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Abstract

We show how to connect together the loops of a simple Conformal Loop Ensemble
(CLE) in order to construct samples of chordal SLEκ processes and their SLEκ(ρ)
variants, and we discuss some consequences of this construction.
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1 Introduction

The goal of the present paper is to derive ways to construct samples of (chordal) SLE
curves (or the related SLEκ(ρ) curves) out of the sample of a Conformal Loop Ensemble
(CLE), using additional Brownian paths (or so-called restriction measure samples). In
order to properly state a first version of our result, we need to briefly informally recall
the definition of these three objects: SLE, CLE and the restriction measures.

• Recall that a chordal SLE (for Schramm-Loewner Evolution) in a simply connected
domain D is a random curve that is joining two prescribed boundary points a and
b of D. These curves have been first defined by Oded Schramm in 1999 [14],
who conjectured (and this conjecture was since then proved in several important
cases) that they should be the scaling limit of particular random curves in two-
dimensional critical statistical physics models when the mesh of the lattice goes
to 0. More precisely, one has typically to consider the statistical physics model
in a discrete lattice-approximation of D, with well-chosen boundary conditions,
where (lattice-approximations of) the points a and b play a special role. When
κ ≤ 4, these SLEκ curves are random simple continuous curves that join a to b

with fractal dimension is 1 + κ/8 (see for instance [6] and the references therein).

• CLEs (for Conformal Loop Ensembles) are closely related objects. A CLE is a
random family of loops that is defined in a simply connected domain D. In the
present paper, we will only discuss the CLEs that consist of simple loops. There
are various equivalent definitions and constructions of these simple CLEs – see
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From CLE(κ) to SLE(κ, ρ)’s

for instance the discussion in [19]. More precisely, one CLE sample is a collection
of countably many disjoint simple loops in D, and it is conjectured to correspond
to the scaling limit of the collection of all discrete (but macroscopic) interfaces in
the corresponding lattice model from statistical physics. Here, the boundary con-
ditions are “uniform” and involve no special marked points on the boundary of D
(as opposed to the definition of chordal SLE that requires to choose the boundary
points a and b). It is proved in [19] that there is exactly a one-dimensional family
of simple CLEs, that is indexed by κ ∈ (8/3, 4]. Then, in a CLEκ sample, the loops
all locally look like SLEκ type curves (and have fractal dimension 1 + κ/8). Note
also that, even if any two loops are disjoint in CLEκ sample, the Lebesgue mea-
sure of the set of points that are surrounded by no loop is almost surely 0. This is
therefore a random Cantor-like set, sometimes called the CLE carpet (its fractal
dimension is actually proved in [15, 12] to be equal to 1+(2/κ)+3κ/32 ∈ [15/8, 2)).
In the present paper, we will only discuss the CLEs for κ ≤ 4, that consist of simple
disjoint loops (there exists other CLEs for κ ∈ (4, 8]).

• When a and b are two boundary points of a simply connected domain D as before,
it is possible to define random simple curves from a to b that possess a certain
“one-sided restriction” property, that is defined and discussed in [5]. There is in
fact a one-dimensional family of such random curves, that is parametrized by its
restriction exponent, which can take any positive real value α. All these random
restriction curves can be viewed as boundaries of certain Brownian-type paths
(or like SLE8/3 curves). In particular, they all almost surely have a Hausdorff
dimension that is equal to 4/3.

Let us now state the main result that we prove in the present paper: Define inde-
pendently, in a simply connected domain D with two marked boundary points a and b,
the following two random objects: A CLEκ (for some κ ∈ (8/3, 4]) that we call Γ and a
one-sided restriction path γ from a to b, with restriction exponent α. Finally, we define
the set obtained by attaching to γ all the loops of Γ that it intersects. Then, we define
the right-most boundary of this set. This turns out to be again a simple curve from a to
b in D that we call η (see Figure 1). Note that in order to construct η, it is enough to
know γ and the outermost loops of Γ.

γ

Γ η

b

a a

b

Figure 1: Construction of η out of γ and Γ.

Theorem 1.1. When κ ∈ (8/3, 4] and α = (6− κ)/(2κ), then η is a chordal SLEκ from a

to b in D.
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In fact, for a given κ, the other choices of α > 0 give rise to variants of SLEκ, the
so-called SLEκ(ρ) curves, where ρ is related to κ and α by the relation α = (ρ + 2)(ρ +

6 − κ)/(4κ). We will state this generalization of Theorem 1.1 in the next section, after
having properly introduced these SLEκ(ρ) processes.

To illustrate Theorem 1.1, let us give the following example for κ = 3, which corre-
sponds to the scaling limit of the critical Ising model (see [2, 1]). Consider a CLE3 Γ in
D which is the (soon-to-be proved) scaling limit of the collection of outermost critical
Ising model “− cluster” boundaries, when one considers the model with uniformly “+

boundary conditions”. On the other hand, consider now the scaling limit of the crit-
ical Ising model with mixed boundary conditions, + between a and b (anti-clockwise)
and − between b and a. This model defines loops as before, as well as the additional
± interface η joining a and b, which turns out to be a SLE3 path (see [1]). Now, our
result shows that in order to construct a sample of η, one possibility is to take the right
boundary of the union of a restriction measure with exponent 1/2 together with all the
loops in Γ that it intersects. It gives a way to see the “effect” of changing the boundary
conditions (note that there are natural ways to couple the discrete Ising model with
mixed boundary conditions to the model with uniform boundary conditions, it would be
interesting to compare them with this coupling in the scaling limit).

We would like to make a few comments:

1. It is proved in [19] that CLEs can be constructed as outer boundaries of clusters of
Poissonian clouds of Brownian loops in D (the “Brownian loop-soups” introduced
in [7]) with intensity c(κ). Hence, together with the construction of the restriction
measure via clouds of Brownian excursions or reflected Brownian motions, this
provides a “completely Brownian” construction of all these chordal SLEκ curves
and their SLEκ(ρ) variants. This result was in fact announced in [20], so that –
combined with [19] – the present paper eventually completes the proof of that
(not so recent) research announcement.

2. This Brownian construction of SLEκ(ρ) paths turn out to be particularly useful and
handy, when one has to derive “second moment estimates” for these SLE curves.
We will illustrate this in the final section of the present paper by giving a short self-
contained derivation of the Hausdorff dimension of the intersection of SLEκ(ρ) (in
the upper half-plane) with the real line.

3. A direct by-product of this construction of these chordal SLEκ curves and their
variants is that they are “reversible” simple paths (for instance, the SLE from
a to b in D is a simple path has the same law as the SLE from b to a modulo
reparametrization – in the case of SLEκ(ρ) the statement is also clear, but the
reversed SLEκ(ρ) is then pushed/attracted from its right). This provides an alter-
native proof to the reversibility of these SLEκ(ρ) curves that has been obtained
thanks to their relation with the Gaussian Free Field in [10] (see also [24, 25, 4]
for earlier proofs of this result in the case ρ = 0 and then when the SLEκ(ρ) curves
do not hit the boundary of the domain i.e. when ρ ≥ (κ− 4)/2). Note however that
our approach does not yield any result for κ /∈ [8/3, 4].

4. The construction of the restriction measure via Poisson point processes of Brown-
ian excursions, as explained in [22], together with that of the CLE’s via loop-soups,
make it possible to define simultaneously in a fairly natural and “ordered way”
(see the comments after the statement of Theorem 2.1), on a single probability
space, all these SLEκ(ρ)’s in D from a to b, for all boundary points a and b, and
for all κ ∈ (8/3, 4] and all ρ > −2. This is of course reminiscent of the definitions
of SLEκ(ρ) processes within a Gaussian Free Field [9]. It is interesting to see the
similarities and differences between these two constructions.
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2 Preliminaries

In this section, we will recall in a little more detail some definitions, notations and
facts, and point to appropriate references for background. We then state our main
result, Theorem 2.1 and make a couple of remarks.

2.1 Conformal restriction property

We first recall the definition and the basic properties of the paths satisfying confor-
mal restriction (almost all the results that we shall describe have been derived in [5], a
survey as well as the construction of restriction samples from Brownian excursions can
be found in [22]).

Here and throughout the paper, we denote the upper half of the complex plane C by
H := {x + iy : x ∈ R, y > 0}. Let A be the set of all bounded closed A ⊂ H such that
R− ∩A = ∅ and HA := H \A is simply connected.

For A ∈ A, we define ΦA to be the unique conformal map from HA onto H such
that ΦA(z) ∼ z as z → ∞ and such that ΦA(0) = 0 (the fact that ΦA can be extended
analytically to a neighborhood of 0 follows easily from the Schwarz reflection principle).

We say that a random curve γ from 0 to infinity inH does satisfy one-sided conformal
restriction (to the right), if for any A, the law of ΦA(γ) conditionally on γ ∩ A = ∅ is in
fact identical to the law of γ itself (see Figure 2).

γ

A

ΦA

0 0

ΦA(γ)

Figure 2: The law of ΦA(γ) conditionally on γ ∩A = ∅ has the same law as γ itself.

It turns out that if this is the case, then there exists some non-negative α such that
for all A ∈ A,

P (γ ∩A = ∅) = Φ′A(0)α. (2.1)

Conversely, for all non-negative α, there exists exactly one distribution for γ that fulfils
(2.1) for all A ∈ A. We call γ an one-sided restriction sample of exponent α. There exist
several equivalent constructions of γ:

• As the right boundary of a certain Brownian motion from 0 to ∞, reflected on
(−∞, 0] with a certain reflection angle θ(α) and conditioned not to intersect [0,∞),
see [5].

• As the right boundary of a Poissonian cloud of Brownian excursions from (−∞, 0]

in H (so it is the right boundary of the countable union of Brownian paths that
start and end on the negative half-line, see [22]). Note that if the Poissonian
cloud of Brownian excursions has intensity α times the (appropriately normalized)
Brownian excursion measure, then the right boundary of the union of all these
excursions is sampled like the one-sided conformal restriction sample of exponent
α.
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• As an SLE8/3(ρ) curve for some ρ > −2 (these processes will be defined in the
next subsection), see [5] for the relation between α and ρ. Note that this approach
enables to show that γ does hit the negative half-line if and only if α < 1/3.

We can note that the limiting case α = 0 corresponds to the case where γ is the
negative half-line, whereas the case α = 5/8 corresponds to ρ = 0 i.e. to the SLE8/3

curve itself, which is left-right symmetric. Furthermore, the second construction shows
immediately that for α < α′, it is possible to couple the corresponding restriction curves
in such a way that γ′ stays “to the right” of γ (with obvious notation). In other words,
the larger α is, the more the restriction sample is “repelled” from the negative half-line.

In fact, we will be only using the second description in the present paper (and we
will actually recall in Subsection 2.4 why this indeed constructs a random simple curve
γ).

2.2 SLEκ(ρ) process

The SLEκ(ρ) processes are natural variants of SLEκ processes that have been first
introduced in [5]. Recall first the definition of SLEκ. Suppose (Wt, t ≥ 0) is a real-valued
continuous function. For each z ∈ H, define gt(z) as the solution to the chordal Loewner
ODE:

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z. (2.2)

We set Wt =
√
κBt where (Bt, t ≥ 0) is a standard Brownian motion and κ ≤ 4, then

SLEκ is the continuous simple random curve η in H from 0 to∞ that, for each t > 0, gt
is the conformal map from H \ η[0, t] onto H with normalization gt(z) ∼ z + o(1) when
z → ∞ (for the existence and uniqueness of such a continuous curve, see for instance
[6]). Note that η is parametrized by its half-plane capacity (i.e. for any t, the conformal
map gt from H \ η[0, t] onto H in fact satisfies gt(z)− z ∼ 2t/z as z →∞).

SLEκ curves possess the following properties:

• The law of η is scale-invariant: For any positive λ, the traces of η and of λη have
the same law.

• Let us suppose that η is parametrized by its half-plane capacity. For any positive
time t, the distribution of gt(η[t,∞)) − gt(ηt) is identical to the distribution of η
itself.

In fact, the SLEκ curves are the only random curves with this property, which is what
led Oded Schramm to this definition of these curves via Loewner differential equation
driven by Brownian motion (see [14]).

There exist variants of the SLEκ curves that involve additional marked boundary
points, and that are called the SLEκ(ρ1, . . . , ρL) processes. Let us now describe the
SLEκ(ρ) processes that involve exactly one additional marked boundary point (see [5,
3]). Consider gt as the conformal maps generated by Loewner evolution (2.2) with Wt

replaced by the solution to the system of SDEs:

dWt =
√
κdBt +

ρ

Wt −Ot
dt,W0 = 0; dOt =

2

Ot −Wt
dt,O0 = x. (2.3)

When κ ≤ 4, ρ > −2, SLEκ(ρ) in H from 0 to ∞ with force point x is the increasing
family of compact set (Kt) such that for each t, gt is the conformal map from H \ Kt

onto H with normalization gt(z) ∼ z as z → ∞. As we shall see, it turns out that these
compact sets are almost surely a simple curve η, in other words Kt = η[0, t] for each
t. Note that when ρ = 0, the SLEκ(ρ) is just the ordinary chordal SLEκ (and the force
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point plays no role). When ρ > 0, the force point should be thought of as “repelling”
while it is “attracting” when ρ ∈ (−2, 0).

It turns out that these SLEκ(ρ) can also be characterized by a couple of properties.
Let us now state the characterization that will be handy for our purposes: Suppose that
the following four properties hold:

• η is a random simple curve from 0 to∞ in H.

• The law of η is scale-invariant: For any positive λ, the traces of λη and η are
identically distributed.

• η ∩ (0,∞) = ∅ and the Lebesgue measure of η ∩ (−∞, 0] is almost surely equal to
0. Mind however that it is possible (and it will happen in a number of cases) that
η hits the negative half-line.

• Suppose that η is parametrized by half-plane capacity as before. For any positive
time t, define Ht as the unbounded connected component of H \ η[0, t] (if η inter-
sects the negative half-line, it happens that Ht 6= H \ η[0, t]) and ot as the left-most
point of the intersection η[0, t] ∩ R−. Let ft be the unique conformal map from
Ht onto H that sends the triplet (ot, ηt,∞) onto (0, 1,∞). Then, the distribution of
ft(η[t,∞)) is independent of t (and of η[0, t]) (see Figure 3).

ft(ηt) = 1ft(ot) = 00

η

ot

ft
ηt

ft(η[t,∞))

Figure 3: ft(η[t,∞)) is independent of η[0, t].

Then, η is necessarily a SLEκ(ρ) for some κ ∈ (0, 4] and ρ > −2 (mind that the fact
that this SLEκ(ρ) is almost surely a simple curve is then part of the conclusion; in fact
in the present paper, we will never use the a priori fact that the SLEκ(ρ) processes are
continuous simple paths).

This is very easy to see, using the Loewner chain description of the random simple
curve η. If one parametrizes the curve η by its half-plane capacity (which is possible
because its capacity is increasing continuously – this is due to the third property) and
defines the usual conformal map gt from Ht onto H normalized by gt(z) = z + o(1) near
infinity, then one can define

Wt = gt(ηt), Ot = gt(ot).

One observes thatXt := Wt−Ot is a Markov process with the Brownian scaling property
i.e., a multiple of a Bessel process. More precisely, one can first note that the first two
items imply that for any given t0 > 0, ηt0 /∈ (−∞, 0) and therefore u := Xt0 6= 0. The
final property then implies readily that the law of ((Xt0+tu2 −u)/u, t ≥ 0) is independent
of (Xt, t ≤ t0). From this, it follows that at least up to the first time after t0 at which
X hits the origin, it does behave like a Bessel process. Then, one can notice that X

EJP 18 (2013), paper 36.
Page 6/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2376
http://ejp.ejpecp.org/


From CLE(κ) to SLE(κ, ρ)’s

is instantaneously reflecting away from 0 because the Lebesgue measure of the set of
times at which it is at the origin is almost surely equal to 0. Hence, one gets that
X is the multiple of some reflected Bessel process of positive dimension (see [13] for
background on Bessel processes). From this, one can then recover the process t 7→ Ot
(because of the Loewner equation dOt = 2dt/(Ot−Wt) when Xt 6= 0) and finally t 7→Wt.
In particular, we get that

dWt =
√
κdBt +

ρ

Wt −Ot
dt

for some ρ > −2 and κ ≤ 4 (the fact that ρ > −2 is a consequence of the fact that the
dimension of the Bessel process X is positive; κ ≤ 4 is due to the fact that η does not
hit the positive half-line). This characterizes the law of η, which is the same as SLEκ(ρ).

Actually, it is possible to remove some items from this characterization of SLEκ(ρ)

curves; the first three items are slightly redundant, but since we do get these properties
for free in our setting, the present presentation will be sufficient for our purposes (see
for instance [16, 10] for a more general characterization).

Note that the SLEκ(ρ) processes touch the negative half-line if and only if ρ < (κ/2)−
2 (as this corresponds to the fact that the Bessel process (Wt − Ot)/

√
κ has dimension

smaller than 2).
Let us point out that it is possible to make sense also of SLEκ(ρ) processes for some

values of ρ ≤ −2 by introducing either a symmetrization or a compensation procedure
(see [3, 18, 23]), some of which are very closely related to CLEs as well, but we will not
discuss such generalized SLEκ(ρ)’s in the present paper.

2.3 Simple CLEs

Let us now briefly recall some features of the Conformal Loop Ensembles for κ ∈
(8/3, 4] – we refer to [19] for details (and the proofs) of these statements. A CLE is
a collection Γ of non-nested disjoint simple loops (γj , j ∈ J) in H that possesses a
particular conformal restriction property. In fact, this property that we will now recall,
does characterize these simple CLEs:

• For any Möbius transformation Φ of H onto itself, the laws of Γ and Φ(Γ) are the
same. This makes it possible to define, for any simply connected domain D (that
is not the entire plane – and can therefore be viewed as the conformal image of H
via some map Φ̃), the law of the CLE in D as the distribution of Φ̃(Γ) (because this
distribution does then not depend on the actual choice of conformal map Φ̃ from
H onto D).

• For any simply connected domain H ⊂ H, define the set H̃ = H̃(H,Γ) obtained by
removing from H all the loops (and their interiors) of Γ that do not entirely lie in
H. Then, conditionally on H̃, and for each connected component U of H̃, the law
of those loops of Γ that do stay in U is exactly that of a CLE in U .

It turns out that the loops in a given CLE are SLEκ type loops for some value of
κ ∈ (8/3, 4] (and they look locally like SLEκ curves). In fact for each such value of κ,
there exists exactly one CLE distribution that has SLEκ type loops. As explained in [19],
a construction of these particular families of loops can be given in terms of outermost
boundaries of clusters of the Brownian loops in a Brownian loop-soup with subcritical
intensity c (and each value of c corresponds to a value of κ).

2.4 Main Statement

We can now state our main Theorem, that generalizes Theorem 1.1: Suppose that
κ ∈ (8/3, 4] is fixed (and it will remain fixed throughout the rest of the paper) and
consider a CLEκ in the upper half-plane. Independently, sample a restriction curve γ
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from 0 to∞ in H with positive exponent α, and define η out of the CLE and γ just as in
Theorem 1.1. Let ρ̃ := ρ̃(κ, α) denote the unique real in (−2,∞) such that

α =
(ρ̃+ 2)(ρ̃+ 6− κ)

4κ

(we will use this notation throughout the paper). Then:

Theorem 2.1. The curve η is a random simple curve which is an SLEκ(ρ̃).

Note that for a fixed κ ∈ (8/3, 4], the function α 7→ ρ̃ is indeed an increasing bijection
from (0,∞) onto (−2,∞). The limiting case ρ = −2 in fact can be interpreted as cor-
responding to the case where both γ and η are the negative half-line. Similarly, in the
limiting case κ = 8/3, where the CLE is in fact empty, then Theorem 2.1 corresponds to
the description of γ itself as an SLE8/3(ρ) curve.

Note that this construction shows that it is possible to couple an SLEκ(ρ) with an
SLEκ′(ρ′) in such a way that the former is almost surely “to the left” of the latter, when
8/3 < κ ≤ κ′ ≤ 4 and ρ and ρ′ are chosen in such a way that

(ρ+ 2)(
ρ+ 6

κ
− 1) ≤ (ρ′ + 2)(

ρ′ + 6

κ′
− 1).

For example, an SLEκ(ρ) can be chosen to be to the left of an SLEκ(ρ′) for ρ ≤ ρ′. Or an
SLE3 can be coupled to an SLE4(2

√
2− 2) in such a way that it remains almost surely to

its left. Such facts are seemingly difficult to derive directly from the Loewner equation
definitions of these paths.

Similarly, it also shows that it is possible to couple an SLEκ(ρ) from 0 to ∞ with
another SLEκ(ρ) from 1 to ∞, in such a way that the latter stays to the “right” of the
former.

Let us recall that the definition of SLEκ(ρ) processes can be generalized to more
than one marked boundary point. For instance, if one considers x1 < . . . < xn ≤ 0 ≤
x′1 < x′2 < . . . < x′l, it is possible to define a SLEκ(ρ1, . . . , ρn; ρ′1, . . . , ρ

′
l) from 0 to infinity

in H, with marked boundary points x1, . . . , x
′
l with corresponding weights. Several of

these processes have also an interpretation in terms of conditioned SLEκ(ρ) processes
(where the conditioning involves non-intersection with additional restriction samples) –
see [21], so that they can also be interpreted via a CLE and restriction measures.

Let us now immediately explain why η is necessarily almost surely a continuous
curve from 0 to ∞ in H. Let us first map all items (the CLE loops and the restriction
sample) onto the unit disc, via the Moebius map Φ that maps 0, i and ∞ respectively
onto −1, 0 and 1, and write Γ̃ = Φ(Γ), η̃ = Φ(η) and γ̃ = Φ(γ).

Let us note that γ̃ is almost surely a continuous curve from −1 to 1 in the closed unit
disc. One simple way to check this (but other justifications are possible) is to use the
construction of γ̃ as the bottom boundary of the union of countably many excursions
away from the top half-circle. More precisely, for each excursion e in this Poisson point
process, one can define the loop l(e) obtained by adding to this excursion the arc of the
top half-circle that joins the endpoints of e. Then, one can construct a continuous path
λ from −1 to 1 by moving from −1 to 1 on this top arc, and attaching all these loops l(e)
in the order in which one meets them (once one meets a loop, one travels around the
loop before continuing at the point where the loop was encountered). As almost surely,
for any ε > 0, there are only finitely many loops l(e) of diameter greater than ε, there
is a way to parametrize λ as a continuous function from [0, 1] into the closed disk. We
then complete λ into a loop by adding the bottom half-circle. Then, we can interpret γ̃
as part of the boundary of a connected component of the complement of a continuous
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loop in the plane: It is therefore necessarily a continuous curve and it is easy to check
that it is self-avoiding (because the Brownian excursions have no double cut-points).

We have detailed the previous argument, because it can be repeated in almost iden-
tical terms to explain why η̃ is a simple curve. Let us first recall from [19] that Γ̃ consists
of a countable family of disjoint simple loops such that for any ε > 0, there exist only
finitely many loops of diameter greater than ε. We now move along γ̃ and attach the
loops of Γ̃ that it encounters, in their order of appearance (once one meets the loop,
one travels around the loop before continuing). By an appropriate time-change, we can
ensure that the obtained path that joins −1 to 1 in the closed disk is a continuous curve
from [0, 1] into the closed unit disk. Then, just as above, we complete this curve into a
loop by adding the bottom half-circle, and note that η̃ is a continuous curve from −1 to
1. It is then easy to conclude that it is self-avoiding, because almost surely, γ̃ does never
hit a loop of Γ̃ at just one single point (this is due to the Markov property of Brownian
motion: If one samples first the CLE and then the Brownian excursions that are used to
construct γ, almost surely, a Brownian excursion will actually enter the inside of each
individual loop of Γ that it hits).

3 Identification of ρ

The proof of Theorem 2.1 consists of the following two steps.

Lemma 3.1. The random simple curve η is an SLEκ(ρ) curve for some ρ > −2.

Lemma 3.2. If η is an SLEκ(ρ) for some ρ > −2, then necessarily ρ = ρ̃(κ, α).

The proof of Lemma 3.1 will be achieved in the next section by proving that it satis-
fies all the properties that characterize these curves (and that we have recalled in the
previous subsection), which is the most demanding part of the paper. In the present
section, we will prove Lemma 3.2. These ideas were already very briefly sketched in
[20].

Let us build on the loop-soup cluster construction of the CLEκ as established in [19].
We therefore consider a Poisson point process of Brownian loops (as defined in [7]) in
the upper-half plane with intensity c(κ) ∈ (0, 1] with

c(κ) =
(3κ− 8)(6− κ)

2κ
.

Then, we construct the CLEκ as the collection of all outermost boundaries of clusters of
Brownian loops (here, we say that two loops l, l′ in the loop-soup are in the same cluster
of loops if one find a finite chain of loops l0, ..., ln in the loop-soup such that l0 = l, ln = l,

and lj ∩ lj−1 6= ∅ for j ∈ {1, ..., n}), as explained in [19].
We also sample the restriction sample γ with exponent α, via a Poisson point process

of Brownian excursions attached to R−, as explained in [22].
Suppose now that A ∈ A, and defineH = HA to be the unbounded connected compo-

nent of H \A as before. By definition of A, the negative half-line still belongs to ∂HA. If
we restrict the loop-soup and the Poisson point process of Brownian excursions to those
that stay in HA, the restriction properties of the corresponding intensity measures im-
ply immediately that one gets a sample of the Brownian loop-soup with intensity c in
HA, and a sample of the Poisson point process of Brownian excursions away from the
negative half-line in HA, with intensity α. In particular, because of the conformal invari-
ance of these two underlying measures, it follows that these Poissonian samples have
the same law as the image under Φ−1

A of the original loop and excursion soups in H.
Let us now first sample these items in HA, and let ηA be the right-most boundary of

a set defined in the same way as η but from the samples in HA instead of in H. Then,
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we sample those excursions and loops that do not stay in HA, and we construct η itself.
One can note that either η 6⊂ HA or η = ηA. Indeed, the only way in which η can be
different than ηA is because of these additional loops/excursions, that do force η to get
out of HA. Hence, the event η ⊂ HA holds if and only if on the one hand the curve γ
stays in HA (recall that this happens with probability Φ′A(0)α), and on the other hand,
no loop in the loop-soup does intersect both ηA and A (see Figure 4). Let PH and PHA
be the laws of the processes η and ηA respectively. It follows immediately that for any
A ∈ A,

dPH
dPHA

(η)1η∩A=∅ = Φ′A(0)α exp(−cL(H;A, η))1η∩A=∅

where L(H;A, η) denotes the mass (according to the Brownian loop-measure in H) of
the set of loops that intersect both A and η.

A A

ηA ηA

Figure 4: η = ηA if and only if there is no loop in Γ that intersects ηA and A.

Equivalently,

dPHA
dPH

(η)1η∩A=∅ = 1η∩A=∅Φ
′
A(0)−α exp(cL(H;A, η)). (3.1)

Note that this implies that

EH
(
1η∩A=∅ exp(cL(H;A, η)

)
= EHA(1η∩A=∅Φ

′
A(0)α) = Φ′A(0)α (3.2)

(and the present argument in fact shows that the expectation in the left-hand side is
actually finite).

We now wish to compare (3.1) with features of SLEκ(ρ) processes. Let us now sup-
pose that the curve η is an SLEκ̄(ρ̄) process for some κ̄ ≤ 4 and ρ̄ > −2. We keep the
same notations as in Subsection 2.2. For A ∈ A, let T be the (possibly infinite) first time
at which η hits A. For t < T , write ht := Φgt(A). Then (see [3], Lemma 1), an Itô formula
calculation shows that

Mt = h′t(Wt)
a1h′t(Ot)

a2

(
ht(Wt)− ht(Ot)

Wt −Ot

)a3
exp(c̄L(H;A, η[0, t]))

is a local martingale (for t < T ) where a1 = (6− κ̄)/(2κ̄), a2 = ρ̄(ρ̄+ 4− κ̄)/(4κ̄), a3 = ρ̄/κ̄

and and c̄ = c(κ̄) = (3κ̄−8)(6−κ̄)/(2κ̄) (note that such martingale calculations have been
used on several occasions in related contexts, see e.g. [4] and the references therein).

It can be furthermore noted that M0 = Φ′A(0)ᾱ (and more generally, at those times
when Ot = Wt, one puts Mt = h′t(Wt)

ᾱ exp(c̄L(H;A, η[0, t])), where

ᾱ = α(κ̄, ρ̄) = a1 + a2 + a3 = (ρ̄+ 2)(ρ̄+ 6− κ̄)/(4κ̄).
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One has to be a little bit careful, because (as opposed to the case where κ̄ < 8/3), Mt

is not bounded on t < T , so that we do not know if the local martingale stopped at T
is uniformly integrable (indeed the term involving L(H;A, η[0, t]) actually does blow up
when t → T− and T < ∞). However, even if some of the numbers a2 and a3 may be
negative, one always has (see [3], the proof of Lemma 2-(i))

0 ≤ h′t(Wt)
a1h′t(Ot)

a2

(
ht(Wt)− ht(Ot)

Wt −Ot

)a3
≤ 1.

Furthermore (see again [3]), when η ∩A = ∅, then when t→∞, then Mt converges to

M∞ := exp(c̄L(H;A, η))

because each of the first three factors in the definition of Mt converge to 1.

Note also that dMt = MtKt

√
κ̄dBt where

Kt = a1
h′′t (Wt)

h′t(Wt)
+ a3

h′t(Wt)

ht(Wt)− ht(Ot)
− a3

1

Wt −Ot
.

Let Tn denote the first (possibly infinite) time that the distance between the curve and
A reaches 1/n. Then, for a fixed A, we see that (Mt∧Tn , t ≥ 0) is uniformly bounded
by a finite constant. Hence, if QH is the probability measure under which W is the
driving process of the SLEκ̄(ρ̄) η in H, we can define the probability measure Q∗n by
dQ∗n/dQH = MTn/M0. Under Q∗n, we have

dBt = dB∗t +Ktdt, dht(Wt) =
√
κ̄h′t(Wt)dB

∗
t +

ρ̄

ht(Wt)− ht(Ot)
h′t(Wt)

2dt.

This implies that Q∗n is the law of a (time-changed) SLEκ̄(ρ̄) in HA up to the time Tn,
which happens to be the (possibly infinite) first time at which this curve gets to distance
1/n of A.

We can now note that by definition, the sequences Q∗n are compatible in n, so that
there exists a probability measure Q∗ such that, under Q∗, and for each n, the curve,
up to time Tn, is an SLEκ̄(ρ̄) in HA up to the first time it is at distance 1/n of A. But we
also know that an SLEκ̄(ρ̄) in HA almost surely does not hit A. Hence, Q∗ is just the law
of SLEκ̄(ρ̄) in HA.

By the definition of Q∗, we have that, for any n,

dQ∗

dQH
(η)1d(η,A)≥1/n =

MTn

M0
1d(η,A)≥1/n =

M∞
M0

1d(η,A)≥1/n.

Hence, we finally see that

dQ∗

dQH
(η)1d(η,A)>0 =

M∞
M0

1d(η,A)>0 = Φ′A(0)−ᾱ exp(c̄L(H;A, η))1η∩A=∅.

Comparing this with (3.1), we conclude that κ̄ = κ and that ρ̄ = ρ̃(κ, α).

Note that a by-product of this proof (keeping in mind that (3.2) holds) is that in fact
the stopped martingale Mt∧T is indeed uniformly integrable: It is a positive martingale
such that

E(MT ) = E( lim
t→∞

Mt∧T ) ≥ E(M∞1T=∞) = Φ′A(0)α = E(M0).
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4 Proof of Lemma 3.1

We now describe the steps of the proof of Lemma 3.1. Quite a number of these steps
are almost identical to ideas developed in [19]. We will therefore not always provide
all details of those parts of the proof. Let us first note that the law of η is obviously
scale-invariant, and that we already have seen that it is almost surely a simple curve.
Furthermore, we know (for instance using the construction of γ via a Poisson point
process of Brownian excursions, or via its SLE8/3(ρ) description), that almost surely,
the Lebesgue measure of γ ∩ (−∞, 0) is zero. By construction (since η ∩ (−∞, 0) is a
subset of this set), the Lebesgue measure of η ∩ (−∞, 0) is also 0. Hence, in order to
prove the lemma, it only remains to check the “conformal Markov” property i.e. the last
item in the characterization of SLEκ(ρ) processes derived in Subsection 2.2.

4.1 Straight exploration and the pinned path

A first idea will be not to focus only on the curve η, but to also keep track of the CLE
loops that lie to its right. In other words, we will consider half-plane configurations
(η,Λ), where – as before – η is a curve in H from 0 to ∞ that does not touch (0,∞)

and Λ is a loop configuration in the connected component of H \ η that has (0,∞) on
its boundary (we say that it is the connected component to the right of η). The con-
formal restriction property of the CLE shows that the following two constructions are
equivalent:

• Construct η as in the statement (via a CLE Γ and a restriction path γ), and consider
Λ to be the collection of loops in the CLE Γ (that one used to construct η) that lie
to the right of η.

• First sample η, and then in the connected component Hη of H \ η that lies to the
right of η, sample an independent CLE that we call Λ.

It turns out that the couple (η,Λ) does satisfy a simple “restriction-type” property,
that one can sum up as follows: For a given A ∈ A, let us condition on the event
{η ∩ A = ∅}. Then, one can define the collection Λ̃A of loops of Λ that intersect A, and
the unbounded connected component H̃A of H \ (A ∪ Λ̃A). We also denote by ΛA to be
the collection of loops of Λ that stay in H̃A. Let Ψ = Ψ(Λ̃A, A) denote the conformal map
from H̃A onto H with Ψ(0) = 0 and Ψ(z) ∼ z when z →∞. Then, the conditional law of
(Ψ(η),Ψ(ΛA)) (conditionally on η ∩ A = ∅) is identical to the original law of (η,Λ). This
is a direct consequence of the construction of (η,Λ) and the restriction properties of γ
and Γ.

This restriction property is of course reminiscent of the restriction property of CLEs
themselves. In [19], the restriction property of CLE was exploited as follows: Fix one
point in H (say the point i) and discover all loops of the CLE that lie on the segment
[0, i] (by moving upwards on this segment) until one discovers the loop that surrounds i
(see Figure 5). This can be approximated by iterating discrete small cuts, discovering
the loops that interesect these cuts and repeating the procedure. The outcome was
a description of the law of the loop that surrounds i at the “moment” at which one
discovers it (see Proposition 4.1 in [19]).

Here, we use the very same idea, except that the goal is to cut in the domain until
one reaches the curve η (note that in the CLE case, the marked point i is an interior
point ofH and that here, the marked points 0 and∞ on the boundary do also correspond
to the choice of two degrees of freedom in the conformal map). We can for instance do
this by moving upwards on the vertical half-line L := 1+ iR+; a simple 0-1 law argument
shows that almost surely, the curve γ does intersect L, and that therefore η ∩L 6= ∅ too.
Let ηT denote the point of η ∩ L with smallest y-coordinate. One way to find it, is to
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Ψ

Figure 5: Discovering the loop that surrounds i in a CLE defines a pinned loop (see
[19])

move on L upwards until one meets η for the first time. This can be approximated
also by “exploration steps”, in a way that is almost identical to the explorations of CLEs
described in [19]. We refer to that paper for rather lengthy details, the arguments really
just mimic those to that paper. The conclusion, analogous to Proposition 4.1 in [19] is
that (see Figure 6):

10 10

Ψ

η∗
η

ηT

η∗T ∗

o∗T ∗oT

Figure 6: Discovering η in half-plane configuration defines a pinned path

Lemma 4.1. The conditional law of η conditionally on the event that η passes through
the ε-neighborhood of 1, converges as ε → 0 to the distribution of η∗ := Ψ(η), where Ψ

is the conformal map from H̃[1,ηT ] onto H that maps the triplet (0, ηT ,∞) onto (0, 1,∞).

We will call η∗ a “pinned” path, as in [19]. Note that this construction also shows
that η∗ is independent of Ψ.

4.2 Restriction property for the pinned path

When η∗ is such a pinned path, then H \ η∗ has several connected components, and
we call U0 the connected component with (0, 1) on its boundary and U+ the one with
(1,∞) on its boundary (see Figure 7). If one first samples η∗ and then in U0 and U+

samples two independent CLEκ’s , then one gets a “pinned configuration” (η∗,Λ∗).
This pinned configuration inherits the following restriction property from (η,Λ):

Suppose that A ∈ A with d(1, A) > 0, and condition on A ∩ η∗ = ∅. Then, define
H∗A for (η∗,Λ∗) just as H̃A in the case of (η,Λ). Note that 0 and 1 are both boundary
points of H∗A so that it is possible to define the conformal transformation Φ∗A from H∗A
onto H that fixes the three boundary points 0, 1 and∞.
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Then, the conditional law of Φ∗A(η∗) (conditionally on the event that η∗ ∩ A = ∅) is
equal to the initial (unconditioned) law of η∗ itself. This result just follows by passing to
the limit the restriction property of (η,Λ).

Let us define T ∗ the time at which η∗T∗ = 1, and o∗T∗ as the leftmost point in η∗[0, T ∗]∩
R− (note that depending on the value of ρ, it may be the case that o∗T∗ = 0). Denote by
ϕ∗ the conformal map from the unbounded connected component of H \ η∗[0, T ∗] onto
H, that maps the triplet (o∗T∗ , 1,∞) onto (0, 1,∞) (see Figure 7). One can therefore note
that ϕ∗ is therefore a deterministic function of η∗[0, T ∗].

o∗T ∗ 0 1 10

ϕ∗
η∗

ϕ∗(η∗[T ∗,∞))

η∗

10o∗T ∗ 10

Φ∗
A

Figure 7: Definitions of Φ∗A and ϕ∗

Let us now consider a set A ∈ A that is also at positive distance from [1,∞), i.e. that
is attached to the segment [0, 1] (we call A[0,1] this set of closed subsets of the plane).
Then, the following restriction property will be inherited from the restriction property
of (η∗,Λ∗):

Lemma 4.2. The curve ϕ∗(η∗[T ∗,∞)) is independent of the event η∗[0, T ∗] ∩A = ∅.

Proof. Suppose that the event η∗[0, T ∗] ∩A = ∅ holds (which is the same as η∗ ∩A = ∅).
Recall that the conditional distribution of Φ∗A(η∗) is equal to the original (unconditioned)
distribution of η∗.

Let us now defineG the measurable transformation that allows to construct ϕ∗(η∗[T ∗,∞))

from the path η∗ (as in the bottom line of Figure 7). When η∗[0, T ∗] ∩ A = ∅ holds, then
we see that the same transformation G applied to Φ∗A(η∗) (i.e. to the top right path
in the figure) gives also ϕ∗(η∗[T ∗,∞)) i.e. that G(η∗) = G(Φ∗A(η∗)). Hence, the condi-
tional distribution of ϕ∗(η∗[T ∗,∞)) given η∗[0, T ∗] ∩ A = ∅ is equal to the unconditional
distribution of ϕ∗(η∗[T ∗,∞)), which proves the lemma.

A direct consequence of the lemma is therefore that η∗[0, T ∗] and ϕ∗(η∗[T ∗,∞)) are
independent. Indeed, the σ-field generated by the family of events of the type η∗[0, T ∗]∩
A = ∅ when A ∈ A[0,1] (which is stable by finite intersections) is exactly σ(η∗[0, T ∗]).
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4.3 General explorations and consequences

The rest of the proof mimics ideas from [19] that we now briefly describe.
In fact, just as in [19], it is easy to see that the argument that leads to Lemma 4.1

can be generalized to other curves than the straight line L. In particular, we choose L
to be any oriented simple curve on the grid δ(Z×N) that starts on the positive half-line
and disconnects 0 from infinity in H, then define ηT to be the point of η that L meets
first, and let L̃ denote the part of L until it hits ηT . If we parametrize L continuously in
some prescribed way, then ηT = Lσ for some σ and L̃ = L[0, σ). We then define H̃ as
the unbounded connected component of the set obtained by removing from H\ L̃ all the
loops of Λ that intersect L̃. Let Ψ denote the conformal map from H̃ onto H that sends
the triplet (0, ηT ,∞) onto (0, 1,∞). Let Ĥ be the unbounded connected component of the
set obtained by removing from H the union of η[0, T ], L̃ and the loops in Λ that intersect
L̃. Let Ψ̂L̃ denote the conformal map from Ĥ onto H that sends the triplet (oT , ηT ,∞)

onto (0, 1,∞) (see Figure 8).

0 1

1

0

00

η

oT

Ψ

Ψ̂

η∗

η

ηT

ηT

η∗T ∗

o∗T ∗oT

ϕ∗

U0

U+

Figure 8: Ψ, ϕ∗ and Ψ̂ = ϕ∗ ◦Ψ.

Then the same arguments than the ones used to derive Lemma 4.1 imply that Ψ(η)

has the same law as pinned path η∗, and that it is independent from Ψ. From Lemma
4.2, we know that Ψ̂L̃(η[T,∞)) is independent of Ψ(η[0, T ]). Combining these two obser-
vations, we conclude that Ψ̂L̃(η[T,∞)) is independent of η[0, T ].

Furthermore, it is also possible to condition on the position of Lσ. The previous
results still hold when one considers the probability measure conditioned by σ ∈ (s1, s2).

The next step of the proof is again almost identical to the corresponding one in
[19]: Fix a time T and suppose that ηT 6∈ R. Consider δn as a deterministic sequence
converging to zero. Let βn be an approximation of η[0, T ] from the right on the lattice
δn(Z × N) such that the last edge is the only edge of βn that crosses the curve η (see
Figure 9). Here, one should view βn as a deterministic given function of η[0, T ] (and
there are a number of possibilities to choose such an approximation βn). Let Tn be the
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first time that η hits βn (note that of course, ηTn is on the last edge of βn).

Let us now consider a given deterministic linear path L such that the probability
that βn = L̃ is positive. For this event to happen, one in particularly requires that the
curve η intersects L̃ only on its last edge (this corresponds to a conditioning of the type
σ ∈ (s1, s2]). Furthermore, if this holds, in order to check whether βn = L̃ or not, it is
possible to define βn in such a way that it can be read of from η[0, T ].

Hence, we can deduce from our previous considerations that conditionally on {βn =

L̃}, the path Ψ̂L̃(η[Tn,∞)) is independent of η[0, Tn]. But for any given deterministic
piecewise linear path L, on the event {βn = L̃}, the probability that L̃ intersects some
macroscopic loop in Λ is very small when n is large enough, so that Ψ̂L̃(η[Tn,∞)) is
very close to fT (η[T,∞)) on this event (recall that fT is the conformal map from the
unbounded connected component of H \ η[0, T ] onto H that sends the triplet (oT , ηT ,∞)

onto (0, 1,∞)). Hence, by passing to the limit (as n → ∞, possibly taking a subse-
quence), we conclude that fT (η[T,∞)) is independent of η[0, T ] as desired. This is ex-
actly the conformal Markov property that was needed to conclude the proof of Lemma
3.1.

10
0

η

oT

Ψ̂L̃

ηT

βn = L̃

Ψ̂L̃(η[T n,∞))

Figure 9: Ψ̂L̃ maps the triplet (oTn , ηTn ,∞) onto (0, 1,∞).

5 Consequences for second-moment estimates

In order to illustrate how the present construction can be used in order to derive
directly some properties of SLEκ(ρ) processes, we are going to derive in this section
some information about the intersection of SLEκ(ρ) processes and the real line. Anal-
ogous ideas have been used in [12] to study the dimension of the CLE gasket, but the
situation here is even more convenient.

Recall that from the definition, we know that the SLEκ(ρ) process η, from 0 to ∞ in
H does not touch the positive half-line, but – as we already mentioned –, its definition
via the Loewner equation and Bessel processes shows that it touches almost surely the
negative half-line as soon as ρ < (κ/2) − 2. For instance, for κ = 4, this will happen for
ρ ∈ (−2, 0), while for κ = 3, this will occur for ρ ∈ (−2,−1/2). Here for obvious reasons,
we will restrict ourselves to the case where κ ∈ (8/3, 4].

Proposition 5.1. For κ ∈ (8/3, 4] and ρ ∈ (−2,−2 +κ/2), then the Hausdorff dimension
of η ∩R− is almost surely equal to 1− (ρ+ 2)(ρ+ 4− κ/2)/κ.

Note that this result is also derived in [11] for all κ ∈ (0, 8) and ρ ∈ (−2,−2 + (κ/2))

using the properties of flow lines of GFF introduced in [9].
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Before turning our attention to the proof of this result, let us first focus on the
following related question: Let us fix c ∈ (0, 1) and α > 0. Consider on the one hand a
Brownian loop-soup with intensity c in the upper half-plane, and its corresponding CLEκ
sample consisting of the outermost boundaries of the loop-soup clusters, as in [19].

On the other hand, consider a Poisson point process (bj , j ∈ J) of Brownian excur-
sions away from the real line in H, with intensity α. Each of these excursions bj has a
starting point Sj and an endpoint Ej that both lie on the real axis.

For each point x on the real line, for each ε < r, we define the semi-ring

Ax(ε, r) := {z ∈ H : ε < |z − x| < r}.

For each given ε and r, we can artificially restrict ourselves to those Brownian loops
and excursions that stay in Ax(ε, r). We define the event Ex(ε, r) that the union of all
these paths does not disconnect x from infinity in H (see Figure 10).

x

Ax(ε, r)

Figure 10: Event Ex(ε, r): x is not disconnected from∞ by the excursions and loops.

Clearly, the probability of Ex(ε, r) is in fact a function of ε/r and does not depend on
x. Let us denote this probability by p(ε/r). It is elementary to see that for all ε, ε′ < 1,

p(εε′) ≤ p(ε)p(ε′).

Indeed, if one divides A0(εε′, 1) into the two semi-annuli A0(εε′, ε) and A0(ε, 1), one no-
tices that

E0(εε′, 1) ⊂ E0(εε′, ε) ∩ E0(ε, 1)

and the latter two events are independent, due to their Poissonian definition.
On the other hand, for some universal constant C, we know that for all ε, ε′ < 1/4,

p(8εε′) ≥ Cp(ε)p(ε′). (5.1)

Indeed, let us consider the following three events:

• U1: No CLE loop touches both {z : |z| = 2} and {z : |z| = 4}
• U2: No Brownian excursion touches both {z : |z| = 1} and {z : |z| = 2}.
• U3: No Brownian excursion touches both {z : |z| = 4} and {z : |z| = 8}.

All the events U1, U2, U3, E0(8ε, 8) and E0(1, 1/ε′) are decreasing events of the Poisson
point processes of loops and excursions (i.e. if an event fails to be true, then adding an
extra excursion or loop will not fix it). Hence, they are positively correlated. Further-
more, we have chosen these events in such a way that

(U1 ∩ U2 ∩ U3 ∩ E0(8ε, 8) ∩ E0(1, 1/ε′)) ⊂ E0(8ε, 1/ε′).
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The fact that c ≤ 1 ensures that the events U1, U2 and U3 have a positive probability.
Putting the pieces together, we get that

p(8εε′) = P (E0(8ε, 1/ε′)) ≥ P (U1 ∩ U2 ∩ U3)p(ε)p(ε′)

from which (5.1) follows. Hence, if we define q(ε) := Cp(8ε), we get q(εε′) ≥ q(ε)q(ε′).
These properties of p(ε) and q(ε) ensure that there exists a positive finite β and a

constant C ′ such that for all ε < 1/8,

εβ ≤ p(ε) ≤ C ′εβ .

Let us now focus on the proof of the proposition. First, let us note that a simple 0-1
argument (because the studied property is invariant under scaling) shows that there
exists D such that almost surely, the dimension of η ∩ R− is equal to D. Furthermore,
we can use scale-invariance again to see that in order to prove that D is equal to some
given value d, it suffices to prove that on the one hand, almost surely, the Hausdorff
dimension of η ∩ [−2,−1] does not exceed d, and that on the other hand, with positive
probability, the Hausdorff dimension of η ∩ [−2,−1] is equal to d.

Let us now note that if a point x ∈ [−2,−1] belongs to the ε-neighborhood Kε of η,
then it implies that Ex(ε, 1) holds. Hence, the first moment estimate implies readily that
almost surely, the Minkovski dimension of η ∩ [−2,−1] is not greater than 1 − β, and
therefore that D ≤ 1− β.

In order to prove that with positive probability, the dimension of η ∩ [−2,−1] is actu-
ally equal to 1− β, we can make the following two observations.

• Suppose that x ∈ [−2,−1] and that Ex(ε/2, 8) holds. Suppose furthermore that no
excursion in the Poisson point process of excursions attached to (−∞,−6) does
intersect the ball of radius 4 around the origin, no excursion in the Poisson point
process excursions attached to (−2, 0) exits the ball of radius 4 around −2. Sup-
pose furthermore that no loop in the CLE (inH) intersects both the circle of radius
4 and 6 around the origin. Note that these two events have positive probability
and are positively correlated to Ex(ε/2, 8) (they are all decreasing events of the
Poisson point processes of loops and excursions). Then, by construction, x is nec-
essarily in the ε-neighborhood of η. It therefore follows that for some constant c′,
for all x ∈ [−2,−1],

P (x ∈ Kε) ≥ c′εβ .

• Suppose now that −2 < x < y < −1, that y−x < 1/4 and that ε < (y−x)/4. Clearly,
if both x and y belong to Kε, then it means that the three events Ex(ε, (y − x)/2),
Ey(ε, (y − x)/2) and Ex(2(y − x), 1/2) hold. These three events are independent,
and the previous estimates therefore yield that there exists a constant c′′ such that

P (x ∈ Kε, y ∈ Kε) ≤ c′′
ε2β

(y − x)β
.

Standard arguments (see for instance [8]) then imply that with positive probability, the
dimension of η ∩ [−2,−1] is not smaller than 1− β. This concludes the proof of the fact
that almost surely, the Hausdorff dimension of η∩(−∞, 0) is almost surely equal to 1−β.

In order to conclude, it remains to compute the actual value of β. A proof of this
is provided in [11] using the framework of flow lines of the Gaussian Free Field. Let
us give here an outline of how to compute β bypassing the use of the Gaussian Free
Field, using the more classical direct way to derive the values of such exponents i.e. to
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exhibit a fairly simple martingales involving the derivatives of the conformal maps at a
point, and then to use this to estimate the probability that the path ever reaches a small
distance of this point: Consider the SLEκ(ρ) process in H from 0 to ∞, and keep the
same notations as in Subsection 2.2. First, one can note that for any real v,

Mt = g′t(−1)v(κv+4−κ)/4(Wt − gt(−1))v(Ot − gt(−1))vρ/2

is a local martingale. We then choose v = (κ− 8− 2ρ)/κ, and define β̃ := (ρ+ 2)(ρ+ 4−
κ/2)/κ as well as

Υt =
Ot − gt(−1)

g′t(−1)
, Nt =

Ot − gt(−1)

Wt − gt(−1)
, τε = inf{t : Υt = ε}.

Then Mt = Υ−β̃t N−vt . Furthermore, the probability that the curve gets within the ball
centered at −1 of radius ε is comparable to P (τε <∞). But, one has

P (τε <∞) = E(MτεN
v
τε1τε<∞)εβ̃ = E∗(Nv

τε)ε
β̃

where P ∗ is the measure P weighted by the martingale M. Under P ∗, we have that
τε < ∞ almost surely and that E∗(Nv

τε) is bounded both sides by universal constants

independent of ε. It follows that indeed β = β̃.

We conclude with the following two remarks:

• Similar second-moment estimates can be performed for other questions related
to SLEκ(ρ) processes for κ ∈ (8/3, 4] and ρ > −2. For instance the boundary
proximity estimates from Schramm and Zhou [17] can be generalized/adapted to
the SLEκ(ρ) cases. We leave this to the interested reader.

• It is proved in [9] that the left boundary of an SLEκ0
(ρ0) process for κ0 > 4 and

ρ0 > −2 is an SLEκ1
(ρ1, ρ2) process for κ1 = 16/κ0 with an explicit expression

of ρ1 and ρ2 in terms of (κ0, ρ0) (this is the “generalized SLE duality”). Hence, it
follows from Proposition 5.1 that its statement (i.e. the formula for the Hausdorff
dimension) in fact holds true for all κ ∈ (4, 6) as well. However, since the Gaussian
Free Field approach is anyway used in the derivation of this generalized duality
result, it is rather natural to use also the Gaussian Free Field in order to derive
the second moments estimates, as done in [11]. The same remark applies to the
intersection of the right boundary of an SLEκ0

(ρ0) when κ0 > 4 and ρ0 ∈ (−2, 0);
the Hausdorff dimension of the intersection of this right boundary with R− then
turns out to be

1− (ρ0 + 2)(ρ0 + (κ0/2))

κ0
= −ρ0

(
ρ0 + 2

κ0
+

1

2

)
.
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