving Lemma 2.3,
which states that balls may be replaced with sticks for the purposes of finding a Lips-
chitz function that avoids them.

Proof of Lemma 2.3. For z ∈ Zd we write ẑ := (z1, . . . , zd−1), so z = (ẑ, zd). Let r ≥ 1

(otherwise the ball and stick in the lemma are both empty). Suppose that {(x, h(x)) : x ∈
Zd−1} does intersect B(y, r), say at the site u = (û, h(û)) ∈ B(y, r). Thus ‖û− ŷ‖∞ ≤ r−1

and |h(û)−yd| ≤ r−1. By the Lipschitz property, the former implies |h(û)−h(ŷ)| ≤ r−1.
Therefore |h(ŷ) − yd| ≤ 2r − 2. Thus (ŷ, h(ŷ)) ∈ S(y, 2r − 1), and {(x, h(x)) : x ∈ Zd−1}
intersects S(y, 2r − 1).

Next we check that the Lipschitz surfaces of Theorems 2.1 and 2.2 can be combined
to give an embedding of the comb. A slightly subtle point in dimensions d ≥ 3 is that
the backbone surface H will not typically “line up” with the stacked surfaces Ln with
respect to the intermediate coordinates 2, . . . , d−1. Nevertheless, the use of the∞-norm
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in the definition of Zd
[2] gives enough wiggle room to permit an embedding. Suppose we

are given the functions Ln and H. For z ∈ Zd, define x(z) ∈ Zd−1 and f(z) ∈ Zd by

x(z) :=
(
z1 +H

(
(z2, z3, . . . , zd−1, 2zd + 1)

)
, z2, . . . , zd−1

)
; (6.1)

f(z) :=
(
x(z), L2zd+1

(
x(z)

))
. (6.2)

Lemma 6.1. Suppose that the functions Ln and H satisfy the conditions of Theo-
rems 2.1 and 2.2. Then the function f defined above is an embedding of the comb
Kd in the open set of Zd

[2].

Proof of Lemma 6.1. First observe that the site f(z) is open for all z; this is immediate
from (6.2) and property (L1) of Ln.

We next check that f is injective. From (L4), the sites (x, Ln(x)) and (x′, Ln′(x
′)) are

distinct whenever x 6= x′ or n 6= n′. Suppose z 6= z′. If z and z′ differ in any of the first
d − 1 coordinates then by (6.1), x(z) 6= x′(z), while if they differ in the dth coordinate
then 2zd + 1 6= 2z′d + 1. Thus (6.2) gives f(z) 6= f(z′), as required.

To show that f is an embedding of the comb it remains to check that

‖f(z)− f(z + ei)‖∞ ≤ 2 (6.3)

for all z ∈ Zd and i ≤ d − 1, and also for i = d whenever z1 = 0. We first note the
following key point. If z1 = 0, then

f(z) =
(
x(z), 2zd + 1

)
. (6.4)

This is because, by (H1), for u = (z2, z3, . . . , zd−1, 2zd + 1), the site
(
H(u), u

)
is good,

which means that

L2zd+1(x(z)) = L2zd+1(H(u), z2, z3, . . . , zd−1)

= 2zd + 1,

so that the two expressions in (6.2) and (6.4) are the same.
We now verify that (6.3) holds in the cases claimed. First suppose that z and z′ differ

by 1 in the ith coordinate, where i ≤ d − 1, and that all the other coordinates agree.
By the Lipschitz property (H2) of H, the first coordinates of x(z) and x(z′) differ by at
most 1, and clearly the same is true of the other coordinates. Hence by property (L2),
we have |L2zd+1(x(z))− L2zd+1(x(z′))| ≤ 1. It follows that ‖f(z)− f(z′)‖∞ ≤ 1 < 2.

Now suppose that z and z′ differ by 1 in the last coordinate, and all the other coor-
dinates agree, and suppose in addition that z1 = 0. Thus 2zd + 1 and 2z′d + 1 differ by
2, and by (6.4), f(z) = (x(z), 2zd + 1) and f(z′) = (x(z′), 2z′d + 1). By (H2) and (6.1), the
first coordinates of x(z) and x(z′) differ by at most 1, and the other coordinates agree.
Therefore ‖f(z)− f(z′)‖∞ = 2 as required.

We are ready to prove Theorem 2.2 and deduce Theorem 1.1.

Proof of Theorem 2.2. We need to show that if p is sufficiently close to 1 there exists H
satisfying (H1) and (H2).

By Lemma 4.1, condition (H1) says that the surface {(H(u), u)} must avoid every
obstacle Ay, and by Proposition 4.2, for this it suffices to instead find a surface avoiding

the independent obstacles Ãy. As remarked before Lemma 5.1 we have Ay ⊆ B(y +

ed, Ry) (and y + ed ∈ Zd−1 × Zodd), and by Lemma 5.1, Ry is dominated by a geometric
random variable whose parameter c = c(p) can be made as small as desired by taking
p large enough. Therefore it remains to show that for c sufficiently small there exists
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H satisfying (H2) such that {(H(u), u) : u ∈ Zd−2 × Zodd} avoids
⋃

y∈Zd−1×Zodd
B(y,Gy),

where (Gy) are i.i.d. Geom(c). Note that now all the relevant sites have odd heights.
Now we map Zd−1 × Zodd to Zd via the transformation (m, v, 2n+ 1) 7→ (v, n,m), for

v ∈ Zd−2 and m,n ∈ Z. It thus suffices to find a function h : Zd−1 → Z satisfying the
same 1-Lipschitz condition (L2) as L0, and whose graph {(x, h(x)) : x ∈ Zd−1} avoids⋃

y∈Zd B(y,Gy) for (Gy) i.i.d. Geom(c). (To be precise, the required function H is then
given by H((v, 2n+ 1)) = h((v, n)).)

Now we apply Lemma 2.3. The graph of h will avoid the balls B(y,Gy) provided it
avoids the sticks S(y, (2Gy − 1)+). Observe also that if G is Geom(c) then (2G − 1)+
is dominated by a Geom(c′) random variable, where c′ =

√
c, so it suffices to avoid

S :=
⋃

y∈Zd S(y,G′y) where (G′y) are i.i.d. Geom(c′).
The random set S consists of independent components in each of the lines {x}×Z, for

x ∈ Zd−1. Within any such line, Theorem 1.3 shows that it is stochastically dominated
by the open set of an i.i.d. percolation process with parameter c′′ = 4

√
c′. Thus the

whole set S is dominated by the open set of an i.i.d. percolation process with parameter
c′′ on Zd. Hence it follows from Theorem 2.1 (exchanging the roles of open and closed
sites) that there exists a function h satisfying our requirements if c′′ is sufficiently small.
Since c′′ = 4 c(p)1/4, this holds provided p is sufficiently close to 1.

Proof of Theorem 1.1. This is immediate from Lemma 6.1 and Theorems 2.1 and 2.2.

Proof of Corollary 1.2. Fix k ≥ 1 and call the site x ∈ Zd occupied if the cube kx+[0, k)d

contains some open site in the percolation model. For any graph G, if there exists an
embedding of G in the occupied sites of Zd

[m] then there exists an embedding of G in the

open sites of Zd
[km+k−1]: we simply choose one open site from the cube of each occupied

site in the image. Therefore,[
1− pc(G,Zd

[km+k−1])
]kd

≥ 1− pc(G,Zd
[m]).

Setting m = 2 and G = Kd, and using the fact that pc(G,Zd
[M ]) is decreasing in M , the

result follows from Theorem 1.1.

7 First-passage percolation domination

In this section we prove Theorem 1.4. Recall that we have a collection of models
indexed by i, and an additional model whose source times are given by infima of source
times of the others. Write Wi(e) and W (e) for the passage time of edge e in model i and
in the additional model respectively.

Proof of Theorem 1.4. The argument is most straightforward in the case where the ver-
tex set V and the index set I are finite, and where a.s. the occupation times Ti(x) are
finite and distinct for all i and x. (This property holds, for example, when all the source
times are distinct and finite, and each edge passage time is either ∞ or some positive
continuous random variable). We begin with this case, and then extend to the general
case by a limiting argument.

We will define the collection of passage times (W (e)) as a function of the collection
(Wi(e)), in such a way that W (e) shares the common distribution of the Wi(e), that the
passage times W (e) are independent for different e, and that T̃ (x) ≤ T (x) for all x. This
explicit coupling implies the stochastic domination required. For a directed edge (x, y)

we set

W (x, y) := Wi(x, y), where i minimizes Ti(x).
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First we aim to show that T̃ (x) ≤ T (x). We have

T (x) = min
y0,y1,...,ym

ym=x

{
t(y0) +

m∑
k=1

W (yk−1, yk)

}
.

If y0, y1, . . . , ym is a minimizing path in the above expression, then for all r with 0 ≤ r ≤
m,

T (yr) = t(y0) +

r∑
k=1

W (yk−1, yk),

and in particular T (yr) = T (yr−1) +W (yr−1, yr) for 1 ≤ r ≤ m.
We will show by induction that T̃ (yr) ≤ T (yr) for all such r. For the r = 0 case, we

have
T (y0) = t(y0) = min

i
ti(y0) ≥ min

i
Ti(y0) = T̃ (y0).

Now suppose T̃ (yr−1) ≤ T (yr−1). Let iminimize Ti(yr−1), so thatW (yr−1, yr) = Wi(yr−1, yr),
and T̃ (yr−1) = Ti(yr−1). Then

T (yr) = T (yr−1) +W (yr−1, yr)

= Ti(yr−1) +Wi(yr−1, yr)

= Ti(yr) ≥ T̃ (yr),

completing the induction.
It remains to show that the W (e) as defined are indeed independent with the re-

quired distributions. We will do this by giving a different construction of all the models.
The idea is to run them simultaneously in real time, revealing the random passage times
only when they are needed.

First consider a single model i. We begin by choosing all the passage times Wi(e),
with the correct distributions, but we do not yet reveal them. (We can think of them as
written on cards associated with the edges, which will be turned over at the appropriate
times). Label each vertex with a time by which it needs to be examined; initially these
are just the source times. Now we repeatedly do the following. Find the vertex x

with the earliest (smallest) label among those that have not yet been examined. Then
examine x, which is to say, reveal the passage times Wi(x, y), y ∈ V of all edges leading
out of x, and relabel each vertex y 6= x with the minimum of: its current label, and the
label at x plus Wi(x, y). Repeat until all vertices have been examined. It is clear that the
vertices are examined in order of their occupation times Ti(x), and that when a vertex
is examined it is labeled with its occupation time (and this label does not subsequently
change). Our assumptions guarantee that these times are all distinct, and so the choice
of which vertex to examine next is always unambiguous. (These claims may be checked
formally by induction over the vertices in order of their occupation times).

Now consider simultaneously running all the models i ∈ I in the way just described.
We first choose all the passage times independently, without revealing them. At each
step we examine the unexamined vertex with the earliest label across all the models
(and we examine it only in the minimizing model). Clearly each individual model evolves
exactly as before (but with its steps interspersed with the others). Our assumptions
guarantee that no two steps are simultaneous. Finally we construct the passage times
W (e) of the additional model: at each step, if the vertex that is examined (say vertex x in
model i) is the first to be examined among the copies of that vertex x in all the models,
then we in addition set W (x, y) = Wi(x, y) for all y ∈ V . Since the label of vertex x

in model i at this step is mini Ti(x) (= T̃ (x)), this agrees with the earlier definition of
W (x, y). The key point is that the decision to assign Wi(x, y) to W (x, y) is made before
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the value of Wi(x, y) is revealed. It follows that the passage times (W (e)) assigned to
the additional model are independent and have the correct distributions, as required.

To extend to the general case, we consider a sequence of approximating finite sys-
tems of the kind just considered. Without loss of generality, suppose that the index set
I is contained in N. In the nth system in our sequence of approximations, we take a
finite vertex set V (n), such that V (n) ↑ V as n→∞. All source times and passage times
involving a vertex not in V (n) are set to infinity. Any source time for a vertex in V (n)

that was previously set to infinity is now instead given value n (to ensure that every
vertex in V (n) is reached in finite time). Furthermore we consider only models indexed
by i ∈ {1, 2, . . . , n}. Finally we perturb the source times of vertices in V (n), and the
passage times of edges joining points of V (n), by adding an independent Uniform(0, 1

n )

random variable to each. (This means that the source times are no longer deterministic
– however, we can regard the randomness as being on two levels: given any choices of
the source times, we have a set of models with random passage times). This ensures
that a.s., the finite system satisfies all of our earlier assumptions.

Write T
(n)
i (x), T̃ (n)(x) and T (n)(x) for the passage times in the nth approximation.

These quantities are finite for any x ∈ V (n). But also, since any set of vertices is even-
tually contained within V (n), and each model i is eventually included in the system, it
follows that for any finite set A, the random vectors (T̃ (n)(x))x∈A and (T (n)(x))x∈A con-
verge in distribution as n→∞ to (T̃ (x))x∈A and (T (x))x∈A respectively. We know from
the argument applied to the finite case that (T̃ (n)(x))x∈A is stochastically dominated by
(T (n)(x))x∈A for any n. Hence from the convergence in distribution as n→∞, we obtain
also that in fact (T̃ (x))x∈A is stochastically dominated by (T (x))x∈A. Since this holds for
any finite subset A ⊆ V , it follows that in fact (T̃ (x))x∈V is stochastically dominated by
(T (x))x∈V , as desired.

We remark that Theorem 1.4 may easily be extended for example to models with
undirected edges instead of (or in addition to) directed edges, or with passage times at
sites. As long as all the passage times are independent, exactly the same methods used
above will continue to apply.

8 Domination in one dimension

In this section we prove Theorem 1.3. We start with the following one-sided version.
The interval [a, b) is taken to be empty if a = b.

Proposition 8.1. For c ∈ (0, 1), let (Gn)n∈Z be i.i.d. Geom(c) random variables. The
random set Z ∩

⋃
n∈Z[n, n+Gn) is stochastically dominated by the open set of i.i.d. site

percolation on Z with parameter min(2c, 1).

Proof. Define the indicator variable

Bi := 1
[
i ∈ [n, n+Gn) for some n ∈ Z

]
= 1

[
Gn > i− n for some n ≤ i

]
.

Then we must prove that (Bi)i∈Z is dominated by an i.i.d. Bernoulli(2c) sequence (when
2c ≤ 1). For this, it is enough to show that a.s.,

P
(
Bi = 1

∣∣ (Bj)j<i

)
≤ 2c (8.1)

for all i (see e.g. [14, Lemma 1]). Since the process (Bi) is stationary it suffices to show
(8.1) for i = 0.

We may think of the system as an M/M/∞ queue in discrete time. At each time n,
a customer arrives whose service time is Gn. The customer will depart at time n+Gn,
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and so occupies the system during the interval [n, n+Gn). (If Gn = 0 then the customer
is never seen at all). Now Bi is the indicator of the event that there is some customer
present at time i.

We introduce the key random variable

N := max{n ≥ 0 : G−n ≥ n}.

We can think of N as the age of the oldest customer who has not left the system before
time 0. (For example, if N = 0 then all the previous customers have left before time 0;
on this event we have B0 = 1[G0 > 0], since the only customer who could be present
at time 0 is the one arriving at time 0.) The Borel-Cantelli lemma shows that N is a.s.
finite.

We claim that a.s.

P
(
B0 = 1

∣∣ (Bj)j<0, N
)

= P
(
B0 = 1

∣∣N). (8.2)

To prove this, we must establish

P
(
B0 = 1

∣∣E, N = n
)

= P
(
B0 = 1

∣∣N = n
)
, (8.3)

for all events E ∈ σ((Bj)j<0) for which the conditional probability on the left exists.
Observe first that N = n forces B−n = · · · = B−1 = 1, so it is enough to prove (8.3) for
E ∈ σ((Bj)j<−n).

To verify the above, observe that the two families L := (Gj)j<−n and R := (Gj)j≥−n
are conditionally independent of each other given N = n: this is because they are
independent without the conditioning, while {N = n} is the intersection of an event in
σ(L) and an event in σ(R). Now, (Bj)j<−n is a function of L. On the other hand, on
N = n, we have that B0 is a function of R (since N = n guarantees that any customer
arriving before time −n has already left the system before time 0). It follows that
(Bj)j<−n and B0 are conditionally independent given N = n; this gives precisely (8.3)
for E ∈ σ((Bj)j<−n) as required, thus proving the claim (8.2).

Returning to the proof of (8.1), we have

P(B0 = 1 | N = n)

= P
(
G−j > j for some j ≥ 0

∣∣G−n ≥ n, and G−j < j for all j > n
)

= P
(
G−j > j for some 0 ≤ j ≤ n

∣∣G−n ≥ n)
= P(G−n > n | G−n ≥ n)

+
[
1− P(G−n > n | G−n ≥ n)

]
P
(
G−j > j for some 0 ≤ j < n

)
≤ c+ (1− c)(c+ c2 + · · ·+ cn) ≤ 2c.

Combining with (8.2), we have shown that P(B0 = 1 |
(
Bj)j<0, N) ≤ 2c a.s.; then

averaging over N gives (8.1) (for i = 0), as required.

Proof of Theorem 1.3. Let (Ln)n∈Z and (Rn)n∈Z be i.i.d. Geom(
√
c) random variables.

Let Gn := min(Ln, Rn), which is Geom(c). Then, with all intervals understood to denote
their intersections with Z,⋃

n∈Z
(n−Gn, n+Gn) ⊆

(⋃
n∈Z

(n− Ln, n]
)
∪
(⋃
n∈Z

[n, n+Rn)
)
.

By Proposition 8.1 and symmetry, the right side is dominated by the union of the open
sets of two independent percolation processes each of parameter 2

√
c, which is itself

the open set of a percolation process of parameter 1− (1− 2
√
c)2 ≤ 4

√
c.
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