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Abstract

In [17], the author proved the existence and the uniqueness of solutions to Markovian
superquadratic BSDEs with an unbounded terminal condition when the generator
and the terminal condition are locally Lipschitz. In this paper, we prove that the
existence result remains true for these BSDEs when the regularity assumptions on
the terminal condition is weakened.
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1 Introduction

Since the early nineties and the work of Pardoux and Peng [15], there has been
an increasing interest for backward stochastic differential equations (BSDEs for short)
because of the wide range of applications. A particular class of BSDE is studied since
few years: BSDEs with generators of quadratic growth with respect to the variable z

(quadratic BSDEs for short). See e.g. [12, 2, 6] for existence and uniqueness results
and [19, 11, 13] for applications.

Naturally, we could also wonder what happens when the generator has a superqua-
dratic growth with respect to the variable z. Up to our knowledge the case of super-
quadratic BSDEs was firstly investigated in the recent paper [5]. In this article, the
authors consider superquadratic BSDEs when the terminal condition is bounded and
the generator is convex in z. Firstly, they show that in a general way the problem is
ill-posed: given a superquadratic generator, there exists a bounded terminal condition
such that the associated BSDE does not admit any bounded solution and, on the other
hand, if the BSDE admits a bounded solution, there exist infinitely many bounded solu-
tions for this BSDE. In the same paper, the authors also show that the problem becomes
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Existence of solutions to superquadratic BSDEs

well-posed in a Markovian framework: when the terminal condition and the generator
are deterministic functions of a forward SDE, we have an existence result. More pre-
cisely, let us consider (X,Y, Z) the solution to the (decoupled) forward backward system

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s)dWs,

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,

with growth assumptions

|f(t, x, y, z)| 6 C(1 + |x|pf + |y|+ |z|l+1
), l > 1,

|g(x)| 6 C(1 + |x|pg ).

In [5], the authors obtain an existence result by assuming that pg = pf = 0, f is a
convex function that depends only on z and g is a lower (or upper) semi-continuous
function. As in the quadratic case it is possible to show that the boundedness of the
terminal condition is a too strong assumption: in [17], the author shows an existence
and uniqueness result by assuming that pg 6 1 + 1/l, pf 6 1 + 1/l, f and g are locally
Lipschitz functions with respect to x and z. When we consider this result, two questions
arise:

• Could we have an existence result when pg or pf is greater than 1 + 1/l ?

• Could we have an existence result when f or g is less smooth with respect to x or
z, that is to say, is it possible to have assumptions on the growth of g and f but not
on the growth of their derivatives with respect to x and z ?

For the first question, the answer is clearly “no” in the quadratic case: see e.g. [6]. In
the superquadratic case, the authors of [10] have obtained the same limitation on the
growth of the initial condition for the so-called generalized deterministic KPZ equation
ut = uxx+λ |ux|q and they show that this boundary is sharp for power-type initial condi-
tions. So, it seems that the answer of the first question is also “no” in the superquadratic
case.

For the second question, the answer is clearly “yes” in the quadratic case. Indeed,
a smoothness assumption on f is required for uniqueness results (see e.g. [3, 6]) but
not for existence results (see e.g. [3, 1]). In the superquadratic case, the authors of
[5] show an existence result when g is only lower (or upper) semi-continuous but also
bounded. Nevertheless f(z) is assumed to be convex, that implies that it is a locally
Lipschitz function. The aim of this note is to mix results of articles [5, 17] to obtain an
existence result when the terminal condition is only lower (or upper) semi-continuous
and unbounded. Let us remark that we answer only partially to the second question
because we do not relax smoothness assumptions on f .

For completeness, in the paper [4], Cheridito and Stadje show an existence and
uniqueness result for superquadratic BSDEs in a Lipschitz or bounded “path-dependent”
framework: the terminal condition and the generator are Lipschitz or bounded func-
tions of Brownian motion paths. To the best of our knowledge, [5, 17, 4] are the only
papers that deal with superquadratic BSDEs.

The paper is organized as follows. In section 2 we obtain some general a priori es-
timates on Y and Z for Markovian superquadratic BSDEs whereas section 3 is devoted
to the existence result described before.

Notations Throughout this paper, (Wt)t>0 will denote a d-dimensional Brownian mo-
tion, defined on a probability space (Ω,F ,P). For t > 0, let Ft denote the σ-algebra
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σ(Ws; 0 6 s 6 t), augmented with the P-null sets of F . The Euclidean norm on Rd will
be denoted by |.|. The operator norm induced by |.| on the space of linear operators is
also denoted by |.|. The notation Et stands for the conditional expectation given Ft. For
p > 2, m ∈ N, we denote further

• Sp the space of real-valued, adapted and càdlàg processes (Yt)t∈[0,T ] normed by
‖Y ‖Sp = E[(supt∈[0,T ] |Yt|)p]1/p;

• Mp(Rm), or Mp, the space of all progressively measurable processes (Zt)t∈[0,T ]

with values in Rm normed by ‖Z‖Mp = E[(
∫ T

0
|Zs|2 ds)p/2]1/p.

In the following, we keep the same notation C for all finite, nonnegative constants that
appear in our computations.

In this paper we consider X the solution to the SDE

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s)dWs, (1.1)

and (Y,Z) ∈ S2 ×M2 the solution to the Markovian BSDE

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs. (1.2)

By a solution to the BSDE (1.2) we mean a pair (Yt, Zt)t∈[0,T ] of predictable processes
with values in R × R1×d such that P-a.s., t 7→ Yt is continuous, t 7→ Zt belongs to
L2([0, T ]), t 7→ f(t,Xt, Yt, Zt) belongs to L1([0, T ]) and P − a.s. the equation (1.2) is
verified.

2 Some a priori estimates on Y and Z

For the SDE (1.1) we use standard assumption.

Assumption (F.1). Let b : [0, T ] × Rd → Rd and σ : [0, T ] → Rd×d be continuous
functions and let us assume that there exists Kb > 0 such that:

(a) ∀t ∈ [0, T ], |b(t, 0)| 6 C,

(b) ∀t ∈ [0, T ], ∀(x, x′) ∈ Rd ×Rd, |b(t, x)− b(t, x′)| 6 Kb |x− x′| .

Let us now consider the following assumptions on the generator and on the terminal
condition of the BSDE (1.2).

Assumption (B.1). Let f : [0, T ] × Rd × R × R1×d → R be a continuous function and
let us assume that there exist five constants, l > 1, 0 6 rf <

1
l , β > 0, γ > 0 and δ > 0

such that:

(a) for each (t, x, y, y′, z) ∈ [0, T ]×Rd ×R×R×R1×d,

|f(t, x, y, z)− f(t, x, y′, z)| 6 δ |y − y′| ;

(b) for each (t, x, y, z, z′) ∈ [0, T ]×Rd ×R×R1×d ×R1×d,

|f(t, x, y, z)− f(t, x, y, z′)| 6
(
C +

γ

2
(|z|l + |z′|l)

)
|z − z′| ;

(c) for each (t, x, x′, y, z) ∈ [0, T ]×Rd ×Rd ×R×R1×d,

|f(t, x, y, z)− f(t, x′, y, z)| 6
(
C +

β

2
(|x|rf + |x′|rf )

)
|x− x′| .
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Assumption (TC.1). Let g : Rd → R be a continuous function and let us assume that
there exist 0 6 rg <

1
l and α > 0 such that: for each (t, x, x′, y, z) ∈ [0, T ] × Rd × Rd ×

R×R1×d,

|g(x)− g(x′)| 6
(
C +

α

2
(|x|rg + |x′|rg )

)
|x− x′| .

We also use more general growth assumptions that are more natural for existence
results.

Assumptions (B.2). Let f : [0, T ]×Rd×R×R1×d → R be a continuous function and let
us assume that there exist constants, l > 1, 0 6 rf <

1
l , β̄ > 0, γ̄ > 0, δ̄ > 0, 0 6 η < l+1,

ε > 0 such that: one of these inequalities holds, for all (t, x, y, z) ∈ [0, T ]×Rd×R×R1×d,

(a) |f(t, x, y, z)| 6 C + β̄ |x|rf+1
+ δ̄ |y|+ γ̄ |z|l+1,

(b) −C − β̄ |x|rf+1 − δ̄ |y| − γ̄ |z|η 6 f(t, x, y, z) 6 C + β̄ |x|rf+1
+ δ̄ |y|+ γ̄ |z|l+1,

(c) −C − β̄ |x|rf+1 − δ̄ |y|+ ε |z|l+1 6 f(t, x, y, z) 6 C + β̄ |x|rf+1
+ δ̄ |y|+ γ̄ |z|l+1.

Assumption (TC.2). Let g : Rd → R be a lower semi-continuous function and let us
assume that there exist 0 6 pg < 1 + 1/l and ᾱ > 0 such that: for each x ∈ Rd,

|g(x)| 6 C + ᾱ |x|pg .

Remark 2.1. The following relations hold true:

• (B.2)(c)⇒ (B.2)(b)⇒ (B.2)(a).

• (B.1)⇒ (B.2)(a).

• (TC.1)⇒ (TC.2) with pg = rg + 1.

• We only consider superquadratic BSDEs, so l > 1. l = 1 corresponds to the
quadratic case.

Firstly, let us recall the existence and uniqueness result shown in [17].

Proposition 2.2. We assume that (F.1), (B.1) and (TC.1) hold. There exists a solution
(Y,Z) of the Markovian BSDE (1.2) in S2 ×M2 such that,

|Zt| 6 A+B(|Xt|rg + (T − t) |Xt|rf ), ∀t ∈ [0, T ]. (2.1)

Moreover, this solution is unique amongst solutions (Y, Z) such that

• Y ∈ S2,

• there exists η > 0 such that

E

[
e( 1

2 +η) γ
2

4

∫ T
0
|Zs|2lds

]
< +∞.

Remark 2.3. To be precise, in the Proposition 2.2 of the article [17] the author shows
the estimate

|Zt| 6 A+B |Xt|rg∨rf , ∀t ∈ [0, T ],

but it is rather easy to do the proof again to show the estimate (2.1) given in Proposition
2.2.

Such a result allows us to obtain a comparison result.
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Proposition 2.4. We assume that (F.1) holds. Let f1, f2 two generators and g1, g2 two
terminal conditions such that (B.1) and (TC.1) hold. Let (Y 1, Z1) and (Y 2, Z2) be the
associated solutions given by Proposition 2.2. We assume that g1 6 g2 and f1 6 f2.
Then we have that Y 1 6 Y 2 almost surely.

Proof of Proposition 2.4. The proof is the same than the classical one that can be found
in [7] for example. Let us set δY := Y 1 − Y 2 and δZ := Z1 −Z2. The usual linearization
trick gives us

δYt = g1(XT )−g2(XT )+

∫ T

t

f1(s,Xs, Y
1
s , Z

1
s )−f2(s,Xs, Y

1
s , Z

1
s )+δYsUs+δZsVsds−

∫ T

t

δZsdWs,

with |Us| 6 δ and

|Vs| 6 C +
γ

2

(∣∣Z1
s

∣∣l +
∣∣Z2
s

∣∣l) 6 C(1 + |Xs|(rg∨rf )l
).

Since (rg ∨ rf )l < 1, Novikov’s condition is fulfilled and we are allowed to apply Gir-
sanov’s transformation:

δYt = E
Q
t

[
e
∫ T
t
Uudu(g1(XT )− g2(XT )) +

∫ T

t

e
∫ s
t
Uudu(f1(s,Xs, Y

1
s , Z

1
s )− f2(s,Xs, Y

1
s , Z

1
s ))ds

]
6 0,

with
dQ

dP
= exp

(∫ T

0

VsdWs −
1

2

∫ T

0

|Vs|2 ds

)
.

Now we are ready to prove estimates on Y and Z.

Proposition 2.5. Let us assume that (F.1), (B.1), (B.2), (TC.1) and (TC.2) hold. Let
(Y,Z) be the solution of the BSDE (1.2) given by Proposition 2.2. Then we have, for all
t ∈ [0, T ],

|Yt| 6 C(1 + |Xt|pg + (T − t) |Xt|rf+1
)

with a constant C that depends on constants that appear in assumptions (F.1), (B.2) and
(TC.2) but not in assumptions (B.1) and (TC.1).

Proof of Proposition 2.5. Let us consider the terminal condition

ḡ(x) = C + ᾱ(|x|+ 1)pg ,

and the generator

f̄(t, x, y, z) = C + β̄ |x|rf+1
+ δ̄ |y|+ γ̄ |z|l+1

,

with C such that g 6 ḡ and f 6 f̄ . (B.1) holds for f̄ and (TC.1) holds for ḡ, so, according
to Proposition 2.2, there exists a unique solution (Ȳ , Z̄) to the BSDE

Ȳt = ḡ(XT ) +

∫ T

t

f̄(s,Xs, Ȳs, Z̄s)ds−
∫ T

t

Z̄sdWs.

Thanks to Proposition 2.4, we know that

Y 6 Ȳ , and Ȳ > 0.
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Moreover, since
∣∣Z̄s∣∣ 6 C(1 + |Xs|(pg−1)∨rf ), (pg − 1)l < 1 and rf l < 1, we have

Ȳt 6 Et

[
eδ̄(T−t)(C + ᾱ(|Xt|+ 1)pg ) +

∫ T

t

eδ̄(s−t)(C + β̄ |Xs|rf+1
+ γ̄

∣∣Z̄s∣∣l+1
)ds

]

6 C

(
1 + Et

[
sup
t6s6T

|Xs|pg
]

+ (T − t)Et
[

sup
t6s6T

|Xs|rf+1

])
.

Let us remark that the constant C in the a priori estimate for Z̄ depends on constants
that appear in assumptions (F.1), (B.2) and (TC.2) but not in assumptions (B.1) and
(TC.1). Thanks to classical estimates on SDEs we have, for all p > 1,

Et

[
sup
t6s6T

|Xs|p
]
6 C(1 + |Xt|p),

so we obtain
Yt 6 Ȳt 6 C(1 + |Xt|pg + (T − t) |Xt|rf+1

).

By the same type of argument we easily show that

−C(1 + |Xt|pg + (T − t) |Xt|rf+1
) 6 Yt,

and this concludes the proof.

Proposition 2.6. Let us assume that (F.1), (B.1), (B.2)(c), (TC.1) and (TC.2) hold. Let
(Y,Z) be the solution of the BSDE (1.2) given by Proposition 2.2. Then, for all t ∈ [0, T ],
we have

Et

[∫ T

t

|Zs|l+1
ds

]
6 C(1 + |Xt|pg + (T − t) |Xt|rf+1

),

with a constant C that depends on constants that appear in assumptions (F.1), (B.2)(c)
and (TC.2) but not in assumptions (B.1) and (TC.1).

Proof of Proposition 2.6. To show the proposition we just have to write

Et

[∫ T

t

|Zs|l+1
ds

]
6

1

ε

(
Et

[∫ T

t

f(s,Xs, Ys, Zs)ds+

∫ T

t

(
C + β̄ |Xs|rf+1

+ δ̄ |Ys|
)
ds

])

6
1

ε

(
Et

[
Yt − g(XT ) +

∫ T

t

C + β̄ |Xs|rf+1
+ δ̄ |Ys| ds

])
6 C(1 + (T − t) |Xt|rf+1

+ |Xt|pg )

thanks to Proposition 2.5.

Remark 2.7. Proposition 2.6 stays true if we replace assumption (B.2)(c) by

−C − β̄ |x|rf+1 − δ̄ |y| − γ̄ |z|l+1 6 f(t, x, y, z) 6 C + β̄ |x|rf+1
+ δ̄ |y| − ε |z|l+1

.

Remark 2.8. In Propositions 2.5 and 2.6 we insist on the fact that C does not depend
on constants that appear in assumptions (B.1) and (TC.1) when the local Lipschitzianity
of the coefficients is stated. Thanks to this property, we can use these a priori estimates
on Y and Z in the following section where we obtain an existence result when the
terminal condition is not locally Lipschitz.

3 An existence result

Let us now introduce new assumptions.
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Assumption (F.2). b is differentiable with respect to x and σ is differentiable with
respect to t. There exists λ ∈ R+ such that ∀η ∈ Rd∣∣∣tησ(s)[

t
σ(s)

t∇b(s, x)− t
σ′(s)]η

∣∣∣ 6 λ
∣∣tησ(s)

∣∣2 , ∀(s, x) ∈ [0, T ]×Rd.

Remark 3.1. It is shown in part 5.5.1 of [18] that if σ does not depend on time, as-
sumption (F.2) is equivalent to this kind of commutativity assumption:

• there existA : [0, T ]×Rd → Rd×d andB : [0, T ]→ Rd×d such thatA is differentiable
with respect to x, ∇xA is bounded and ∀x ∈ Rd, ∀s ∈ [0, T ], b(s, x)σ = σA(s, x) +

B(s).

It is also noticed in [18] that this assumption allows us to reduce assumption on the
regularity of b by a standard smooth approximation of A.

Assumption (B.3). f is differentiable with respect to z and for all (t, x, y, z) ∈ [0, T ]×
Rd ×R×R1×d,

f(t, x, y, z)− 〈∇zf(t, x, y, z), z〉 6 C − ε |z|l+1
.

Remark 3.2. Let us give some substantial examples of functions such that (B.3) holds.
If we assume that f(t, x, y, z) := f1(t, x, y, z)+f2(t, x, y, z) with f1 a differentiable function
with respect to z such that, ∃p ∈ [0, l[, ∀(t, x, y, z) ∈ [0, T ]×Rd ×R×R1×d,

|∇zf1(t, x, y, z)| 6 (1 + |z|p),

and f2 is a twice differentiable function with respect to z such that, ∀(t, x, y, z) ∈ [0, T ]×
Rd ×R×R1×d, ∀u ∈ Rd,

tu∇2
zzf2(t, x, y, z)u > (−C + ε |z|l−1

) |u|2 ,

then we easily see that

f1(t, x, y, z)− 〈∇zf1(t, x, y, z), z〉 6 C + C |z|p+1
,

and a direct application of Taylor expansion with integral form gives us

f2(t, x, y, z)− 〈∇zf2(t, x, y, z), z〉 6 C − C ′ |z|l+1
,

so (B.3) holds. For example, (B.3) holds for the function z 7→ C |z|l+1
+ h(|z|l+1−η

) with
C > 0, 0 < η 6 l + 1 and h a differentiable function with a bounded derivative.

Proposition 3.3. Let us assume that (F.1), (F.2), (B.1), (B.3), (TC.1) and (TC.2) hold.
Let (Y,Z) be the solution of the BSDE (1.2) given by Proposition 2.2. If we assume that
0 6 pgl < 1, then we have, for all t ∈ [0, T [,

|Zt| 6
C(1 + |Xt|pg/(l+1)

)

(T − t)1/(l+1)
+ C |Xt|

rf+1

l+1 .

The constant C depends on constants that appear in assumptions (F.1), (F.2), (B.1), (B.3)
and (TC.2) but not in assumption (TC.1).

Proof of Proposition 3.3. Firstly we approximate our Markovian BSDE by another one.
Let (YM , ZM ) the solution of the BSDE

YMt = gM (XT ) +

∫ T

t

fM (s,Xs, Y
M
s , ZMs )ds−

∫ T

t

ZMs dWs, (3.1)
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with gM = g ◦ ρM and fM = f(., ρM (.), ., .) where ρM is a smooth modification of the
projection on the centered Euclidean ball of radius M such that |ρM | 6 M , |∇ρM | 6 1

and ρM (x) = x when |x| 6 M − 1. It is now easy to see that gM and fM are Lipschitz
functions with respect to x. Proposition 2.3 in [17] gives us that ZM is bounded by a
constant C0 that depends on M . So, fM is a Lipschitz function with respect to z and
BSDE (3.1) is a classical Lipschitz BSDE. Now we use the following Lemma that will be
shown afterwards.

Lemma 3.4. Let us assume that (F.1), (F.2), (B.1), (B.3), (TC.1) and (TC.2) hold. We
also assume that 0 6 pgl < 1. Then we have, for all t ∈ [0, T [,

∣∣ZMt ∣∣ 6 An +Bn |Xt|pg/(l+1)

(T − t)1/(l+1)
+Dn |Xt|

rf+1

l+1 ,

with (An, Bn, Dn)n∈N defined by recursion: B0 = 0, D0 = 0, A0 = C0T
1/(l+1),

An+1 = C(1 +Aaln +Balpn +Dalp̄
n ), Bn+1 = C, Dn+1 = C,

where a := (pg ∨ (rf + 1))/(l + 1), p > 1, p̄ > 1 and C is a constant that does not depend
on M and constants in assumption (TC.1).

Since al < 1, the recursion function that define the sequence (An)n>0 is a contrac-
tor function, so An → A∞ when n → +∞, with A∞ that does not depend on M and
constants in assumption (TC.1). Finally, we have, for all t ∈ [0, T [,

∣∣ZMt ∣∣ 6 C(1 + |Xt|pg/(l+1)
)

(T − t)1/(l+1)
+ C |Xt|

rf+1

l+1 .

The constant C depends on constants that appear in assumptions (F.1), (F.2), (B.1), (B.3)
and (TC.2) but not in assumption (TC.1). Moreover C does not depends on M . Now,
we want to come back to the initial BSDE (1.2). It is already shown in the proof of
Proposition 2.2 of the article [17] that (Y n, Zn) → (Y,Z) in S2 ×M2. So our estimate
on ZM stays true for a version of Z.

Proof of Lemma 3.4. Let us prove the result by recursion. For n = 0 we have already
shown the result. Let us assume that the result is true for some n ∈ N and let us show
that it stays true for n+1. In a first time we suppose that f and g are differentiable with
respect to x and y. Then (YM , ZM ) is differentiable with respect to x and (∇YM ,∇ZM )

is the solution of the BSDE

∇YMt = ∇gM (XT )∇XT −
∫ T

t

∇ZMs dWs +

∫ T

t

∇xfM (s,Xs, Y
M
s , ZMs )∇Xsds

+

∫ T

t

∇yfM (s,Xs, Y
M
s , ZMs )∇YMs +∇zfM (s,Xs, Y

M
s , ZMs )∇ZMs ds,

and a version of ZM is given by (∇YMt (∇Xt)
−1σ(t))t∈[0,T ]. Let us introduce some nota-

tions: we set

dW̃t := dWt −∇zfM (t,Xt, Y
M
t , ZMt )dt,

αt :=

∫ t

0

e
∫ s
0
∇yfM (u,Xu,Y

M
u ,ZMu )du∇xfM (s,Xs, Y

M
s , ZMs )∇Xsds(∇Xt)

−1σ(t),

Z̃Mt := e
∫ t
0
∇yfM (s,Xs,Y

M
s ,ZMs )dsZMt + αt.
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By applying Girsanov’s theorem we know that there exists a probabilityQM under which
W̃ is a Brownian motion with

dQM

dP
= exp

(∫ T

0

∇zfM (t,Xt, Y
M
t , ZMt )dWt −

1

2

∫ T

0

∣∣∇zfM (t,Xt, Y
M
t , ZMt )

∣∣2 dt) .
Then, exactly as in the proof of Theorem 3.3 in [16], we can show the following lemma.

Lemma 3.5.
∣∣∣eλtZ̃Mt ∣∣∣2 is a QM -submartingale.

For the reader’s convenience, we recall this proof in the appendix. It results that∣∣∣eλtZ̃Mt ∣∣∣l+1

is also a QM -submartingale and we have:

E
QM

t

[∫ T

t

e2λs
∣∣∣Z̃Ms ∣∣∣l+1

ds

]
> e2λt

∣∣∣Z̃Mt ∣∣∣l+1

(T − t)

> e2λt
∣∣∣e∫ t0 ∇yfM (s,Xs,Y

M
s ,ZMs )dsZMt + αt

∣∣∣l+1

(T − t),

which implies∣∣ZMt ∣∣l+1
(T − t)

6 C

(
e2λt

∣∣∣e∫ t0 ∇yfM (s,Xs,Y
M
s ,ZMs )dsZMt + αt

∣∣∣l+1

+ |αt|l+1

)
(T − t)

6 C

(
E
QM

t

[∫ T

t

e2λs
∣∣∣Z̃Ms ∣∣∣l+1

ds

]
+ (T − t)

(
1 + |Xt|(l+1)rf

))

6 C

(
1 + EQ

M

t

[∫ T

t

∣∣ZMs ∣∣l+1
ds

]
+ EQ

M

t

[∫ T

t

|Xs|(l+1)rf ds

]
+ (T − t) |Xt|(l+1)rf

)
.

(3.2)

Let us recall that (YM , ZM ) is solution of BSDE

YMt = gM (XT ) +

∫ T

t

f̃M (s,Xs, Y
M
s , ZMs )ds−

∫ T

t

ZMs dW̃s,

with
f̃M (s, x, y, z) := fM (s, x, y, z)− 〈z,∇zfM (s, x, y, z)〉.

Since assumption (B.3) holds for f , assumption (B.2)(c) holds for −f̃M with constants
that do not depend on M . Then we can mimic the proof of Proposition 2.6 (see also
Remark 2.7) to show that

E
QM

t

[∫ T

t

∣∣ZMs ∣∣l+1
ds

]
6 C

(
1 + EQ

M

t [|XT |pg ] +

∫ T

t

(
E
QM

t [|Xs|pg ] + EQ
M

t

[
|Xs|rf+1

])
ds

)
,

(3.3)
with a constant C that does not depend on M and constants that appear in assumption
(TC.1). Then, by putting (3.3) in (3.2), we see that we just have to obtain an a priori

estimate for EQ
M

t [|Xs|c] with c ∈ R+∗. We have

|Xs| =

∣∣∣∣Xt +

∫ s

t

b(u,Xu)du+

∫ s

t

σ(u)dW̃u +

∫ s

t

σ(u)∇zfM (u,Xu, Y
M
u , ZMu )du

∣∣∣∣
6 |Xt|+ C + C

∫ s

t

|Xu| du+

∣∣∣∣∫ s

t

σ(u)dW̃u

∣∣∣∣+ C

∫ s

t

∣∣ZMu ∣∣l du,
EJP 18 (2013), paper 50.
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with C that does not depend on M . Now we use the recursion assumption to obtain∫ s

t

∣∣ZMu ∣∣l du 6 C

∫ s

t

(
Aln

(T − u)l/(l+1)
+

Bln
(T − u)l/(l+1)

|Xu|lpg/(l+1)
+Dl

n |Xu|(rf+1)l/(l+1)

)
du.

Obviously we have
∫ T
t

Aln
(T−u)l/(l+1) du 6 CAln. For the other terms we use Young inequal-

ity: Since lpg/(l + 1) < 1 and (rf + 1)l/(l + 1) < 1 , we have∫ s

t

∣∣ZMu ∣∣l du 6 CAln + C

∫ s

t

(
Blpn

(T − u)lp/(l+1)
+Dlp̄

n + |Xu|
)
du,

with p = 1/(1− lpg/(l + 1)) and p̄ > 1. Since we assume that lpg < 1, then lp/(l + 1) < 1

and
∫ s
t

Blpn
(T−u)lp/(l+1) du 6 CBlpn . Finally, we obtain∫ s

t

∣∣ZMu ∣∣l du 6 CAln + CBlpn + CDlp̄
n + C

∫ s

t

|Xu| du,

and

|Xs| 6 |Xt|+ C + C

∫ s

t

|Xu| du+ sup
t6r6T

∣∣∣∣∫ r

t

σ(u)dW̃u

∣∣∣∣+ CAln + CBlpn + CDlp̄
n .

Gronwall’s lemma gives us

|Xs| 6 C

(
1 + sup

t6r6T

∣∣∣∣∫ r

t

σ(u)dW̃u

∣∣∣∣+Aln +Blpn +Dlp̄
n + |Xt|

)
that implies

E
QM

t [|Xs|c] 6 C
(
1 +Acln +Bclpn +Dclp̄

n + |Xt|c
)
. (3.4)

By putting (3.4) in (3.3) and (3.2), we obtain

∣∣ZMt ∣∣l+1
(T − t) 6 C

(
1 + EQ

M

t [|XT |pg ] +

∫ T

t

E
QM

t

[
|Xs|pg∨(rf+1)

]
ds+ (T − t) |Xt|(l+1)rf

)
6 C

(
1 +A(l+1)al

n +B(l+1)alp
n +D(l+1)alp̄

n + |Xt|pg + (T − t) |Xt|rf+1
)
,

with a = (pg ∨ (rf + 1))/(l + 1) and C that does not depend on M and constants that
appear in assumption (TC.1). So, we easily see that we can take

An+1 = C(1 +Aaln +Balpn +Dalp̄
n ), Bn+1 = C, Dn+1 = C,

and then the result is proved.
When f and g are not differentiable we can prove the result by a standard approxi-

mation and stability results for BSDEs with linear growth.

Since the estimate on Z given by Proposition 3.3 does not depend on constants
that appear in assumption (TC.1), we can use it to show an existence result for su-
perquadratic BSDEs with a quite general terminal condition.

Theorem 3.6 (Existence result for superquadratic BSDEs). Let assume that (F.1), (F.2),
(B.1), (B.2)(b), (B.3) and (TC.2) hold. We also assume that 0 6 pgl < 1, then there exists
a solution (Y,Z) to the BSDE (1.2) such that (Y, Z) ∈ S2 ×M2. Moreover, we have for
all t ∈ [0, T [,

|Zt| 6
C(1 + |Xt|pg/(l+1)

)

(T − t)1/(l+1)
+ C |Xt|

rf+1

l+1 , (3.5)
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and, if we assume that (B.2)(c) holds,

E

[∫ T

0

|Zs|l+1
ds

]
< +∞.

Proof of Theorem 3.6. The proof is based on the proof of Proposition 4.3 in [5]. For
each integer n > 0, we construct the sup-convolution of g defined by

gn(x) := sup
u∈Rd

{g(u)− n |x− u|} .

Let us recall some well-known facts about sup-convolution:

Lemma 3.7. For n > n0 with n0 big enough, we have,

• gn is well defined,

• (TC.1) holds for gn with rg = 0,

• (TC.2) holds for gn with same constants C and ᾱ than for g (they do not depend on
n),

• (gn)n is decreasing,

• (gn)n converges pointwise to g.

Since (TC.1) holds, we can consider (Y n, Zn) the solution given by Proposition 2.2.
It follows from Propositions 2.4 and 2.5 that, for all n > n0,

−C(1 + |Xt|pg + (T − t) |Xt|rf+1
) 6 Y n+1

t 6 Y nt 6 Y n0
t 6 C(1 + |Xt|pg + (T − t) |Xt|rf+1

),

(3.6)
with C that does not depend on n: indeed, the constant in Proposition 2.5 just depends
on the growth of the terminal condition and here the growth of gn can be chosen in-
dependently of n (see previous lemma). So (Yn)n converges almost surely and we can
define

Y = lim
n→+∞

Y n.

Passing to the limit into (3.6), we obtain that the estimate of Proposition 2.5 stays true
for Y . Now the aim is to show that (Zn)n converges in the good space. For any T ′ ∈]0, T [,
(Y n, Zn) satisfies

Y nt = Y nT ′ +

∫ T ′

t

f(s,Xs, Y
n
s , Z

n
s )ds−

∫ T ′

t

Zns dWs, 0 6 t 6 T ′. (3.7)

Let us denote δY n,m := Y n − Y m and δZn,m := Zn − Zm. The classical linearization
method gives us that (δY n,m, δZn,m) is the solution of BSDE

δY n,mt = δY n,mT ′ +

∫ T ′

t

Un,ms δY n,ms + V n,ms δZn,ms ds−
∫ T ′

t

δZn,ms dWs,

where |Un,m| 6 C and, by using estimates of Proposition 3.3,

|V n,m| 6 C(1 + |Zn|l + |Zm|l) 6 C(1 + |X|p), (3.8)

with p < 1 and C that depends on T ′ but does not depend on n and m. Since p <

1, Novikov’s condition is fulfilled and we can apply Girsanov’s theorem: there exists
a probability Qn,m such that dW̃t := dWt − V n,mt dt is a Brownian motion under this
probability. By classical transformations, we have that (δY n,m, δZn,m) is the solution of
the BSDE

δY n,mt = δY n,mT ′ e
∫ T ′
t

Un,ms ds −
∫ T ′

t

e
∫ s
t
Un,mu duδZn,ms dW̃s.
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Since Un,m is bounded, classical estimates on BSDEs give us (see e.g. [7])

EQ
n,m

(∫ T ′

0

|δZn,ms |2 ds

)2
 6 CEQ

n,m
[
|δY n,mT ′ |4

]
. (3.9)

Now, we would like to have the same type of estimate than (3.9), but with the classical
expectation instead of EQ

n,m

. To do so, we define the exponential martingale

En,mT ′ := exp

(∫ T ′

0

V n,ms dWs −
1

2

∫ T ′

0

|V n,ms |2 ds

)
.

Then, for all p ∈ R,
E [(En,mT ′ )p] < Cp, (3.10)

with Cp that does not depend on n and m: indeed, by applying (3.8) and Gronwall’s
lemma we have

E
[
ep
∫ T ′
0

V n,ms dWs− p2
∫ T ′
0
|V n,ms |2ds

]
= E

[
e

1
2

(∫ T ′
0

2pV n,ms dWs− 1
2

∫ T ′
0
|2pV n,ms |2ds

)
+(p2− p2 )

∫ T ′
0
|V n,ms |2ds

]
6 E

[
e
∫ T ′
0

2pV n,ms dWs− 1
2

∫ T ′
0
|2pV n,ms |2ds

]1/2
E
[
e(2p2−p)

∫ T ′
0
|V n,ms |2ds

]1/2
6 E

[
eC|2p

2−p|(1+sup06s6T |Xs|
2p)
]1/2

< +∞,

because 2p < 2. By applying Cauchy Schwarz inequality and by using (3.10) and (3.9),
we obtain

E

[∫ T ′

0

|δZn,ms |2 ds

]
= E

[
(En,mT ′ )−1/2(En,mT ′ )1/2

∫ T ′

0

|δZn,ms |2 ds

]

6 E
[
(En,mT ′ )−1

]1/2
EQ

n,m

(∫ T ′

0

|δZn,ms |2 ds

)2
1/2

6 CEQ
n,m
[
|δY n,mT ′ |4

]1/2
6 CE

[
(En,mT ′ )2

]1/2
E
[
|δY n,mT ′ |8

]1/4
6 CE

[
|δY n,mT ′ |8

]1/4 n,m→0−−−−−→ 0.

SinceM2 is a Banach space, we can define

Z = lim
n→+∞

Zn, dP× dt-a.e..

If we apply Proposition 2.6, we have that ‖Zn‖M2 < C with a constant C that does not
depend on n. So, Fatou’s lemma gives us that Z ∈ M2. Moreover, the estimate on Zn

given by Proposition 3.3 stays true for Z and, if we assume that (B.2)(c) holds, then
Proposition 2.6 gives us that

E

[∫ T

0

|Zns |
l+1

ds

]
< C
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with a constant C that does not depend on n and so

E

[∫ T

0

|Zs|l+1
ds

]
< C.

Finally, by passing to the limit when n → +∞ in (3.7) and by using the dominated
convergence theorem, we obtain that for any fixed T ′ ∈ [0, T [, (Y,Z) satisfies

Yt = YT ′ +

∫ T ′

t

f(s,Xs, Ys, Zs)ds−
∫ T ′

t

ZsdWs, 0 6 t 6 T ′. (3.11)

To conclude, we just have to prove that we can pass to the limit when T ′ → T in (3.11).

Let us show that YT ′
T ′→T−−−−→ g(XT ) a.s.. Firstly, we have

lims→TYs 6 lims→TY
n
s = gn(XT ) a.s. for any n > n0,

which implies lims→TYs 6 g(XT ), a.s.. On the other hand, we use assumption (B.2)(b)
and we apply Propositions 2.5 and 3.3 to deduce that, a.s.,

Y nt = gn(XT ) +

∫ T

t

f(s,Xs, Y
n
s , Z

n
s )ds−

∫ T

t

Zns dWs

> gn(XT )− C
∫ T

t

1 + |Xs|rf+1
+ |Y ns |+ |Zns |

η
ds−

∫ T

t

Zns dWs

> Et

[
gn(XT )− C

∫ T

t

1 + |Xs|(rf+1)∨pg +
1 + |Xs|ηpg/(l+1)

(T − s)η/(l+1)
ds

]
> Et [gn(XT )]− C(T − t)(1 + |Xt|(rf+1)∨pg )− C(T − t)1−η/(l+1)(1 + |Xt|ηpg/(l+1)

),

and

Yt = lim
n→+∞

Y nt > Et [g(XT )]−C(T−t)(1+|Xt|(rf+1)∨pg )−C(T−t)1−η/(l+1)(1+|Xt|ηpg/(l+1)
),

which implies
limt→TYt > limt→TEt [g(XT )] = g(XT ).

Hence, limt→T Yt = g(XT ) a.s. .
Now, let us come back to BSDE (3.11). Since we have∫ T

t

|f(s,Xs, Ys, Zs)| ds 6
∫ T

t

C(1 + |Xs|rf+1
+ |Ys|+ |Zs|l+1

)ds < +∞ a.s.,

then ∫ T ′

t

f(s,Xs, Ys, Zs)ds
T ′→T−−−−→

∫ T

t

f(s,Xs, Ys, Zs)ds < +∞ a.s..

Finally, passing to the limit when T ′ → T in (3.11), we conclude that (Y, Z) is a solution
to BSDE (1.2).

Remark 3.8. The function z 7→ C |z|l+1
+ h(|z|l+1−η

) with C > 0, 0 < η 6 l + 1 and h a
differentiable function with a bounded derivative is an example of generator such that
(B.1), (B.2)(b) and (B.3) hold.

Remark 3.9. The estimate

|Zt| 6
C(1 + |Xt|pg )√

T − t
+ C |Xt|rf+1
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is already known in the Lipschitz framework as a consequence of the Bismut-Elworthy
formula (see e.g. [8]). For the superquadratic case, the same estimate was obtained
when pg = 0 and f does not depend on x and y in [5] (see also [16] for the quadratic
case). In [5], Remark 4.4. gives the same type of estimate than (3.5) for the example
f(z) = |z|l. This result was already obtained by Gilding et al. in [9] using Bernstein’s
technique when f(z) = |z|l, b = 0 and σ is the identity.

Remark 3.10. In this article, estimate (3.5) for the process Z allows us to obtain an
existence result. But this type of deterministic bound is also interesting for numeri-
cal approximation of BSDEs (see e.g. [16]) or for studying stochastic optimal control
problems in infinite dimension (see e.g. [14]).

A Appendix

Proof of Lemma 3.5. Let us set

FMt := e
∫ t
0
∇yfM (s,Xs,Y

M
s ,ZMs )ds∇YMt +

∫ t

0

e
∫ s
0
∇yfM (u,Xu,Y

M
u ,ZMu )du∇xfM (s,Xs, Y

M
s , ZMs )∇Xsds,

and
F̃Mt := eλtFMt (∇Xt)

−1.

Since d∇Xt = ∇b(t,Xt)∇Xtdt, then d(∇Xt)
−1 = −(∇Xt)

−1∇b(t,Xt)dt and thanks to
ItÃt’’s formula,

dZ̃Mt = dFMt (∇Xt)
−1σ(t)− FMt (∇Xt)

−1∇b(t,Xt)σ(t)dt+ FMt (∇Xt)
−1σ′(t)dt,

and

d(eλtZ̃Mt ) = F̃Mt (λId−∇b(t,Xt))σ(t)dt+ F̃Mt σ′(t)dt+ eλtdFMt (∇Xt)
−1σ(t).

Finally,

d
∣∣∣eλtZ̃Mt ∣∣∣2 = d〈N〉t + 2

[
λ
∣∣∣F̃Mt σ(t)

∣∣∣2 − F̃Mt σ(t)[
t
σ(t)

t∇b(t,Xt)−
t
σ′(t)]

t
F̃Mt

]
dt+ dN∗t ,

with Nt :=
∫ t

0
eλsdFMs (∇Xs)

−1σ(s) and N∗t a QM -martingale. Thanks to the assumption

(F.2) we are able to conclude that
∣∣∣eλtZ̃Mt ∣∣∣2 is a QM -submartingale.

References

[1] P. Barrieu and N. El Karoui. Monotone stability of quadratic semimartingales with applica-
tions to general quadratic BSDEs and unbounded existence result. to appear in Annals of
Probability.

[2] P. Briand and Y. Hu. BSDE with quadratic growth and unbounded terminal value. Probab.
Theory Related Fields, 136(4):604–618, 2006. MR-2257138

[3] P. Briand and Y. Hu. Quadratic BSDEs with convex generators and unbounded terminal
conditions. Probab. Theory Related Fields, 141(3-4):543–567, 2008. MR-2391164

[4] P. Cheridito and M. Stadje. Existence, minimality and approximation of solutions to BSDEs
with convex drivers. Stochastic Process. Appl., 122(4):1540 – 1565, 2012. MR-2914762

[5] F. Delbaen, Y. Hu, and X. Bao. Backward SDEs with superquadratic growth. Probab. Theory
Related Fields, pages 1–48, 2010.

[6] F. Delbaen, Y. Hu, and A. Richou. On the uniqueness of solutions to quadratic BSDEs with
convex generators and unbounded terminal conditions. Ann. Inst. Henri Poincaré Probab.
Stat., 47(2):559–574, 2011. MR-2814423

EJP 18 (2013), paper 50.
Page 14/15

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2257138
http://www.ams.org/mathscinet-getitem?mr=2391164
http://www.ams.org/mathscinet-getitem?mr=2914762
http://www.ams.org/mathscinet-getitem?mr=2814423
http://dx.doi.org/10.1214/EJP.v18-2124
http://ejp.ejpecp.org/


Existence of solutions to superquadratic BSDEs

[7] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in
finance. Math. Finance, 7(1):1–71, 1997. MR-1434407

[8] M. Fuhrman and G. Tessitore. The Bismut-Elworthy formula for backward SDEs and applica-
tions to nonlinear Kolmogorov equations and control in infinite dimensional spaces. Stoch.
Stoch. Rep., 74(1-2):429–464, 2002. MR-1940495

[9] B. H. Gilding, M. Guedda, and R. Kersner. The Cauchy problem for ut = ∆u+ |∇u|q. J. Math.
Anal. Appl., 284(2):733–755, 2003. MR-1998665

[10] A. Gladkov, M. Guedda, and R. Kersner. A KPZ growth model with possibly unbounded data:
correctness and blow-up. Nonlinear Anal., 68(7):2079–2091, 2008. MR-2388767

[11] Y. Hu, P. Imkeller, and M. Müller. Utility maximization in incomplete markets. Ann. Appl.
Probab., 15(3):1691–1712, 2005. MR-2152241

[12] M. Kobylanski. Backward stochastic differential equations and partial differential equations
with quadratic growth. Ann. Probab., 28(2):558–602, 2000. MR-1782267

[13] M. Mania and M. Schweizer. Dynamic exponential utility indifference valuation. Ann. Appl.
Probab., 15(3):2113–2143, 2005. MR-2152255

[14] F. Masiero. Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and su-
perquadratic Hamiltonian. Discrete Contin. Dyn. Syst., 32(1):223–263, 2012. MR-2837060

[15] É. Pardoux and S. G. Peng. Adapted solution of a backward stochastic differential equation.
Systems Control Lett., 14(1):55–61, 1990. MR-1037747

[16] A. Richou. Numerical simulation of BSDEs with drivers of quadratic growth. Ann. Appl.
Probab., 21(5):1933–1964, 2011. MR-2884055

[17] A. Richou. Markovian quadratic and superquadratic BSDEs with an unbounded terminal
condition. Stochastic Process. Appl., 122(9):3173 – 3208, 2012. MR-2946439

[18] A. Richou. Étude théorique et numérique des équation différentielles stochastiques rétro-
grades. PhD thesis, Université de Rennes 1, November 2010.

[19] R. Rouge and N. El Karoui. Pricing via utility maximization and entropy. Math. Finance,
10(2):259–276, 2000. INFORMS Applied Probability Conference (Ulm, 1999). MR-1802922

Acknowledgments. The authors would like to thank the two referees and the associate
editor for their helpful comments and remarks. The second author thanks the Università
di Milano Bicocca for its hospitality at the time when this research began.

EJP 18 (2013), paper 50.
Page 15/15

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1434407
http://www.ams.org/mathscinet-getitem?mr=1940495
http://www.ams.org/mathscinet-getitem?mr=1998665
http://www.ams.org/mathscinet-getitem?mr=2388767
http://www.ams.org/mathscinet-getitem?mr=2152241
http://www.ams.org/mathscinet-getitem?mr=1782267
http://www.ams.org/mathscinet-getitem?mr=2152255
http://www.ams.org/mathscinet-getitem?mr=2837060
http://www.ams.org/mathscinet-getitem?mr=1037747
http://www.ams.org/mathscinet-getitem?mr=2884055
http://www.ams.org/mathscinet-getitem?mr=2946439
http://www.ams.org/mathscinet-getitem?mr=1802922
http://dx.doi.org/10.1214/EJP.v18-2124
http://ejp.ejpecp.org/

	Introduction
	Some a priori estimates on Y and Z
	An existence result
	Appendix
	References

