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Abstract

We consider the random walk among random conductances on Zd. We assume that
the conductances are independent, identically distributed and uniformly bounded
away from 0 and infinity. We obtain a quantitative version of the central limit theorem
for this random walk, which takes the form of a Berry-Esseen estimate with speed
t−1/10 for d 6 2, and speed t−1/5 for d > 3, up to logarithmic corrections.
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1 Introduction

A classical way to represent a disordered medium is to see it as the result of a
random sorting. For a conducting material, one assumes that the local conductivity
A(x) at point x (in Rd or Zd) is a random variable. Although locally disordered, we
think of the medium as having some statistical invariance in space, that is, we assume
that the law of the field of conductivities is invariant under translations.

If one is interested in a space scale that is very large compared to the typical length
of the random fluctuations, then these fluctuations should average out and one should
be able to replace the random medium by an equivalent homogenized medium with a
constant conductivity matrix. This problem was already considered from a physicist’s
point of view by Maxwell [25] and Rayleigh [31]. It received a satisfactory mathemat-
ical treatment for periodic environments in the 70’s (see [3] or [17, Chapter 1], and
references therein), and for random environments with [19], [33], and [30]. For uni-
formly elliptic and ergodic environments, it was shown that there exists an effective
conductivity matrix Ahom such that the solution operator of ∇ ·A(·/ε)∇ converges, as ε
tends to 0, to the solution operator of the deterministic and homogeneous differential
operator ∇ ·Ahom∇.

The operator ∇ · A∇ defines a diffusion (or a random walk if the space is discrete)
in the random medium. The probabilistic counterpart of the convergence of operators
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described above is the convergence of the rescaled diffusion to a Brownian motion with
covariance matrix 2Ahom. In the discrete space setting, this central limit theorem has
been proved first for the measure averaged over the environment, under increasingly
general conditions on the environment in [20, 18, 22]. For non-elliptic i.i.d. environ-
ments, extending the result to convergence for almost every environment is a major
recent achievement, see [32, 4, 24, 5, 23, 2, 1]. For continuous space and uniformly
elliptic environments, similar results were obtained in [30, 29].

Both the analytic and the probabilistic results are asymptotic. There has been some
progress in turning the analytic statement into a quantitative one. [34] and [9] prove
that for uniformly elliptic environments with sufficient decorrelation, the convergence
of operators is polynomial, with an exponent depending on the dimension and on the
ellipticity constants. The problem of computing the homogenized matrix Ahom has a
similar flavour. Indeed, Ahom is in general expressed as a variational problem over the
full space. One must restrict it to a finite region of space for practical computations,
and hence the question comes naturally to estimate the discrepancy between the true
homogenized matrix and its finite volume approximation. One approach consists in com-
puting the homogenized matrix Ahom(n) associated with a periodization of the medium
with periods in nZd. When the space is discrete, [7] proved that |Ahom(n)− Ahom| con-
verges to 0 polynomially fast, with an exponent that depends on the dimension d > 3

and on the ellipticity constants (the random fluctuations of Ahom(n) were also investi-
gated in [8, 6]). Following [34], another approach has been analysed in [12, 13, 14], that
consists, instead of periodizing the medium, in introducing a 0-order term of magnitude
1/n in the auxiliary problem defining the homogenized matrix. This also localizes the
problem in a box of size of order n, and leads to other approximations of the homoge-
nized matrix. For these approximations, explicit (and in most cases optimal) exponents
of polynomial error were obtained, that depend only on the dimension.

A probabilistic approach to such problems was taken up in [26], where the auxiliary
process of the environment viewed by the particle is studied in discrete space, and
assuming that the conductivities are bounded away from 0. There, it is shown that the
process converges to equilibrium polynomially fast, with an explicit exponent depending
only on the dimension. An estimate on the speed of convergence to its limit of the
rescaled mean square displacement of the walk is also given.

The aim of this article is to prove a quantitative central limit theorem, in the discrete
space setting. We show a Berry-Esseen estimate with speed t−1/10 for d 6 2, and t−1/5

for d > 3, up to logarithmic corrections.

2 Notations and results

Let us now introduce our present setting and results with more precision. We say
that x, y ∈ Zd are neighbours, and write x ∼ y, if ‖x − y‖1 = 1. This turns Zd into a
graph, and we write B for the set of (unoriented) edges thus defined. We define the
random walk among random conductances on Zd as follows.

Let Ω = (0,+∞)B. An element ω = (ωe)e∈B of Ω is called an environment. If e =

(x, y) ∈ B, we may write ωx,y instead of ωe. By construction, ω is symmetric: ωx,y = ωy,x.
For any ω ∈ Ω, we consider the Markov process (Xt)t>0 with jump rate between x

and y given by ωx,y. We write Pωx for the law of this process starting from x ∈ Zd, Eωx
for its associated expectation. Its generator is given by

Lωf(x) =
∑
y∼x

ωx,y(f(y)− f(x)). (2.1)

The environment ω is itself a random variable, whose law we write P (and E for the
corresponding expectation). We assume that
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(H1) the random variables (ωe)e∈B are independent and identically distributed,

(H2) there exists M > 0 such that almost surely, ωe ∈ [1,M ] for every e ∈ B.

Naturally, imposing that ωe > 1 in (H2) instead of requiring the conductances to be
bounded from below by a generic positive constant is simply a matter of convenience.

Let us write P = PPω0 for the measure averaged over the environment, and E for
the associated expectation. It was shown in [18] that under P and as ε tends to 0, the
process

√
εXε−1t converges to a Brownian motion, whose covariance matrix we write D

(see [32] for an almost sure result under our present assumptions).

We fix once and for all some ξ ∈ Rd, and let σ > 0 be such that σ2 = ξ · Dξ. The
invariance principle ensures that

P
[
ξ ·Xt 6 σx

√
t
]
−−−−→
t→+∞

Φ(x),

where Φ(x) = (2π)−1/2
∫ x
−∞ e−u

2/2du. Our aim is to get explicit bounds on the speed of
convergence in the above limit.

Theorem 2.1. There exists q > 0 such that

sup
x∈R

∣∣∣P [ξ ·Xt 6 σx
√
t
]
− Φ(x)

∣∣∣ =

∣∣∣∣∣∣∣∣
O
(
t−1/10

)
if d = 1,

O
(

logq(t) t−1/10
)

if d = 2,

O
(

log(t) t−1/5
)

if d = 3,

O
(
t−1/5

)
if d > 4.

Notations. Throughout the rest of the text, q > 0 refers to a generic constant, whose
value may change from place to place and that appears only for d = 2. We write log+(x)

for max(log(x), 1).

3 Structure of the proof

Let us outline the method of proof of Theorem 2.1 for d > 2.

One classical route towards an invariance principle for (ξ ·Xt)t>0 is to decompose the
process into the sum of a martingale plus a remainder. The result can then be obtained
showing that the martingale satisfies an invariance principle, and that the remainder
term is negligible.

In order to prove Theorem 2.1, we use this same decomposition. We will rely on a
Berry-Esseen estimate for martingales due to [16] (see also [15]) that we now recall.

Theorem 3.1 ([16]). Let (M(t))t>0 be a locally square-integrable martingale (with re-
spect to the probability measure P). Let ∆M(t) = M(t) −M(t−) be its jump process,
and 〈M〉t be its predictable quadratic variation. Define

V (M) = E
[
(〈M〉1 − 1)

2
]
, (3.1)

J(M) = E

 ∑
06t61

(∆M(t))4

 . (3.2)

There exists a universal constant C > 0 (i.e. independent of M ) such that

sup
x∈R

∣∣P [M(1) 6 x]− Φ(x)
∣∣ 6 C(V (M) + J(M))1/5. (3.3)
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Before constructing the martingales that approximate the process ξ · Xt, we need
to introduce the following auxiliary process. Let (θx)x∈Zd be the translations that act
on the set of environments as follows: for any pair of neighbours y, z ∈ Zd, (θx ω)y,z =

ωx+y,x+z. The environment viewed by the particle is the process defined by

ω(t) = θXt
ω. (3.4)

One can check that (ω(t))t>0 is a Markov process, whose generator is given by

Lf(ω) =
∑
|z|=1

ω0,z(f(θz ω)− f(ω)),

and moreover, that the measure P is reversible and ergodic for this process. The oper-
ator −L thus defines a positive and self-adjoint operator on L2(P).

Following [18], let us define, for any µ > 0, the function φµ ∈ L2(P) such that

(µ− L)φµ = d, (3.5)

where the function d, that we call the local drift in the direction ξ, is given by

d(ω) = Lω(x 7→ ξ · x)(0) =
∑
|z|=1

ω0,z ξ · z. (3.6)

We decompose ξ ·Xt as the sum Mµ(t) +Rµ(t), where

Mµ(t) = ξ ·Xt + φµ(ω(t))− φµ(ω(0))− µ
∫ t

0

φµ(ω(s)) ds, (3.7)

and

Rµ(t) = −φµ(ω(t)) + φµ(ω(0)) + µ

∫ t

0

φµ(ω(s)) ds. (3.8)

Proposition 3.2. The process (Mµ(t))t>0 is a square-integrable martingale under P
(with respect to the natural filtration associated to (Xt)t>0). Let σµ > 0 be such that

σ2
µ =

∑
|z|=1

E
[
ω0,z(ξ · z + φµ(θz ω)− φµ(ω))2

]
. (3.9)

There exists C > 0 such that the following two inequalities hold for any µ, t > 0,

E

[(
〈Mµ〉t
t
− σ2

µ

)2
]
6

∣∣∣∣∣∣
C logq+(µ−1)

(
1/
√
t+ µ2

)
if d = 2,

C
(
log+(t)/t+ µ2

)
if d = 3,

C
(
1/t+ µ2

)
if d > 4,

(3.10)

1

t2
E

 ∑
06s6t

(∆Mµ(s))4

 6

∣∣∣∣ C logq+(µ−1)/t if d = 2,

C/t if d > 3.
(3.11)

Proposition 3.2 provides the estimates required to apply Theorem 3.1. We thus
obtain an explicit bound, that depends on the dimension, µ, and t, on

sup
x∈R

∣∣∣P [Mµ(t) 6 σµx
√
t
]
− Φ(x)

∣∣∣ .
The proof of Theorem 2.1 is then achieved in two steps. First, we need to control the
difference between σµ and σ. Second, recalling that ξ ·Xt = Mµ(t) +Rµ(t), we need to
show that, for a suitable choice of µ as a function of t, the remainder termRµ(t) becomes
negligible in the limit. These two facts are the content of the next two propositions.
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Proposition 3.3. One has

∣∣σ2
µ − σ2

∣∣ =

∣∣∣∣∣∣∣∣
O
(
µ logq(µ−1)

)
if d = 2,

O
(
µ3/2

)
if d = 3,

O
(
µ2 log(µ−1)

)
if d = 4,

O
(
µ2
)

if d > 5.

Proposition 3.3 is proved in [13, Theorem 1] (see also [14, Theorem 3] with k = 1 for
a slightly different point of view).

Proposition 3.4. One has

E[(R1/t(t))
2] =

∣∣∣∣ O (logq(t)) if d = 2,

O (1) if d > 3.

We now have all the necessary information to prove Theorem 2.1.

Proof of Theorem 2.1 for d > 2. Let us write

ψ(t) =

∣∣∣∣∣∣
logq(t) t−1/10 if d = 2,

log(t) t−1/5 if d = 3,

t−1/5 if d > 4.

Choosing µ = 1/t, we learn from Proposition 3.2 and Theorem 3.1 that

sup
x∈R

∣∣∣P [M1/t(t) 6 x
√
t
]
− Φ(x/σ1/t)

∣∣∣ = O
(
ψ(t)

)
. (3.12)

Recalling that ξ ·Xt = M1/t(t) +R1/t(t), we can write

P[M1/t(t) 6 (x− ψ(t))
√
t] 6 P[ξ ·Xt 6 x

√
t] + P[|R1/t(t)| > ψ(t)

√
t]. (3.13)

The second term in the right-hand side is independent of x and bounded by

E[(R1/t(t))
2]

ψ(t)2t
,

which we know from Proposition 3.4 to be O(ψ(t)). Using (3.12), we thus obtain that,
uniformly over x ∈ R,

P[ξ ·Xt 6 x
√
t] > Φ((x− ψ(t))/σ1/t) +O

(
ψ(t)

)
. (3.14)

Let us now show that

sup
x∈R

∣∣Φ((x− ψ(t))/σ1/t)− Φ(x/σ)
∣∣ = O

(
ψ(t)

)
. (3.15)

In order to prove (3.15), it is sufficient to consider only x ranging in the interval
[−
√
t,
√
t]. Indeed, for x outside this interval, the bounds

Φ(x) = O(e−x
2/2) (x→ −∞) and 1− Φ(x) = O(e−x

2/2) (x→ +∞),

together with the fact that σ1/t → σ > 0, are sufficient for the purpose of showing
(3.15). For x ∈ [−

√
t,
√
t], we use the fact that the derivative of Φ is bounded by 1 to

write ∣∣Φ((x− ψ(t))/σ1/t)− Φ(x/σ)
∣∣ 6 |x| ∣∣∣∣ 1

σ1/t
− 1

σ

∣∣∣∣+
ψ(t)

σ1/t
.

Proposition 3.3 ensures that the latter is indeed O(ψ(t)), uniformly over x ∈ [−
√
t,
√
t],

and we have thus proved (3.15).
This and inequality (3.14) imply that, uniformly over x ∈ R,

P[ξ ·Xt 6 x
√
t] > Φ(x/σ) +O

(
ψ(t)

)
.

The converse inequality is proved in the same way.

EJP 17 (2012), paper 97.
Page 5/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2414
http://ejp.ejpecp.org/


A quantitative CLT for the RWRC

Organization of the paper.

The rest of the paper is organized as follows. In section 4, we write the quadratic
variation of Mµ as an additive functional of the environment viewed by the particle of
the form ∫ t

0

vµ(ω(s)) ds,

where vµ is expressed in terms of the approximate corrector φµ. Section 5 contains
a key estimate on the decay of the variance of vµ along the semi-group of (ω(s)). Our
starting point is a spatial decorrelation property of (vµ(θx ω))x∈Zd proved in [12], up to a
minor modification that is commented on in Appendix A. We then pass to time decorre-
lations along the semi-group using a method from [26] that relies on Nash inequalities
and a comparison of resolvents. The control of the fluctuations of the quadratic vari-
ation in (3.10) is then obtained in section 6. The upper bound (3.11) concerning the
jumps of the martingale is proved in section 7. Proposition 3.4 is then proved in sec-
tion 8. Section 9 addresses the one-dimensional case. Finally, Appendix B contains
some folklore facts about martingales associated to a Feller process for which I could
not find a precise reference.

On the optimality of Theorem 2.1

There seems to be no good reason (either a priori or in view of the theoretical and
numerical results in [28, 10]) for the exponents 1/10 and 1/5 to appear in Theorem 2.1,
and it is only natural to suspect that they are not optimal. On one hand, it is easy to
see that one cannot hope for a better bound than t−1 in estimates (3.10) and (3.11),
so the results of Proposition 3.2 are optimal for d > 3 (provided µ 6 t−1/2, and up to
the logarithmic correction when d = 3). One may then wonder about the optimality
of Theorem 3.1 and its not-so-intuitive exponent 1/5 in (3.3). It is proved in [15] that
this exponent is optimal. However, the example provided in [15] to show optimality is
such that the maximal martingale increment is of the same order of magnitude as the
martingale itself. In our context, the example is not convincing, as the martingale Mµ

has “almost bounded” jumps (for d > 3, they are in Lp(P) for any p uniformly over µ, as
can be seen using part (ii) of Theorem 5.2). So the question of interest to us is whether
the bound V (M)1/5 on the r.h.s. of (3.3) remains optimal even on the restricted class
of martingales with bounded increments. This question is answered positively in [27],
thus leaving no possibility for improvement. On the other hand, a control of higher
moments of

〈Mµ〉t
t
− σ2

µ

could allow one to use the generalized form of Theorem 3.1 given in [15] and possibly
get better exponents, but a proof that would follow this line of argument eludes me.

4 The martingale Mµ and its quadratic variation

Let us define
vµ(ω) =

∑
|z|=1

ω0,z(ξ · z + φµ(θz ω)− φµ(ω))2. (4.1)

This section is devoted to the proof of the following result.

Proposition 4.1. The process Mµ is a martingale under P, whose quadratic variation
is given by

〈Mµ〉t =

∫ t

0

vµ(ω(s)) ds. (4.2)
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In order to prove Proposition 4.1, we will in fact show a more general result. For
any function f : Zd → R, let

Mf (t) = f(Xt)− f(X0)−
∫ t

0

Lωf(Xs) ds, (4.3)

and let us define the carré du champ of f as

Γf (x) = (Lωf2 − 2fLωf)(x) =
∑
y∼x

ωx,y(f(y)− f(x))2.

Let Bn = {−n, . . . , n}d be the box of size n, and let us say that a function f : Zd → R

has subexponential growth if for any α > 0, supBn
|f | = O(eαn).

Proposition 4.2. Let ω be any environment satisfying the ellipticity condition (H2). If
f : Zd → R has subexponential growth, then Mf defined in (4.3) is a martingale under
Pω0 , whose quadratic variation is given by

〈Mf 〉t =

∫ t

0

Γf (Xs) ds.

Proof. This statement is folklore if one assumes that f is bounded, and is recalled in
Appendix B. For a general f of subexponential growth, let fn = f1Bn

. We begin by
showing that fn(Xs) converges to f(Xs) in Lp(Pω0 ) for any p > 0, uniformly over s ∈ [0, t].
It is easy to check that, for any fixed t > 0, there exists c > 0 such that for any s 6 t and
any n,

Pω0 [Xs /∈ Bn] 6 e−cn. (4.4)

Indeed, this probability is bounded by the event that more that n jumps occur before
time t. As the jump rates are uniformly bounded, the number of jumps before time t is
dominated by a Poisson random variable, which has an exponential tail. Observe now
that, for any p > 0,

Pω0
[∣∣fn(Xs)− f(Xs)

∣∣p] 6 +∞∑
k=n

Pω0 [Xs ∈ Bk+1 \Bk] sup
Bk+1

|f |p. (4.5)

Estimate (4.4) and the fact that f has subexponential growth together ensure that the
right-hand side of (4.5) indeed converges to 0 as n tends to infinity, uniformly over
s ∈ [0, t].

From this observation, it is straightforward to conclude that Mfn(t) converges to
Mf (t) in Lp(Pω0 ) for any p, and in particular, Mf is indeed a martingale. Moreover, Γf
has also subexponential growth, so

∫ t
0

Γfn(Xs)ds converges to
∫ t
0

Γf (Xs)ds in Lp(Pω0 ) for
any p, and the limit is thus the quadratic variation of Mf at time t.

Proof of Proposition 4.1. Let hω(x) = ξ · x + φµ(θx ω), and let us show that, for almost
every environment, one has Mhω = Mµ Pω0 -a.s., where Mµ was defined in (3.7). This
boils down to checking that, for almost every environment,

∀x ∈ Zd, Lωhω(x) = µφµ(θx ω). (4.6)

In order to verify this, observe that

Lωhω(x) = d(θx ω) + Lφµ(θx ω),

where d is defined in (3.6). We learn from the definition of φµ given in (3.5) that, for
almost every ω,

d(ω) + Lφµ(ω) = µφµ(ω).
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That this relation holds with probability 1 if one replaces ω by any θx ω, x ∈ Zd, is a con-
sequence of the fact that Zd is countable, so identity (4.6) indeed holds almost surely.
Moreover, as φµ is integrable (it is in L2(P) by construction), the ergodic theorem en-
sures that

1

|Bn|
∑
x∈Bn

|φµ(θx ω)|

converges to a finite constant on a set of full probability. As a consequence, hω has
subexponential growth for almost every ω, so we can apply Proposition 4.2. Noting that
Γhω (x) = vµ(θx ω), we thus obtain that, for almost every ω, Mµ is a martingale under
Pω0 whose quadratic variation is given by (4.2). Proposition 4.1 is a statement under the
measure P however. What we need in order to conclude is to check integrability, but
this is straightforward due to the fact that φµ is in L2(P).

5 Polynomial decay along the semi-group

As was seen in Proposition 4.1, the quadratic variation of the martingaleMµ is driven
by the function vµ. In order to prove inequality (3.10) of Proposition 3.2, we begin by
investigating the image of vµ by the semi-group associated with (ω(t))t>0. Let us define

vµ,t(ω) = Eω0 [vµ(ω(t))].

We are interested in the convergence to 0 of the variance of vµ,t, as t tends to infinity.
We write Var for the variance with respect to P.

Theorem 5.1. There exists C > 0 such that for any µ, t > 0,

Var[vµ,t] 6

∣∣∣∣∣∣
C logq+(µ−1)

(
1/
√
t+ µ2

)
if d = 2,

C
(
log+(t)/t+ µ2

)
if d = 3,

C
(
1/t+ µ2

)
if d > 4,

(5.1)

and moreover,

∫ t

0

Var[vµ,s] ds 6

∣∣∣∣∣∣
C logq+(µ−1)

(√
t+ µ2t

)
if d = 2,

C
(
log+(t) + µ2t

)
if d = 3,

C
(
1 + µ2t

)
if d > 4.

(5.2)

The idea of the proof of Theorem 5.1 is inspired by [26], with a crucial input from
[12]. Let us write wµ = µφ2µ + vµ, and wµ = wµ − E[wµ]. For any function g : Ω→ R, let

Sn(g) =
∑
x∈Bn

g(θx ω).

Theorem 5.2 ([12]). (i) There exists C > 0 such that, for any n ∈ N and any µ > 0,

E

[(
Sn(wµ)

|Bn|

)2
]
6

∣∣∣∣ C logq+(µ−1)n−1 if d = 2,

Cn1−d if d > 3,

where we write |Bn| to denote the cardinality of the box Bn.

(ii) For any p > 0, there exists q > 0 such that

E
[
φpµ
]

=

∣∣∣∣ O( logq(µ−1)
)

if d = 2,

O(1) if d > 3.
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Part (i) of Theorem 5.2 should inform us about the decorrelation properties of the
family of random variables (vµ(θx ω))x∈Zd . The proof of the estimate unfortunately
requires that vµ be replaced by wµ, which is the energy density derived from the elliptic
difference equation defining φµ. The result is essentially given in [12, Theorem 2.1], up
to a minor modification which is commented on in Appendix A. Part (ii) comes from [12,
Proposition 2.1].

Proof of Theorem 5.1. We need to transfer the information on the spatial decorrelations
of (wµ(θx ω))x∈Zd given by part (i) of Theorem 5.2 into time decorrelations for the action
of the semi-group on wµ. This is achieved using techniques from [26], that are based
on Nash inequalities and comparisons of resolvents. Let us define wµ,t = Eω0 [wµ(ω(t))],
and wµ,t = wµ,t − E[wµ,t] = Eω0 [wµ(ω(t))]. Let (X◦t )t>0 be the simple random walk (its
jump rates are uniformly equal to 1), whose distribution starting from 0 we write P0,
and let w◦µ,t = E0[wµ(θX◦t ω)]. We learn from [26, Proposition 4.1] that the function
t 7→ E[Sn(w◦µ,t)] is decreasing. As a consequence, combining [26, Proposition 7.1] with
part (i) of Theorem 5.2, we obtain that there exists C > 0 such that

E[(w◦µ,t)
2] 6

∣∣∣∣ C logq+(µ−1) t−1/2 if d = 2,

C t−(d−1)/2 if d > 3.
(5.3)

We then use the resolvents comparison between the simple random walk and the origi-
nal one given by [26, Lemma 5.1], that we recall here: for any λ > 0, one has∫ +∞

0

e−λsE[(wµ,s)
2] ds 6

∫ +∞

0

e−λsE[(w◦µ,s)
2] ds.

This inequality holds due to the fact that we assume the conductances to be uniformly
bounded from below by 1 (see assumption (H2)). Indeed, in this case, the Dirichlet form
associated to (ω(t))t>0 dominates the Dirichlet form associated with the environment
seen by the simple random walk.

Choosing λ = 1/t and using (5.3) in the above inequality proves that∫ t

0

E[(wµ,s)
2] ds 6

∣∣∣∣∣∣
C logq+(µ−1)

√
t if d = 2,

C log+(t) if d = 3,

C if d > 4.

(5.4)

In order to get inequality (5.2), we observe that

Var[vµ,t] = Var
[(
wµ − µφ2µ

)
t

]
,

where we write (·)t to denote the action of the semi-group at time t. This is bounded by

2Var [wµ,t] + 2Var
[(
µφ2µ

)
t

]
.

The first term of this sum is controlled by (5.4). The semi-group being a contraction in
L2(P), the second term is smaller than

µ2Var
[
φ2µ
]
6 µ2E[φ4µ].

Using part (ii) of Theorem 5.2 with p = 4, we bound this quantity by a constant times∣∣∣∣ µ2 logq+(µ−1) if d = 2,

µ2 otherwise,

thus obtaining (5.2). To derive inequality (5.1), we note that since the semi-group is a
contraction in L2(P), the function t 7→ Var[vµ,t] is decreasing. Hence, for every t > 0,

E[(vµ,t)
2] 6

1

t

∫ t

0

E[(vµ,s)
2] ds,

and thus inequality (5.1) is a consequence of inequality (5.2).
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6 Fluctuations of the quadratic variation: a proof of (3.10)

Proof of estimate (3.10) of Proposition 3.2. Combining the result of Proposition 4.1 with
the observation that E[vµ] = σ2

µ, we have

E

[(
〈Mµ〉t
t
− σ2

µ

)2
]

=
1

t2
E

[(∫ t

0

vµ(ω(s)) ds

)2
]
,

where we define vµ(ω) to be vµ(ω)− E[vµ]. Moreover, one has

E

[(∫ t

0

vµ(ω(s)) ds

)2
]

= 2

∫
06s6u6t

E[vµ(ω(s))vµ(ω(u))] ds du

= 2

∫
06s6u6t

E[vµ(ω(0))vµ(ω(u− s))] ds du,

using the stationarity of (ω(s)). By a change of variables (and using the fact that E =

EEω0 ), the latter becomes

2

∫ t

0

(t− s)E[vµ(ω)vµ,s(ω)] ds,

where we write vµ,t(ω) = vµ,t(ω)−E[vµ,t] = Eω0 [vµ(ω(t))]. As the measure P is reversible
for the process (ω(t))t>0, the associated semi-group is self-adjoint in L2(P), and the
latter integral thus becomes

2

∫ t

0

(t− s)E
[(
vµ,s/2

)2]
ds,

which can be bounded by 2t
∫ t
0
E[(vµ,s/2)2]ds. Estimate (3.10) now follows from Theo-

rem 5.1.

7 Jumps of the martingale: a proof of (3.11)

The aim of this section is to prove estimate (3.11) of Proposition 3.2, which concerns
the jumps of the martingale Mµ. A crucial input of the proof is a result from [12] that
we recalled as part (ii) of Theorem 5.2.

Let (Yn)n∈N be the sequence of sites visited by the random walk (Xt)t>0, and let
(Tn)n∈N be the sequence of jump instants (with T0 = 0), so that

Xt = Yn iff Tn 6 t < Tn+1.

We can rewrite the sum that interests us using Yn and Tn,∑
06s6t

∆Mµ(s)4 =
∑
n∈N

∆Mµ(Tn+1)4 1{Tn+16t}.

Let
dµ(ω) = |ξ|+

∑
|z|=1

∣∣φµ(θz ω)− φµ(ω)
∣∣.

An examination of the definition (3.7) of Mµ shows that∣∣∆Mµ(Tn+1)
∣∣ 6 dµ(θYn

ω),

so we obtain ∑
06s6t

∆Mµ(s)4 6
∑
n∈N

d4µ(θYn
ω) 1{Tn+16t}. (7.1)
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Lemma 7.1. There exists C > 0 such that for any positive function f : Zd → R and any
environment ω satisfying the ellipticity condition (H2),

Eω0

[∑
n∈N

f(Yn) 1{Tn+16t}

]
6 CEω0

[∫ t+1

0

f(Xs) ds

]
. (7.2)

Proof. We can rewrite the right-hand side of (7.2) as∑
n∈N

Eω0
[
f(Yn)

(
Tn+1 ∧ (t+ 1)− Tn ∧ (t+ 1)

)]
,

where a ∧ b = min(a, b). This sum is larger than∑
n∈N

Eω0
[
f(Yn)

(
(Tn+1 − Tn) ∧ 1

)
1{Tn6t}

]
.

Let us write Fn for the σ-algebra generated by Y0, . . . , Yn, T0, . . . , Tn. The last sum can
be rewritten as ∑

n∈N
Eω0
[
f(Yn)Eω0 [(Tn+1 − Tn) ∧ 1 | Fn] 1{Tn6t}

]
.

Due to the ellipticity assumption on the environment, the conditional expectation

Eω0 [(Tn+1 − Tn) ∧ 1 | Fn]

is uniformly bounded away from 0. We have thus proved that, for some C > 0,

CEω0

[∫ t+1

0

f(Xs) ds

]
>
∑
n∈N

Eω0
[
f(Yn) 1{Tn6t}

]
,

an inequality which implies the lemma.

Proof of estimate (3.11) of Proposition 3.2. From inequality (7.1) and Lemma 7.1, we
get that

E

 ∑
06s6t

(∆Mµ(s))4

 6 C

∫ t+1

0

E
[
d4µ(ω(s))

]
ds. (7.3)

Due to the stationarity of the environment viewed by the particle under P, the right-
hand side of (7.3) is in fact equal to C(t + 1)E[d4µ]. Estimate (3.11) of Proposition 3.2
then follows from part (ii) of Theorem 5.2, taking p = 4.

8 Smallness of the remainder

This section is devoted to the proof of Proposition 3.4. It uses a spectral decompo-
sition of the infinitesimal generator of the environment viewed by the particle. Recall
that −L is a positive and self-adjoint operator on L2(P). For any function f ∈ L2(P),
one can thus define the spectral measure of −L projected on the function f . It is the
measure ef on [0,+∞) such that, for any bounded continuous Ψ : [0,+∞)→ R,

E [f Ψ(−L)f ] =

∫
Ψ(λ) def (λ).

Here is what makes this spectral representation interesting for our purpose. On one
hand, one can express the L2(P) norm of Rµ(t) in terms of the spectral measure asso-
ciated with the local drift d. On the other hand, we have some information on the be-
haviour of this measure close to the edge of the spectrum. This behaviour is described
with precision in [14, Theorem 5] (although results given there are not optimal), but
here we need only a weaker statement, that is in fact given by the case p = 2 of part (ii)
of Theorem 5.2.
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Proof of Proposition 3.4. The random variable Rµ(t), see its definition in (3.8), can be
decomposed as the sum of

−φµ(ω(t)) + φµ(ω(0)) and µ

∫ t

0

φµ(ω(s)) ds.

Recall that the process (ω(t))t>0 is reversible under P. Applying a time reversal changes
the sign of the first of the above terms, while keeping the second unchanged. As a
consequence, these two are orthogonal in L2(P), and thus

E
[
(Rµ(t))2

]
= E

[
(φµ(ω(t))− φµ(ω(0)))

2
]

+ µ2 E

[(∫ t

0

φµ(ω(s)) ds

)2
]
. (8.1)

We begin by computing the first term on the right-hand side of (8.1). Expanding the
square and using the fact that P is an invariant measure for (ω(t)), we obtain that it is
equal to

2E[φµ]− 2E[φµ(ω(t))φµ(ω)]. (8.2)

Let us define the image of φµ by the semi-group associated with L, as

φµ,t(ω) = Eω0 [φµ(ω(t))] = etLφµ (ω).

Then (8.2) becomes

2E[φµ]− 2E[φµ,t φµ],

and using the definition (3.5) of φµ, this can be rewritten as

2

∫
1− e−λt

(λ+ µ)2
ded(λ). (8.3)

Let us now turn to the second term on the right-hand side of (8.1). By the computation
we did in section 6, we readily know that

E

[(∫ t

0

φµ(ω(s)) ds

)2
]

= 2

∫ t

0

(t− s)E[φµ,s φµ] ds,

which can be rewritten in terms of the spectral measure as

2

∫ ∫ t

0

(t− s) e−λs

(λ+ µ)2
ds ded(λ) = 2

∫
e−λt − 1 + λt

λ2(λ+ µ)2
ded(λ) (8.4)

Combining (8.3) and (8.4), we thus obtain

E
[
(Rµ(t))2

]
= 2

∫
1

(λ+ µ)2

[
1− e−λt + µ2 e

−λt − 1 + λt

λ2

]
ded(λ).

Choosing µ = 1/t, one can check that the term between square brackets in the above
integral remains bounded, uniformly in λ and t, and thus

E
[
(R1/t(t))

2
]
6 C

∫
1

(λ+ 1/t)2
ded(λ).

To conclude the proof, it suffices to remark that this last integral is equal to E[(φ1/t)
2],

and use part (ii) of Theorem 5.2.
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9 In dimension one

For the one-dimensional case, the easiest route is to use the function χ : Z → R

defined by

χ(0) = 0 and ∀x ∈ Z, χ(x+ 1)− χ(x) =
E[1/ωe]

−1

ωx,x+1
− 1. (9.1)

This definition ensures that the function x → x + χ(x) is harmonic, with χ(x) small
compared to x. Indeed, harmonicity follows from

Lω(x 7→ x+ χ(x))(z) = ωz,z+1(1 + χ(z + 1)− χ(z)) + ωz,z−1(−1 + χ(z − 1)− χ(z)) = 0.

As a consequence, we can decompose Xt as M(t) + R(t), where M(t) = Xt + χ(Xt) is
a martingale, and R(t) = −χ(Xt) is a small remainder. As in Proposition 4.1, one can
show that

〈M〉t =

∫ t

0

v(ω(s)) ds,

where

v(ω) = E[1/ωe]
−2
(

1

ω0,1
+

1

ω0,−1

)
.

Letting vt(ω) = Eω0 [v(ω(t))], we learn from [26, Theorem 2.2] that

Var[vt] = O(t−1/2).

As a consequence, letting σ2 = E[v] and following the computations of section 6, we
obtain that

E

[(
〈M〉t
t
− σ2

)2
]

= O(t−1/2). (9.2)

Due to our assumption that the conductances are uniformly bounded away from 0,
the jumps of the function x 7→ x+ χ(x) are uniformly bounded. In order to prove that

E

 ∑
06s6t

(∆M(s))4

 = O(t), (9.3)

it thus suffices to control the number of jumps of the random walk, which can be done as
in section 7 (or simply by stochastically dominating this number by a Poisson process).

Estimates (9.2) and (9.3) together imply, via Theorem 3.1, that

sup
x∈R

∣∣∣P [M(t) 6 σx
√
t
]
− Φ(x)

∣∣∣ = O(t−1/10).

There remains to control the rest R(t). Following the argument given in the end of
section 3, and in particular inequality (3.13), what we need to check is that

P[|R(t)| > ψ(t)
√
t] = O

(
ψ(t)

)
,

where here ψ(t) = t−1/10, and R(t) = −χ(Xt). We need some control on the growth of
the function χ. As χ is the sum of bounded and centred random variables, a classical
large deviation bound (or a consequence of the more refined [11, Theorem XVI.7.1])
yields:

Lemma 9.1. For any ε ∈ (0, 1/2), there exists a > 0 such that

P[|χ(n)| > n1/2+ε] 6 e−an
2ε

.
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As the conductances are bounded away from 0, the increments of χ are uniformly
bounded by a constant m. Hence, on the event |R(t)| > ψ(t)

√
t, one must have |X(t)| >

m−1ψ(t)
√
t. As a consequence, for any ε ∈ (0, 1/2), one has

P[R(t) > ψ(t)
√
t] 6 P[∃n > m−1ψ(t)

√
t : |χ(n)| > n1/2+ε] + P[X

1/2+ε
t > ψ(t)

√
t]. (9.4)

The first term on the r.h.s. of (9.4) decays faster than any negative power of t due to
Lemma 9.1. As for the second term, one can bound it by

E[X2
t ](

ψ(t)
√
t
)2/(1/2+ε) . (9.5)

The numerator of (9.5) grows linearly with t (see [22, Theorem 2.1]). It thus suffices to
choose ε small enough to ensure that the fraction (9.5) is O

(
ψ(t)

)
, and this finishes the

proof of Theorem 2.1 for d = 1.

A On the proof of Theorem 5.2

Part (i) of Theorem 5.2 is a minor variation of [12, Theorem 2.1]. We describe here
the necessary modifications. What in our notation is wµ(θx ω) is

T−1φT (x)2 + (∇φT (x) + ξ) ·A(x)(∇φT (x) + ξ)

in the notation of [12], with T = 1/µ. Taking n = L and ηL = 1BL
/|BL|, what in our

notation is

E

[(
Sn(wµ)

|Bn|

)2
]

becomes in their notation

var

[∫
Zd

(
T−1φT (x)2 + (∇φT (x) + ξ) ·A(x)(∇φT (x) + ξ)

)
ηL(x) dx

]
.

[12, Theorem 2.1] precisely gives information about the decay of this variance, but
under the assumption that the gradient of the averaging function satisfies ‖∇ηL‖∞ .
L−d−1, while we only have ‖∇ηL‖∞ . L−d here. This difference is the reason why the
exponents of decay differ by 1 between Theorem 5.2 and the original result of [12].

The assumption about the gradient is used only in steps 5, 6 and 7 of the proof of
[12, Theorem 2.1]. In step 5 (p. 810), one needs to bound∫

Zd

∫
Zd

|∇∗ηL(x)||∇∗ηL(x′)|
∫
Zd

h(z − x)h(z − x′) dzdxdx′. (A.1)

For |∇∗ηL(x)| to be non zero, it must be that x ∈ BL+1 \BL−2 =: CL, so up to a constant,
(A.1) is bounded by

L−2d
∫
x,x′∈CL

∫
z∈Zd

h(z − x)h(z − x′) dzdxdx′

= L−2d
∫
x,x′∈CL

∫
z′∈Zd

h(z′)h(z′ + x− x′) dz′dxdx′.

Given x, x′ ∈ CL, it is clear that x′− x falls in the box of size 2L+ 2. Moreover, for any y
in this box, there can be at most |CL| ∼ Ld−1 pairs (x, x′) ∈ (CL)2 such that y = x′ − x.
As a consequence, (A.1) is bounded by

L−d−1
∫
|y|62L+2

∫
z′∈Zd

h(z′)h(z′ − y) dz′dy.

This is, up to a factor L, the bound that is arrived at in [12, p. 810]. The rest of step
5 follows without change. The very same computations apply as well in steps 6 and 7,
with the same loss of a factor L.
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B Martingales associated with a Feller process

Let S be a Polish space, and C(S) be the space of all real-valued continuous func-
tions on S that tend to 0 at infinity, equipped with the uniform norm. Let D be the
space of cadlag functions from R+ to S, that comes together with its product σ-algebra.
We write X = (Xt)t>0 for the canonical process on D. A Feller process consists of a
collection of probability measures (Px)x∈S on D (expectations (Ex)), together with a
right-continuous and adapted filtration (Ft)t>0, such that

• for any x ∈ S, Px[X0 = x] = 1,

• for any f ∈ C(S) and any t > 0, the mapping x→ Ex[f(Xt)] is in C(S),

• the Markov property is satisfied.

This Feller process defines a probability semi-group (Pt)t>0 on C(S) by Ptf(x) = Ex[f(Xt)].
This semi-group can be used to define the infinitesimal generator L of the process by

Lf = lim
t→0

Ptf − f
t

, (B.1)

for any f in the set

D(L) = {f ∈ C(S) : the limit in (B.1) exists in C(S)}.

If f and f2 are in D(L), we define the carré du champ of f as Γf = Lf2 − 2fLf .

Proposition B.1. Let f ∈ D(L). The process Mf defined by

Mf (t) = f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds

is a martingale under Px, for any x ∈ S. Moreover, if f2 ∈ D(L), its predictable
quadratic variation is given by

〈Mf 〉t =

∫ t

0

Γf (Xs) ds. (B.2)

Proof. The fact that Mf is a martingale is well known, and is proved in [21, Theo-
rem 3.33]. The second statement certainly belongs to folklore, but I could not find a
precise reference for it. Being continuous (and adapted), the process t 7→

∫ t
0

Γf (Xs)ds

is predictable. It is thus sufficient to check that the process M̃ defined by

M̃(t) = Mf (t)2 −
∫ t

0

Γf (Xs) ds

is a martingale. Recall that, due to our assumptions, the functions f , Lf and Lf2 are
bounded, so there are no problems with integration. We will actually show that, for any
0 6 s < t,

lim
h→0

h−1Ex[M̃(t+ h)− M̃(t) | Fs] = 0. (B.3)

Let us first check that
lim
h→0+

h−1Ex[M̃(h)− M̃(0)] = 0, (B.4)

which, using the fact that Mf is itself a martingale and the right continuity of the pro-
cess X, amounts to verify that

lim
h→0+

h−1Ex[(Mf (h)−Mf (0))2] = Γf (x). (B.5)
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In order to verify (B.5), one can as well assume that f(x) = 0. In this case, the left hand
side is equal to

h−1Ex

(f(Xh)−
∫ h

0

Lf(Xs) ds

)2
 .

We obtain (B.5) by developping the square and using the right continuity of the process
X. Similarly, for any h > 0, we have

Ex[M̃(t+ h)− M̃(t) | Fs] = Ex

[
(Mf (t+ h)−Mf (t))2 −

∫ t+h

t

Γf (Xu) du
∣∣∣ Fs] ,

and the same reasoning proves the right limit of (B.3), including the case when s = t.
For s < t, we need to check the left limit as well. The above argument can be kept
unchanged provided h > s− t. We have thus shown that the function t 7→ Ex[M̃(t) | Fs]
is differentiable and of null derivative on (s,+∞), and has null right derivative at s. It
is thus a constant function on [s,+∞).
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