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Asymptotics of the rising moments
for the coupon collector’s problem
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Abstract

We develop techniques of computing the asymptotics of the so–called rising moments
of the number TN of coupons that a collector has to buy in order to find all N exist-
ing different coupons as N → ∞. The probabilities (occurring frequencies) of the
coupons can be quite arbitrary. After mentioning the case where the coupon proba-
bilities are equal we consider the general case (of unequal probabilities). For a large
class of families of coupon probabilities, after adopting a dichotomy, we arrive at the
leading behavior of the rising moments of TN as N → ∞. We also present various
illustrative examples.
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1 Introduction - History of the problem

Consider a population whose members are of N different types (e.g. the population
may consist of fish, viruses, English words, or baseball cards). For 1 ≤ j ≤ N we denote
by pj the probability that a member of the population is of type j. The members of the
population are sampled independently with replacement and their types are recorded.
The so-called “Coupon Collector’s Problem” (CCP) deals with questions arising in
the above procedure. In particular, CCP pertains to the family of urn problems. Other
classical such problems are birthday, Dixie cup or occupancy problems, whose origin
can be traced back to De Moivre’s treatise De Mensura Sortis of 1712 (see, e.g., [16]).
CCP (in its simplest form, i.e. the case of equal probabilities) had appeared in W. Feller’s
classical work [12] and has attracted the attention of various researchers, since it has
found many applications in many areas of science (computer science–search algorithms,
mathematical programming, optimization, learning processes, engineering, ecology, as
well as linguistics, — see, e.g., [5]). Let TN be the number of trials it takes until all N
types are detected (at least once). Apart from its distribution some other interesting
quantities are the moments (or, equivalently, the rising moments) of the random variable
TN . For the case of equal sampling probabilities the first and the second moment of TN
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Asymptotics of the moments for the coupon collector’s problem

are well known and, furthermore, asymptotics as well as limiting results have been
obtained by several authors (see for instance [19], [11], [3], [17], [16], [10], [18], and
[8]). In particular, in [19] the authors answered the question: how long, on average
does it take to obtain m complete sets of N coupons. For unequal probabilities, general
asymptotic estimates regarding the first and the second moment, as well as for the
variance, have also been obtained by several authors (see, e.g., [7], [13], [8], [9]).
Let r ≥ 1, be an integer. Set

T
(r)
N := TN (TN + 1) (TN + 2) · · · (TN + r − 1) . (1.1)

In this paper we consider the r-th rising moment of TN , namely

E
[
T

(r)
N

]
= E [TN (TN + 1) (TN + 2) · · · (TN + r − 1)] . (1.2)

In Section 2 we present general expressions for E
[
T

(r)
N

]
and exhibit well-known results,

mainly for the simplest case of the problem, i.e. the case of equal probabilities. We
also describe the general setup of the problem considered in the present paper. In
Section 3 we begin by discussing a key feature, namely that the families of the coupon
probabilities, i.e. the pj ’s, can be divided in two types. The main result for the pj ’s of the
first type is presented in Theorem 3.5 (the so-called linear case falls in this category).
Then, we consider a large class of families of coupon probabilities belonging to the

second type. The (leading) asymptotic behavior of the rising moments E
[
T

(r)
N

]
is given

in Theorem 3.7 (the generalized Zipf law falls in this case). Furthermore, Theorem 3.9
helps us obtain asymptotic estimates by comparison with cases for which the asymptotic
estimates are known. Section 4 contains various examples. Finally, we mention some
possible extensions at the end of the paper.

2 Preliminaries

For each j ∈ {1, ..., N} it is convenient to introduce the event Akj , that the type j is
not detected until trial k (included). Then

P {TN ≥ k} = P
(
Ak−11 ∪ · · · ∪Ak−1N

)
, k = 1, 2, ... .

By invoking the inclusion-exclusion principle one gets

P {TN ≥ k} =
∑

J⊂{1,...,N}
J 6=∅

(−1)
|J|−1

1−

∑
j∈J

pj

k−1 , k = 1, 2, ..., (2.1)

where the sum extends over all 2N−1 nonempty subsets J of {1, ..., N}, while |J | denotes
the cardinality of J . For z ∈ C, |z| ≥ 1, we introduce the following moment generating
function of TN ,

G(z) := E
[
z−TN

]
= 1 +

(
z−1 − 1

) ∞∑
k=1

z−(k−1)P {TN ≥ k} (2.2)

(the derivation of the second equality is based on Abel’s partial summation formula).
Consequently, by using (2.1) one arrives at

G(z) = 1 +
(
z−1 − 1

) ∑
J⊂{1,...,N}

J 6=∅

(−1)
|J|−1

∞∑
k=1

z−(k−1)

1−

∑
j∈J

pj

k−1
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Asymptotics of the moments for the coupon collector’s problem

and, hence, by summing the geometric series

G(z) = 1− (z − 1)
∑

J⊂{1,...,N}
J 6=∅

(−1)
|J|−1

z − 1 +
(∑

j∈J pj

) . (2.3)

We proceed by noticing that

N∏
j=1

(
1− e−pjt

)
=

∑
J⊂{1,...,N}

(−1)
|J|

exp

−t∑
j∈J

pj

 . (2.4)

Thus, at least for <{z} ≥ 1,∫ ∞
0

1−
N∏
j=1

(
1− e−pjt

) e−(z−1)tdt =
∑

J⊂{1,...,N}
J 6=∅

(−1)
|J|−1

z − 1 +
(∑

j∈J pj

) . (2.5)

Finally, by comparing (2.3) and (2.5) we get

G(z) = 1− (z − 1)

∫ ∞
0

1−
N∏
j=1

(
1− e−pjt

) e−(z−1)tdt, (2.6)

or, equivalently, by substituting x = e−t in the integral,

G(z) = 1− (z − 1)

∫ 1

0

1−
N∏
j=1

(1− xpj )

xz−2dx. (2.7)

Remark 2.1. An alternative way to derive (2.6)–(2.7) is by adapting the nice approach
of [13], where the main ingredient is an appropriate generating function.

Observe that,

E
[
T

(r)
N

]
= (−1)r lim

z→1+
G(r)(z),

from which we arrive at the formulas

E
[
T

(r)
N

]
= r

∫ ∞
0

1−
N∏
j=1

(
1− e−pjt

) tr−1 dt
= (−1)r−1 r

∫ 1

0

1−
N∏
j=1

(1− xpj )

 ln(x)r−1
dx

x
. (2.8)

2.1 The equally likely case

Naturally, regarding the previous formulas the simplest case occurs when one takes

p1 = · · · = pN =
1

N
. (2.9)

Actually, this case apart from its simplicity, has the property that among all sequences,
it is the one with the smallest moments of TN . This is a known result (see [5]). For
example, (2.7) and (2.8) imply immediately that, for a given z ≥ 1

G(z) = E
[
z−TN

]
,
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attains its maximum value, while E
[
T

(r)
N

]
attain its minimum value, when all pj ’s are

equal. Under (2.9), one has

G(z) = 1− (z − 1)

∫ 1

0

[
1−

(
1− x1/N

)N]
xz−2dx

= N !
Γ ((z − 1)N + 1)

Γ (zN + 1)
,

E
[
T

(r)
N

]
= (−1)r−1 r

∫ 1

0

[
1−

(
1− x1/N

)N]
lnr−1 (x)

dx

x
. (2.10)

Substituting u = 1− x1/N in the integral of (2.10) one gets

E
[
T

(r)
N

]
= (−1)r−1 r Nr

∫ 1

0

1− uN

1− u
lnr−1(1− u)du

= (−1)r−1 r Nr
N∑
m=1

∫ 1

0

um−1 lnr−1(1− u)du.

Repeated integration by parts in the last integral yields

E
[
T

(r)
N

]
= r! Nr

N∑
m=1

 1

m

m∑
m1=1

(
1

m1

m1∑
m2=1

1

m2
· · ·

)
mr−2∑
mr−1=1

1

mr−1

 = r!Nrαr(N), (2.11)

where the αr(N)’s are defined recursively by

α1(N) =

N∑
m=1

1

m
, αr(N) =

N∑
m=1

αr−1(m)

m
.

It seems that formulas for E
[
T

(r)
N

]
had been first obtained in [15]. Foata et al (see [14]),

called the numbers αr(N) hyperharmonic and derived their asymptotics using multi-
variate generating fuctions. Soon after, Adler et al (see [1]), gave explicit expression
for the asymptotics of the hyperharmonic numbers using basic probability arguments.
In particular, (see [14])

αr(N) ∼ (lnN)
r

r!
as N →∞,

hence (2.11) yields

E
[
T

(r)
N

]
∼ Nr (lnN)

r as N →∞. (2.12)

To give an idea of how higher order asymptotics for E
[
T

(r)
N

]
look like, let us mention

that, e.g., for r = 3 we have either from [14], or by repeated application of Abel partial
summation method

E
[
T

(3)
N

]
= N3

[
ln3N + 3γ ln2N +

(
3γ2 +

π2

2

)
lnN

+

(
2ζ(3) + γ3 +

γπ2

2

)
+O

(
lnN

N

)]
, (2.13)

where γ is the Euler’s constant.
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2.2 Large N asymptotics for general families of coupon probabilities

When N is large it is not obvious at all what information one can obtain for E
[
T

(r)
N

]
from formula (2.8). For this reason there is a need to develop efficient ways for deriv-
ing asymptotics as N → ∞ (we have already analyzed the very special case of equal
probabilities—see formulas (2.12)–(2.13). Let α = {aj}∞j=1 be a sequence of strictly
positive numbers. Then, for each integer N > 0, one can create a probability measure
πN = {p1, ..., pN} on the set {1, ..., N} by taking

pj =
aj
AN

, where AN =

N∑
j=1

aj . (2.14)

Notice that pj depends on α and N , thus, given α, it makes sense to consider the asymp-

totic behavior of E
[
T

(r)
N

]
as N → ∞. This way of producing sequences of probability

measures first appeared in [6].

Remark 2.2. Clearly, for given N the pj ’s can be assumed monotone in j without loss
of generality. As for the sequence {aj}∞j=1, (i) if aj → ∞, then for each k ∈ N there is a
j = j(k) ≥ k such that aj ≥ ai, for all i ≤ j. This tells us that, by rearranging the terms
ai, where j(k) ≤ i ≤ j(k + 1), {aj}∞j=1 can be assumed nondecreasing without loss of
generality.
(ii) Similarly, if aj → 0, then {aj}∞j=1 can be assumed nonicreasing without loss of gen-
erality.

We set,

HN (α; r) : = r

∫ ∞
0

1−
N∏
j=1

(
1− e−ajt

) tr−1 dt
= (−1)r−1 r

∫ 1

0

1−
N∏
j=1

(1− xaj )

 ln (x)
r−1 dx

x
. (2.15)

If sα := {saj}∞j=1, by substituting t = su in the first integral of (2.15), we get

HN (sα; r) = s−rHN (α; r) (2.16)

and hence, in view of (2.8) and (2.14),

E
[
T

(r)
N

]
= ArNHN (α; r). (2.17)

As it was noticed in [6] and [8] for E [TN ], the problem of estimating

E
[
T

(r)
N

]
as N → ∞, can be treated as two separate problems, namely estimating ArN

and estimating HN (α; r). Our analysis focuses on estimating HN (α; r). The estimation
of ArN will be considered an external matter which can be handled by existing power-
ful methods, such as the Euler-Maclaurin Summation formula, the Laplace method for
sums (see, e.g.,[4]), or even summation by parts.

3 Unequal coupon probabilities

3.1 The dichotomy

For convenience, we denote

fαN (x) =

N∏
j=1

(1− xaj ), 0 ≤ x ≤ 1.
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The following properties of the functions fαN are immediate:
(i) fαN (0) = 1 and fαN (1) = 0, (ii) fαN (x) is monotone decreasing in x,
(iii) fαN+1(x) ≤ fαN (x). In particular

lim
N
fαN (x) =

∞∏
j=1

(1− xaj ) exists.

Thus, by applying the Monotone Convergence Theorem in (2.15) we get

Lr(α) := lim
N
HN (α; r) = (−1)r−1 r

∫ 1

0

1−
∞∏
j=1

(1− xaj )

 ln (x)
r−1 dx

x
. (3.1)

Notice that Lr(α) > 0, for any α (since, for every x ∈ (0, 1), fαN (x) < 1 and decreases
with N ). However, we may have Lr(α) = ∞. In fact as we will see (in Remark 3.3
below), Lr(α) =∞ if and only if L1(α) =∞.

Theorem 3.1. Lr(α) <∞ if and only if there exist a ξ ∈ (0, 1) such that

∞∑
j=1

ξaj <∞. (3.2)

Before proving the theorem we recall the following lemma (see [6]):

Lemma 3.2. Let {bj}∞j=1 be a sequence of real numbers such that 0 ≤ bj ≤ 1, for all j.

If
∑∞
j=1 bj <∞, then

∞∑
j=1

bj −
∑

1≤l<j

blbj ≤ 1−
∞∏
j=1

(1− bj) ≤
∞∑
j=1

bj .

Proof of Theorem 3.1. Assume that there is a ξ ∈ (0, 1) such that (3.2) is true. Then, by
(3.1) and Lemma 3.2 we have that, for all positive integers r,

Lr(α) ≤(−1)r−1r

∫ ξ

0

 ∞∑
j=1

xaj

 ln (x)
r−1 dx

x

+(−1)r−1r

∫ 1

ξ

1−
∞∏
j=1

(1− xaj )

 ln (x)
r−1 dx

x

<(−1)r−1r

∫ ξ

0

 ∞∑
j=1

xaj−1

 ln (x)
r−1

dx+ (−1)rr (ln ξ)
r
. (3.3)

Now, integration by parts gives

Ij(ξ; r) :=

∫ ξ

0

xaj−1 ln (x)
r−1

dx

=

[
xaj ln (x)

r−1

aj

]ξ
x=0

− (r − 1)

∫ ξ

0

xaj−1

aj
ln (x)

r−2
dx,

hence,

Ij(ξ; r) =
1

aj
ξaj

r−1∑
k=0

(−1)k (r − 1)k
1

akj
ln (ξ)

r−1−k
, (3.4)
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where (r − 1)k = (r − 1)!/ (r − 1− k)! is the falling Pochhammer symbol. Next we apply
Fubini-Tonelli’s theorem and use (3.4) in (3.3) to get

Lr(α) ≤(−1)r−1 r

 ∞∑
j=1

1

aj
ξaj

(
r−1∑
k=0

(−1)k (r − 1)k
1

akj
lnr−1−k(ξ)

)
+(−1)rr lnr ξ. (3.5)

Now, (3.2) implies that ξaj → 0, i.e. aj →∞. Therefore, minj {aj} = aj0 > 0. Thus,

Lr(α) ≤(−1)r−1 r
1

aj0

 ∞∑
j=1

ξaj

(r−1∑
k=0

(−1)k (r − 1)k
1

akj0
lnr−1−k(ξ)

)
+(−1)rr lnr ξ.

Thus, since r is a positive integer, one obtains Lr(α) <∞ from (3.2) .
Conversely, if

∑∞
j=1 ξ

aj = ∞, for all ξ ∈ (0, 1), then, by a well-known property of
infinite products (see, e.g. [20])

∞∏
j=1

(1− xaj ) = 0, for all x ∈ (0, 1)

and hence (3.1) yields Lr(α) = (−1)r−1 r
∫ 1

0

(
lnr−1(x)/x

)
dx =∞.

Remark 3.3. It has been shown in [6], that L1(α) < ∞, if and only if there exist a
ξ ∈ (0, 1) such that

∑∞
j=1 ξ

aj <∞. Thus, Lr(α) <∞ if and only if L1(α) <∞. To sum up
we have the following dichotomy, simultaneously for all positive integers r:

(i) 0 < Lr(α) <∞ or (ii) Lr(α) =∞. (3.6)

Remark 3.4. Consider the error term, defined by

∆r(N) := Lr(α)−HN (α; r).

Then (for all positive integers r) by (2.15), (3.1), Fubini-Tonelli’s theorem, and repeated
integration by parts, we have

∆r(N) = (−1)r−1r

∫ 1

0

N∏
j=1

(1− xaj )

1−
∞∏

j=N+1

(1− xaj )

 ln(x)r−1
dx

x

≤ (−1)r−1r

∫ 1

0

 ∞∑
j=N+1

xaj

 ln(x)r−1
dx

x
= r!

∞∑
j=N+1

a−rj . (3.7)

Thus, if
∑∞
j=1 a

−r
j <∞, then (3.7) can serve as an upper bound for the error ∆r(N).

3.2 The case Lr(α) is finite

Let AN and Lr(α) be as in (2.14) and (3.1) respectively. We note that, by Theorem
3.1, Lr(α) <∞ implies that limj aj =∞ (hence limN AN =∞).

Theorem 3.5. If Lr(α) <∞, then as N →∞,

E
[
T

(r)
N

]
= ArNLr(α) [1 + o(1)] , (3.8)
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Proof of Theorem 3.5. Formula (3.8) follows immediately from (2.17) and (3.1).

Theorem 3.5 states that if Lr(α) < ∞, then the asymptotics of E
[
T

(r)
N

]
are essen-

tially determined by the asymptotics of AN . As was already mentioned, asymptotic
estimates of AN can be obtained by various known methods. Alternatively, one can
resort to specific features of α. For instance, if α is of the form

aj = ejcj , where cj ↗∞, (3.9)

then it is an easy exercise to see that, as N →∞,

AN =

N∑
j=1

aj ∼ aN . (3.10)

To verify (3.10), we use (3.9) and sum a geometric series to get

AN =

N∑
j=1

ejcj ≤
N∑
j=1

ejcN =
ecN (N+1) − 1

ecN − 1
≤MecN (N+1),

where M = 1/(ec1 − 1). Since,

lim
N→∞

MecN (N+1)

aN+1
= lim
N→∞

Me(cN−cN+1)(N+1) = 0,

the result follows. In words, if a sequence satisfies (3.9), then in the sum of (3.10), the
last term dominates all the previous terms. Examples of such sequences are aj = ej

r

with r > 1, aj = jj and aj = j! (see Example 4.5).
We now continue with a much more challenging case.

3.3 The case Lr(α) is infinite

3.3.1 The leading behavior of the rising moments of TN

By Theorem 3.1, Lr(α) =∞ is equivalent to Lj(α) =∞, for all
j = 1, 2, · · · , r−1, and also equivalent to

∑∞
j=1 x

aj =∞, for all x ∈ (0, 1). For our further
analysis, we follow [6], and write aj in the form

aj =
1

f(j)
, where f(x) > 0, (3.11)

and assume that f(x) possesses two derivatives satisfying the following conditions as
x→∞:

(i) f(x)↗∞, (ii)
f ′(x)

f(x)
↘ 0, and (iii)

f ′′(x)/f ′(x)

[f ′(x)/f(x)] ln [f ′(x)/f(x)]
→ 0. (3.12)

Conditions (3.12) are satisfied by a variety of commonly used functions. For example,

f(x) = xp(lnx)q, p > 0, q ∈ R, f(x) = exp(xr), 0 < r < 1,

as well as various convex combinations of products of such functions.

Remark 3.6. From condition (ii) of (3.12), one has

lim
x→∞

f(x+ 1)

f(x)
= 1. (3.13)

This can be justified by considering the function g(x) = ln(f(x)) and applying the Mean
Value Theorem.
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Theorem 3.7. If α = {1/f(j)}∞j=1, where f satisfies (3.11) and (3.12), then

HN (α; r) ∼ f(N)r ln

(
f(N)

f ′(N)

)r
, N →∞. (3.14)

Proof of Theorem 3.7. (we adapt the proof of [6] for the leading asymptotics ofHN (α; 1)).
Set

F (x) := −f(x) ln

[
f ′(x)

f(x)

]
. (3.15)

Notice that (3.11) and (ii) of (3.12) imply that F (x) > 0, at least for x sufficiently large.
Hence, in view of (2.16) one can write (2.15) as:

HN (α; r) =F (N)rHN [ F (N) α; r ]

= rF (N)r
∫ 1

0

1− exp

 N∑
j=1

ln
(

1− e−
F (N)
f(j)

s
) sr−1ds

+ rF (N)r
∫ ∞
1

1− exp

 N∑
j=1

ln
(

1− e−
F (N)
f(j)

s
) sr−1ds. (3.16)

It has been established in [6] that,

lim
N

N∑
j=1

ln
(

1− e−
F (N)
f(j)

s
)

=

{
−∞, if s < 1;

0, if s ≥ 1.
(3.17)

and also that ∫ N

1

e−
F (N)
f(x)

sdx ∼ 1

s ln [f(N)/f ′(N)]

[
f(N)

f ′(N)

]1−s
. (3.18)

These two results came out under conditions (3.12). Applying the Bounded Conver-
gence Theorem for the first integral on (3.16) yields (in view of (3.17))

HN (α; r) = rF (N)r
[

1

r
+ o(1)

]

+ rF (N)r
∫ ∞
1

1− exp

 N∑
j=1

ln
(

1− e−
F (N)
f(j)

s
) sr−1ds. (3.19)

Next, we want to estimate the integral which appears in (3.19). We begin by noticing
that by the Dominated Convergence Theorem (since f(N)/f ′(N)→∞)

lim
N

∫ ∞
1

[
1− exp

(
− (f(N)/f ′(N))

1−s

s ln (f(N)/f ′(N))

)]
sr−1ds = 0.

In view of (3.18) the above formula implies that

lim
N

∫ ∞
1

[
1− exp

(
−
∫ N

1

e−
F (N)
f(x)

sdx

)]
sr−1ds = 0. (3.20)

Since f is increasing, we have∫ N

1

e−
F (N)
f(x)

sdx ≤
N∑
j=1

e−
F (N)
f(j)

s

≤
∫ N+1

1

e−
F (N)
f(x)

sdx

≤
∫ N

1

e−
F (N)
f(x)

sdx+ e−
F (N)

f(N+1)
s. (3.21)
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From the above inequalities it follows

1− exp

(
−
∫ N

1

e−
F (N)
f(x)

sdx

)
≤1− exp

− N∑
j=1

e−
F (N)
f(j)

s


≤1− exp

(
−
∫ N

1

e−
F (N)
f(x)

sdx+ e−
F (N)

f(N+1)
s

)
. (3.22)

However, by (3.18)

lim
N

∫ N

1

e−
F (N)
f(x)

sdx =

{
∞, if s < 1;

0, if s ≥ 1.
(3.23)

Hence, by taking limits in (3.22) and using (3.20) and (3.13), we get

lim
N

∫ ∞
1

1− exp

 N∑
j=1

ln
(

1− e−
F (N)
f(j)

s
) sr−1ds = 0. (3.24)

Finally, by the definition of F (·) and the Taylor expansion for the logarithm, namely
ln(1− x) ∼ −x as x→ 0, (3.19) yields

HN (α; r) ∼ F (N)r = f(N)r ln

(
f(N)

f ′(N)

)r
, N →∞ (3.25)

and the proof is completed.

Remark 3.8. Using Theorem 3.7 in (2.17) we get, as N →∞,

E
[
T

(r)
N

]
∼ ArNf(N)r ln

(
f(N)

f ′(N)

)r
=

1

min1≤j≤N{pj}r
ln

(
f(N)

f ′(N)

)r
, (3.26)

where the last equality follows from (2.14).

3.3.2 Asymptotic estimates for the rising moments of TN by comparison with
known sequences

In this subsubsection we will present a theorem that helps us obtain asymptotic esti-
mates by comparison with sequences α for which the asymptotic estimates of HN (α; r)

are known (for instance, via Theorem 3.7). A similar theorem concerning the special
case of r = 1, can be found in [6]. First, we recall the following notation. Suppose that
{sj}∞j=1 and {tj}∞j=1 are two sequences of nonnegative terms. The symbol sj � tj means
that there are two constants C1 > C2 > 0 and an integer j0 > 0 such that

C2tj ≤ sj ≤ C1tj , for all j ≥ j0, (3.27)

i.e. sj = O(tj) and tj = O(sj).

Theorem 3.9. Let α = {aj}∞j=1 and β = {bj}∞j=1 be sequences of strictly positive terms
such that limN HN (α; r) = limN HN (β; r) =∞.
(i) If there exists an j0 such that aj = bj , for all j ≥ j0, then
HN (β; r)−HN (α; r) is bounded,
(ii) if aj = O(bj), then HN (β; r) = O (HN (α; r)) as N →∞,
(iii) if aj = o(bj), then HN (β, r) = o (HN (α; r)) as N →∞,
(iv) if aj � bj , then HN (β; r) � HN (α; r) as N →∞,
(v) if aj ∼ bj , then HN (β; r) ∼ HN (α; r) as N →∞.
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Proof of Theorem 3.9. We will prove (i) and (v). The proofs of (ii)–(iv) are similar. Case
(i) follows easily from (2.15):

|HN (β; r)−HN (α; r)|

= r

∣∣∣∣∣∣
∫ ∞
0

N∏
j=j0

(
1− e−ajt

)j0−1∏
j=1

(
1− e−ajt

)
−
j0−1∏
j=1

(
1− e−bjt

) tr−1 dt
∣∣∣∣∣∣

≤
∫ ∞
0

∣∣∣∣∣∣
j0−1∏
j=1

(
1− e−ajt

)
−
j0−1∏
j=1

(
1− e−bjt

)∣∣∣∣∣∣ tr−1 dt
=

∫ ∞
0

∣∣∣∣∣∣
∑

J⊂{1,...,j0−1}

(−1)
|J|

exp

−t∑
j∈J

aj

− exp

−t∑
j∈J

bj

 tr−1

∣∣∣∣∣∣ dt <∞,
where we have used (2.4). The sum extends over all 2j0−1 subsets J of {1, ..., j0 − 1},
while |J | denotes the cardinality of J .
To prove (v) we first fix an ε > 0. Then (1 − ε)bj ≤ aj ≤ (1 + ε)bj , for all j ≥ j0(ε). Thus,
by case (i) there is an M = M(ε) such that(

1

1 + ε

)r
HN (β; r)−M ≤ HN (α; r) ≤

(
1

1− ε

)r
HN (β; r) +M,

for all N ≥ N0(ε). If we divide by HN (β; r) and then let N →∞, we obtain (v) since ε is
arbitrary and limN HN (β; r) =∞.

4 Examples

Example 4.1. The case aj = 1, for all j, has been already discussed in detail in Section
2. This case can also provide us with an application of Theorem 3.9: If β = {bj}∞j=1 is a

sequence such that 0 < limbj ≤ limbj < ∞ then, there are two constants C1 > C2 > 0

and an integer j0 > 0 such that

C2bj ≤ 1 ≤ C1bj , for all j ≥ j0, i.e. 1 � bj .

Hence, by part (iv) of Theorem 3.9, HN (β; r) � lnrN . If, in addition, lim bj = b exists,
then baj ∼ bj . Hence, by part (v) of Theorem 3.9, HN (β; r) ∼ HN (bα; r). Using (2.16)
we get

HN (β; r) ∼ b−r lnrN.

Example 4.2. aj = jp, where p > 0. In this case

Lr,p : =Lr(α) = (−1)r−1 r

∫ 1

0

1−
∞∏
j=1

(1− xj
p

)

 lnr−1(x)
dx

x
,

(notice that Lr,p decrease with p). By Theorem 3.1 and for all positive integers r we
have: Lr,p < ∞. Now, in accordance with (3.8) we also need to estimate AN . From
the Euler-Maclaurin summation formula we get the full asymptotic expansion of AN =∑N
n=1 n

p (in fact, if p is a positive integer, AN is a polynomial in N of degree p + 1). In
particular,

AN =

N∑
n=1

np =
Np+1

p+ 1

[
1 +O

(
1

N

)]
.
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Therefore, by (2.17)

E
[
T

(r)
N

]
=
Nr(p+1)

(p+ 1)
rLr,p [1 + o(1)] .

The case p = 1 is known as the linear case, and it is of particular interest. From Euler’s
pentagonal-number formula (a combinatorial proof by F. Franklin can be found, e.g., in
[2])

∞∏
j=1

(
1− xj

)
= 1 +

∞∑
k=1

(−1)k
[
xω(k) + xω(−k)

]
,

ω(k) = (3k2 − k)/2, k = 0,±1,±2, ...

In that case Lr becomes

Lr = (−1)r r

∞∑
k=1

(−1)k
[∫ 1

0

xω(k)−1 ln(x)r−1dx+

∫ 1

0

xω(−k)−1 ln(x)r−1dx

]
.

Repeated integration by parts yields,

Lr = r!
∞∑
k=1

(−1)k+1

{
1

ω(k)r
+

1

ω(−k)r

}

= 2r r!

∞∑
k=1

(−1)k+1

[
1

(3k2 − k)
r +

1

(3k2 + k)
r

]
.

For example, (see [6], [8])

L1 =
4π
√

3

3
− 6 ∼= 1.2552, L2 = 4(54− 8π

√
3− π2) ∼= 2.39684.

As for L3, a numerical computation gives

L3
∼= 6.68903.

Example 4.3. bj = epj , aj = e−pj , p > 0. For the sequence β = {bj}∞j=0 we have,
Lr(β) <∞, r = 1, 2, · · · . Furthermore,

∆r(N) = Lr(β)−HN (β; r) ≤ r!
∞∑

j=N+1

e−rpj =
r! e−rp(N+1)

1− e−rp
, (4.1)

BN :=

N∑
j=0

bj =
ep(N+1) − 1

ep − 1
, and E

[
T

(r)
N

]
∼
(
ep(N+1)

ep − 1

)r
Lr(β).

In the special case of bj = 2j (i.e. p = ln 2), we have

φ(x) :=

∞∏
j=0

(1− x2
j

) =

∞∑
k=0

(−1)δ(k)xk, (4.2)

where δ(k) is the number of ones in the binary expansion of k. Therefore, by (3.1)

Lr(β) = (−1)r r

∞∑
k=1

(−1)δ(k)
[∫ 1

0

xk−1 ln(x)r−1dx

]
= r!

∞∑
k=1

(−1)δ(k)−1

kr
. (4.3)

Now, for the sequence α = {aj}∞j=0 we have Lr(α) = ∞. Furthermore f(x) = epx does
not satisfy condition (ii) and of (3.12), thus Theorem 3.7 cannot be applied. However,
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if we let cN = epN , then {bj : 0 ≤ j ≤ N} = {cNaj : 0 ≤ j ≤ N}, for each N , i.e. the
elements of the two truncated sequences are proportional to each other. Hence, the
sequences β and α produce the same coupon probabilities. In this way we get cheaply
a counterexample for Theorem 3.7, in case where f(·) does not satisfy all conditions of
(3.12).

Example 4.4. aj = 1/jp, p > 0. This is the so-called generalized Zipf law. In this
case Theorem 3.1 implies Lr(α) = ∞. If f(x) = xp, then f satisfies (3.12) and hence
Theorem 3.7 apply. It is now straightforward (say, form the Euler-Maclaurin Summation
formula—see, e.g., [2]) to estimate ArN and get

ArN ∼
(

1

1− p

)r
Nr−rp, if 0 < p < 1,

ArN = Hr
N ∼ lnrN, if p > 1,

ArN ∼ ζ(p)r, if p > 1,

where ζ(·) denotes the Riemann zeta function. Hence Theorem 3.7 gives

E
[
T

(r)
N

]
∼ Nr lnr (N)

(1− p)r
for 0 < p < 1,

E
[
T

(r)
N

]
∼ Nr ln2r(N) for p = 1,

E
[
T

(r)
N

]
∼ ζ(p)rNrp lnr (N) for p > 1.

Example 4.5. aj = j!. We have Lr(α) < ∞. Here, the Euler-Maclaurin summation
formula is not effective for the estimation of AN . However, Stirling’s formula and (3.9)–
(3.10) imply easily that

AN ∼ N !.

Hence, by Theorem 3.5 we get

E
[
T

(r)
N

]
∼ Lr(α) (N !)

r as N →∞.

5 Concluding remarks

The main topic of this paper was the asymptotics of E[T
(r)
N ], namely the r-th rising

moment of TN , as N → ∞. We have already mentioned the work of H.J. Godwin [15],
in the case of uniform coupon probabilities. We are not aware of any previous work on
asymptotics of higher rising moments (r ≥ 3) in the case of unequal coupon probabil-
ities. Of course, in the existing literature there are many works on the asymptotics of
E[TN ] and, also, few works regarding E[T 2

N ] and V [TN ], namely the variance of the
random variable TN .
Let us discuss briefly few representative works. The first and the second moment of
TN were studied in [7]. In this article R.K. Brayton (Ph.D. thesis under N. Levinson)
derived an asymptotic formula for V [TN ] under very restrictive assumptions on α. In
particular, the probabilities pj considered in [7] must satisfy:

λ(N) :=
max1≤j≤N {pj}
min1≤j≤N {pj}

≤M <∞, independently of N . (5.1)

General asymptotic estimates, for the case r = 1 were found in [6], for the families
of coupon probabilities which we study in the present paper. Our results here are in
accordance with [6].

EJP 18 (2012), paper 41.
Page 13/15

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1746
http://ejp.ejpecp.org/


Asymptotics of the moments for the coupon collector’s problem

The case r = 1, 2 was considered in [8]. The authors adopted the dichotomy of [6]
and obtained the leading behavior of the variance V [TN ]. Moreover, for a large class
of families of coupon probabilities they obtained detailed asymptotics of E[TN ] and
E[TN (TN + 1) ] (up to the fifth and sixth term respectively). Notice that their results
complement the results of [7], since they concern quite general sequences for which
the ratio λ(N) of (5.1) is not bounded (e.g. linear and Zipf).
Recently, J. Du Boisberranger, D. Gardy, and Y. Ponty, [9] considered the word collector
problem, i.e. the expected number of calls to a random weighted generator before all
the words of a given length in a language are generated. The main ingredient of this
instance of the non-uniform coupon collector lies in the, potentially large, multiplicity
of the words (coupons) of a given probability (composition). They obtained a general
theorem that gives an asymptotic equivalent for the expected waiting time of a general
version of the Coupon Collector (case r = 1). This theorem is especially well-suited for
classes of coupons featuring high multiplicities. Their results and [6] are complemen-
tary.
Finally, let us mention that it was pointed out to us that an important case in the ap-
plications is when there is a subcollection of coupons that continues to grow (as N

grows) and all of the coupons in the subcollection have the same probability; it could be
called "uniform subcollection". This can be modeled by a sequence {aj}∞j=1 which is the
“union” of two subsequences one of which is constant (this corresponds to the uniform
subcollection of coupons), while the other is of the form discussed in this subsection. In
this case, we conjecture that Theorem 3.7 is still valid (under an appropriate renaming
of the index) provided the “density” of the constant subsequence is sufficiently small.
In other words, the uniform subcollection does not affect the asymptotic distribution.
Furthermore, if {aj}∞j=1 is the “union” of two vanishing subsequences one of which de-
cays much faster than the other, then we conjecture that the faster one prevails in the
asymptotics, provided its density is not very small.
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