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Abstract

We consider the class of non-linear stochastic partial differential equations studied in
[3]. Equivalent formulations using integration with respect to a cylindrical Brownian
motion and also the Skorohod integral are established. It is proved that the random
field solution to these equations at any fixed point (t, x) ∈ [0, T ]×Rd is differentiable
in the Malliavin sense. For this, an extension of the integration theory in [3] to Hilbert
space valued integrands is developed, and commutation formulae of the Malliavin
derivative and stochastic and pathwise integrals are proved. In the particular case
of equations with additive noise, we establish the existence of density for the law of
the solution at (t, x) ∈]0, T ] ×Rd. The results apply to the stochastic wave equation
in spatial dimension d ≥ 4.
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1 Introduction

In this article, we consider stochastic partial differential equations (SPDEs) of the
type

Lu(t, x) = σ(u(t, x))Ḟ (t, x) + b(u(t, x)), (t, x) ∈]0, T ]×Rd,

u(0, x) =
∂

∂t
u(0, x) = 0, x ∈ Rd, (1.1)

where L is a second order differential operator, σ and b are real functions, Ḟ is the
formal derivative of a Gaussian stochastic process and d ∈ N. The setting applies in
particular to the wave operator

∂2

∂t2
−∆d,
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The stochastic wave equation in high dimensions

where ∆d denotes the Laplacian in dimension d.
We give a rigorous meaning to (1.1) using the stochastic integration theory devel-

oped in [3], which extends the setting of [24] and [5]. More precisely, let G be the
fundamental solution associated with the operator L. We consider the mild form of the
equation (1.1),

u(t, x) =

∫ t

0

∫
Rd
G(t− s, x− z)σ(u(s, z))M(ds, dz)

+

∫ t

0

∫
Rd
G(t− s, x− z)b(u(s, z))dzds, (1.2)

where M denotes the martingale measure derived from the Gaussian process F . More
specifications on F and on the stochastic and pathwise integrals used in (1.2) are given
in Section 2. Under suitable conditions on G, and for Lipschitz continuous coefficients
σ and b, [3, Theorem 4.2] establishes the existence of a random field solution to (1.2).

The main objective is to establish the differentiability in the Malliavin sense of the
random variable u(t, x) defined by (1.2), for each fixed (t, x) ∈ [0, T ] × Rd. As a conse-
quence, we will obtain results on the existence of density for u(t, x), (t, x) ∈]0, T ] × Rd
which are applied to a stochastic wave equation in spatial dimension d ≥ 4.

Malliavin differentiability and existence and properties of the density have been
studied in particular cases of (1.2), like the stochastic heat equation with d ∈ N and the
stochastic wave equation with d ∈ {1, 2, 3}. We refer the reader to [1], [10], [11], [12],
[13], [15], [16], [18], [19], [21], [20] for a sample of results. However, to the best of
our knowledge, similar problems for the stochastic wave equation in dimension d ≥ 4

have not been so far solved. The main difficulty stems from the non-smoothness of the
distribution G, the fundamental solution associated with the differential operator L.
The results of this paper are general enough to cover that important example.

Next, we describe the content of the article. Section 2 gathers the preliminary no-
tions and results underpinning Equation (1.1), following [3]. In particular, the governing
noise F is described and the construction of the integrals in (1.2) sketched. Along with
this, we prove a new result (see Lemma 2.1) that will be used later on in Section 4 to
give a formulation of the stochastic integral in [3] in terms of a sequence of independent
standard Brownian motions. This provides a better understanding of this integral and
makes its handling easier.

In Section 3 an extension of Conus-Dalang’s stochastic and pathwise integrals to
Hilbert space valued stochastic processes is developed. With this, we extend the results
proved in [18] and provide the theoretical background for the study of the Malliavin
derivative of the solution of (1.2).

Section 4 contains some complements to the Conus-Dalang’s stochastic integral. For
a relevant class of integrands, we prove that its divergence operator (in Malliavin sense)
coincides with that integral and also with an Itô stochastic integral with respect to a
sequence of independent standard Brownian motions. Actually, the latter is nothing but
the stochastic integral with respect to a cylindrical Brownian motion, as in the setting
of [7]. In particular, a partial extension of [6, Proposition 2.6] is obtained.

Section 5 contains preliminaries to Section 6. It is proved that under suitable hy-
potheses, the Malliavin operator D commutes with the stochastic integrals of [3]. Then,
in Section 6, we prove that for any (t, x) ∈ [0, T ] × Rd, the random variable u(t, x) de-
fined in (1.2) belongs to D1,2 - the space of Malliavin differentiable random variables
with square integrable derivative. Using a standard approach, we consider a sequence
of L2(Ω)-approximations of the process {u(t, x), (t, x) ∈ [0, T ] × Rd}, {un(t, x), (t, x) ∈
[0, T ] ×Rd}, n ∈ N, such that they are Malliavin differentiable with uniformly bounded
(in the corresponding norm) Malliavin derivatives. The section ends by establishing an
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The stochastic wave equation in high dimensions

SPDE satisfied by the Hilbert space valued process Du(t, x) (see (6.3)). In contrast with
examples where the distribution G is smooth (for example, either a function, as for the
stochastic heat equation, or a positive measure, as for the stochastic wave equation in
dimension d ∈ {1, 2, 3}), it seems not possible to obtain this equation by passing to the
limit the sequence of SPDEs (6.5) satisfied by the Malliavin derivatives of the approx-
imations un. Indeed, for this one would need to have u(t, x) ∈ D1,p, for some p > 2, a
property that has not been established yet. This problem stems from the lack of Lp(Ω)

estimates for the solution of (1.2) pointed out in [3]. So far, this has been only proved
when σ is an affine function (see [3, Section 6]). The general case is by now an open
problem.

We overcome this problem and eventually establish (6.3), by applying the operator
D to Equation (1.2) and the commutation results of Section 5. The stochastic integrals
in [5] and [3] are constructed assuming the property of spatial stationary covariance
of the integrand. For the stochastic integral in (1.2) this follows from the “S" property
introduced in [5] (see [3, Definition 4.4 and Lemma 4.5]). In the application of the
results proved in Section 5, we need in addition the stationary covariance property for
Hilbert space valued stochastic processes of the form {D[B(u(t, x))], (t, x) ∈ [0, T ]×Rd},
where B is a smooth function. This can be achieved by considering the equation (6.1),
more general than (1.2), and by proving that the “S" property holds for the couple
consisting of the solutions to these two equations.

The final Section 7 deals with the existence of density for each random variable
u(t, x), (t, x) ∈]0, T ]×Rd in (1.2) when σ is constant. The results apply to the stochastic
wave equation in spatial dimension d ≥ 4 with an additive, Gaussian, spatially corre-
lated noise, with covariance measure given by a Riesz kernel. This is proved by applying
the Bouleau-Hirsch’s criterion. The reason for the restriction to additive noise comes
from the fact that so far we have not been able to obtain lower bounds of the dominant
term of the Malliavin matrix for non-constant coefficients σ. Among the difficulties we
encounter to solve this problem are the lack of Lp estimates we alluded before and the
lack of positivity of G.

Throughout this article, we shall use the usual convention of calling constants by
the same letter, although they may vary from one expression to the other.

2 Preliminaries

In this section, we fix some notation, we present some general facts and we recall
the stochastic and pathwise integrals from [3] that will be used throughout the paper.
The relevant spaces are described and some relationships between them are proved.

Denote by C∞0 (Rd) the space of infinitely differentiable functions with compact sup-
port; S(Rd) will denote the Schwartz space of rapidly decreasing C∞ functions, S ′(Rd)
the space of tempered Schwartz distributions and S ′r(Rd) the space of tempered Schwartz
distributions with rapid decrease (see [22]).

Let ζ ∈ C∞0 (Rd) be nonnegative, with support included in the unit ball of Rd satisfy-
ing

∫
Rd
ζ(x)dx = 1. Set ζn(x) := ndζ(nx), n ∈ N. Then, as n→∞, ζn → δ0 in S ′(Rd), and

Fζn → 1 pointwise. Moreover |Fζn| ≤ 1 for all n ∈ N. The sequence (ζn)n∈N is termed
an approximation of the identity.

Let Λ ∈ S ′r(Rd). Denote by “∗" the convolution operation. It is well-known that

Λn := Λ ∗ ζn, (2.1)

belongs to S(Rd). Moreover,

|FΛn(ξ)| = |FΛ(ξ)| |Fζn(ξ)| ≤ |FΛ(ξ)| , (2.2)
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The stochastic wave equation in high dimensions

for all ξ ∈ Rd, and FΛn → FΛ pointwise as n→∞.
Let {F (φ); φ ∈ C∞0 (R+×Rd)} be a Gaussian process with mean zero and covariance

functional

E[F (φ)F (ψ)] =

∫ ∞
0

∫
Rd

(
φ(t) ∗ ψ̃(t)

)
(x)Γ(dx)dt, (2.3)

where ψ̃(t, x) := ψ(t,−x) and Γ is a nonnegative, nonnegative definite, tempered mea-
sure on Rd. There exists a nonnegative tempered measure µ on Rd such that Fµ = Γ

(see for instance [22], Chapter VII, Théorème XVIII). Then by Parseval’s identity, the
right-hand side of (2.3) is equal to∫ ∞

0

∫
Rd
Fφ(t)(ξ)Fψ(t)(ξ)µ(dξ)dt.

As is explained in [4], the process F can be extended to a worthy martingale measure
M = (Mt(A); t ∈ R+, A ∈ Bb(Rd)) where Bb(Rd) denotes the bounded Borel subsets of
Rd. The natural filtration generated by this martingale measure will be denoted in the
sequel by (Ft)t≥0.

A stochastic integration theory with respect to martingale measures has been devel-
oped by Métivier and Pellaumail and by Walsh, among others. Here, we shall use [24]
as reference. Using this integral, we have

F (φ) =

∫ T

0

∫
Rd
φ(s, z)M(ds, dz), (2.4)

for φ ∈ C∞0 (R+ ×Rd).
Extensions of the stochastic integral given in [24] have been introduced in [5] and

more recently, in [3]. Throughout this article, we shall refer mainly to the latter.
Fix T > 0. For stochastic processes f and g, indexed by (t, x) ∈ [0, T ] × Rd and

satisfying suitable conditions, we define the inner product

〈f, g〉0 = E

[∫ T

0

∫
Rd

(
f(s) ∗ g̃(s)

)
(x)Γ(dx)ds

]

= E

[∫ T

0

∫
Rd
Ff(s)(ξ)Fg(s)(ξ)µ(dξ)ds

]
,

where the corresponding norm ‖ · ‖0 is defined in the usual way. Moreover, we define
the norm

‖g‖2+ = E

[∫ T

0

∫
Rd

(
|g(s)| ∗ |g̃(s)|

)
(x)Γ(dx)ds

]
.

Let P+ be the set of predictable processes g such that ‖g‖+ < ∞. In [24, Exercise 2.5]
it is shown that P+ is complete and hence it is a Banach space. Let E denote the set of
simple processes g, that is, stochastic processes of the form

g(t, x;ω) =

m∑
j=1

1(aj ,bj ](t)1Aj (x)Xj(ω), (2.5)

for some m ∈ N, where 0 ≤ aj < bj ≤ T , Aj ∈ Bb(Rd) and Xj is a bounded and
Faj -measurable random variable for all 1 ≤ j ≤ n.

According to [24, Proposition 2.3], E is dense in P+. Hence, we can also define P+

as the completion of E with respect to ‖ · ‖+.
Following [5], we denote by P0 the completion of E with respect to ‖ · ‖0. This is a

Hilbert space consisting of predictable processes which contains tempered distributions

EJP 18 (2013), paper 64.
Page 4/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2341
http://ejp.ejpecp.org/


The stochastic wave equation in high dimensions

in the x-argument (whose Fourier transform are functions, P-a.s.). The norm in this
space is given by

‖g‖20 = E

[ ∫ T

0

∫
Rd
|Fg(s)(ξ)|2µ(dξ)ds

]
. (2.6)

For sufficiently smooth elements of P0, this norm can be also written as

‖g‖20 = E

[ ∫ T

0

∫
Rd

(
g(s, ·) ∗ g̃(s, ·)

)
(z)Γ(dz)ds

]
. (2.7)

Note that P0 is not defined as the set of predictable processes for which ‖ · ‖0 < ∞.
In fact, it can be shown that the latter space is not complete. Since ‖ · ‖0 ≤ ‖ · ‖+, we
clearly have P+ ⊆ P0, and from the above comments on completeness we know that
this inclusion must be strict.

Consider the subsets of P+ and P0 consisting of deterministic processes, denoted by
P+,d and P0,d, respectively. In the next lemma, we give an equivalent definition of P0,d.
For this, we first introduce a new space E0 consisting of Schwartz functions endowed
with the inner product

〈φ, ψ〉0 =

∫
Rd

(
φ ∗ ψ̃

)
(x)Γ(dx) =

∫
Rd
Fφ(ξ)Fψ(ξ)µ(dξ), (2.8)

where φ, ψ ∈ S(Rd). LetH denote the completion of (E0, 〈·, ·〉0) and setHT := L2([0, T ];H).
In the sequel we will also denote by ‖·‖HT the norm in this space derived from the scalar
product 〈·, ·〉0.

Lemma 2.1. The spaces P0,d and HT coincide.

Proof. First, we prove the inclusion HT ⊆ P0,d. For this, let Es be the set of functions
φ : [0, T ] × Rd → R which are a step function in the first argument and a Schwartz
function in the second one. Notice that Es is dense in HT with respect to the norm
‖ · ‖HT . We will show that Es ⊆ P+,d ⊆ P0,d, yielding the statement.

Indeed, fix φ ∈ Es. Due to Leibniz’ formula (see [23, Exercise 26.4]), the function
z 7→

(
|φ(s, ·)| ∗ |φ̃(s, ·)|

)
(z) decreases faster than any polynomial in |z|−1. Since Γ is a

tempered measure, we have

‖φ‖2+ =

∫ T

0

∫
Rd

(
|φ(s, ·)| ∗ |φ̃(s, ·)|

)
(z)Γ(dz)ds <∞.

This proves the claim.
Next, we consider the set Ed consisting of deterministic simple functions, and we

prove that Ed ⊆ HT . By taking closures in the norm ‖ · ‖HT , we will obtain the inclusion
P0,d ⊆ HT .

Let ψ ∈ Ed be given by ψ = 1(a,b]1A, with 0 ≤ a < b ≤ T . This function satisfies

‖ψ‖2HT =

∫ T

0

∫
Rd
|Fψ(s)(ξ)|2 µ(dξ)ds <∞. (2.9)

Indeed, by writing ‖ψ‖2HT as in the right-hand side of (2.7), we have

‖ψ‖2HT =

∫ T

0

∫
Rd

(
(1(a,b](s)1A(·)) ∗ (1(a,b](s)1̃A(·))

)
(z)Γ(dz)ds

=

∫ T

0

1(a,b](s)ds

∫
Rd

∫
Rd

1A(y)1A(y − z)dyΓ(dz)
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The stochastic wave equation in high dimensions

≤ (b− a)|A|
∫
Rd

1B(z)Γ(dz) ≤ (b− a)|A|Γ(B̄),

where |A| denotes the Lebesgue measure of A, B stands for the ball in Rd centered at
0 and with radius diam(A) = sup{d(x, z); x, y ∈ A}, and B̄ denotes its closure in the
Euclidean norm. Since Γ is a nonnegative tempered measure, it has the form Γ(dz) =

p(z)ν(dz), where p is a polynomial and ν is a finite measure (see [22, p. 242]). Hence Γ

is σ-finite. This fact along with the preceding inequalities, yields (2.9).
For an approximation of the identity (ζn)n∈N, we define ψn(s) := ψ(s) ∗ ζn ∈ S(Rd),

s ∈ [0, T ], n ∈ N. Clearly, ψn ∈ E0 ⊆ HT . Moreover, we will prove that

lim
n→∞

‖ψn − ψ‖HT = 0. (2.10)

This yields ψ ∈ HT .
For the proof of (2.10), we notice that by the very definition of the norm in HT ,

‖ψn − ψ‖2HT =

∫ T

0

∫
Rd
|Fψn(s)(ξ)−Fψ(s)(ξ)|2µ(dξ)ds

=

∫ T

0

∫
Rd
|Fψ(s)(ξ)|2|Fζn(ξ)− 1|2µ(dξ)ds. (2.11)

By using (2.9) and applying bounded convergence, the last term converges to zero
as n→∞. 2

Adding the random component yields the following.

Corollary 2.2. The spaces P0 and the space of all predictable stochastic process in
L2(Ω× [0, T ];H) coincide.

In order to introduce notation and provide some introductory material, we give a
brief overview of the integrals defined in [3]. In the next section, we shall extend these
integrals to Hilbert space valued stochastic processes.

Let Z = {Z(t, x); t ∈ [0, T ], x ∈ Rd} be a real-valued stochastic process, non identi-
cally zero, with the following properties.

(A1) Z is a predictable stochastic process satisfying sup(t,x)∈[0,T ]×Rd E[Z(t, x)2] <∞.

(A2) Z has spatial stationary covariance. That is, for any t ∈ [0, T ], x, y ∈ Rd,

E[Z(t, x)Z(t, x+ y)] = E[Z(t, 0)Z(t, y)] =: γZt (y).

The process

MZ
t (A) :=

∫ t

0

∫
A

Z(s, z)M(ds, dz), t ∈ [0, T ], A ∈ Bb(Rd),

defines a worthy martingale measure (see [24]).
Similarly to the definition of the norms ‖ · ‖+ and ‖ · ‖0, for stochastic processes

indexed by (t, x) ∈ [0, T ]×Rd and satisfying suitable conditions, we set

‖g‖2+,Z = E

[ ∫ T

0

∫
Rd

(
|g(s, ·)Z(s, ·)| ∗ |g̃(s, ·)Z̃(s, ·)|

)
(z)Γ(dz)ds

]
,

‖g‖20,Z = E

[ ∫ T

0

∫
Rd

(
(g(s, ·)Z(s, ·)) ∗ (g̃(s, ·)Z̃(s, ·))

)
(z)Γ(dz)ds

]
. (2.12)

EJP 18 (2013), paper 64.
Page 6/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2341
http://ejp.ejpecp.org/


The stochastic wave equation in high dimensions

Let P+,Z and P0,Z denote the completion of (E , ‖ · ‖+,Z) and (E , ‖ · ‖0,Z) with respect to
these norms, respectively. Accordingly to [24, Exercise 2.5] P+,Z is exactly the set of
all predictable processes g for which ‖g‖+,Z <∞. However, for P0,Z there is no similar
characterization.

By Bochner’s Theorem ([22, Chapter VII, Théorème XVIII]), there exists a non-
negative tempered measure νZt such that γZt = FνZt , where γZt is defined in (A2).
Moreover, we have

γZt Γ = (FνZt )(Fµ) = F(µ ∗ νZt ). (2.13)

In the sequel we set µZt := µ ∗ νZt . Due to Fubini’s Theorem, assumption (A2), (2.13)
and Parseval’s Identity, we see that for all g ∈ P0,d

‖g‖20,Z =

∫ T

0

∫
Rd

(
g(s, ·) ∗ g̃(s, ·)

)
(z)γZs (z)Γ(dz)ds

=

∫ T

0

∫
Rd
|Fg(s)(ξ)|2µZs (dξ)ds. (2.14)

Following [3], we describe the assumptions on deterministic functions that may be
integrated with respect to the martingale measure MZ . These are as follows.

(A3) t 7→ Λ(t) is a deterministic function with values in S ′r(Rd); the mapping (t, ξ) 7→
FΛ(t)(ξ) is measurable and∫ T

0

sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds <∞.

(A4) Let φ denote a nonnegative function in C∞0 (Rd), with support included in the unit
ball of Rd, satisfying

∫
Rd
φ(x)dx = 1. For all such φ and all 0 ≤ a ≤ b ≤ T , we have∫ b

a

(Λ(s) ∗ φ)(x)ds ∈ S(Rd)

and ∫
Rd

∫ b

a

|(Λ(s) ∗ φ)(x)|dsdx <∞.

(A5) t 7→ FΛ(t) is as in (A3) and

lim
h↓0

∫ T

0

sup
η∈Rd

∫
Rd

sup
s<r<s+h

|FΛ(r)(ξ + η)−FΛ(s)(ξ + η)|2µ(dξ) ds = 0.

Notice that (A3) implies ∫ T

0

∫
Rd
|FΛ(s)(ξ)|2µ(dξ)ds <∞. (2.15)

In [3, Theorem 3.1] it is proved that under assumptions (A1), (A2), (A3), and either
(A4) or (A5), Λ ∈ P0,Z and that the stochastic integral ((Λ ·MZ)t; t ∈ [0, T ]) is well-
defined as a real-valued square-integrable martingale. Moreover,

E
[
(Λ ·MZ)2

t

]
=

∫ t

0

∫
Rd
|FΛ(s)(ξ)|2µZs (dξ)ds = ‖Λ‖20,Z . (2.16)

Using Assumption (A2) and the identities νZs (Rd) = γZs (0) = E[Z(s, 0)2], one can obtain
the following upper bound:
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E
[
(Λ ·MZ)2

t

]
=

∫ t

0

∫
Rd
|FΛ(s)(ξ)|2µZs (dξ)ds

≤
∫ t

0

νZs (Rd) sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds

=

∫ t

0

E[Z(s, 0)2] sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds, (2.17)

Owing to (A1), this yields

E
[
(Λ ·MZ)2

t

]
≤ C

∫ t

0

sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds. (2.18)

Let t 7→ ψ(t) be a deterministic functions with values in S ′r(Rd). Assume that

ψ ∈ L2([0, T ];L1(Rd)), that is, satisfying
∫ T

0

(∫
Rd
|ψ(s, z)|dz

)2
ds < ∞. For a stochastic

process Z satisfying the conditions (A1), (A2), and following again [3], we introduce
the norm

‖ψ‖21,Z := E

[ ∫ T

0

(∫
Rd
ψ(s, z)Z(s, z)dz

)2

ds

]
.

Proceding as in the derivation of (2.14), we obtain

‖ψ‖21,Z := E

[ ∫ T

0

(∫
Rd
ψ(s, z)Z(s, z)dz

)(∫
Rd
ψ(s, y)Z(s, y)dy

)
ds

]
=

∫ T

0

∫
Rd

∫
Rd
ψ(s, z)g(s, y)γZs (z − y) dydzds

=

∫ T

0

∫
Rd
|Fψ(s)(η)|2νZs (dη)ds. (2.19)

The closure of the space E with respect to the norm ‖ · ‖1,Z is denoted by P1,Z .
In order to give a rigorous meaning to pathwise convolutions, some additional as-

sumptions are needed. These are the following.

(A6) The mapping t 7→ Λ(t) is a deterministic function with values in S ′r(Rd) and
satisfies ∫ T

0

sup
η∈Rd

|FΛ(s)(η)|2ds <∞.

(A7) The mapping t 7→ FΛ(t) is a deterministic function with values in S ′r(Rd) and
such that

lim
h↓0

∫ T

0

sup
η∈Rd

sup
s<r<s+h

|FΛ(r)(η)−FΛ(s)(η)|2ds = 0.

Note that these two conditions coincide respectively with (A3) and (A5) if µ = δ0.
Assume (A1), (A2), (A6) and either (A4) or (A7). In [3, Proposition 3.4] it is proved

that ∫ t

0

∫
Rd

Λ(s, z)Z(s, z)dzds, t ∈ [0, T ], (2.20)

defines a stochastic process with values in L2(Ω). In addition, from (2.19) and (A1),
(A2), it follows that

‖Λ‖21,Z =E

[(∫ t

0

∫
Rd

Λ(s, x)Z(s, x)dxds

)2
]
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The stochastic wave equation in high dimensions

≤
∫ t

0

νZs (Rd) sup
η∈Rd

|FΛ(s)(η)|2ds

≤ C
∫ t

0

sup
η∈Rd

|FΛ(s)(η)|2ds. (2.21)

Frequently, we will use the notation

J1(s) := sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ) (2.22)

and
J2(s) := sup

η∈Rd
|FΛ(s)(η)|2, (2.23)

s ∈ [0, T ].
If the assumptions (A3), (A6), respectively, are satisfied, then∫ T

0

J1(s)ds <∞,
∫ T

0

J2(s)ds <∞, (2.24)

respectively.
Throughout the article, we will refer extensively to the Hilbert space L2(Ω;HT ) =

L2([0, T ]×Ω;H). In [6, Proposition 2.6], it is proved that P0 ⊆ L2(Ω;HT ). Then if g ∈ P0,
‖g‖0 = ‖g‖L2(Ω;HT ) with ‖ · ‖0 defined as in (2.6).

In this article, we will use the theory of Malliavin calculus based on the Gaussian
process F = (F (φ); φ ∈ HT ) (see [14]). For this we need to guarantee that F is an
isonormal Gaussian process and also to describe its associated abstract Wiener space.

By Lemma 2.1, the expression (2.4) holds for any φ ∈ HT . This yields that F is an
isonormal process (see [14, Definition 1.1.1]). For the description of the abstract Wiener
space, it is useful to identify the stochastic process F with aH–valued cylindrical Wiener
process, as follows. As it is shown in [4], by an approximation procedure we define
Wt(φ) = F (1[0,t]φ), t ∈ [0, T ], φ ∈ H. Consider a complete orthonormal system (CONS)
of H that we denote by (ek)k∈N. Then,

W = {W k(t) := Wt(ek), t ∈ [0, T ], k ∈ N}

defines a sequence of independent standard Brownian motions. Conversely, the process
(F (φ) =

∑
k∈N

∫ T
0
〈φ(t), ek〉HdW k(t), φ ∈ HT ) is an isonormal Gaussian process.

Let (Ω̄, Ḡ, µ̄) be the canonical space of a standard real-valued Brownian motion
on [0, T ]. With the equivalence shown before, we can identify the canonical proba-
bility space of F with that of a sequence of independent standard Brownian motions
(Ω,G,P) = (Ω̄N, Ḡ⊗N, µ̄⊗N). This will be the underlying probability space in this work.

Consider the Hilbert space H consisting of sequences (hk)k∈N of functions hk :

[0, T ] → R which are absolutely continuous with respect to the Lebesgue measure and

such that
∑
k∈N

∫ T
0
|ḣk(s)|2ds < ∞, where ḣk refers to the derivative of hk defined al-

most everywhere. There is an isometry between the spaces H and HT , as follows. Let
h ∈ H. Then h =

∑
k∈N h

kek, where hk(t) =
∫ t

0
ḣk(s)ds for all k ∈ N. For any t ∈ [0, T ],

set h̄(t) =
∑
k∈N ḣ

k(t)ek. Clearly, h̄ ∈ HT and ‖h‖H = ‖h̄‖HT . The triple (Ω,H,P) is the
abstract Wiener space that we shall use as framework for the Malliavin calculus.

3 Hilbert space valued stochastic integrals

In this section, we develop an extension of the integrals introduced in [3] to Hilbert
space valued integrands. For similar results in the setting of [5], we refer the reader to
[18].

EJP 18 (2013), paper 64.
Page 9/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2341
http://ejp.ejpecp.org/


The stochastic wave equation in high dimensions

Let A be a separable real Hilbert space with inner-product and norm denoted by
〈·, ·〉A and ‖ · ‖A respectively. In the sequel, (ak)k∈N will denote a complete orthonormal
system of A. Let {Z(t, x), t ∈ [0, T ], x ∈ Rd} be a A-valued stochastic process satisfying
the following properties similar to (A1), (A2):

(A8) Z is a A-valued predictable stochastic process satisfying

sup
(t,x)∈[0,T ]×Rd

E[‖Z(t, x)‖2A] <∞.

(A9) Z has a spatial stationary covariance function coordinatewise. That is, for all
k ∈ N and (t, x) ∈ [0, T ]×Rd,

E[Zk(t, x)Zk(t, x+ y)] = E[Zk(t, 0)Zk(t, y)] =: γZk,t(y),

where Zk(t, x) := 〈Z(t, x), ak〉A.
For each k ∈ N, the stochastic process

MZk
t (A) :=

∫ t

0

∫
A

Zk(s, z)M(ds, dz), t ∈ [0, T ], A ∈ Bb(Rd),

defines a real-valued worthy martingale measure.
According to [18],

MZ
t (A) :=

∑
k∈N

MZk
t (A)ak, t ∈ [0, T ], A ∈ Bb(Rd),

defines a A–valued worthy martingale measure and by construction,
〈MZ

t (A), ak〉A = MZk
t (A). Moreover,

E
[
‖MZ

t (A)‖2A
]
≤ Ct,A sup

(t,x)∈[0,T ]×Rd
E
[
‖Z(t, x)‖2A

]
,

(see [18, p. 5]).
For a A–valued stochastic process g, we set gk = 〈g, ak〉A, and define

‖g‖20,A :=
∑
k∈N

‖gk‖20.

Also, for a deterministic function φ, we define

‖φ‖20,Z,A :=
∑
k∈N

‖φ‖20,Zk , ‖φ‖
2
+,Z,A :=

∑
k∈N

‖φ‖2+,Zk , ‖φ‖
2
1,Z,A :=

∑
k∈N

‖φ‖21,Zk .

In each one of these definitions we are implicitely assuming that the right-hand side
of every expression is well-defined. Let EA be the set of A-valued simple stochastic
processes. That is, processes with a similar expression as in (2.5), where Xj , j =

1, . . . ,m, are A-valued random variables. Then, we denote by P0,Z,A, P+,Z,A and P1,Z,A
the completions of E with respect to ‖ · ‖0,Z,A, ‖ · ‖+,Z,A and ‖ · ‖1,Z,A, respectively.

Note that all the norms ‖ · ‖0,Z,A, ‖ · ‖+,Z,A and ‖ · ‖1,Z,A do not depend on the choice
of the CONS although assumption (A9) might do so. Indeed, for the dense subset of
P0,Z,A for which the norm ‖ · ‖0,Z,A can be written as in (2.12), one can easily verify that∑
k∈N ‖ · ‖20,〈Z,ak〉A =

∑
k∈N ‖ · ‖20,〈Z,a′k〉A , where (ak)k∈N and (a′k)k∈N are two CONS of A.

By density, this equality then holds for all elements in P0,Z,A.

Theorem 3.1. Let {Z(t, x), (t, x) ∈ [0, T ] ×Rd} be a A–valued stochastic process satis-
fying conditions (A8), (A9). Let t 7→ Λ(t) be a deterministic function taking values in
the space S ′r(Rd). We suppose that (A3) and either (A4) or (A5) are satisfied. Then
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Λ ∈ P0,Z,A and the stochastic integral {(Λ ·MZ)t, t ∈ [0, T ]} is well-defined as a A-valued
square integrable process. Moreover,

E
[
‖(Λ ·MZ)t‖2A

]
=

∫ t

0

∫
Rd
|FΛ(s)(ξ)|2µZs (dξ)ds = ‖Λ‖20,Z,A

≤
∫ t

0

E[‖Z(s, 0)‖2A] sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds

≤ C
∫ t

0

sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds (3.1)

Proof. From [3, Theorem 3.1] we know that Λ ∈ P0,Zk and also that {(Λ·MZk)t, t ∈ [0, T ]}
is well-defined for any k ∈ N. In addition,

E
[
‖(Λ ·MZk)t‖2

]
= ‖Λ‖20,Zk .

The proof of Λ ∈ P0,Z,A follows the same arguments as in [3, Theorem 3.1]. Firstly,
we check that Λn (defined similar to (2.1) by Λn(t) := Λ(t) ∗ ζn) belongs to P0,Z,A, and
then that

lim
n→∞

‖Λn − Λ‖20,Z,A = 0.

The arguments of [3, Theorem 3.1] can be adapted by using (A3), (A8) and the follow-
ing remark: For any φ : [0, T ]→ S(Rd),

‖φ‖20,Zk ≤
∫ T

0

E
[
|Zk(s, 0)|2

]
sup
η∈Rd

∫
Rd
µ(dξ)|Fφ(s)(ξ + η)|2.

It follows that

‖φ‖20,Z,A =
∑
k∈N

‖φ‖20,Zk

≤
∫ T

0

E
[
‖Z(s, 0)‖2A

]
sup
η∈Rd

∫
Rd
µ(dξ)|Fφ(s)(ξ + η)|2.

For any t ∈ [0, T ], define

(Λ ·MZ)t =
∑
k∈N

(Λ ·MZk)tak.

Clearly,

E
[
‖(Λ ·MZ)t‖2A

]
=
∑
k∈N

E
[
‖(Λ ·MZk)t‖2

]
=
∑
k∈N

‖Λ‖20,Zk = ‖Λ‖20,Z,A.

The estimates (3.1) follows from (2.17) applied to each stochastic integral Λ · MZk ,
k ∈ N, along with (A8).

2

By using similar arguments as in the proof of [3, Proposition 3.4], one can also give
an extension of the pathwise integral to A–valued stochastic processes. For this, it is
worth noticing that for any φ : [0, T ]→ S(Rd),

‖φ‖21,Z,A =
∑
k∈N

‖φ‖1,Zk

≤
∫ t

0

E[‖Z(s, 0)‖2A] sup
η∈Rd

|Fφ(s)(η)|2ds.

The extension reads as follows.
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Theorem 3.2. Let {Z(t, x), (t, x) ∈ [0, T ] × Rd} be a stochastic process as in Theorem
3.1. Let t 7→ Λ(t) be a deterministic function taking values in the space S ′r(Rd). We
suppose that (A6) and either (A4) or (A7) are satisfied. Then∫ t

0

∫
Rd

Λ(s, z)Z(s, z)dzds :=
∑
k∈N

(∫ t

0

∫
Rd

Λ(s, z)Zk(s, z)dzds

)
ak,

t ∈ [0, T ], defines a stochastic process with values in L2(Ω;A). Moreover,

E

[∥∥∥∥∫ t

0

∫
Rd

Λ(s, z)Z(s, z)dzds

∥∥∥∥2

A

]
=
∑
k∈N

E

[(∫ t

0

∫
Rd

Λ(s, z)Zk(s, z)dzds

)2
]

= ‖Λ‖21,Z,A

≤
∑
k∈N

∫ t

0

E[Zk(s, 0)2] sup
η∈Rd

|FΛ(s)(η)|2ds

≤ C
∫ t

0

sup
η∈Rd

|FΛ(s)(η)|2ds. (3.2)

4 Equivalence of stochastic integrals

In this section, we consider a particular case of integrands described as follows.
Let Z be a stochastic process satisfying (A1), (A2). Let Λ : [0, T ] → S ′r(Rd). We are
interested in stochastic processes which are obtained as the limit in the topology of P0

of a sequence
Φnt,x := Λn(t− ·, x− ∗)Z(·, ∗), n ∈ N,

where (t, x) ∈ [0, T ]×Rd is fixed and Λn(t) := Λ(t) ∗ ζn as in (2.1).
For this class of integrands, later denoted by Φt,x (and also at some places by Λ(t−

·, x−∗)Z(·, ∗), by an abuse of language), we prove that the integrals in the Conus-Dalang
sense ([3]) and with respect to the H-valued cylindrical Wiener process (Wt, t ∈ [0, T ])

(see for instance [7]), coincide with the divergence operator (also termed Skorohod
integral) of Malliavin Calculus (see [14, Section 1.3]). For this, we need further insight
on the relationships between the spaces P0, P0,Z and L2(Ω,HT ) introduced in Section
2.

We notice that, for deterministic elements φ ∈ P0, which are Schwartz functions in
the spatial argument and a process Z satisfying (A1), (A2),

‖φZ‖0 = ‖φ‖0,Z = ‖φZ‖L2(Ω;HT ). (4.1)

To simplify the notation, for any (t, x) ∈ [0, T ] × Rd, we write [ΛnZ]t,x to denote the
stochastic process (Λn(t− ·, x− ∗)Z(·, ∗)), where “·" and “∗" denote the time and space
arguments, respectively.

Lemma 4.1. Let Z be a stochastic process satisfying the hypotheses (A1), (A2). Let
t ∈ [0, T ] 7→ Λ(t) be a function satisfying the assumptions (A3) and either (A4) or (A5).
Fix (t, x) ∈ [0, T ]×Rd. Then, for all n ∈ N,

1. Λn,Λ ∈ P0,Z ,

2. [ΛnZ]t,x ∈ P0,

3. The sequence ([ΛnZ]t,x)n∈N converges in P0 to an element Φt,x ∈ P0, and

‖Φt,x‖0 = ‖Λ(t− ·, x− ∗)‖0,Z . (4.2)
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Moreover, Φt,x ∈ L2(Ω;HT ) and

‖Φt,x‖0 = ‖Λ(t− ·, x− ∗)‖L2(Ω;HT ).

Proof. The assertions of part (1) are shown in [3, Theorem 3.1]. The second part in
shown by a similar method as in [3, Theorem 3.1]. In fact, consider either approximation
of Λn by simple functions (Λn,m)m∈N given in the proof of this theorem. Then one shows
using the definition of the norm ‖ · ‖+

‖Λn,m(t− ·, x− ∗)Z(·, ∗)‖2+

= E
[ ∫ t

0

∫
Rd

∫
Rd
|Λn,m(t− s, x− z)||Λn,m(t− s, x− y + z)|

× |Z(s, y)||Z(s, y − z)|dyΓ(dz)ds
]

≤ sup
(r,y)∈[0,T ]×Rd

E[Z(r, y)2]

×
∫ t

0

∫
Rd

(
|Λn,m(t− s, x− ·)| ∗ |Λ̃n,m(t− s, x− ·)|

)
(z)Γ(dz)ds. (4.3)

Since Λn,m(t) ∈ S(Rd) and Γ is a tempered measure, we can use Leibniz’ rule ([23,
Exercise 26.4]) to shown that the last expression is finite. This shows that [Λn,mZ]t,x ∈
P+. Then we evaluate the difference ‖(Λn,m(t − ·, x − ∗) − Λn(t − ·, x − ∗))Z(·, ∗)‖20 in
the same ways (depending on whether we suppose (A4) or (A5)) as in the proof of [3,
Theorem 3.1], and show that it goes to zero. This proves part 2.

For n,m ∈ N, we have

‖Λn(t− ·, x− ∗)− Λm(t− ·, x− ∗)‖20,Z

=

∫ t

0

∫
Rd
|FΛn(t− s)(ξ)−FΛm(t− s)(ξ)|2µZs (dξ)ds

=

∫ t

0

∫
Rd
|FΛ(t− s)(ξ)|2|Fζn(ξ)−Fζm(ξ)|2µZs (dξ)ds. (4.4)

By bounded convergence, this converges to zero as n,m→∞. Using (4.1), we conclude
that ([ΛnZ]t,x)n∈N is a Cauchy sequence in P0. Let us denote by Φt,x its limit. Using
similar computations as in (4.4) with Λm replaced by Λ, and since Λ ∈ P0,Z , we have,

lim
n→∞

‖Λn(t− ·, x− ∗)‖0,Z = ‖Λ(t− ·, x− ∗)‖0,Z .

Thus,
‖Φt,x(·, ∗)‖0 = lim

n→∞
‖Λn(t− ·, x− ∗)‖0,Z = ‖Λ(t− ·, x− ∗)‖0,Z .

Since P0 ⊆ L2(Ω;HT ) (see [6, Proposition 2.6]), we conclude that Φt,x ∈ L2(Ω;HT ).
2

The preceding lemma admits easily an extension to Hilbert space valued stochastic
processes. Next, we consider a particular example of such an extension for processes
that are Malliavin derivatives.

Lemma 4.2. The function Λ and the stochastic process Z are as in Lemma 4.1. More-
over, we assume that that Z(t, x) ∈ D1,2 for all (t, x) ∈ [0, T ]×Rd and that theHT –valued
stochastic process DZ satisfies (A8), (A9). Fix (t, x) ∈ [0, T ]×Rd, Then, by setting

[ΛnDZ]t,x :=
(
Λn(t− s, x− y)DZ(s, y), (s, y) ∈ [0, T ]×Rd

)
,

the following holds.
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1. Λn,Λ ∈ P0,DZ,HT ,

2. [ΛnDZ]t,x ∈ P0,HT

3. The sequence ([ΛnDZ]t,x)n∈N converges in P0,HT to a HT –valued stochastic pro-

cess Φ
(1)
t,x := {Φ(1)

t,x(s, y), (s, y) ∈ [0, T ]×Rd} such that for any (t, x) ∈ [0, T ]×Rd,

‖Φ(1)
t,x‖0,HT = ‖Λ(t− ·, x− ∗)‖0,DZ,HT . (4.5)

4. Φ
(1)
t,x = DΦt,x, where Φt,x is the process defined in part 3 of Lemma 4.1.

Proof. Statement 1 can be shown as in [3, Theorem 3.1] with the tools provided in
Section 3. For the proof of part 2, we follow similar computations as in (4.3) to obtain

‖Λm,n(t− ·, x− ∗)DZ·,∗(t, x)‖2+,HT ≤ C sup
(r,y)∈[0,T ]×Rd

E
[
‖DZ(r, y)‖2HT

]
×
∫ t

0

∫
Rd

(
|Λn,m(t− s, x− ·)| ∗ |Λ̃n,m(t− s, x− ·)|

)
(z)Γ(dz)ds.

By the same arguments as in Lemma 4.1, this last expression is finite.
Similarly as for the statement 3 of Lemma 4.1, we prove that ([ΛnDZ]t,x, n ∈ N) is a

Cauchy sequence in the norm ‖ · ‖0,DZ,HT and that its limit Φ(1) satisfies (4.5).
As for part 4, we notice that by Lemma 4.1, the sequence (Λn(t−·, x−∗)Z(·, ∗), n ∈ N)

converges in L2(Ω;HT ) to a random vector Φt,x. Moreover, D(Λn(t − ·, x − ∗)Z) =

Λn(t − ·, x − ∗)DZ. Hence by part 3, the sequence (D(Λn(t− ·, x− ∗)Z))n∈N converges
in L2(Ω;H⊗2

T ). Since D is a closed operator, we conclude using again part 3.
2

Let Λ and Z be as in Lemma 4.1 and (ēk)k∈N be a CONS of HT . For any k ∈ N, the
real-valued stochastic process DēkZ := 〈DZ, ēk〉HT satisfies the hypotheses of Lemma
4.1. Hence, the sequence ([ΛnD

ēkZ]t,x)n∈N converges in P0 to an element denoted by

Φ
(ēk)
t,x . Since the Malliavin derivative is a closed operator, we have DēkΦt,x = Φ

(ēk)
t,x , with

Φt,x given in Lemma 4.1, and Φ
(ēk)
t,x = 〈Φ(1)

t,x, ēk〉HT , with Φ
(1)
t,x defined in Lemma 4.2.

Let g denote a predictable stochastic process belonging to L2(Ω × [0, T ];H). Using
the stochastic integration theory developed for instance in [7], the integral of g with
respect to the cylindrical Brownian motion {Wt, t ∈ [0, T ]} described in Section 2 is
well-defined, as follows:

(g ·W )t :=

∫ t

0

g(s)dWs :=
∑
k∈N

∫ t

0

〈g(s, ∗), ek(∗)〉HdW k
s , t ∈ [0, T ], (4.6)

where (ek)k∈N is a CONS of H.
The next proposition provides an extension of [6, Proposition 2.6] to the stochastic

integral in [3]. This is only for the class of integrands Φt,x defined in Lemma 4.1 though.

Proposition 4.3. Let Λ fulfill (A3) and either (A4) or (A5). Let Z be a stochastic
process satisfying conditions (A1) and (A2) Fix (t, x) ∈ [0, T ] × Rd and consider the
stochastic process Φt,x defined in Lemma 4.1. Then

(Λ(t− ·, x− ∗) ·MZ)t = (Φt,x ·W )t, t ∈ [0, T ].

where the expression on the left-hand side refers to the integral of Conus and Dalang
(see [3, Theorem 3.1]), while on the right-hand side, it refers to the integral defined in
(4.6).
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Proof. From Lemma 4.1, part 2, we have that [ΛnZ]t,x ∈ P0 ⊆ L2(Ω;HT ). Consequently,
the stochastic integral in (4.6) exists for g := [ΛnZ]t,x and it satisfies the isometry
property

E
[(

[ΛnZ]t,x ·W
)2
t

]
= E

[ ∫ t

0

‖Λn(t− s·, x− ∗)Z(s, ∗)‖2Hds
]

= ‖[ΛnZ]t,x‖20 = ‖Λn(t− ·, x− ∗)‖20,Z .

Moreover, (Λn(t − ·, x − ∗) ·MZ)t is well-defined as a Walsh’s stochastic integral with
respect to the martingale measure MZ . According to [6, Proposition 2.6(a)]

(Λn(t− ·, x− ∗) ·MZ)t = ([ΛnZ]t,x ·W )t.

We can now pass to the limit as n→∞ and notice that [ΛnZ]t,x converges in L2(Ω;HT )

to Φt,x. We obtain,

(Φt,x ·W )t := L2(Ω)− lim
n→∞

(
[ΛnZ]t,x ·W

)
t
.

On the other hand, for the stochastic integral in [3] we have

(Λ(t− ·, x− ∗) ·MZ)t = L2(Ω)− lim
n→∞

(Λn(t− ·, x− ∗) ·MZ)t.

This ends the proof.
2

In the next proposition, we prove the equality between the divergence operator
(also called Skorohod integral) applied to the process Φt,x and the stochastic integral
(Φt,x ·W )t.

Proposition 4.4. The assumptions are the same as in Proposition 4.3. Fix (t, x) ∈
[0, T ]×Rd. The stochastic process Φt,x derived in Lemma 4.1 part 3 satisfies

δ(Φt,x) = (Φt,x ·W )t, (4.7)

where δ denotes the Skorohod integral.

Proof. We follow a similar approach as in [14, Section 1.3.2]. Let g = 1(a,b]1AX, where
0 ≤ a < b ≤ t, A ∈ Bb(Rd) and X is a bounded and Fa-measurable random variable.
Assume first that X ∈ D1,2. Then [14, (1.44)] yields

δ(g) = XF (1(a,b]1A).

Since D1,2 is dense in L2(Ω) and δ is closed, this equality extends to X ∈ L2(Ω), which
are Fa-measurable.

On the other hand (g ·W )t = XF (1(a,b]1A) as it is shown for instance in [6, p. 11].
By linearity of the integral operators we see that (4.7) holds for a suitable class of
elementary processes.

We know that [ΛnZ]t,x ∈ P0. Therefore, there exists a sequence of elementary pro-
cesses (gt,xn,m)m∈N converging to [ΛnZ]t,x in L2(Ω,HT ) as m → ∞. Since the operator δ
is closed, we obtain

([ΛnZ]t,x ·W )t = L2(Ω)− lim
m→∞

(
gt,xn,m ·W

)
t

= L2(Ω)− lim
m→∞

δ(gt,xn,m) = δ([ΛnZ]t,x).

Finally, using once again that δ is closed, we have

(Φt,x ·W )t = L2(Ω)− lim
n→∞

(
[ΛnZ]t,x ·W

)
t

= L2(Ω)− lim
n→∞

δ([ΛnZ]t,x) = δ(Φt,x).

This finishes the proof of the proposition.
2
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5 Malliavin derivatives of stochastic and pathwise integrals

In this section, we state conditions for commuting the Malliavin derivative operator
with two types of integrals: the class of stochastic integrals studied in Section 4 and the
pathwise integrals of [3] (see (2.20)). For the former we rely on [14, Proposition 1.3.2]
and we check that the assumptions of this proposition are satisfied by the relevant
integrands. As for the latter, we give a direct proof.

Throughout the section, we fix Λ satisfying the assumption (A3) and either (A4) or
(A5) and a stochastic process Z satisfying (A1) and (A2). For any (t, x) ∈ [0, T ]×Rd, we
shall consider the stochastic process Φt,x given in Lemma 4.1. We will use the notation∫ t

0

∫
Rd

Λ(t− s, x− z)Z(s, z)M(ds, dz)

to refer to each of the stochastic integrals δ(Φt,x), (Φt,x · W )t, (Λ(t − ·, x − ∗) · MZ)t
considered in Section 4. In fact, owing to Propositions 4.3, 4.4 they coincide.

Proposition 5.1. We assume that Λ satisfies the assumption (A3) and either (A4) or
(A5). Consider a stochastic process Z satisfying (A1) and (A2) and such that for any
(t, x) ∈ [0, T ] × Rd, Z(t, x) ∈ D1,2. Suppose also that DZ fulfills the assumptions (A8)
and (A9) with A = HT . Then, for every (t, x) ∈ [0, T ]×Rd,∫ t

0

∫
Rd

Λ(t− s, x− z)Z(s, z)M(ds, dz) ∈ D1,2

and

D

(∫ t

0

∫
Rd

Λ(t− s, x− z)Z(s, z)M(ds, dz)

)
= Λ(t− ·, x− ∗)Z(·, ∗) +

∫ t

0

∫
Rd

Λ(t− s, x− z)DZ(s, z)M(ds, dz), (5.1)

where the integral in the right-hand side of (5.1) is the Hilbert space valued stochastic
integral Λ(t− ·, x− ∗) ·MDZ given in Theorem 3.1.

Proof. From Lemma 4.2 it follows that Φt,x ∈ D1,2(HT ). Fix a CONS of HT that we
denote by (ēk)k∈N. As has been pointed out in Section 4, the real-valued process
DēkΦt,x = 〈DΦt,x, ēk〉HT belongs to P0. Moreover, by the results of that section, it
also belongs to the domain of the divergence operator. Thus, the assumptions of [14,
Proposition 1.3.2] are fulfilled and hence we have

Dēk

(∫ t

0

∫
Rd

Φt,x(s, z)M(ds, dz)

)
= Dēk(δ(Φt,x))

= 〈Φt,x, ēk〉HT + δ(DēkΦt,x),

for any k ∈ N. This proves (5.1).
2

Our next aim is to prove a result on commutation of the Malliavin derivative operator
with the pathwise integral (2.20). In [8, Lemma 2.2] a similar question is analyzed.
However, that version seems not to be directly applicable to our context.

Proposition 5.2. Let Λ fullfil (A6) and either (A4) or (A7). Let Z be a stochastic
process satisfying the same assumptions as in Proposition 5.1. Then for all (t, x) ∈
[0, T ]×Rd, ∫ t

0

∫
Rd

Λ(t− s, x− z)Z(s, z)dzds ∈ D1,2
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and

D

(∫ t

0

∫
Rd

Λ(t− s, x− z)Z(s, z)dzds

)
=

∫ t

0

∫
Rd

Λ(t− s, x− z)DZ(s, z)dzds. (5.2)

Proof. Let Λ = 1t−(a,b]1{x}−A for some 0 ≤ a < b ≤ t and A ∈ Bb(Rd) where {x} − A =

{x− z, z ∈ A}. In this case, formula (5.2) reads

D

(∫ b

a

∫
A

Z(s, z)dzds

)
=

∫ b

a

∫
A

DZ(s, z)dzds (5.3)

almost surely. This follows from the arguments in the above-mentioned reference [8].
We notice that a direct proof of (5.3) can also be done using the definition of the Malli-
avin operator as a directional derivative.

In the next step, we consider Λ ∈ L2([0, T ];L1(Rd)), i.e.
∫ T

0
(
∫
Rd
|Λ(t, x)|dx)2dt <

∞. We recall that according to [3, (3.13)], the pathwise integral is almost surely well
defined as a pathwise Lebesgue integral. Linear combinations of products of indicator
functions as those considered in the previous step, are dense in L2([0, T ];L1(Rd)). Let
(Λn)n∈N be a sequence of such simple functions converging to Λ in L2([0, T ];L1(Rd)).
Then,

E

[(∫ t

0

∫
Rd

(Λ(t− s, x− z)− Λn(t− s, x− z))Z(s, z)dzds

)2
]

≤ TE
[ ∫ t

0

∫
Rd

∫
Rd

(Λ(t− s, x− z)− Λn(t− s, x− z))

× (Λ(t− s, x− y)− Λn(t− s, x− y))Z(s, z)Z(s, y)dydzds
]

≤ C sup
(t,x)∈[0,T ]×Rd

E(|Z(t, x)|2)

×
∫ t

0

(∫
Rd
|Λ(t− s, x− z)− Λn(t− s, x− z)| dz

)2

ds,

which goes to zero as n→∞.
Using similar arguments,

E

[(∫ t

0

∫
Rd

Λ(t− s, x− z)DZ(s, z)dzds

−D
∫ t

0

∫
Rd

Λn(t− s, x− z)Z(s, z)dzds

)2
]

= E

[(∫ t

0

∫
Rd

(
Λ(t− s, x− z)− Λn(t− s, x− z)

)
DZ(s, z)dzds

)2
]

≤ C sup
(t,x)∈[0,T ]×Rd

E
[
‖DZ(t, x)‖2HT

]
×
∫ t

0

(∫
Rd
|Λ(t− s, x− z)− Λn(t− s, x− z)|dz

)2

ds,

where in the first equality we have used the first step of this proof. The last term
goes to zero as n → ∞. Since D is a closed operator, the Proposition holds for Λ ∈
L2([0, T ];L1(Rd)).

Finally, assume that Λ satisfies the assumptions of the Proposition. Let Λn ∈
L2([0, T ], L1(Rd)), n ∈ N be as in (2.1). Then, according to [3] (see also Section 2)
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we have,

E

[(∫ t

0

∫
Rd

(
Λ(t− s, x− z)− Λn(t− s, x− z)

)
Z(s, z)dzds

)2
]

=

∫ t

0

∫
Rd
|FΛ(t− s)(η)|2|Fζn(η)− 1|2νZs (dη)ds.

This goes to zero as n→∞, by dominated convergence.
Similarly,

E

[(∫ t

0

∫
Rd

Λ(t− s, x− z)DZ(s, z)dzds

−D
∫ t

0

∫
Rd

Λn(t− s, x− z)Z(s, z)dzds

)2
]

= E

[(∫ t

0

∫
Rd

(
Λ(t− s, x− z)− Λn(t− s, x− z)

)
DZ(s, z)dzds

)2
]

=

∫ t

0

∫
Rd
|FΛ(t− s)(η)|2|Fζn(η)− 1|2νDZs (dη)ds,

converges to zero as n → ∞. Notice that by Theorem 3.2, the integrals involved in
these computations exist. By the closedness of the Malliavin derivative operator, we
conclude the proof.

2

6 Malliavin differentiability of the solution of the SPDE

This section is devoted to prove that the solution to the stochastic partial differential
equation (1.2) at a given point (t, x) ∈ [0, T ] × Rd is differentiable in Malliavin’s sense.
We also derive an SPDE satisfied by the HT –valued stochastic process {Du(t, x), (t, x) ∈
[0, T ] × Rd}. This general result applies in particular to the solution of the stochastic
wave equation in any spatial dimension.

It is assumed that G satisfies (A3), (A6) and either (A4) or (A5) and (A7). For its
further use, we introduce an SPDE more general than (1.2), as follows. Let h ∈ HT and
consider

uh(t, x) =

∫ t

0

∫
Rd
G(t− s, x− z)σ(u(s, z))M(ds, dz)

+

∫ t

0

〈G(t− s, x− ∗)σ(uh(s, ∗)), h(s)〉Hds

+

∫ t

0

∫
Rd
G(t− s, x− z)b(u(s, z))dzds. (6.1)

It is easy to check that the Picard iterations {um,h(t, x), (t, x) ∈ [0, T ] × Rd}, m ∈ N,
satisfy the S property of [3, Lemma 4.5]. With this, an easy extension of [3, Theo-
rem 4.2, Theorem 4.8] provides existence (and uniqueness) of a random field solution
{uh(t, x), (t, x) ∈ [0, T ]×Rd} to (6.1). Moreover,

sup
(t,x)∈[0,T ]×Rd

sup
‖h‖HT≤c

E
[∣∣uh(t, x)

∣∣2] <∞. (6.2)

The details of the proof are left to the reader.
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Owing to the results proved in Section 4, the stochastic integral in (6.1) can be
interpreted either as a Conus-Dalang’s integral, a Skorohod integral, or as∫ t

0

∫
Rd
G(t− s, x− z)σ(u(s, z))M(ds, dz) :=

∑
k∈N

∫ t

0

〈G(t− s, x− ∗)σ(uh(s, ∗)), ek〉HdW k
s ,

with (ek)k∈N a CONS of H and (W k
t , t ∈ [0, T ])k∈N a sequence of independent standard

Brownian motions.
Similarly∫ t

0

〈G(t− s, x− ∗)σ(uh(s, ∗)), h(s)〉Hds =
∑
k∈N

∫ t

0

〈G(t− s, x− ∗)σ(uh(s, ∗)), ek〉Hhk(s)ds,

where hk(s) = 〈h(s), ek〉H, k ∈ N.
Throughout the section, we shall use the abstract Wiener space (Ω,H,P) and the

isometry between the spaces HT and H defined in Section 2.
The objective is to prove the following.

Theorem 6.1. We assume that G satisfies the assumptions (A3), (A6) and either (A4)
or (A5) and (A7). We also suppose that the coefficients σ and b are continuously differ-
entiable real-valued functions with bounded derivatives. Then for any (t, x) ∈ [0, T ]×Rd,
u(t, x) ∈ D1,2. Moreover, the stochastic process {Du(t, x), (t, x) ∈ [0, T ] × Rd} satisfies
the SPDE

Du(t, x) = G(t− ·, x− ∗)σ(u(·, ∗))

+

∫ t

0

∫
Rd
G(t− s, x− z)σ′(u(s, z))Du(s, z)M(ds, dz)

+

∫ t

0

∫
Rd
G(t− s, x− z)b′(u(s, z))Du(s, z) dzds, (6.3)

where G(t− ·, x− ∗)σ(u(·, ∗)) is the stochastic process derived in Lemma 4.1 Section 4,
for Λ := G and Z := σ(u).

The proof of Theorem 6.1 will be carried out in two steps. Firstly, we will show that
u(t, x) ∈ D1,2 and in a second step, we shall establish (6.3). The proof of the former
statement relies on [14, Lemma 1.2.3]. For the sake of completeness, we quote this
result.

Lemma 6.2. Let (Fn)n∈N be a sequence in D1,2 such that limn→∞ Fn = F in L2(Ω) and
supn∈NE[‖DFn‖2HT ] <∞. Then F ∈ D1,2 and the sequence (DFn)n∈N converges to DF
in the weak topology of L2(Ω;HT ).

This Lemma will be applied to the sequence Fn := un(t, x), n ∈ N, where (t, x) ∈
[0, T ]×Rd is fixed, and un(t, x) is given by the solution to the evolution equation

un(t, x) =

∫ t

0

∫
Rd
Gn(t− s, x− z)σ(un(s, z))M(ds, dz)

+

∫ t

0

∫
Rd
Gn(t− s, x− z)b(un(s, z))dzds, (6.4)

with Gn defined as in (2.1).
Assume that the functions σ, b are Lipschitz continuous. Since Gn(t) ∈ S(Rd), the

stochastic integral in (6.4) is a Walsh’s integral (see [24]). It is well-known that (6.4)
has a unique random field solution, and that it satisfies the S–property. In particular for
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each n ∈ N, the process {Z(t, x) := un(t, x), (t, x) ∈ [0, T ]×Rd} satisfies the assumptions
(A1), (A2). For a proof of these results, we can proceed as in [5, Theorem 13].

From the proof of Proposition 7.1 in [20] we obtain the following.

Proposition 6.3. Let Gn := G ∗ ζn be as in (2.1). Assume that the coefficients σ, b in
(6.4) are continuously differentiable with bounded derivatives. Then for each n ∈ N and
every (t, x) ∈ [0, T ] × Rd, the random variable un(t, x) belongs to D1,2. Moreover, the
HT -valued stochastic process {Dun(t, x), (t, x) ∈ [0, T ]×Rd} is the solution to the SPDE

Dun(t, x) =Gn(t− ·, x− ∗)σ(un(·, ∗))

+

∫ t

0

∫
Rd
Gn(t− s, x− z)σ′(un(s, z))Dun(s, z)M(ds, dz)

+

∫ t

0

∫
Rd
Gn(t− s, x− z)b′(un(s, z))Dun(s, z)dzds. (6.5)

Next, we study the convergence of the sequence of processes (un)n∈N to u.

Proposition 6.4. We assume thatG satisfies the hypotheses of Theorem 6.1. Moreover,
we suppose that the functions σ and b are Lipschitz continuous. Then we have

lim
n→∞

sup
(t,x)∈[0,T ]×Rd

E
[
|un(t, x)− u(t, x)|2

]
= 0.

Proof. We start by proving that

sup
n∈N

sup
(t,x)∈[0,T ]×Rd

E
[
|un(t, x)|2

]
<∞. (6.6)

Indeed, from (6.4) it follows that E
[
|un(t, x)|2

]
≤ 2(I1,n(t, x)+I2,n(t, x)), for every (t, x) ∈

[0, T ]×Rd, where

I1,n(t, x) = E

[(∫ t

0

∫
Rd
Gn(t− s, x− z)σ(un(s, z))M(ds, dz)

)2
]

and

I2,n(t, x) = E

[(∫ t

0

∫
Rd
Gn(t− s, x− z)b(un(s, z))dzds

)2
]
.

Notice that the inequalities (2.17), (2.21) also hold with Λ replaced by Gn(t − ·, x − ∗).
Then, by taking Z(t, x) := σ(un(t, x)) and Z(t, x) := b(un(t, x)), respectively, we obtain

I1,n(t, x) ≤
∫ t

0

sup
(r,y)∈[0,s]×Rd

E[σ(un(r, y))2] sup
η∈Rd

∫
Rd
|FGn(t− s)(ξ + η)|2µ(dξ)ds

≤ C
∫ t

0

sup
(r,y)∈[0,s]×Rd

E[(1 + un(r, y))2] sup
η∈Rd

∫
Rd
|FG(t− s)(ξ + η)|2µ(dξ)ds

≤ C
∫ t

0

(
1 + sup

(r,y)∈[0,s]×Rd
E[un(r, y)2]

)
J1(t− s)ds,

and

I2,n(t, x) ≤
∫ t

0

sup
(r,y)∈[0,s]×Rd

E[b(un(r, y))2] sup
η∈R
|FGn(t− s)(η)|2ds
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≤ C
∫ t

0

(
1 + sup

(r,y)∈[0,s]×Rd
E[un(r, y)2]

)
J2(t− s)ds,

where the functions J1 and J2 are defined in (2.22) and (2.23), respectively with Λ

replaced by G. This yields

sup
(r,y)∈[0,t]×Rd

E[|un(r, y)|2] ≤ C
∫ t

0

(
1 + sup

(r,y)∈[0,s]×Rd
E[un(r, y)2]

)
×
(
J1(t− s) + J2(t− s)

)
ds.

Using the version of Gronwall’s Lemma in [5, Lemma 15] along with (2.24) yields (6.6).
Next, we show the assertion of the proposition. Using equations (1.2) and (6.4), we

have

E
[
|u(t, x)− un(t, x)|2

]
≤ C(T1,n(t, x) + T2,n(t, x) + T3,n(t, x) + T4,n(t, x)),

where

T1,n(t, x) = E

[(∫ t

0

∫
Rd
Gn(t− s, x− z)

×
(
σ(un(s, z))− σ(u(s, z))

)
M(ds, dz)

)2
]
,

T2,n(t, x) = E

[(∫ t

0

∫
Rd

(
Gn(t− s, x− z)−G(t− s, x− z)

)
× σ(u(s, z))M(ds, dz)

)2
]
,

T3,n(t, x) = E

[(∫ t

0

∫
Rd
Gn(t− s, x− z)

(
b(un(s, z))− b(u(s, z))

)
dzds

)2
]
,

T4,n(t, x) = E

[(∫ t

0

∫
Rd

(
Gn(t− s, x− z)−G(t− s, x− z)

)
× b(u(s, z))dzds

)2
]
.

For the terms T1,n(t, x), T2,n(t, x), we apply the inequality (2.17) in the following situa-
tions. For the former term, we replace Λ by Gn(t− ·, x− ∗) and take Z := σ(un)− σ(u);
for the latter, we replace Λ by [Gn −G](t− ·, x− ∗) and take Z := σ(u). This yields

T1,n(t, x) ≤
∫ t

0

sup
(r,y)∈[0,s]×Rd

E
[∣∣σ(un(r, y))− σ(u(r, y))

∣∣2]
× sup
η∈Rd

∫
Rd
|FGn(t− s)(ξ + η)|2µ(dξ)ds

≤ C
∫ t

0

sup
(r,y)∈[0,s]×Rd

E
[∣∣un(r, y)− u(r, y)

∣∣2]J1(t− s)ds,

and

T2,n(t, x) =

∫ t

0

∫
Rd

∣∣FGn(t− s)(ξ)−FG(t− s)(ξ)
∣∣2µσ(u)

s (dξ)ds
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=

∫ t

0

∫
Rd

∣∣FG(t− s)(ξ)
∣∣2∣∣Fζn(ξ)− 1

∣∣2µσ(u)
s (dξ)ds.

For the term T3,n(t, x), we apply (2.21) with Λ replaced by Gn(t − ·, x − ∗) and Z :=

b(un)− b(u). For T4,n(t, x), we proceed similarly with Λ replaced by [Gn−G](t− ·, x−∗)
and Z := b(u), respectively. We obtain

T3,n(t, x) ≤
∫ t

0

sup
(r,y)∈[0,s]×Rd

E
[∣∣b(un(r, y))− b(u(r, y))

∣∣2] sup
η∈Rd

|FGn(t− s)(η)|2ds

≤ C
∫ t

0

sup
(r,y)∈[0,s]×Rd

E
[∣∣un(r, y)− u(r, y)

∣∣2]J2(t− s)ds,

T4,n(t, x) =

∫ t

0

∫
Rd

∣∣FGn(t− s)(η)−FG(t− s)(η)
∣∣2νσ(u)

s (dη)ds

=

∫ t

0

∫
Rd
|FG(t− s)(η)|2|Fζn(η)− 1|2νσ(u)

s (dη)ds.

The terms T2,n(t, x), T4,n(t, x) converge to zero as n→∞ uniformly in (t, x) ∈ [0, T ]×Rd,
by dominated convergence. Hence, altogether we have

sup
(r,y)∈[0,t]×Rd

E
[
|u(r, y)− un(r, y)|2

]
≤ Cn + C

∫ t

0

sup
(r,y)∈[0,s]×Rd

E
[
|u(r, y)− un(r, y)|2

]
(J1(t− s) + J2(t− s))ds,

where Cn tends to 0 as n → ∞ uniformly in (t, x) ∈ [0, T ] × Rd. An application of
Gronwall’s Lemma yields the assertion.

2

The next proposition provides the last ingredient for the application of Lemma 6.2.

Proposition 6.5. With the same assumptions as in Theorem 6.1, we have

sup
n∈N

sup
(t,x)∈[0,T ]×Rd

E
[
‖Dun(t, x)‖2HT

]
<∞.

Proof. Fix (t, x) ∈ [0, T ] ×Rd. We bound the L2(Ω;HT )-norm of each term on the right-
hand side of (6.5). For the first term, we apply (4.1) with φ := Gn(t − ·, x − ∗) and
Z := σ(un) and then, (2.14), (2.17) with g = Λ := Gn(t− ·, x−∗). By the properties of σ,
we obtain

E
[
‖Gn(t− ·, x− ∗)σ(un(·, ∗))‖2HT

]
=

∫ t

0

∫
Rd
|FGn(t− s)(ξ)|2µσ(un)

s (dξ)ds

≤
∫ t

0

E[σ(un(s, 0))2] sup
η∈Rd

∫
Rd
|FGn(t− s)(ξ + η)|2µ(dξ)ds

≤ C
(

1 + sup
(r,y)∈[0,T ]×Rd

E
[
un(r, y)2

])∫ t

0

sup
η∈Rd

∫
Rd
|FG(t− s)(ξ + η)|2µ(dξ)ds.

The last term is uniformly bounded in n ∈ N and (t, x) ∈ [0, T ] × Rd, due to (6.6) and
assumption (A3).

For the second term on the right-hand side of (6.5), we apply (3.1) with Λ replaced
by Gn(t− ·, x− ∗), Z := σ′(un)Dun and A = HT . Since σ′ is bounded, we obtain

E

[∥∥∥∥∫ t

0

∫
Rd
Gn(t− s, x− z)σ′(un(s, z))Dun(s, z)M(ds, dz)

∥∥∥∥2

HT

]
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≤
∫ t

0

E
[
‖σ′(un(s, 0))Dun(s, 0)‖2HT

]
sup
η∈Rd

∫
Rd
|FGn(t− s)(ξ + η)|2µ(dξ)ds

≤ C
∫ t

0

sup
(r,y)∈[0,s]×Rd

E
[
‖Dun(r, y)‖2HT

]
J1(t− s)ds.

Finally, applying (3.2) with Λ replaced by Gn(t − ·, x − ∗), Z := b′(un)Dun and A = HT
yields

E

[∥∥∥∥∫ t

0

∫
Rd
Gn(t− s, x− z)b′(un(s, z))Dun(s, z)dzds

∥∥∥∥2

HT

]

≤
∫ t

0

E
[
‖b′(un(s, 0))Dun(s, 0)‖2HT

]
sup
η∈Rd

|FGn(t− s)(η)|2ds

≤ C
∫ t

0

sup
(r,y)∈[0,s]×Rd

E
[
‖Dun(r, y)‖2HT

]
J2(t− s)ds.

Thus,

E
[
‖Dun(t, x)‖2HT

]
≤ C

[
1 +

∫ t

0

sup
(r,y)∈[0,s]×Rd

E
[
‖Dun(r, y)‖2HT

]
(J1(t− s) + J2(t− s))ds

]
.

An application of Gronwall’s Lemma finishes the proof.
2

Propositions 6.4, 6.5, along with Lemma 6.2 yields that u(t, x) ∈ D1,2 for any (t, x) ∈
[0, T ]×Rd. This is the first assertion of Theorem 6.1.

The rest of this section is devoted to prove that the Malliavin derivative of the pro-
cess {u(t, x), (t, x) ∈ [0, T ]×Rd} satisfies (6.3). For this, we consider the equation (1.2)
satisfied by this process and apply the Malliavin derivative operator to each term. We
obtain

Du(t, x) = D

(∫ t

0

∫
Rd
G(t− s, x− z)σ(u(s, z))M(ds, dz)

)
+D

(∫ t

0

∫
Rd
G(t− s, x− z)b(u(s, z))dzds

)
. (6.7)

Then (6.3) will follow by applying Propositions 5.1, 5.2. The rest of this section is de-
voted to check that the stochastic processes Z(t, x) := σ(u(t, x)) and Z(t, x) := b(u(t, x)),
(t, x) ∈ [0, T ]×Rd, satisfy the assumptions of these propositions, respectively.

Lemma 6.6. Let B : R → R be a Lipschitz continuous function. Then the stochastic
process B(u) = {B(u(t, x)), (t, x) ∈ [0, T ]×Rd}, where u = {u(t, x), (t, x) ∈ [0, T ]×Rd} is
the solution of (1.2), satisfies the assumptions (A1), (A2).

Proof. Since the process u is predictable and B is continuous, B(u) is clearly pre-
dictable. The function B has linear growth; along with (6.2), this yields

sup
(t,x)∈[0,T ]×Rd

E
[
B(u(t, x))2

]
≤ C

[
1 + sup

(t,x)∈[0,T ]×Rd
E
(
|u(t, x)|2

)]
<∞.

The proof of (A2) follows from the S-property of the process u (see [3, Definition
4.4, Lemma 4.5 and Theorem 4.2]).

2
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Lemma 6.7. Let B(u) = {B(u(t, x)), (t, x) ∈ [0, T ] × Rd} be as in Lemma 6.6. Assume
in addition that B is continuous differentiable with bounded derivative. Then the HT -
valued stochastic process D(B(u)) : {D(B(u(t, x))), (t, x) ∈ [0, T ] × Rd} satisfies (A8),
(A9).

Proof. First, we note that by the construction of the Malliavin derivative based on
smooth functionals (see for instance [14, (1.29)]), the stochastic process D(B(u)) inher-
its the predictability property of the process u. We also notice that by the chain rule
of Malliavin calculus, B(u(t, x)) ∈ D1,2 and D (B(u(t, x))) = B′(u((t, x))Du(t, x), for any
(t, x) ∈ [0, T ]×Rd.

We are assuming that B′ is bounded. Thus,

E
[
‖D (B(u(t, x))) ‖2HT

]
≤ CE

[
‖Du(t, x)‖2HT

]
≤ C lim inf

n→∞
E
[
‖Dun(t, x)‖2HT

]
≤ C sup

n∈N
E
[
‖Dun(t, x)‖2HT

]
,

where un(t, x) is defined by (6.4). In the second inequality above, we have used that the
sequence (Dun(t, x))n∈N converges weakly in HT to Du(t, x) along with [9, Theorem 5,
Chapter 10]. From Proposition 6.5, we conclude

sup
(t,x)∈[0,T ]×Rd

E
[
‖D (B(u(t, x))) ‖2HT

]
<∞.

Hence the stochastic process D(B(u)) satisfies (A8).

Consider the Picard iterations of the processes

{u(t, x), (t, x) ∈ [0, T ]×Rd}, {uh(t, x), (t, x) ∈ [0, T ]×Rd}, h ∈ HT ,

that we denote by

{um(t, x), (t, x) ∈ [0, T ]×Rd}, {um,h(t, x), (t, x) ∈ [0, T ]×Rd}, m ≥ 1,

respectively. We have the following:

(SP) for any m ≥ 1, the process(
um(t, x), um,h(t, x), um−1(t, x), um−1,h(t, x), (t, x) ∈ [0, T ]×Rd

)
,

satisfies the S-property defined in [3, Definition 4.4].
Indeed, this can be proved by a recursive argument on m ≥ 1, following similar

arguments as in [3, Lemma 4.5].
Property (SP) implies that the process D(B(u)) satisfies (A9). Indeed, let (ēk)k∈N

be a CONS of HT . The Malliavin derivative Dēku(t, x) can be obtained as

L2(Ω)− lim
ε→0

uεēk(t, x)− u(t, x)

ε
.

Then, using the chain rule of Malliavin calculus and dominated convergence twice, we
conclude

E
[
Dēk(B(u(t, x)))Dēk(B(u(t, x+ y)))

]
= lim
ε→0

E

[
B′(u(t, x))

uεēk(t, x)− u(t, x)

ε

×B′(u(t, x+ y))
uεēk(t, x+ y)− u(t, x+ y)

ε

]
= E

[
Dēk(B(u(t, 0)))Dēk(B(u(t, y)))

]
,

where the last equality is a consequence of (SP). 2
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7 Existence of density

In this section we consider the solution to the SPDE (1.2) at a fixed point (t, x) ∈
]0, T ] × Rd in the particular case where σ is constant. Under suitable assumptions, we
prove that the law of u(t, x) has a density with respect to the Lebesgue measure on R.

Theorem 7.1. We assume that G satisfies the same assumptions than in Theorem 6.1
and that

J (δ) :=

∫ δ

0

‖G(s, ∗)‖2Hds > 0,

for any δ > 0. Suppose that the function σ is constant, and b is continuously differen-
tiable with bounded derivative. Then, for any (t, x) ∈]0, T ] × Rd the probability law of
u(t, x) has a density.

Proof. We apply Bouleau-Hirsch’s criterion, see e.g. [14, Section 2.1.3]. Fix (t, x) ∈
]0, T ] × Rd. We already know from Theorem 6.1 that u(t, x) ∈ D1,2. Thus, it suffices to
show that

‖Du(t, x)‖2HT > 0, a.s. (7.1)

From (6.3), and for δ ∈]0, t], we obtain

‖Du(t, x)‖2HT =

∫ t

0

‖Ds,∗u(t, x)‖2Hds ≥
∫ t

t−δ
‖Ds,∗u(t, x)‖2Hds

≥ 1

2
σ2

∫ t

t−δ
‖G(t− s, x− ∗)‖2Hds− I(t, x; δ), (7.2)

where

I(t, x; δ) =

∫ δ

t−δ
ds

∥∥∥∥∫ t

0

dr

∫
Rd
dzG(t− r, x− z)b′(u(r, z))Ds,∗u(r, z)

∥∥∥∥2

H
.

By a change of variable, we have∫ t

t−δ
‖G(t− s, x− ∗)‖2Hds =

∫ δ

0

‖G(s, ∗)‖2Hds = J (δ). (7.3)

Assumption (A3) implies that J (T ) <∞. Hence,

lim
δ→0
J (δ) = 0. (7.4)

The Malliavin derivative Ds,∗u(r, z) vanishes except if 0 ≤ s ≤ r. Using this property
and the change of variables s 7→ t− s, r 7→ t− r, we obtain

E[I(t, x; δ)] = E

[∫ δ

t−δ
ds

∥∥∥∥∫ t

s

dr

∫
Rd
dzG(t− r, x− z)b′(u(r, z))Ds,∗u(r, z)

∥∥∥∥2

H

]

= E

[∫ δ

0

ds

∥∥∥∥∫ s

0

dr

∫
Rd
dzG(r, x− z)b′(u(t− r, z))Dt−s,∗u(t− r, z)

∥∥∥∥2

H

]
.

We apply Fubini’s theorem and then, (3.2) with A := H, Λ := G and Z(r, z) := b′(u(t −
r, z))Dt−s,∗u(t− r, z). Since the function b′ is bounded, we obtain

E[I(t, x; δ)] ≤ C
∫ δ

0

ds

∫ s

0

drE
[
‖b′(u(t− r, 0)Dt−s,∗u(t− r, 0)‖2H

]
sup
η∈Rd

|FG(η)|2
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≤ CE

[∫ δ

0

ds

∫ δ

0

dr sup
η∈Rd

|FG(r)(η)|2 ‖Dt−s,∗u(t− r, 0)‖2H

]

≤ C
∫ δ

0

dr sup
η∈Rd

|FG(r)(η)|2E
[
‖Dt−·,∗u(t− r, 0)‖2Hδ

]
. (7.5)

The next objective is to prove that

sup
0≤r≤δ

E
[
‖Dt−·,∗u(t− r, 0)‖2Hδ

]
≤ CJ (δ). (7.6)

Indeed, owing to (6.3), and by applying once more (3.2) as in (7.5), we have

E
[
‖Dt−·,∗u(t− r, 0)‖2Hδ

]
≤ 2σ2J (δ) + 2E

[∥∥∥∥∫ t−r

0

ds

∫
Rd
dyG(t− r − s, z − y)b′(u(s, y))Dt−·,∗u(s, y)

∥∥∥∥2

Hδ

]

≤ C1J (δ) + C2

∫ t−r

0

ds

(
sup
η∈Rd

|FG(s)(η)|2
)
E
[
‖Dt−·,∗u(s, 0)‖2Hδ

]
.

Hence, (7.6) follows from an application of a version of Gronwall’s Lemma.
From (7.5), (7.6), we obtain

E[I(t, x; δ)] ≤ CJ (δ)J̄ (δ), (7.7)

with

J̄ (δ) :=

∫ δ

0

ds sup
η∈Rd

|FG(s)(η)|2 .

Notice that, assumption (A6) on G implies

lim
δ→0
J̄ (δ) = 0.

Fix δ ∈]0, t[ sufficiently small and n ∈ N sufficiently large such that 1
n < σ2

3 J (δ).
Using Chebyshev’s inequality along with (7.2), (7.3), (7.7) yield

lim
n→∞

P

[
‖Du(t, x)‖2HT <

1

n

]
≤ lim
n→∞

P

[
I(t, x; δ) ≥ σ2

2
J (δ)− 1

n

]
≤ lim
n→∞

(
σ2

2
J (δ)− 1

n

)−1

E [I(t, x; δ)]

≤ CJ̄ (δ).

Letting δ → 0, we obtain

P
[
‖Du(t, x)‖2HT = 0

]
= 0.

This is equivalent to (7.1).
2

Consider the particular case of the stochastic wave equation in spatial dimension
d > 3. The Fourier transform of the fundamental solution of the corresponding partial
differential equation is given by

FG(t)(ξ) =
sin(2πt|ξ|)

2π|ξ|
.
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Hence, there exist constants C1, C2, depending on T , such that for any t ∈ [0, T ], and
ξ ∈ Rd,

C1

1 + |ξ|2
≤ sin2(2πt|ξ|)

4π2|ξ|2
≤ C2

1 + |ξ|2
. (7.8)

Assume that the spectral measure µ satisfies

sup
η∈Rd

∫
Rd

µ(dξ)

1 + |ξ + η|2
<∞. (7.9)

Then, according to [3, Theorem 5.1], G satisfies the conditions (A3), (A4) and (A6).
Hence, Theorem 6.1 holds.

Property (7.9) along with (7.8) imply

J (δ) ≥ C1

∫ δ

0

ds

∫
Rd

µ(dξ)

1 + |ξ|2
≥ Cδ.

This yields the following result

Theorem 7.2. Consider the particular case where G is the fundamental solution of
the wave equation with d ∈ N. Assume (7.9) and that the functions σ and b are as in
Theorem 7.1. Then, the statement of that theorem holds.

Assume that the covariance measure Γ has a density: Γ(dx) = f(x)dx, with f ≥ 0.
In [17], it is proved that (7.9) is equivalent to

∫
Rd

µ(dξ)
1+|ξ|2 <∞. This condition is satisfied

for example if f(x) = |x|−β , β ∈]0, 2[, a case that has been extensively studied in the
literature of SPDEs driven by correlated noises.

Remark

As has been already mentioned in the introduction, so far the existence of density
for the probability law of the solution of an SPDE like (1.2) has been established when
G is a non-negative distribution. In this case, it is proved that the dominant term in
the analysis of the Malliavin matrix is the first term on the right-hand side of (6.3).
Assuming that the coefficient |σ| ≥ σ0 > 0, we have

‖G(t− ·, x− ∗)σ(u(·, ∗))‖2HT ≥ σ
2
0‖G(t− ·, x− ∗)‖2HT . (7.10)

Then, the result is obtained by following a similar argument as in the proof of Theorem
7.1.

For the wave operator in spatial dimension d > 3, G fails to satisfy the non-negativity
requirement. So far, we have not been able to have a suitable lower bound like for
instance in (7.10). We notice that the trivial lower bound

‖G(t− ·, x− ∗)σ(u(·, ∗))‖2HT =

∫ t

0

∫
Rd
|FG(t− s)(ξ)|2µσ(u)

s (dξ)ds

≥ σ2
0

∫ t

0

inf
η∈Rd

|FG(t− s)(ξ + η)|2µσ(u)
s (dξ)ds,

does not help. Indeed, if µ is the spectral measure of a Riesz kernel (Γ(dx) = |x|−βdx,
β ∈]0, 2[), one can prove that the last integral in the above expression vanishes.
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