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Abstract

We investigate an example of noise-induced stabilization in the plane that was also
considered in (Gawedzki, Herzog, Wehr 2010) and (Birrell, Herzog, Wehr 2011). We
show that despite the deterministic system not being globally stable, the addition of
additive noise in the vertical direction leads to a unique invariant probability mea-
sure to which the system converges at a uniform, exponential rate. These facts are
established primarily through the construction of a Lyapunov function which we gen-
erate as the solution to a sequence of Poisson equations. Unlike a number of other
works, however, our Lyapunov function is constructed in a systematic way, and we
present a meta-algorithm we hope will be applicable to other problems. We conclude
by proving positivity properties of the transition density by using Malliavin calculus
via some unusually explicit calculations.
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1 Introduction

Stabilization by noise is a mathematically intriguing phenomenon. For instance, in
the classic example of the inverted pendulum, the addition of noise opens up a small
neighborhood of local stability around a deterministically unstable fixed point [2, 17];
in the striking examples of [28], the addition of noise leads to global stabilization. In
general, however, there are few rigorous proofs of this phenomenon for specific sys-
tems, and most existing proofs depend upon correctly “guessing" a Lyapunov function
and then verifying that it satisfies the requisite properties.

In three recent, interesting works [16, 10, 11], a global Lyapunov function is con-
structed by patching together functions which are locally Lyapunov in a collection of
regions whose union covers all of the possible routes to infinity. These papers are con-
cerned with specific examples in which the stabilization by noise is a property of the
global dynamics rather than the local dynamics near a fixed point. As such, they are
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Propagating Lyapunov function

closer in spirit to [28] than to examples such as the inverted pendulum. In these ex-
amples, the noise is only important in localized regions of phase space, but its effect
is global, in that it changes the global nature of the flow. This nature is hinted at in
the patchwork constructions used in [16, 10, 11]. In [11], this structure is the most
explicit; there, local asymptotic expansions are used to construct a patchwork of local
Lyapunov functions. Still in all three works, the local constructions have mainly the
flavor of “guess–and–check" with some information of the presumed overall structure
of the transport in phase space.

Here we take a more systematic approach to proving global stabilization by noise;
we outline a meta-algorithm which we hope can be used to produce Lyapunov functions
in a number of different dynamical systems. Inspired by the examples in [16, 10, 11], we
apply our meta-algorithm to a system of stochastic differential equations in the plane
whose underlying deterministic dynamics display finite-time blow-up for certain initial
conditions, but in which the addition of an arbitrarily small amount of noise leads to
an invariant probability measure. We consider essentially the same system as in [16]
and one of the examples in [10] with the specific choice of parameters α1 = α2 = 1 and
the change of coordinates induced by (x, y) 7→ (−x,−y). The choice of parameters is
representative of the stable regime we are interested in. We demonstrate the existence
of an invariant measure by constructing a Lyapunov function. Our general approach
is to build local Lyapunov functions as solutions to associated partial differential equa-
tions (PDEs), where the PDEs are defined in regions delineated by different asymptotic
behaviors of the flow. While it is related to that in [16, 10], the Lyapunov function we
construct might better be called a “super” Lyapunov function, in that it enables us to
prove a stronger form of convergence than in [16, 10]. Our exponential convergence
results apply equally well to the case of degenerate stochastic forcing while those in
[10] only prove exponential convergence in the uniformly elliptic setting. Our analysis
also adapts to the specifics of the problem and is likely to produce closer-to-optimal
results.

In [14, 23, 15, 27], the scaling limit of a discrete time Markov chain, called the “fluid
limit” in the context of these works, is used to build a Lyapunov function. In some ways
this is related in spirit to our work in this paper. However, we are explicitly interested
in the case where the noise and its fluctuations are fundamentally important to the be-
havior at infinity. The naive fluid limit model, however, is a singular limit and hence
does not capture the behavior of those systems in which noise plays an essential role.
We will see in our example that the naive fluid limit—which is the underlying unper-
turbed dynamical system—is in fact unstable. Our constructions capture the essential
stochasticity in the regions where it matters at infinity.

Combining our Lyapunov function with a result on the positivity of transition densi-
ties, we prove a strong result on the convergence to equilibrium of our specific dynam-
ical system. Though the positivity result is neither the most general nor the most pow-
erful, it is nevertheless of independent interest, since the proof employs sophisticated
ideas from control theory and Malliavin calculus in a very concrete and transparent
way. We hope that it will help develop the readers intuition in such matters.

2 Lyapunov Functions

We are interested in the stability of a Markov process (Xt, Yt) which is the solution
to a stochastic differential equation (SDE) on the state space R2 with generator L. In
the deterministic setting, a Lyapunov function is a positive function of the state space
which decreases, often exponentially, along trajectories. In the stochastic setting, one
requires that the function decrease on average. More precisely, we define a Lyapunov
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function V on an unbounded set R ⊂ R2 as follows:

Definition 2.1. A C2 function V : R → (0,∞) is a Lyapunov function on R if

1. V (x, y)→∞ as |(x, y)| → ∞ with (x, y) ∈ R,

2. there exist constants m, b > 0 and γ > 0 such that for all (x, y) ∈ R,

(LV )(x, y) ≤ −mV γ(x, y) + b .

We say that V is a super Lyapunov function on R if γ > 1 and a standard Lyapunov
function on R if γ = 1. We call γ the Exponent of the Lyapunov function. If R is a strict
subset of R2, we say that V is a local (super/standard) Lyapunov function; if R is all of
R2, we say that V is a global (super/standard) Lyapunov function.

We remark that there are several different notions of a Lyapunov function in the
literature, but the one above will be used in this particular paper. See for example
[22, 26, 28, 29, 30].

Remark 2.2. Notice that the continuity of V coupled with its growth at infinity implies
that the sub-level sets {(x, y) ∈ R : V (x, y) ≤ R} are compact for all R. In a certain
sense, this is the more fundamental condition, but we will not belabor this point here.
See, for example, Proposition 5.1 in [20] for more details.

It is well-known that the existence of a global Lyapunov function satisfying the prop-
erties in Definition 2.1 implies the existence of an invariant measure [22, 28, 26, 20]. If
one adds a mild mixing/minorization condition and assumes that the Lyapunov function
is a standard Lyapunov function, it is possible to prove exponential convergence to this
invariant measure[26, 18]. If the Lyapunov function is weaker (γ < 1), then the conver-
gence is generally slower [26, 29, 30, 13, 19]. in this case, one might rightly call V a
sub Lyapunov function.

For the system considered in this paper, we show the existence of a global super
Lyapunov function, along with needed mild mixing/minorization conditions. Together,
these imply that the rate of convergence to equilibrium is not only exponential, but also
independent of initial condition.

2.1 General Construction Strategy

We now give an outline of our general approach to constructing a Lyapunov function.
Since many of the details of the implementation depend on the specific example under
consideration, this outline is meant as an overall rubric. On first reading, this section
may seem rather heuristic and overly vague. We encourage the reader to take it as
motivation at first and then reread this section after Section 8 and Section 9; in these
later sections, the following abstract discussion is made concrete.

In our general construction algorithm, we begin by identifying a region in phase
space where there is an obvious choice of a Lyapunov function. We refer to this region
as the “priming” region; it is often characterized as a subset of phase space in which
the deterministic flow is directed toward the origin. We refer to the associated local
Lyapunov function in this region as the “priming” Lyapunov function. Next, by con-
trast, we identify the region in which the deterministic dynamics exhibit instability—for
example, blow-up in finite time—and for which noise is essential to the stabilization, at
least insofar as the noise ensures that the system leaves this region. Since this region is
noise-dominated to some degree, we refer to this region as the “diffusive" region. The
construction of a local Lyapunov function in this diffusive region is a key component of
our methodology. We then “propagate” the priming Lyapunov function, from the prim-
ing region to the diffusive region, through a series of intermediate regions of phase
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space, which we call “transport" regions, until we have covered all possible routes to
infinity. Following this prescription, we obtain a sequence of local Lyapunov functions,
which we mollify to obtain a global Lyapunov function. Beyond this general, overarch-
ing strategy is a philosophy of determining the relevant scaling at infinity in each of the
above regions and systematically producing local Lyapunov function which respect this
scaling.

To determine more precisely the boundaries of these regions, we study the scaling
of the generator L of the SDE as |(x, y)| → ∞. Each region corresponds to a different
dominant balance of the terms in the generator. (See [9, 31] for a discussion of the
concept of dominate balances in asymptotic analysis and Section 8 for the details in
our setting.) In order to facilitate the mollification of the local Lyapunov functions, we
choose the regions so that the intersection between adjoining regions is both nonempty
and unbounded. Neglecting all but the terms involved in the associated dominant bal-
ance, each region also has a differential operator associated to it which captures the
dominant behavior of the generator in the region as |(x, y)| → ∞. Beginning with the
region adjacent to the priming region, we propagate the priming Lyapunov function
through the adjacent region by solving an associated Poisson equation of the form{

(L̃v)(x, y) = −f(x, y)

v(x, y) = g(x, y) on the boundary .

The differential operator L̃ is governed by the dominant balance in the region under
consideration. Since it represents a dominate balanced at infinity, it is necessarily an
operator which scales homogeneously. Hence if the righthand side and the boundary
conditions are chosen to scale homogeneously at infinity in a compatible way the so-
lution v will also scale homogeneously at infinity. The boundary data g for the Poisson
equation is given by the dominant behavior/scaling of the priming Lyapunov function
on the boundary between the priming and adjacent region. The right-hand side, f , of
the Poisson equation is chosen to be a positive definite function which grows unbound-
edly and satisfies certain scaling properties that we specify in Section 9.3 and that are
compatible with the scaling of the region.

We iterate this procedure to construct local Lyapunov functions as solutions to asso-
ciated Poisson equations in each of the transport regions. Furthermore, we construct a
Lyapunov function in the diffusive region by solving a Poisson equation as well, again
with the boundary data determined by the dominant behavior of the local Lyapunov
function in the adjacent transport region. An advantage of this approach, therefore, is
its consistency: the same procedure is used to construct local Lyapunov functions in all
but the priming region (where the local Lyapunov function is usually straightforward to
deduce).

As we solve the sequence of Poisson equations, we encounter boundaries without
boundary data. While a priori this could be an issue, we will see that in our model prob-
lem, in all but the diffusive region, the deterministic dynamics are dominant. Hence the
associated Poisson equations are governed by first-order operators requiring only one
boundary condition. This is consistent with the idea of the priming Lyapunov function
being propagated through a sequence of transport regions. Again, a priori this could
lead to an incompatibility between two different boundaries of a given region, partic-
ularly if the relevant operator in a region is only first-order and cannot accept generic
initial data on two boundaries. However, in our model problem and all of the other
problems we have explored, sequences of compatible transport regions are separated
from each other by diffusive regions. Since the associated differential operator in the
diffusive region is second-order, the associated Poisson equation produces a smooth
solution even with all of its boundary data specified.
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3 The Model Problem

As our model problem, we consider essentially the same problem as in [16, 10] and
which was suggested to us by one of the authors:

dXt = (X2
t − Y 2

t )dt+
√

2σx dW
(1)
t

dYt = 2XtYtdt+
√

2σy dW
(2)
t

(3.1)

with σx ≥ 0 and σy ≥ 0. Notice that when
(σx, σy) = (0, 0), the resulting deterministic equation blows up in finite time if x0 > 0

and y0 = 0. In light of this, it is striking that for any σy > 0, system (3.1) has a unique
invariant probability measure π. This was first proven in [16] and is also a consequence
of one of our main results, which is given below in Theorem 3.2. In the sequel to [10],
the authors prove exponential convergence to equilibrium. The principal difficulty in
both of these works was the establishment of a standard Lyapunov function.

Let Pt be the Markov semi-group associated to the process (Xt, Yt) and defined by

(Ptφ)(x, y) = E(x,y)[φ(Xt, Yt)] . (3.2)

Define the action of Pt on a probability measure µ by (µPt)(A) =
∫
Pt(x,A)µ(dx) for any

measurable set A. An invariant probability measure µ is any measure such that µPt = µ

for all t.
We prove the following theorem, which is stronger than the previously cited results

on the existence of a standard Lyapunov function.

Theorem 3.1. There exists a C2 function V : R2 → (0,∞) which is a super Lyapunov
function for the dynamics given by (3.1). More exactly, for any choice of δ ∈ (0, 2

5 )

the super Lyapunov function V can be chosen to have an exponent 5δ+5
5δ+3 and satisfy

c|(x, y)|δ ≤ V (x, y) ≤ C|(x, y)| 52 δ+ 3
2 for some positive constants c and C.

The existence of an invariant measure µ is an easy consequence of this theorem.
To determine rates of convergence to the equilibrium measure µ, we introduce the
following family of weighted total variation metrics. For β > 0 and probability measures
µ1 and µ2, we define

ρβ(µ1, µ2) = sup
‖φ‖β≤1

∫
φ(z)(µ1 − µ2)(dz) (3.3)

where

‖φ‖β = sup
z

|φ(z)|
1 + βV (z)

.

Notice that ρ0 is just the standard total-variation norm.
The standard Lyapunov function and supporting estimates developed in [10] essen-

tially show that there exists positive C and η so that

ρ1(µ1Pt, µ2Pt) ≤ Ce−ηtρ1(µ1, µ2)

for any probability measures µ1 and µ2. Using Theorem 3.1 on the existence of a super
Lyapunov function, we establish the following stronger convergence result:

Theorem 3.2. If σy > 0, then for any β ≥ 0 there exist positive C and η so that for all
probability measures µ1 and µ2 one has

ρβ(µ1Pt, µ2Pt) ≤ Ce−ηt‖µ1 − µ2‖TV

for all t ≥ 0, where ||TV represents the total variation norm. Here the constant C
depends on the choice of β but the constant η does not.
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The strength of this result is that the dominating norm on the right-hand side is
scale and translation invariant. As we will see, when a super Lyapunov function exists,
one can usually prove a stronger result than the standard Harris-type ergodic theorem
associated to a standard Lyapunov function.

Remark 3.3. As already mentioned, the existence of an invariant measure µ follows
quickly from Theorem 3.1 or Theorem 3.2. The fact that there is only one invariant
measure is immediate from Theorem 3.2.

One consequence of our estimates is the following information on the unique invari-
ant measure µ. The proof of Theorem 3.4 below is given in Section 11.3.

Theorem 3.4. As long as σy > 0, then µ has a smooth density with respect to Lebesgue
measure which we denote by m(z). If σx, σy > 0, then m(z) > 0 for all z ∈ R2. If σx = 0

and σy > 0, then m(z) = 0 if z = (x, y) with x ≥ 0, and m(z) > 0 if z = (x, y) with x < 0.

4 Outline of Paper

In Section 6, we show how the existence of a super Lyapunov function leads to a
strong regularization of moments. In Section 7, we discuss further the properties of
the deterministic model problem. In Section 8, we perform an asymptotic analysis of
the generator associated with (3.1). In Section 9, we use associated Poisson equations
to construct local super Lyapunov functions in the different regions whose boundaries
are determined by the asymptotic analysis. In Section 10, we patch the local Lya-
punov functions together to construct the global Lyapunov function and thereby prove
Theorem 3.1. In Section 11, we prove, under various assumptions,the existence of a
smooth transition density with various positivity properties. Our approach here invokes
methods from geometric control theory and Malliavin calculus in a manner which, we
hope, will be of independent interest. In Section 11.3, we transfer the smoothness
and positivity results to the invariant measure and in doing so prove Theorem 3.4. In
Section 12, we prove that Theorem 3.1, when combined with a standard minorization
condition, implies Theorem 3.2. In Section 12.1, we show how in the uniformly ellip-
tic setting, namely σx, σy > 0, the needed minorization condition follows immediately
from the strong from of positivity which holds in that setting. In Section 12.2, we show
how the weaker positivity properties which hold when σx = 0, σy > 0 are sufficient to
prove the minorization condition. In Section 13, we make a few concluding remarks.
The Appendix contains a relatively standard comparison result which we include for
completeness. It is used in Section 6 about the Super Lyapunov Structure.
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6 Consequences of Super Lyapunov Structure

We begin with a lemma, whose proof is given at the end of the section, which is a
simple translation of the bound on the generator for the definition of a global super
Lyapunov function to a bound on the action of the semigroup. Despite its simplicity,
it is nonetheless the key to all of the enhanced results that are a consequence of the
existence of a super Lyapunov function (as opposed to merely a standard Lyapunov
function).

Lemma 6.1. Suppose that V : R2 → (0,∞) is a super Lyapunov function for the SDE
corresponding to a Markov semi-group Pt. Then for every t > 0, there exists a positive
constant Kt, such that t 7→ Kt is a continuous, monotone decreasing function on (0,∞)

with Kt → (2b/m)1/γ as t→∞, and

(PtV )(z) ≤ Kt for all z ∈ R2 and t > 0 .

Recalling the definition of ρβ from (3.3), Lemma 6.1 implies the following result.

Proposition 6.2. If V is a super Lyapunov function and Kt is the constant defined in
Lemma 6.1 then for any t > 0, β > 0, test function φ, and probability measures µ1 and
µ2, we have

‖Ptφ‖0 ≤ (1 + βKt)‖φ‖β and ρβ(µ1Pt, µ2Pt) ≤ (1 + βKt)‖µ1 − µ2‖TV .

Remark 6.3. It is clear that ρ0(µ1, µ2) = ‖µ1 − µ2‖TV and furthermore if 0 ≤ α, β > 0

and K = supx
1+αV (x)
1+βV (x) , then one has ‖φ‖β ≤ K‖φ‖α, which implies

{φ : ‖φ‖α ≤ 1/K} ⊂ {φ : ‖φ‖β ≤ 1},

which in turn implies ρα(µ1, µ2) ≤ Kρβ(µ1, µ2). Thus as long as α and β are both posi-
tive, the associated norms and metrics are equivalent. However, if one of them is zero,
the needed inequalities only go in one direction. Nonetheless, Proposition 6.2 allows us
to use the action of Pt to recover the missing inequality.

Proof of Proposition 6.2. By similar reasoning to that used in the second part of Re-
mark 6.3, we see that if one assumes that ‖Ptφ‖0 ≤ (1 + βKt)‖φ‖β for some con-
stant Kt, then {φ : ‖φ‖β ≤ 1/(1 + βKt)} ⊂ {φ : ‖Ptφ‖0 ≤ 1} which then implies
that ρβ(µ1Pt, µ2Pt) ≤ (1 + βKt)ρ0(µ1, µ2). Since as noted in Remark 6.3 ρ0(µ1, µ2) =

‖µ1 − µ2‖TV , the proof of the second quoted inequality is now complete provided we
prove the first.

Now since |φ(z)| ≤ ‖φ‖β(1 + βV (z)) for all z, one has

|(Ptφ)(z)| ≤ ‖φ‖β
(
1 + β(PtV )(z)

)
≤ ‖φ‖β(1 + βKt) .

Since the right-hand side is independent of z, we obtain the desired result by taking the
supremum over z.

Remark 6.4. In light of Remark 6.3 and Proposition 6.2, to prove Theorem 3.2 we
need only prove the more standard Harris chain-type geometric convergence result of
ρβ(µ1Pt, µ2Pt) ≤ C exp(−ηt)ρβ(µ1, µ2) for some β > 0.
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Proof of Lemma 6.1. Let Vt = V (Zt), where Zt is the solution to the SDE corresponding
to Pt. Let L denote the generator associated to the SDE corresponding to Pt. Since V
is a super Lyapunov function, there exist constants m, b > 0 and γ > 1 such that

LVt ≤ −mV γt + b for all t ≥ 0 .

By Dynkin’s formula,

(PtV )(z) = Ez[Vt] = V (z) + Ez

[∫ t

0

LVsds

]
≤ V (z)−m

∫ t

0

Ez[V
γ
s ]ds+ bt

≤ V (z)−m
∫ t

z

Ez[Vs]
γ + bt by convexity.

For simplicity of notation, let φz(t) = (PtV )(z) = Ez[Vt]. Then φz(t) satisfies the follow-
ing differential inequality:

φ′z(t) ≤ −m[φz(t)]
γ + b

≤ −m
2

[φz(t)]
γ if φz(t) ≥

(
2b

m

) 1
γ

.

Let R =
(

2b
m

) 1
γ and let τ = inf{t > 0 : φz(t) ≤ R}. Since φ′z(t) < 0 if φz(t) ≥ R,

this implies that once φz(t) ≤ R, φz(t) remains less than or equal to R for all times
afterward. Thus, for all t ≥ τ , φz(t) ≤ R. Now suppose ψz(t) satisfies the following
differential equation:  ψ′z(t) = −m

2
[ψz(t)]

γ for all t ∈ [0, τ ]

ψz(0) = φz(0) = V (z) .

Then by Proposition A.1 in the Appendix, φz(t) ≤ ψz(t) for all t ∈ [0, τ ]. Now the differ-
ential equation for ψ(t) can be solved explicitly to obtain that for all t ∈ [0, τ ]:

ψz(t) =

(
m(γ − 1)t

2
+ V (z)−(γ−1)

)− 1
γ−1

≤
(
m(γ − 1)t

2

)− 1
γ−1

.

Defining the constants Kt as follows

Kt = max

{(
2b

m

) 1
γ

,

(
m(γ − 1)t

2

)− 1
γ−1

}
,

we conclude that φz(t) ≤ Kt for all t > 0, which completes the proof.

7 Deterministic Equation

To better understand the context of our results for the stochastically perturbed sys-
tem, we pause for a moment and highlight some properties of the underlying determin-
istic dynamics:

ẋt = x2
t − y2

t

ẏt = 2xtyt .
(7.1)

The trajectories of the system are shown in Figure 1, from which the dynamics of the
system can be quickly and easily understood.
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x

y

Figure 1: A number of representative orbits of the deterministic dynamics governed by
(7.1).

For any initial condition (x0, y0), the solution (xt, yt) to this system is given by

xt =
x0 − (x2

0 + y2
0)t

(1− x0t)2 + (y0t)2

yt =
y0

(1− x0t)2 + (y0t)2
.

(7.2)

In particular, the system exhibits finite-time blow-up (at time t = 1
x0

) for initial condi-
tions (x0, 0) on the positive x-axis. For all other initial conditions, the ω-limit set ω(x0, y0)

is simply the origin, which is the unique fixed point of the system. We note that the ori-
gin is not reached in finite time by any trajectory with initial condition (x0, y0) 6= (0, 0).

Now, for any choice of initial condition (x0, y0) not on the x-axis, the trajectories of
the deterministic system are circles centered at the point C(x0, y0) with radius R(x0, y0)

given as follows:

C(x0, y0) =
(

0,
x2

0 + y2
0

2y0

)
, R(x0, y0) =

x2
0 + y2

0

2|y0|
. (7.3)

Furthermore, for all choices of initial conditions (x0, y0) not on the positive x-axis,
the time to return to a fixed ball of radius R about the origin is uniformly bounded by
2
R . In Section 12.2, we employ this uniform bound to prove a positivity and minorization
condition on the transition density for the stochastically-perturbed system.

8 Dominant Balances of Generator

We now begin the program laid out in Section 2.1. We begin by considering the
dominant operators in various regions of the state space.

Associated to the SDE (3.1) is the generator L defined by

L = (x2 − y2)∂x + 2xy∂y + σx∂xx + σy∂yy . (8.1)

In order to prove that the addition of noise arrests the blow-up on the x-axis sufficiently
to produce an invariant probability measure, we need to understand the behavior of the
dynamics at infinity. There are many different routes to infinity and we now consider
the various possible dominant balances associated with different routes.

To help identify the relevant scaling, consider the behavior of L under the scaling
map (x, y) 7→ (`x, `py) which produces

` x2∂x − `2p−1 y2∂x + ` 2xy∂y + `−2 σx∂xx + `−2p σy∂yy .
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If p = 1 the first three terms balance and dominate the remaining terms as ` → ∞. If
p > 1 then the second term dominates. If p = − 1

2 then the first, third and fifth balance
and dominate all other terms as `→∞. These balances cover all of the routes to infinity
except for those which approach or rest on the y-axis and identify p = −1/2 as a critical
scaling. (The routes near the y-axis are captured by p = −1/2 and ` → 0 but these will
not play an important role in our analysis.)

If |x|y2 <∞ as |(x, y)| → ∞ with x > a > 0, the dominant part of L is contained in

A = x2∂x + 2xy∂y + σy∂yy . (8.2)

If |x|y2 → 0 as |(x, y)| → ∞ with x > a > 0, then the dominant part is only ∂yy. Notice
that ∂yy is contained in A, so we can still choose to use A this region. In all other
relevant cases as |(x, y)| → ∞, the dominant part of L is contained in

T = (x2 − y2)∂x + 2xy∂y .

We have neglected the term σx∂xx in the operator T which scaling analysis suggests
might be relevant in neighborhood of the y-axis. However its inclusion does not quali-
tatively change the behavior in a neighborhood of the y-axis. The same can not be said
of the term σy∂yy in a neighborhood of the x-axis.

8.1 Scaling

To better understand the structure of the solutions in the various regimes, we inves-
tigate the scaling properties of the various operators introduced in the previous section.
We introduce the scaling transformations

S
(1)
` : (x, y) 7→ (`x, `−

1
2 y) and S

(2)
` : (x, y) 7→ (`x, `y) .

Observe that operator A scales homogeneously under the scaling S(1)
` , while the opera-

tor T scales homogeneously under the scaling S
(2)
` . We would also like the operator T

to scale homogeneously under the scaling S(1)
` ; however, this does not hold for all of the

terms in T . We remedy this by introducing a non-negative parameter λ and defining the
family of operators

Tλ = (x2 − λy2)∂x + 2xy∂y (8.3)

and extending the definition of the scaling operators by

S
(1)
` : (x, y, λ) 7→ (`x, `−

1
2 y, `3λ) and S

(2)
` : (x, y, λ) 7→ (`x, `y, λ) .

Now Tλ scales homogeneously under the scaling map S
(1)
` and A remains invariant

under S(2)
` . This gambit of introducing an extra parameter to produce a homogeneous

scaling was also used in a similar way in [12].
Given a function φ : R × [0,∞) → R, where R ⊂ R2, we say that φ scales homoge-

neously under the scaling S
(i)
` if φ ◦ S(i)

` = `δφ for some δ. In this case, we say that φ

scales like `δ under the i-th scaling. We write this compactly as φ
i∼ `δ.

Proposition 8.1. If φ
1∼ `δ then ∂xφ

1∼ `δ−1 and ∂yφ
1∼ `δ+

1
2 . Similarly, if φ

2∼ `δ then

∂xφ
2∼ `δ−1 and ∂yφ

2∼ `δ−1. In both cases, if one side is infinite, then so is the other.

Proof of Proposition 8.1. We only show one case; all others follow similarly. If φ
1∼ `δ,

then φ(`x, `−
1
2 y, `3λ) = `δφ(x, y, λ). Differentiating in x, we obtain

`(∂xφ)(`x, `−
1
2 y, `3λ) = `δ(∂xφ)(x, y, λ) .

Dividing through by `, we conclude that ∂xφ
1∼ `δ−1.
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In the next section, we decompose the plane into regions where the different dom-
inant balances hold. These regions are defined by boundary curves which are well-
behaved under one or both of the scalings. To facilitate the construction of these re-
gions, given x0 > 0, y0 > 0, λ ≥ 0 and p ∈ R, we define the following “elementary”
regions:

Λ(x0, y0, λ) =
{x2 + λy2

|y|
≥ x2

0 + λy2
0

y0

}
Γ±p (x0, y0) = {±x ≥ x0, |x|p|y| ≤ xp0y0} . (8.4)

Observe that for any ` > 0, we have to following scaling relations

S
(1)
` (Γ±p (x0, y0)) = Γ±p (`x0, `

− 1
2 y0), S

(2)
` (Γ±p (x0, y0)) = Γ±p (`x0, `y0),

S
(1)
` (Λ(x0, y0, λ)) = Λ(`x0, `

− 1
2 y0, `

3λ), S
(2)
` (Λ(x0, y0, λ)) = Λ(`x0, `y0, λ),

and lastly Γ±p (`x0, `
−py0) ⊂ Γ±p (x0, y0) for ` > 1 .

9 Construction of Local Lyapunov Functions

Based on the discussion in the previous section, we will divide the plane into three
regions Ri(α), where α is a positive parameter that we specify later. As described in
Section 2.1, we call these regions the “priming," “transport," and “diffusive" regions, re-
spectively. We now describe the placement of these various regions which are indicated
pictorially in Figure 2.

Our priming region, R1(α), is a subset of the left-half plane, and here there exists
a very natural Lyapunov function, because in this region, the deterministic drift is di-
rected toward the origin. On the other hand, the diffusive region, R3(α), is a funnel-like
region around the positive x-axis where there is finite-time blow-up in the determinis-
tic setting. Demonstrating the existence of a local Lyapunov function in the diffusive
region is a key piece in proving noise-induced stabilization in our model problem. The
transport region R2(α) is governed primarily by deterministic transport from the dif-
fusive region to the priming region. In this section, we focus on the construction of a
local Lyapunov function in each of these three regions.

9.1 The Priming Region

When looking for a priming Lyapunov function, it is natural to consider the norm
to some power. In this specific example, we expect the norm to some power to be
a Lyapunov function in the left-half plane since the drift vector field points at least
partially towards the origin; see Figure 1.

For δ > 0, we define v1(x, y) = (x2 + y2)
δ
2 and observe that

Lv1(x, y) =δx(x2 + y2)
δ
2 + δ(

δ

2
− 1)(x2 + y2)

δ
2−2(2σxx

2 + 2σyy
2)

+ (σx + σy)δ(x2 + y2)
δ
2−1 .

(9.1)
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R2

R2

R1 R3

x

y

Figure 2: The different regions in which local Lyapunov functions are constructed. R1

is the priming region. The two regions labeled R2 are transport regions. And R3 is
the diffusive region which connects the two transport regions in which information is
propagating in different directions.

In particular, if (x, y) ∈ Γ−−1(α2 , 1), we get that

(Lv1)(x, y) ≤− αδ√
α2 + 4

(x2 + y2)
δ+1
2 + δ(δ − 2)

σxx
2 + σyy

2

(x2 + y2)2− δ2
+ δ

σx + σy

(x2 + y2)1− δ2

=− αδ√
α2 + 4

(x2 + y2)
δ+1
2

×

[
1−
√
α2 + 4

α

(
[δ − 2] (σxx

2 + σyy
2)

(x2 + y2)
5
2

+
σx + σy

(x2 + y2)
3
2

)]
.

This implies that for any δ > 0 and α > 0, there exists an R1 sufficiently large so that
if |(x, y)| > R1, then the term in the square brackets is greater than 1

2 . Hence v1 is a
super Lyapunov function in the region

R1(α) = Γ−−1(
α

2
, 1)

with exponent δ+1
δ . As we will see later, we will have to restrict δ to the interval (0, 2

5 ),
and this automatically implies that δ ∈ (0, 2). In turn, this guarantees that δ − 2 < 0 and
that the term in the square brackets above is greater that 1

2 provided

σx + σy

(x2 + y2)
3
2

<
1

2

α√
α2 + 4

.

We formalize this observation in the following proposition.

Proposition 9.1. For any α > 0 and δ ∈ (0, 2), if (x, y) ∈ R1(α) with |(x, y)| ≥ R1, then
v1 satisfies

(Lv1)(x, y) ≤ −m1 v
γ1
1 (x, y)
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where m1 = αδ
2
√
α2+4

> 0, γ1 = δ+1
δ > 1, R1 =

[
2 (σx + σy)

√
α2+4
α

] 1
3

.

Our choice of the region R1(α) is motivated by the following. From (9.1), it is clear
that we need to define a region in the negative half-plane bounded away from the y-
axis. Furthermore, in order to guarantee that v1 is super Lyapunov, we need to ensure
a region in which |(x, y)| → ∞ implies |x| → ∞. Note that R1(α) is a subset of the
left half-plane, in which the dominant dynamics at infinity are given by T and hence
the relevant scaling transformation is S(2)

` . For this reason, it is desirable to define the

boundary of the region so that it behaves well under S(2)
` . From the previous section,

we see that

S
(2)
` (Γ−−1(x0, y0)) = Γ−−1(`x0, `y0) ⊂ Γ−−1(x0, y0) for ` > 1

which motivates our choice of R1(α) and the shape of its boundary in particular.

9.2 Decomposition of Remainder of Plane

We will now propagate the priming Lyapunov function through a sequence of regions
until all of the routes to infinity are covered.

As mentioned above, near the boundary of R1(α) and away from the x-axis, the
operator T is dominant. This holds true until one enters the region defined by the curves
xy2 = c where c is a sufficiently large positive constant and x > 0 is sufficiently large. At
this point, the dominant balance changes and the operator A becomes dominant. Hence
we define the transport region,R2(α), with one boundary inside the regionR1(α) which

is invariant under the scaling S
(2)
` , and one boundary which is defined by the curve

|x|y2 = c for some constant. As we make precise in the definition below, we will choose
c = α.

We set R2(α) = R2(α, 1) where for α, λ ≥ 0, we define

R2(α, λ) = Γ+
1
2

(α
√
λ, 1)c ∩ Λ(α

√
λ, 1, λ) ∩ Γ−−1(α

√
λ, 1)c .

Now, observe that outside ofR1(α)∪R2(α) all of the routes to infinity have |x|y2 <∞.
Hence the operator A is dominant in this entire region and we do not need to further
subdivide the remainder of the plane. To define R3(α), recall that we need nontrivial
overlap with the transport region R2(α). Hence we again chose a boundary curve of
the form |x|y2 = c but with c > α. In particular, we define R3(α) = Γ+

1
2

(2α, 1). Note

that R3(α) is the diffusive region: the diffusion term in the operator A is critical to the
stabilization of the process here.

In summary, for each α > 0, we have defined three regions

Priming Region: R1(α) = Γ−−1(α2 , 1)

Transport Region: R2(α) = R2(α, 1)

Diffusive Region: R3(α) = Γ+
1
2

(2α, 1) .

Notice thatR1(α)∩R2(α) andR2(α)∩R3(α) are nonempty and that R2\(R1(α)∪R2(α)∪
R3(α)) is a bounded set. We construct a local super Lyapunov function in each of
the three regions and then smoothly patch them together to form one global super
Lyapunov function on the entire plane.

9.3 The Associated Poisson Equations

We now propagate the priming Lyapunov function v1 which is defined in R1(α) to
the other regions by solving a succession of Poisson equations. Throughout most of our
construction, α will remain a free parameter; we specify α later to ensure a number of
necessary estimates. We begin with the transport region R2(α).
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9.3.1 The Transport Region R2(α)

For δ > 0 and α > 0, we define v2(x, y) as the solution to the following Poisson equation: (Tv2)(x, y) = −
(
x2 + y2

|y|

)δ+1

on R2(α)

v2(x, y) = v1(x, y) on ∂B1(α)

(9.2)

where ∂B1(α) =

{
x ≤ −α, |y| = 1

α
|x|
}

.

The rationale for this is as follows. We wish to propagate the priming Lyapunov
function through the region R2(α), so we need to take it as the boundary condition.
Since the operator T represents one of the dominate balances, it necessarily scales ho-
mogeneously. In this case, T scales like `1 under the scaling transformation S(2)

` . Hence

if v2 is to scale homogeneously under S(2)
` as `p for some power p then the righthand

side must scale like `p+1 and the boundary conditions must scale like `p both under S(2)
` .

(Notice the boundary ∂B1 is invariant under S(2)
` .)

Notice that our choice of right-hand side scales as `δ+1 and the boundary conditions
scale as would be consistent with a solution which scales like `δ under S(2)

` . The form
of the boundary conditions are dictated by our choice of v1. The exact from of the
righthand side was chosen so that it was constant along trajectories of the limiting
dynamics in R2(α) which are the characteristics of T .

9.3.2 The Diffusive Region R3(α)

For δ > 0 and α > 0, we define v3(x, y) by the following Poisson equation{
(Av3)(x, y) = −c1xδ̂+1 on R3(α)

v3(x, y) = c2x
δ̂ on ∂B2(α)

(9.3)

where ∂B2(α) = {x ≥ α, xy2 = 2α},

δ̂ =
5

2
δ +

3

2
(9.4)

and c1, c2 > 0 are constants which will be chosen later. We remark that the values of
c1 and c2 do not affect the local super Lyapunov property of v3, but rather are chosen
in order to facilitate the patching of the local super Lyapunov functions into one global
super Lyapunov function in Section 10. As before, we have chosen a right-hand side
which is negative definite, scales homogeneously under the appropriate scaling, namely
S

(1)
` , and has unbounded growth in the region. We use a constant multiple of xδ̂ as the

boundary condition rather than the function v2 from the neighboring region because
we want a function which scales homogeneously under S(1)

` . However, xδ̂ is in fact
the asymptotic behavior (up to a constant multiple) of v2(x, y) as |(x, y)| → ∞ on the
specified boundary.

In Section 9.5, we verify that v2 and v3 are super Lyapunov functions in the regions
in which they are defined. However, we first establish a number of preliminary results.

9.4 Existence of Solutions and Their Properties

The scaling properties of the solutions to the above Poisson equations are one of
main tools we use to show that they are local Lyapunov functions. This is because,
with one exception, points at infinity in a given region can be scaled back to points in
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the same region by the scaling transformation under which the associated differential
operator is homogeneous. As we discuss below, the exception is the subregion of R2(α)

which lies near the boundary of R3(α).

9.4.1 Properties of the Solution in the Transport Region

Care must be taken when scaling the points in the subregion of R2(α) which lie close

to the boundary of R3(α). The points in this region naturally scale with S
(1)
` while the

operator T which is associated to R2(α) scales homogeneously under S(2)
` . This issue

was also addressed in Section 8.1 where we introduced the parameter λ to generate a
family of operators Tλ which scale homogeneously with S(1)

` .
With this mind, it is natural to introduce the function v2(x, y, λ) which, for a given

λ ∈ (0, 1], solves the following family of auxiliary Poisson equations in R2(α, λ):{
(Tλv2)(x, y, λ) = −h(x, y, λ) on R2(α, λ)

v2(x, y, λ) = f(x, y, λ) on ∂B1(α
√
λ)

(9.5)

where we define

h(x, y, λ) =

(
x2 + λy2

|y|

)δ+1

f(x, y, λ) = λ
δ+1
2 (x2 + λy2)

δ
2 .

For ease of notation, we write

h(x, y) = h(x, y, 1) and f(x, y) = f(x, y, 1) .

Notice that h
1∼ `δ̂+1, f

1∼ `δ̂, h
2∼ `δ+1, and f

2∼ `δ where δ̂ was defined in (9.4). Also
observe that v2(x, y, 1) coincides with the v2(x, y) defined by (9.2).

9.4.2 Properties of the Solution in the Diffusive Region

The dynamics associated to the operator A, which is dominant in R3(α), should be un-
derstood as having one diffusive direction and one deterministic direction which is un-
coupled from the diffusion and acts as the “clock” of the diffusion. To see this, observe
that A is the operator associated to the system of SDEs given by

dX̂t = X̂2
t dt X̂0 = x

dŶt = 2X̂tŶtdt+
√

2σy dWt Ŷ0 = y .
(9.6)

Now, let (X̂0, Ŷ0) = (x, y) lie in R3(α) and define τ̂ = inf{t > 0 : (X̂t, Ŷt) ∈ ∂B2(α)}. Then
v3(x, y), which was defined in (9.3), can be represented probabilistically as

v3(x, y) = c2E(x,y)

[
X̂ δ̂
τ̂

]
+ c1E(x,y)

[∫ τ̂

0

X̂ δ̂+1
s ds

]
=
(
c1
δ̂

+ c2
)
E(x,y)

[
X̂ δ̂
τ̂

]
− c1

δ̂
xδ̂ (9.7)

provided that, first, the expectation is finite; and second, that the right-hand side of
equation (9.7) depends in a C2 fashion on (x, y) ∈ R3(α). Both of these facts will follow
from Proposition 9.2, which we present below, and are made formal in Proposition 9.3,
which appears in the next section.

Since X̂t is deterministic, this representation of v3 amounts to a deterministic func-
tion of τ̂ . To better understand the properties of τ̂ , we introduce the time change

T (t) =
∫ t

0
X̂sds = − ln |1 − xt| and the process ZT (t) = X̂

1
2
t Ŷt. Due to the scaling of the
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boundary of R3(α), if we define τ = inf{T > 0 : |ZT | ≥
√

2α} then τ̂ = 1
x (1 − e−τ ),

X̂t = xeT (t), and ZT satisfies the SDE

dZT =
5

2
ZT dT +

√
2σy dWT , Z0 = x

1
2 y . (9.8)

Since ZT is the solution to a Gaussian SDE, the following proposition follows easily.

Proposition 9.2. For δ̂ < 5
2 and (x, y) ∈ R3(α), E(x,y)

[
eδ̂τ
]
< ∞ and the map (x, y) 7→

E(x,y)

[
eδ̂τ
]

is C2.

Proof of Proposition 9.2. To see the finiteness of the expectation, observe that

P(x,y)(e
δ̂τ > s) = P(x,y)

(
sup

0≤T≤ ln s
δ̂

|ZT | <
√

2α
)
≤ P(x,y)

(
|Z 1

δ̂
ln s| <

√
2α
)

= P
(∣∣∣√2σy s

5
2δ̂

∫ 1
δ̂

ln s

0

e−
5
2 rdWr

∣∣∣ < √2α
)
≤
( 10α

σyπ(s5/δ̂ − 1)

) 1
2

.

Hence for δ̂ < 5
2 , this decays sufficiently rapidly in order to guarantee that E(x,y)

[
eδ̂τ
]

is
finite. The continuity properties now follow from the continuity properties of τ . Specifi-
cally, E(x,y)

[
eδ̂τ
]

= g(
√
x y) where g(z) solves the following ordinary differential equation{

σyg
′′(z) + 5

2zg
′(z) + δ̂g(z) = 0 for g ∈ (−

√
2α,
√

2α)

g(
√

2α) = g(−
√

2α) = 1 .
(9.9)

Since by standard results on the regularity of ODEs, g(z) ∈ C2([−
√

2α,
√

2α]), we con-

clude that E(x,y)

[
eδ̂τ
]

= g(
√
x y) ∈ C2(R3(α)) as desired.

We remark that this proposition imposes a further restriction on the size of the
parameter δ, which previously was only required to be positive. Observe that in light of
(9.4) the requirement that δ̂ < 5

2 forces δ ∈ (0, 2
5 ).

9.4.3 Principal Result on Existence and Scaling of Solutions

We consolidate these observations and now state and prove our principal existence and
scaling result.

Proposition 9.3. For every δ ∈ (0, 2
5 ), there exists a strictly positive C2 function

v3 : R3(α) → (0,∞) which solves (9.3). For every λ ∈ (0, 1], there exists a strictly

positive C2 function v2 : R2(α, λ) → (0,∞) which solves (9.5). In addition, v2
1∼ `δ̂,

v2
2∼ `δ, v3

1∼ `δ̂ and (x, y, λ) 7→ v2(x, y, λ) is continuous on R∗2(α) × [0, 1] where R∗2(α) =

∩λ∈[0,1]R2(α, λ). In fact, v2 has an explicit formula given in (9.11) below and v3 a semi-
explicit formula given in (9.10) also below.

Proof of Proposition 9.3. We begin with v3. The preceding discussion all but gives the
existence proof. In particular, it shows that if g is defined by (9.9) and δ̂ by (9.4) then
the map

(x, y) 7→ E(x,y)

[
X̂ δ̂
τ̂

]
= xδ̂E(x,y)

[
eδ̂τ
]

= xδ̂g(
√
xy)

is well-defined, positive, and C2 for δ ∈ (0, 2
5 ) and (x, y) ∈ R3(α). Returning to (9.7),

classical results (see, for example, [4]) allow us to justify the stochastic representation
formula for v3, which now can be rewritten as

v3(x, y) = xδ̂
[(
c1
δ̂

+ c2
)
E(x,y)

[
eδ̂τ
]
− c1

δ̂

]
= xδ̂

[(
c1
δ̂

+ c2
)
g(
√
xy)− c1

δ̂

]
. (9.10)
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As a consequence of this formula, to prove the scaling it suffices to show that

E(x,y)

[
eδ̂τ
] 1∼ `0 .

This is clear, since the only dependence of τ upon x and y results from Z0, and Z0 =

x
1
2 y = (`x)

1
2 (y`−

1
2 ) is invariant under S(1)

` . We now turn to v2. While in light of the
scaling and continuity properties of Tλ, h, and f this result could be obtained by ab-
stract means, we employ the method of characteristics to produce an explicit solution.
Namely,

v2(x, y, λ) =
(x2 + λy2

|y|

)δ[ x
|y|

+ α
√
λ+
√
λ
( 1

α2 + 1

) δ
2
]
. (9.11)

The scaling properties, regularity, and positivity follow by direct calculation with (9.11).

Remark 9.4. As λ→ 0, v2(x, y, λ) given in (9.11) converges to x2δ+1|y|−(δ+1). This was
expected since formally taking λ→ 0 in (9.5) produces the equation (x2∂x + 2xy∂y)v = −x

2(δ+1)

|y|δ+1
on R2(α, 0)

v(x, y) = 0 on ∂B1(α
√
λ) .

(9.12)

The solution to this simplified equation is easily seen to be x2δ+1|y|−(δ+1). Even in a
setting where (9.5) cannot be solved explicitly, this simplified equation may well be
easier to solve. We will see in Section 10 that the most delicate parts of the patching
require precise information about the limit of v2 as λ → 0. This suggests that the
analysis may be feasible even when (9.5) is not solvable.

Remark 9.5. For both v2 and v3 we have used specifics of the solutions to verify the
scaling. It is possible to derive the results just from the scaling of the operators, right-
hand sides, and boundary conditions. The positivity for both solutions also follows from
the positivity of the boundary data and the negative definiteness of the right-hand sides.

9.5 Proof of Local Super Lyapunov Property

Letting BR(z) = {(x, y) ∈ R2 : |(x, y) − z| ≤ R}, we state the following proposition
which establishes that v2 and v3 are local super Lyapunov functions.

Proposition 9.6. Fix any δ ∈ (0, 2
5 ) then for all α > 0 sufficiently large, there exist

constants mi > 0 and Ri > 0 so that if (x, y) ∈ Ri(α) with |(x, y)| ≥ Ri, then vi satisfies

(Lvi)(x, y) ≤ −miv
γi
i (x, y)

for i = 2, 3 where γ2 = γ3 = 5δ+5
5δ+3 . In addition, we have the following refined estimate

in the second region which emphasizes its transitional nature and which will be of later
use. Defining

R(1)
2 (α) = R2(α) ∩R(2)

2 (α)c and R(2)
2 (α) = R2(α) ∩ Γ+

−1(α, 1)c , (9.13)

if j = 1, 2 and (x, y) ∈ R(j)
2 , we have

(Lv2)(x, y) ≤ −m2v
γ
(j)
2
i (x, y)

where γ(1)
2 = γ3 = 5δ+5

5δ+3 and γ(2)
2 = γ1 = δ+1

δ .
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Proof of Proposition 9.6. We begin with v3 since it is more straightforward. Observe
that for any γ > 1, using equation (9.3) and the positivity of v3, one has

(Lv3)(x, y) = (Av3)(x, y)− y2∂xv3(x, y) + σx∂xxv3(x, y)

≤ −vγ3 (x, y)

[
c1x

δ̂+1 − y2|∂xv3(x, y)| − σx|∂xxv3(x, y)|
vγ3 (x, y)

]
≤ −mvγ3 (x, y)

where we define

m = inf
(x,y)∈R3(α)∩BcR(0)

[
c1x

δ̂+1 − y2|∂xv3(x, y)| − σx|∂xxv3(x, y)|
vγ3 (x, y)

]
.

If for some choice of γ > 1 and R > 0, one has m > 0, then it is clear that v3 is a local
super Lyapunov function. To prove that such γ and R exist, we use the scaling and
continuity properties of v3 which were proven in Proposition 9.3. Observe that every
point (x, y) ∈ R3(α) can be mapped back to a point (2α, b), where (x, y) = S

(1)
` (2α, b),

` = x
2α , and b =

√
`y ∈ [−1, 1]. Therefore v3 satisfies the following scaling relations:

v3(x, y) = `δ̂v3(2α, b) (∂xv3)(x, y) = `δ̂−1(∂xv3)(2α, b)

xδ̂+1 = `δ̂+1(2α)δ̂+1 (∂xxv3)(x, y) = `δ̂−2(∂xxv3)(2α, b) .

These scaling relations lead us to choose γ = 5δ+5
5δ+3 , which is the ratio of the exponents

of ` in Av3 and v3. With this choice of γ, we obtain

c1x
δ̂+1 − y2|∂xv3(x, y)| − σx|∂xxv3(x, y)|

vγ3 (x, y)

=
c1(2α)δ̂+1 − `−3(b2|∂xv3(2α, b)|+ σx|∂xxv3(2α, b)|)

vγ3 (2α, b)
.

Hence if we define `∗ = inf{x/(2α) : (x, y) ∈ R3(α) ∩BcR(0)} and

M = sup
b∈[−1,1]

b2|∂xv3(2α, b)|+ σx|∂xxv3(2α, b)|+ v3(2α, b) ,

the preceding estimate and the strict positivity of v3 imply that

m ≥ c1(2α)δ̂+1 − `−3
∗ M

Mγ
.

Since v3 is C2, we know that M < ∞ (the supremum is over a compact set). Further-
more, observe that `∗ →∞ as R→∞. Combining these last two observations with the
above estimate, we can choose R sufficiently large to ensure that

c1(2α)δ̂+1 − `−3
∗ M > 0

and hence that m > 0. We define R3 and γ3 to be the above choices of R and γ,
respectively, which are valid in R3(α). Substituting these values in the expression for
m, we obtain m3. This completes the proof of the local super Lyapunov property for v3.

We now turn to proving the corresponding property for v2. We start as we did for v3,
by noting that for any γ > 1

(Lv2)(x, y) = −h(x, y) + (σx∂xxv2 + σy∂yyv2) (x, y)

≤ −vγ2 (x, y)

[
h− σx|∂xxv2| − σy|∂yyv2|

vγ2

]
(x, y) ≤ −mvγ2 (x, y) .
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where in this case we define

m = inf
(x,y)∈R2(α)
|(x,y)|>R

[
h− σx|∂xxv2| − σy|∂yyv2|

vγ2

]
(x, y) .

As before, we need to show that there exist γ > 1 and R > 0 such that m > 0. Since
R2(α) has two different natural scalings, we decompose this region and handle each

subregion separately. Recall the definition of R(1)
2 and R(2)

2 from (9.13) and observe

that R(1)
2 (α) scales well under S(1)

` and R(2)
2 (α) under S(2)

` . We define m(i) as

m(i) = inf
(x,y)∈R(i)

2 (α)
|(x,y)|>R

[
h− σx|∂xxv2| − σy|∂yyv2|

vγ2

]
(x, y) .

We begin withR(2)
2 (α) since the analysis in this subregion is very similar to the previous

analysis for v3.
First, note that the circle of radius r = 2(α2 + 1) centered at the origin is contained

in Λ(α, 1, 1). Hence any point in R(2)
2 (α) can be connected by a radial line contained

in R(2)
2 (α) to the part of this circle contained in R(2)

2 (α). It follows from this that any

(x, y) ∈ R(2)
2 (α) can be written in the form (x, y) = S

(2)
` (a, b) where ` = |(x, y)|r−1 and

(a, b) is a point on the circle of radius r centered at the origin. Therefore,

v2(x, y) = `δv2(a, b) (∂xxv2)(x, y) = `δ−2(∂xxv2)(a, b)

h(x, y) = `δ+1h(a, b) (∂yyv2)(x, y) = `δ−2(∂yyv2)(a, b) .

Again, by analogy to the previous case, these scaling relations lead us to choose γ =
δ+1
δ , which is the ratio of the exponents of ` in Tv2 and v2. With this choice of γ, if

(x, y) = S
(2)
` (a, b), we have that[

h− σx|∂xxv2| − σy|∂yyv2|
vγ2

]
(x, y) =

[
h− `−3σx|∂xxv2| − `−3σy|∂yyv2|

vγ2

]
(a, b) .

Setting R̃(2)
2 = {(a, b) ∈ R(2)

2 (α) : |(a, b)| = r}, we define

ρ = inf
(a,b)∈R̃(2)

2

h(a, b)

vγ2 (a, b)
and M = sup

(a,b)∈R̃(2)
2

[
σx|∂xxv2|+ σy|∂yyv2|

vγ2

]
(a, b) .

Letting `∗ = inf{|(x, y)|/r : (x, y) ∈ R(2)
2 (α) ∩ BcR(0)} = R/r, we observe that m(2) ≥

ρ − `−3
∗ M . Because h and v2 are C2 in (x, y) and strictly positive and R̃(2)

2 is a compact
set, we conclude that ρ > 0 and M < ∞. Hence one can choose R sufficiently large in
order to ensure that m(2) ≥ ρ − `−3

∗ M > 0. Again, we denote these specific choices of

R and γ, which are valid in R(2)
2 (α), by R(2)

2 and γ
(2)
2 . Substituting these values in the

expression for m(2), we obtain m
(2)
2 . This completes the proof that v2 is a local super

Lyapunov property in the subregion R(2)
2 (α).

We now turn to region R(1)
2 (α). Every point (x, y) ∈ R(1)

2 (α) can be mapped back

to a point (a, b) on the curve {αb = a} such that (x, y) = S
(1)
` (a, b), where ` =

(
x
αy

) 2
3

,

a = α
2
3 (xy2)

1
3 , and b = α−

1
3 (xy2)

1
3 . Hence we get the scaling relations

v2(x, y, 1) = `δ̂v2(a, b, `−3) (∂xxv2)(x, y, 1) = `δ̂−2(∂xxv2)(a, b, `−3)

h(x, y, 1) = `δ̂+1h(a, b, `−3) (∂yyv2)(x, y, 1) = `δ̂+1(∂yyv2)(a, b, `−3) .
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Now using the scaling map S(1)
` to map (a, b) 7→ (α, 1) we obtain

v2(a, b, `−3) = bδv2(α, 1, `−3) (∂xxv2)(a, b, `−3) = bδ−2(∂xxv2)(α, 1, `−3)

h(a, b, `−3) = bδ+1h(α, 1, `−3) (∂yyv2)(a, b, `−3) = bδ−2(∂yyv2)(α, 1, `−3) .

Again, these scaling relations in R(1)
2 (α) lead us to choose γ = 5δ+5

5δ+3 , which is the ratio
of the exponents of ` in Tv2 and v2. Combining these two sets of scaling estimates and
setting γ̄ = δ(1− γ) + 1, we get that[h− σx|∂xxv2| − σy|∂yyv2|

vγ2

]
(x, y, 1)

= bγ̄
[
h− (b`)−3σx|∂xxv2| − b−3σy|∂yyv2|

vγ2

]
(α, 1, `−3)

= bγ̄
[ h
vγ2

(
1− (b`)−3σx

|∂xxv2|
h

− b−3σy
|∂yyv2|
h

)]
(α, 1, `−3) .

We have organized this calculation a bit differently for reasons which will become clear
momentarily. Based on the preceding calculation, we define

ρ(λ) = inf
λ′∈[0,λ]

h(α, 1, λ′)

vγ2 (α, 1, λ′)
and M1(λ) = inf

λ′∈[0,λ]

|∂xxv2(α, 1, λ′)|
h(α, 1, λ′)

and M2(λ) = inf
λ′∈[0,λ]

|∂yyv2(α, 1, λ′)|
h(α, 1, λ′)

.

Notice that, unlike the previous calculations, we have made the constants ρ, M1, and
M2 depend on the maximal value of λ. This is because in our current setting we require
more precise information about these constants than merely that they are finite and
positive.

We set `∗ = inf{(x/αy)
2
3 : (x, y) ∈ R(1)

2 (α) ∩BcR(0)} and we observe that since b ≥ 1,

m(1) ≥ ρ(`−3
∗ )(1− `−3

∗ σxM1(`−3
∗ )− σyM2(`−3

∗ )) .

We wish to conclude that the right-hand side of the above expression is strictly positive.
To conclude this, however, we need to understand the behavior of M1(λ) and M2(λ) as
λ→ 0. By direct calculation from the explicit formula for v2, we see that

M1(0) =
2δ(2δ + 1)

α3
and M2(0) =

(δ + 1)(δ + 2)

α
.

Since M1(λ) and M2(λ) are both continuous functions of λ on (0, 1] with finite limits as
λ → 0, and since `∗ can be made arbitrarily large by choosing R sufficiently large, for
any ε > 0 we can choose R large enough to ensure

1− `−3
∗ σxM1(`−3

∗ )− σyM2(`−3
∗ ) ≥ 1− σy(δ + 1)(δ + 2)

α
− ε .

We conclude that as long as σy(δ+1)(δ+2)
α < 1, we can always choose R large enough

to guarantee that m(1) is positive. This last inequality holds whenever α is sufficiently
large. Again, we denote these specific choices of R and γ , which are valid in R(1)

2 (α),

by R(1)
2 and γ

(1)
2 . Substituting these values in the expression for m(1), we obtain m

(1)
2 .

Choosing m2 = min{m(1)
2 ,m

(2)
2 }, γ2 = min{γ(1)

2 , γ
(2)
2 }, and R2 = max{R(1)

2 , R
(2)
2 } com-

pletes the proof that v2 is a local super Lyapunov function in the entire region R2(α).

The more detailed statements of the behavior in R(1)
2 and R(2)

2 merely serve to summa-
rize the above points.
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10 Construction of a Global Super Lyapunov Function

We now patch together the three local Lyapunov functions that are defined in distinct
regions of the plane in order to produce one smooth, global Lyapunov function defined
on the entire plane. To do this, we use the standard mollifier φ(t), a smooth, increasing
function which varies from 0 to 1 and is suitably normalized to integrate to unity on the
whole real line. Specifically, we take φ(t) = 1

m

∫ t
−∞ ψ(s)ds with m =

∫∞
−∞ ψ(s)ds where

ψ(t) =

{
exp
(

−1
1−(2t−1)2

)
for 0 < t < 1

0 otherwise .

Next, we define the functions h1(x, y) and h2(x, y) as follows:

h1(x, y) = 2 +
α|y|
x

h2(x, y) = 2− xy2

α
.

The function h1(x, y) = 0 on one boundary of the wedge-shaped region R1(α) ∩ R2(α);
h1(x, y) = 1 on the other boundary of this region; and h1 varies smoothly between 0

and 1 in the interior. Similarly, h2(x, y) = 0 on one boundary of the funnel-like region
R2(α) ∩ R3(α) and h2(x, y) = 1 on the other boundary. Thus, outside of a fixed ball,
we define our global Lyapunov function V to agree with the local Lyapunov functions
in subregions of their domains of definition and to be a smooth, convex combination of
the two local Lyapunov functions in regions of intersection. In particular, let Ṽ (x, y) be
given by

Ṽ (x, y) =



v1(x, y) for (x, y) ∈ R1(α) ∩R2(α)c

V1(x, y) for (x, y) ∈ R1(α) ∩R2(α)

v2(x, y) for (x, y) ∈ R2(α) ∩R1(α)c ∩R3(α)c

V2(x, y) for (x, y) ∈ R2(α) ∩R3(α)

v3(x, y) for (x, y) ∈ R3(α) ∩R2(α)c

0 otherwise

where

V1(x, y) = [1− φ(h1(x, y))]v2(x, y) + φ(h1(x, y))v1(x, y)

V2(x, y) = [1− φ(h2(x, y))]v2(x, y) + φ(h2(x, y))v3(x, y) .

We then choose V (x, y) ∈ C2(R2) to satisfy

V (x, y) =

{
Ṽ (x, y) for x2 + y2 > ρ2

arbitrary positive and smooth for x2 + y2 ≤ ρ2

where ρ will be specified below.

Remark 10.1. At the start of the Lyapunov construction in Section 9.1, we fix a choice
of δ > 0 when defining v1. This choice is then propagated through our construction and
is explicitly present in the definition of v2 and v3. During the analysis of v3, we note
in Proposition 9.2 and Proposition 9.3 that we must choose δ ∈ (0, 2

5 ). Except for this
one restriction, we are free to choose δ. Hence our construction of V depends on two
parameters δ and ρ. As we will summarize in Proposition 10.2 below, δ gives the power
of the polynomial growth in all but the pure, positive x-direction. On the other hand, ρ
sets the distance from the origin past which the Lyapunov estimates are valid.
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Consolidating our results on the scaling behavior of the functions vi, i = 1, 2, 3, we
obtain the following:

Proposition 10.2. Fixing a δ ∈ (0, 2
5 ), there exists positive constants c and C, so that

c|(x, y)|δ ≤ V (x, y) ≤ C|(x, y)|δ̂ = C|(x, y)| 52 δ+ 3
2 .

Proof of Proposition 10.2. After observing that δ < δ̂ = 5
2δ + 3

2 on (0, 2
5 ), the result

follows quickly from Proposition 9.3 and the definition of v1 from Section 9.1. On the
right half-plane, the result follows from the definition of v1. On the left half-plane, one
can either use the the scaling relations or the explicit representations given in (9.11)
and (9.10) to obtain the desired inequalities.

The following proposition states that V is a super Lyapunov function. Therefore, one
of our main theorems, Theorem 3.1 from Section 3, is an immediate consequence of this
proposition.

Proposition 10.3. For any δ ∈ (0, 2
5 ), there exists a ρ from the definition of V so that

V (x, y) is a global super Lyapunov function on R2.

In light of Proposition 9.1 and Proposition 9.6, the main missing ingredient in the
proof of Proposition 10.3 is the verification that V is a local Lyapunov function in the
patching regions. This is the content of the next proposition; we prove it before return-
ing to the proof of Proposition 10.3 at the end of the section.

Lemma 10.4. For any δ ∈ (0, 2
5 ), V1(x, y) is a local super Lyapunov function on R1(α)∩

R2(α) and V2(x, y) is a local super Lyapunov function on R2(α) ∩R3(α).

Proof of Lemma 10.4. Let mi, Ri and γi for i = 1, 2, 3 be the constants from Proposi-
tion 9.1 and Proposition 9.6. Next define m∗ = min{m1,m2,m3}, R∗ = max{R1, R2, R3}
and γ∗ = min{γ1, γ2, γ3} = 5δ+5

5δ+3 . We further increase R∗ so that if (x, y) ∈ Ri and
|(x, y)| ≥ R∗ then vi(x, y) > 1. In proving that V2 is a local super Lyapunov function we
need to recall the more refined version of the super Lyapunov property in R2 given in
Proposition 9.6.

We address each of the claims in the lemma separately. We begin with the proof that
V1 is super Lyapunov since it is the most straightforward. If ρ > R∗, we have that for all
(x, y) ∈ R1(α) ∩R2(α) ∩Bcρ(0)

(LV1)(x, y) = (1− φ(h1(x, y)))(Lv2)(x, y) + φ(h1(x, y))(Lv1)(x, y) + E1(x, y)

≤ −m∗[(1− φ(h1(x, y)))vγ12 (x, y) + φ(h1(x, y))vγ11 (x, y)] + E1(x, y)

≤ −m∗[V1(x, y)]γ1 + E1(x, y) by convexity

≤ −m∗(1−M1)[V1(x, y)]γ1

where M1 and E1(x, y) are defined as

M1 = sup
(x,y)∈R1(α)∩R2(α)

|(x,y)|>ρ

[
E1(x, y)

m∗[V1(x, y)]γ1

]

and

E1(x, y) = L[φ(h1(x, y))](v1(x, y)− v2(x, y))

+ 2σx
∂

∂x
[φ(h1(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

+ 2σy
∂

∂y
[φ(h1(x, y))]

∂

∂y
[v1(x, y)− v2(x, y)] .
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If we can choose ρ sufficiently large so that M1 < 1, then V1(x, y) will be a local super
Lyapunov function on R1(α) ∩R2(α). To show M1 < 1, we use the scaling properties of
v1 and v2 to map back to a circular arc of radius r =

√
α2 + 4. Let

` =

√
x2 + y2

r
, a =

x

`
, and b =

y

`
.

Then

(x, y) ∈ R1(α) ∩R2(α) ∩Bcρ(0) =⇒ (x, y) = S
(2)
` (a, b) with ` ≥ 1

Note that h1(x, y) = h1(a, b), so

V1(x, y) = `δV1(a, b) and [V1(x, y)]γ1 = `δ+1[V1(a, b)]γ1 .

As a consequence of these scaling relations, we get that for all (x, y) ∈ R1(α) ∩R2(α) ∩
Bcρ(0),

E1(x, y) = `δ+1αφ′(h1(a, b))|b|
(

1 +
b2

a2

)
[v1(a, b)− v2(a, b)]

+ `δ−1αφ′′(h1(a, b))

(
−σx|b|
a2

+
σysgn(b)

a

)
[v1(a, b)− v2(a, b)]

+ `δ−2αφ′(h1(a, b))
2σx|b|
a3

[v1(a, b)− v2(a, b)]

+ `δ−2αφ′(h1(a, b))
−2σx|b|
a2

∂

∂x
[v1(a, b)− v2(a, b)])

+ `δ−2αφ′(h1(a, b))
2σysgn(b)

a

∂

∂y
[v1(a, b)− v2(a, b)] .

Hence we have that

M1 ≤ sup
(a,b)∈R1(α)∩R2(α)

|(x,y)|≤r

[
e1,1(a, b)

m∗[V1(a, b)]γ1
+

e1,2(a, b)

`2m∗[V1(a, b)]γ1

]
(10.1)

where

e1,1(a, b) = αφ′(h1(a, b))|b|
(

1 +
b2

a2

)
[v1(a, b)− v2(a, b)]

e1,2(a, b) = αφ′′(h1(a, b))
(−σx|b|

a2
+
σysgn(b)

a

)
[v1(a, b)− v2(a, b)]

+ αφ′(h1(a, b))
2σx|b|
a3

[v1(a, b)− v2(a, b)]

+ αφ′(h1(a, b))
−2σx|b|
a2

∂

∂x
[v1(a, b)− v2(a, b)]

+ αφ′(h1(a, b))
2σysgn(b)

a

∂

∂y
[v1(a, b)− v2(a, b)] .

By explicit computation with v1 and v2, we can show that e1,1(a, b) is always negative for
(a, b) in the desired region. The second term of the sum in (10.1), the upper bound for
M1, can then be made arbitrarily small by choosing ` large enough; this corresponds to
choosing ρ sufficiently large. This establishes that M1 < 1, which completes the proof
of the lemma.
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We now turn to proving that V2 is super Lyapunov. If ρ > R∗, then for all (x, y) ∈
R2(α) ∩R3(α) ∩Bcρ(0)

(LV2)(x, y) = (1− φ(h2(x, y)))(Lv2)(x, y) + φ(h2(x, y))(Lv3)(x, y) + E2(x, y)

≤ −m∗[(1− φ(h2(x, y)))vγ32 (x, y) + φ(h2(x, y))vγ33 (x, y)] + E2(x, y)

≤ −m∗[V2(x, y)]γ3 + E2(x, y) by convexity

≤ −m∗(1−M2)[V2(x, y)]γ3

where

M2 = sup
(x,y)∈R2(α)∩R3(α)∩Bcρ(0)

[
E2(x, y)

m∗[V2(x, y)]γ3

]
and

E2(x, y) = L[φ(h2(x, y))](v3(x, y)− v2(x, y))

+ 2σx
∂

∂x
[φ(h2(x, y))]

∂

∂x
[v3(x, y)− v2(x, y)]

+ 2σy
∂

∂y
[φ(h2(x, y))]

∂

∂y
[v3(x, y)− v2(x, y)] .

If M2 < 1, then V2(x, y) will be a super Lyapunov function on R2(α) ∩ R3(α). To show
M2 < 1, we use the scaling properties of v2 and v3 to map back to a vertical line. Let

` =
x

2α
, a = 2α, and b = y

√
` .

Then
(x, y) ∈ R2(α) ∩R3(α) ∩Bcρ(0) =⇒ (x, y, 1) = S

(1)
` (a, b, `−3)

where |b| ∈
[

1√
2
, 1
]

and ` ≥ 1. Note that h2(x, y) = h2(a, b), so V2(x, y) = V2(x, y, 1)

satisfies

V2(x, y, 1) = `δ̂V2(a, b, `−3) and [V2(x, y, 1)]γ3 = `δ̂+1[V2(a, b, `−3)]γ3

where
V2(x, y, λ) = [1− φ(h2(x, y))]v2(x, y, λ) + φ(h2(x, y))v3(x, y) .

Now we have that for all (x, y) ∈ R2(α) ∩R3(α) ∩Bcρ(0),

E2(x, y) = `δ̂+1φ
′(h2(a, b))

α
(−5a2b2 − 2aσy)[v3(a, b)− v2(a, b, `−3)]

+ `δ̂+1φ
′(h2(a, b))

α
(−4abσy)

∂

∂y
[v3(a, b)− v2(a, b, `−3)]

+ `δ̂+
1
2
φ′′(h2(a, b))

α
(−2abσy)[v3(a, b)− v2(a, b, `−3)]

+ `δ̂−1φ
′′(h2(a, b))

α
(−b2σx)[v3(a, b)− v2(a, b, `−3)]

+ `δ̂−2φ
′(h2(a, b))

α
b4[v3(a, b)− v2(a, b, `−3)]

+ `δ̂−2φ
′(h2(a, b))

α
(−2b2σx)

∂

∂x
[v3(a, b)− v2(a, b, `−3)] .

Define N(λ∗) as follows:

N(λ∗) = sup
|b|∈[ 1√

2
,1]

λ∈(0,λ∗]

[
e2,1(a, b, λ)

m∗[V2(a, b, λ)]γ3
+

e2,2(a, b, λ)√
`m∗[V2(a, b, λ)]γ3

]
(10.2)
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where

e2,1(a, b, λ) =
φ′(h2(a, b))

α
(−5a2b2 − 2aσy)[v3(a, b)− v2(a, b, λ)]

+
φ′(h2(a, b))

α
(−4abσy)

∂

∂y
[v3(a, b)− v2(a, b, λ)] ,

e2,2(a, b, λ) =
φ′′(h2(a, b))

α
(−2abσy)[v3(a, b)− v2(a, b, λ)]

+
φ′′(h2(a, b))

α
(−b2σx)[v3(a, b)− v2(a, b, λ)]

+
φ′(h2(a, b))

α
b4[v3(a, b)− v2(a, b, λ)]

+
φ′(h2(a, b))

α
(−2b2σx)

∂

∂x
[v3(a, b)− v2(a, b, λ)] .

Note that for any λ∗ > 0, we can choose ρ sufficiently large to force M2 (which, we
recall, depends on ρ) to be less than N(λ∗). Ultimately, we will choose λ∗ sufficiently
small so that N(λ∗) < 1. The second term of the sum in (10.2) can be made arbitrarily
small by increasing the size of `; again, increasing the size of ` corresponds to increas-
ing ρ. We now address the first term of the sum in (10.2). From Lemma 10.5 which is
stated and proven bellow, we see that we can chose the parameters to make this term
negative.

Combining all of these observations, we have demonstrated that M2 < 1, which
completes the proof of the lemma.

Lemma 10.5. There exist positive constants c1 and c2 in the definition of the Poisson
equation for v3(x, y), and positive α and λ∗ such that for all λ ∈ [0, λ∗], the following
inequalities hold for a = 2α and |b| ∈

[
1√
2
, 1
]
:

v3(a, b)− v2(a, b, λ) > 0 (10.3)

b
[∂v3

∂y
(a, b)− ∂v2

∂y
(a, b, λ)

]
> 0 (10.4)

Proof of Lemma 10.5. Recall that, from (9.10), v3(x, y) can be represented as

v3(x, y) = xδ̂
[(
c1
δ̂

+ c2
)
E(x,y)

[
eδ̂τ
]
− c1

δ̂

]
(10.5)

where τ = inf{t > 0 : |Zt| /∈ [−
√

2α,
√

2α]} and Zt is the process given in (9.8). Note that
the expectation in (10.5) can be written as the solution to a second-order ODE, namely:

E(x,y)

[
eδ̂τ
]

= gε(
√
εx y)

where gε(z) solves the following boundary value problem with ε = 1
2α :{

εσyg
′′
ε (z) + 5

2zg
′
ε(z) + δ̂gε(z) = 0 for z ∈ (−1, 1)

gε(−1) = gε(1) = 1 .
(10.6)

Define g0(z) to be the solution to the limiting ODE in (10.6) when ε = 0 and note that
g0(z) can be computed exactly for initial conditions z 6= 0:

g0(z) =
1

|z|δ+ 3
5

. (10.7)

Now, let v0(x, y) be defined as

v0
3(x, y) = xδ̂

[(
c1
δ̂

+ c2
)
g0(
√
εx y)− c1

δ̂

]
. (10.8)
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We address the first difference between v3 and v2 in (10.3) as follows. We write

v3(a, b)− v2(a, b) =v3(a, b)− v0
3(a, b) (10.9)

+ v0
3(a, b)− v2(a, b, 0) (10.10)

+ v2(a, b, 0)− v2(a, b, λ) . (10.11)

To show that this difference is positive, we will show that v0
3(a, b) − v2(a, b, 0) > 0 and

that the other two differences are small in comparison. Similarly, for the difference
between the y-derivatives of v3 and v2 in (10.4), we write

b
[∂v3

∂y
(a, b)− ∂v2

∂y
(a, b, λ)

]
=b
[∂v3

∂y
(a, b)− ∂v0

3

∂y
(a, b)

]
(10.12)

+ b
[∂v0

3

∂y
(a, b)− ∂v2

∂y
(a, b, 0)

]
(10.13)

+ b
[∂v2

∂y
(a, b, 0)− ∂v2

∂y
(a, b, λ)

]
(10.14)

and again, we will show that b
[∂v03
∂y (a, b)− ∂v2

∂y (a, b, 0)
]
> 0 and the other two differences

are small in comparison. Specifically, we demonstrate that there exist positive constants
c1 and c2 in the Poisson equation for v3 such that the differences in (10.10) and (10.13)
are positive; and then, that there exists α sufficiently large such that the differences on
the righthand sides of (10.9) and (10.12) are comparatively small; and last, that there
exists a λ∗ such that (10.11) and (10.14) are comparatively small for all λ ∈ [0, λ∗]. For
the first of these claims, note that

v0
3(a, b)− v2(a, b, 0) =

(2α)2δ+1

|b|δ+1
q(b) (10.15)

b
[∂v0

3

∂y
(a, b)− ∂v2

∂y
(a, b, 0)

]
=

(2α)2δ+1

|b|δ+1
q̃(b)

where q and q̃ are given by

q(b) = 2
1
2 δ+

1
2

[(
c̃1
δ̂

+ c̃2
)
|b| 25 − c̃1

δ̂
|b|δ+1

]
− 1

q̃(b) = −
(
δ + 3

5

)
2

1
2 δ+

1
2

(
c̃1
δ̂

+ c̃2
)
|b| 25 + δ + 1

and c1 = c̃1

α
1
2
δ+1

2
and c2 = c̃2

α
1
2
δ+1

2
. We note that c1 and c2 are chosen to scale with α so

that v2 and v3 have identical scaling in α. Moreover, as we demonstrate below, c̃1 and c̃2
can be chosen independently of α. It is clear that q̃ is a monotone decreasing function
of |b|; hence it is minimized at the right endpoint of the interval for |b|, that is, |b| = 1.
Thus if we can show q̃(1) > 0, then it follows that

b
[∂v0

3

∂y
(a, b)− ∂v2

∂y
(a, b, 0)

]
> 0 (10.16)

for all |b| ∈ [2−
1
2 , 1]. If we can also show q(2−

1
2 ) > 0, then from (10.15), we conclude that

v0
3(a, 2−

1
2 )− v2(a, 2−

1
2 , 0) > 0 .

Combining this with (10.16) gives the desired positivity of (10.10) on the whole interval
|b| ∈ [2−

1
2 , 1]. Hence, we need only verify that there exist positive values of c̃1 and c̃2

such that

q(2−
1
2 ) = 2

1
2 δ+

1
2

[(
c̃1
δ̂

+ c̃2
)
2−

1
5 − c̃1

δ̂
2−( 1

2 δ+
1
2 )
]
− 1 > 0 (10.17)

q̃(1) = −
(
δ + 3

5

)
2

1
2 δ+

1
2

(
c̃1
δ̂

+ c̃2
)

+ δ + 1 > 0 . (10.18)
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The verification of this is elementary and we omit the details.
We remark that c̃1 and c̃2 can be chosen independently of α, since the above inequal-

ities have no dependence on α. Thus, choosing positive c̃1 and c̃2 such that (10.17) and
(10.18) are both satisfied, we get that for all |b| ∈ [2−

1
2 , 1],

v0
3(a, b)− v2(a, b, 0) ≥ α2δ+12

5
2 δ+

3
2 q(2−

1
2 ) > 0

b
[∂v0

3

∂y
(a, b)− ∂v2

∂y
(a, b, 0)

]
≥ α2δ+122δ+1q̃(1) > 0 .

We turn our attention to making the differences

v3(a, b)− v0
3(a, b) and b

[∂v3

∂y
(a, b)− ∂v0

3

∂y
(a, b)

]
comparatively small. Note that

v3(a, b)− v0
3(a, b) = α2δ+12

5
2 δ+

3
2

(
c̃1
δ̂

+ c̃2
)
[gε(b)− g0(b)]

b
[∂v3

∂y
(a, b)− ∂v0

3

∂y
(a, b)

]
= α2δ+12

5
2 δ+

3
2 b
(
c̃1
δ̂

+ c̃2
)
[g′ε(b)− g′0(b)] .

To be precise, we will show that

|v3(a, b)− v0
3(a, b)| < 1

3

[
α2δ+12

5
2 δ+

3
2 q(2−

1
2 )
]

∣∣∣b[∂v3

∂y
(a, b)− ∂v0

3

∂y
(a, b)

]∣∣∣ < 1
3

[
α2δ+122δ+1q̃(1)

]
.

This is equivalent to establishing that∣∣∣α2δ+12
5
2 δ+

3
2

(
c̃1
δ̂

+ c̃2
)
[gε(b)− g0(b)]

∣∣∣ < 1
3

[
α2δ+12

5
2 δ+

3
2 q(2−

1
2 )
]

(10.19)∣∣∣α2δ+12
5
2 δ+

3
2 b
(
c̃1
δ̂

+ c̃2
)
[g′ε(b)− g′0(b)]

∣∣∣ < 1
3

[
α2δ+122δ+1q̃(1)

]
. (10.20)

Observe that the same powers of α appear on both sides of each of the above inequal-
ities. Therefore, to prove (10.19) and (10.20), it suffices to show that gε(b) and g′ε(b)

converge uniformly to g0(b) and g′0(b), respectively, for |b| ∈ [2−
1
2 , 1] as ε = 1

2α → 0. Both
of these uniform convergences follow from classical results; see, for example, [1].

Since ε = 1
2α , we can choose α sufficiently large to guarantee that both (10.19) and

(10.20) hold and that v2 remains a local super Lyapunov function on R2(α) (recall that
in Proposition 9.6, a lower bound on the size of α was imposed). Finally, by choosing
λ∗ sufficiently small, the differences in (10.11) and (10.14) can be made small for all
λ ∈ [0, λ∗]. This is an immediate consequence of the fact that v2(a, b, λ) is a C2 function
of λ ∈ [0, 1].

Having established the super Lyapunov property in the patching region, we return
to the proof of the main result of this section.

Proof of Proposition 10.3. The local super Lyapunov condition has now been proven in
regions; namely, for v1 in Proposition 9.1, for v2 and v3 in Proposition 9.6, and for the
patched functions V1 and V2 in Proposition 10.4. All that remains is to make a global
choice of constants. The constant ρ from Proposition 10.4 was chosen to be valid in all
regions. It is sufficient to choose

M = min
{
m∗(1−M1),m∗(1−M2)

}
< m∗,

b = sup
{
|(LV )(x, y)| : x2 + y2 ≤ ρ2

}
, and

γ = min{γ1, γ2, γ3} =
5δ + 5

5δ + 3
.
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These choices guarantee that for all (x, y) ∈ R2

(LV )(x, y) ≤ −M [V (x, y)]γ + b .

11 Existence and Positivity of Transition Density

Having established the existence of a global super Lyapunov function, we now make
a small detour to prove the existence of a smooth density with appropriate positivity
properties. These results provide the missing ingredient to prove the ergodic result
stated in Theorem 3.2, namely a minorization condition. It is worth noting, however,
that proving the minorization condition is not our sole goal. Indeed, if it were, we
would not need all of the results of this section: we could simply use smoothness and
appropriate open set controllability results. See for example [25, 24].

Instead, our interest is larger, motivated by two concerns. First, we wish to un-
derstand the general structure of the invariant measure, not merely its uniqueness.
Second, we want to take this simple example to highlight some techniques, different
than those often used, which can be applied in more general situations to address ques-
tions of positivity. We feel that these methods convey more intuition and better allow
for the inclusion of a priori facts about the dynamics.

11.1 Positivity when σx > 0

When σx > 0 (since we always assume σy > 0), the system is uniformly elliptic, and
everything is relatively straightforward. Since the diffusion associated with (3.1) has
a constant, positive definite diffusion matrix, classical results guarantee the existence
of a function p : (0,∞) × R2 × R2 → (0,∞) such that p is jointly continuous, pt(z, z′) is
strictly positive for all (t, z, z′), and such that for all measurable sets A

Pt(z,A) =

∫
A

pt(z, z
′)dz′ . (11.1)

We summarize these results for future reference in the following Proposition.

Proposition 11.1. If σy > 0 and σx > 0 then for all t > 0, Pt has an everywhere positive
density pt(z, z′) with respect to Lebesgue measure which is smooth in both z and z′.

11.2 Positivity when σx = 0

When σx = 0 (but σy still positive), the situation is more delicate. We begin by
observing that the generator of the associated diffusion is still hypoelliptic; to see this,
we write the generator of the diffusion as

L = X +
1

2
σy∂

2
y .

Observe that [[X, ∂y], ∂y] = −2 and hence the relevant ideal in the algebra generated by
X and ∂y is of full rank. In turn, this ensures the existence of a continuous function p

so that (11.1) holds. The main difference between this and the setting of Section 11.1
is that it is no longer immediate that pt(z, z′) is positive for all t > 0 and z, z′ ∈ R2. In
fact it is not true.

Intuitively, it is clear that if z is in the left-half plane and z′ in the right-half plane
then pt(z, z

′) should be zero, since there is no way to move across the y-axis. On the
other hand, it is reasonable to expect that given any z′ in the left-half plane, there exists
a T = T (z′) such that pt(z, z′) > 0 for all t > T and z ∈ R2.
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There are a number of ways to prove such a result. The most generally applicable
and powerful technique is to leverage geometric control theory to show that the support
of Pt(z, · ) contains a sufficiently large, bounded region of the left-half plane for any z
and t sufficiently large. From this, for example, one can show that (Xt, Yt) is sufficiently
smooth in the Malliavin sense (which it is), and deduce that pt(z, z′) is strictly positive
in the interior of the support.

Alternatively, one can use sufficiently quantitative open-set controllability results to
extend the very local positivity which follows just from the joint-continuity of (z, z′) 7→
pt(z, z

′). This is the method employed in [25, 24] in various forms.
Here we take an approach most consonant with the first option. However, rather

than merely citing the appropriate geometric control theory results, we construct an
explicit series of simple controls to prove the positivity condition we require. The sub-
sequent discussion is lengthier, but we feel that it is more intuitive and is a useful com-
plement to more general control theoretic arguments, especially for the uninitiated.

Before turning to the existence of a positive density for (3.1), we first consider an
analogous calculation in a simpler setting. Consider a smooth map φ : Rm → Rd where
m > d and let Γ be a non-degenerate Gaussian probability measure on Rm. Consider
the push forward of Γ by φ, denoted by Γφ−1 and defined by Γφ−1(A) = Γ(φ−1(A)). For
the measure Γφ−1 to be absolutely continuous with respect to Lebesgue measure, it is
necessary and sufficient that

Γ{x ∈ Rm : Det|(Dφ)(x)(DφT )(x)| = 0} = 0 .

(See [5, 6] for more details.) Supposing that this condition holds, we let γ̂ denote the
density of Γφ−1 with respect to Lebesgue measure. We are interested in when γ̂(z) is
positive at a given point z ∈ Rd. It is a simple exercise in calculus to see that γ̂(z) > 0

if and only if there exists a x ∈ Rm with γ(x) = z and for which (Dφ(x))(DφT (x)) is a
non-degenerate matrix. The first condition ensures that there is a way to reach z; that
is to say, z is the image of Rd under φ. The second ensures that an infinitesimal piece of
volume, and hence probability, is brought with x when it is mapped by φ.

This intuitive fact has a counterpart in stochastic analysis. While these ideas rest on
the foundation of Malliavin calculus, the closest analogue is found in the work of Ben
Arous and Leandre [8, 7] and the subsequent presentation by Nualart[3]. We begin by
identifying the map in question.

To any U ∈ L2([0, T ],Rd), we associate {(XU
t , Y

U
t ) : t ∈ [0, T ]} which solves the

system of equations
ẊU
t = (XU

t )2 − (Y Ut )2

Ẏ Ut = 2XU
t Y

U
t + Ut

. (11.2)

In the following discussion, we will refer to U as the control and denote by (Xd
t , Y

d
t )

the solution to the deterministic system of equations (7.1); that is, the system (11.2)
with U(x, y) identically zero. It is also worth mentioning that for U ∈ L2([0, T ],R),
t 7→ (XU

t , Y
U
t ) is continuous on [0, T ].

In analogy to the discussion at the start of the section, for T > 0 and z ∈ R2, we will
consider the map ΦT,z : L2((0, T ];R) → R2 defined by U 7→ (Φ

(1)
T,z,Φ

(2)
T,z) = (XU

T , Y
U
T ) and

(XU
0 , Y

U
0 ) = z. Translating [3] to our current setting, we obtain the following theorem:

Theorem 11.2. pT (z, z′) > 0 if and only if there exists a U ∈ L2([0, T ],R) so that
ΦT,z(U) = z′ and furthermore the matrix

MT,z(U) =

(
‖DΦ

(1)
T,z(U)‖2L2 〈DΦ

(1)
T,z(U), DΦ

(2)
T,z(U)〉L2

〈DΦ
(1)
T,z(U), DΦ

(2)
T,z(U)〉L2 ‖DΦ

(2)
T,z(U)‖2L2

)
(11.3)

is nondegenerate. Here D represents the Frechet derivative.

EJP 17 (2012), paper 96.
Page 29/38

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2410
http://ejp.ejpecp.org/


Propagating Lyapunov function

The condition from [8, 7, 3] that the SDE under consideration have coefficients which
are bounded with all derivatives bounded can be removed by a standard localization
argument. The key step is knowing that |(Xt, Yt)| is almost surely finite which follows
from the Lyapunov function we constructed in the preceding sections.

This matrix M is just the product of the Jacobians introduced in the motivating
discussion at the start of this section, translated to our current setting. To facilitate
calculations and to better see this connection, it is useful to observe that for any η ∈ R2

〈MT,z(U)η, η〉 =

∫ T

0

〈JUs,T e2, η〉2ds (11.4)

where e2 = (0, 1) and JUs,t is the Jacobi flow (the linearization of the SDE/controlled ODE)
defined by

JUs,t =


∂Φ

(1)
t,z(U)

∂Φ
(1)
s,z(U)

∂Φ
(1)
t,z(U)

∂Φ
(2)
s,z(U)

∂Φ
(2)
t,z(U)

∂Φ
(1)
s,z(U)

∂Φ
(2)
t,z(U)

∂Φ
(2)
s,z(U)

 .

We now state a simple condition which ensures the nondegeneracy of M . It captures
the fact that as long as there is some twist in Js,s+ε then Js,s+εe2 and e2 will not be co-
linear, and hence 〈Js,s+εe2, η〉 + 〈e2, η〉 6= 0 for any η 6= 0. Combining this with the
continuity of s 7→ Js,T produces the desired nondegeneracy of (11.4). The following
lemma follows this outline, providing a condition which ensure such that the system
has the desired twist.

Proposition 11.3. To ensure the nondegeneracy of MT,z(U), it is sufficient that there
exist a t0 ∈ [0, T ] so that Φt0,z(U) 6= 0.

Proof of Proposition 11.3. Since t 7→ Φt,z(U) is continuous, we can without loss of gen-
erality assume that t0 ∈ (0, T ) and pick an ε > 0 so [t0 − ε, t0] ⊂ (0, T ) and Φt,z(U) > 0

for all t ∈ [t0 − ε, t0].
The nondegeneracy of MT,z(U) is equivalent to

inf
η∈R2:|η|=1

〈MT,z(U)η, η〉 > 0 .

In light of (11.4), we see that

〈MT,z(U)η, η〉 ≥
∫ t0

t0−ε
〈JUt,T e2, η〉2dt =

∫ t0

t0−ε
〈JUt,t0e2, (J

U
t0,T )∗η〉2dt

where (JUt0,T )∗ is the adjoint of the matrix JUt0,T . Combining these two observations, we
see that for some positive constant c, depending on U ,

inf
η∈R2:|η|=1

〈MT,z(U)η, η〉 ≥ c inf
η∈R2:|η|=1

∫ t0+ε

t0

〈JUt,t0e2, η〉2dt .

Since (t, η) 7→ 〈JUt,t0e2, η〉 is jointly continuous, it is sufficient to show that

〈JUt,t0e2, e
⊥
2 〉 6= 0 for all t ∈ [t0 − ε, t0) (11.5)

for some positive ε where e⊥2 is the standard choice of vector perpendicular to e2. Since
JUt0,t0e2 = e2, this guarantees that for every given η 6= 0, one has 〈JUt,t0e2, η〉 6= 0 for t in
some open interval of [t0− ε, t0]. The continuity in η then ensures the infimum over all η
with |η| = 1 is still positive.

EJP 17 (2012), paper 96.
Page 30/38

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2410
http://ejp.ejpecp.org/


Propagating Lyapunov function

To establish (11.5), we appeal directly to the equations. We see that as long as
Φt,z(U) 6= 0 to t ∈ [t0 − ε, t0] then 〈Js,rη, η⊥〉 6= 0 for all s, r with t0 − ε ≤ s < r ≤ t0
and all η 6= 0. This is due to the fact that as long as the trajectory is not at zero,
the linearization rotates any vector a nontrivial amount over any interval of time. In
particular, the linearization satisfies the equation ∂tJs,t = AtJs,t for t ≥ s with Js,s equal
to the identity matrix and

At =

(
2Xt −2Yt
2Yt 2Xt

)
= 2Rt

(
cos θt − sin θt
sin θt cos θt

)
(11.6)

where (Xt, Yt) = (Rt cos θt, Rt sin θt).

Remark 11.4. The proof of Proposition 11.3 gives very appealing intuition concerning
the positivity of the transition density. Stochastic variation is injected at every moment
of time in the y-direction. However, the deterministic part of the flow is rotating at
every point except the origin, as is seen from the calculation in (11.6). This rotation
ensures that there is stochastically independent variation in two linearly independent
directions.

As a consequence of Proposition 11.3, to invoke Theorem 11.2 to prove the positivity
of pt(z, z′) for two given points z, z′ ∈ R2, we simply need to find a control U for which
Φt,z(U) = z′ and for which the path does not spend all of its time at the origin. Since
the path is continuous in time, this last condition poses no restriction if either z or z′

is not the origin. If both z and z′ are the origin, it is still elementary to find a control
satisfying the second condition which still also satisfies Φt,z(U) = z′.

We collect these last observations in the following lemma which combines Proposi-
tion 11.3 and Theorem 11.2.

Corollary 11.5. The transition density pt satisfies pT (x, y) > 0 for a given T > 0 and
x, y ∈ R2 if there exist a U ∈ L2([0, T ],R) such that ΦT,x(U) = y and there exists an
s ∈ [0, T ] so that Φs,x(U) 6= 0. Similarly, pT (x, y) = 0 if there exists no U ∈ L2([0, T ],R)

such that ΦT,x(U) = y.

We now build the required controls. All the controls we design will take the form
Ut = u(XU

t , Y
U
t , t) for some piecewise smooth u : R2 × [0, T ] → R. At first glance,

this might seem an implicit specification which risks being ill-defined, since (XU
t , Y

U
t )

depends on the function Ut we define through (11.2). However, a moment’s reflection
shows this not to be the case, since in this setting (XU

t , Y
U
t ) can be defined in a self-

contained way as the solution to the ODE

ẊU
t = (XU

t )2 − (Y Ut )2

Ẏ Ut = 2XU
t Y

U
t + u(XU

t , Y
U
t , t) .

Then, with this solution in hand, one can define Ut = u(XU
t , Y

U
t , t).

Lemma 11.6. Let z∗ = (x∗, y∗) with x∗ < 0 be fixed. There exists a finite T∗(z∗) > 0

such that for all z0 = (x0, y0) ∈ R2 and for all T > T∗(z∗), there exists a control U ∈
L2([0, T ],R) for which the controlled system (11.2) satisfies

(XU
0 , Y

U
0 ) = z0, (XU

T , Y
U
T ) = z∗

and such that MT,z0(U) is nondegenerate.
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x

y

(x0, y0)

(x∗, y∗)

Figure 3: A representative example of a control path used to move from any point in R2

to any point in the left-half plane.

Proof of Lemma 11.6. We begin with the case of z∗ = (x∗, y∗) with y∗ 6= 0. The remain-
ing case will be considered at the end of the proof. The critical feature of z∗ with y∗ 6= 0

is that there exists a deterministic orbit which begins on the y-axis and flows in finite
time to the point z∗.

Let B be the closed ball of radius |x∗|/3 about the origin intersected with the negative
half-plane {(x, y) : x ≤ 0}. We begin by setting Ut = sgn+(y0) for t ∈ [0, 1]. (Here
sgn+(x) = x/|x| for x 6= 0 and 1 if x = 0.) Define T1 to be the first time t ≥ 1 such that
(XU

t , Y
U
t ) ∈ B where (XU

0 , Y
U
0 ) = z0. We will set Ut = 0 for t ∈ [1, T1 + s] where s ≥ 0

is a parameter we will vary in our construction. By driving with |Ut| = 1 on the time
interval [0, 1], we have ensured that Y U1 6= 0, which in turn implies that T1 ≤ T ∗1 for some
finite, z0-independent constant T ∗1 . (In light of the discussion at the end of Section 7,
T ∗1 ≤ 1 + 6

|x∗| .) Let C∗ be the orbit of the deterministic system which passes through
the point z∗ but which is not contained in the set B. Recall that this orbit is a circle
tangent to the origin. We now define T2 to be the infimum over time t ≥ T1 + s such that
(XU

t , Y
U
t ) ∈ C∗. If we define Ut = sgn+(Y Ut )M − 2XU

t Y
U
t for t ∈ [T1 + s, T2], then Ẏ Ut =

sgn+(Y Ut )M , and Y Ut = Y UT1+s +Msgn+(Y UT1+s) (t− T1 − s) for t ∈ [T1 + s, T2]. Hence for
M large enough, we can ensure that Xt moves very little in the time it takes Yt to grow
sufficiently to cross C∗. This allows us to prove that T2− (T1 + s) is bounded from above
for any sufficiently large fixed choice of M with a bound which is independent of s and
z0 since (XU

T1+s, Y
U
T1+s) ∈ B. For the same reason, by choosing M large enough we can

ensure that |XU
T2
| ≤ 2|x∗|/3. Fixing such an M , we define T3 to be the infimum of times

t > T2 such that (XU
t , Y

U
t ) = z∗. For t ∈ [T2, T3], we set Ut = 0. Since M is fixed and

|XU
T2
| ≤ 2|x∗|/3, clearly T3−T2 is bounded uniformly for all s ≥ 0 and z0 ∈ R2. If we view

T3 − (T1 + s) as a function of (XU
T1+s, Y

U
T1+s), then it is continuous, since the governing

ODEs depend continuously on their initial conditions. Since (XU
T1+s, Y

U
T1+s) ∈ B, which

is a compact set, we know that there exists a finite bound τ∗ so that T3 − (T1 + s) ≤ τ∗

for all (XU
T1+s, Y

U
T1+s) ∈ B. Because (XU

T1+s, Y
U
T1+s) is a continuous function of (z0, s) and

T1 an continuous function of z0, we see that (z0, s) 7→ T3 is a continuous function. Since
T1 and T3 − T2 are bounded uniformly in (z0, s), we conclude that if T : (z0, s) 7→ T3,
then there exists a T∗ so that T (z0, 0) ≤ T∗ for all z0. Since s 7→ T (z0, s) is continuous
and T (z0, s)→∞ as s→∞, we conclude that for any t ≥ T∗ and z0 ∈ R2 there exists a
s(t, z0) so that T (z0, s(t, z0)) = t. The control U constructed corresponding to this choice
of s is the desired control. It is clearly in L2([0, t];R) since it is uniformly bounded.

We now return to the case of z∗ = (x∗, y∗) where y∗ = 0. Let (XU
t , Y

U
t ) be the

solution with control Ut = −2XtYt − 1 and initial condition (XU
0 , Y

U
0 ) = z∗. Since this
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is in fact a flow, its solutions also exist backward in time. It is clear from the choice U
that Y U−1 = 1 6= 0. For future reference, define z1 = (XU

−1, Y
U
−1). Hence by the first part

of the proof, there exists a T∗ so that for any s ≥ T∗ there exists a control U so that
(XU

0 , Y
U
0 ) = z0 and (XU

s , Y
U
s ) = z1. Thus if we define

Ũt =

{
Ut if t ∈ [0, s]

−2XtYt − 1 if t ∈ (s, s+ 1]
.

By the choice of z1, (XŨ
T , Y

Ũ
T ) = z∗ as required if we set T = s+ 1.

Lastly we observe that none of the control paths employed are identically zero for
all time. Hence Lemma 11.3, implies that MT,z0(Ũ) is non-degenerate.

Combining the results from this section, we get the following Proposition which is
the analogue of Proposition 11.1.

Proposition 11.7. If σy > 0 but σx = 0, then for any z∗ = (x∗, y∗) ∈ R2 with x∗ < 0 there
exists a T∗ so that for any t > T∗ one has pt(z, z∗) > 0 for any z ∈ R2. Furthermore,
if z0 = (x0, y0) ∈ R2 with x0 < 0 and z1 = (x1, y1) ∈ R2 with x1 ≥ 0 than one has
pt(z0, z1) = 0 for any t > 0.

Proof of Proposition 11.7. As already outlined, the positivity claim follows from The-
orem 11.2, because Proposition 11.6 guarantees the existence of a control with the
needed properties. The fact that pt(z0, z1) = 0 when x1 is strictly positive also follows
from Theorem 11.2, provided we can show that there is no control which moves one
from z0 to z1. To see this, observe that except for the fixed point at the origin, the vec-
tor field for any control always points toward the left half-plane along the y-axis. Hence
it is impossible to leave the left half-plane. The fact that pt(z0, z1) = 0 when x1 = 0

follows from the strict positivity of pt(z0, z1) when x1 < 0 and from the continuity of
pt(z0, z1).

11.3 Positivity of the Invariant Measure: Proof of Theorem 3.4

Assuming that σy > 0, we know that Pt(z, ·) is absolutely continuous with respect to
Lebesgue measure and has a smooth density. Hence if µ is an invariant measure (and
therefore we have µ = µPt for any t > 0), we see that µ also has a smooth density, m,
with respect to Lebesgue measure. The invariance implies that for all z ∈ R2 and t > 0

m(z) =

∫
R2

pt(z
′, z)m(z′)dz′ (11.7)

where pt is the density of Pt.
Let z be a point such that for some t > 0, pt(z′, z) > 0 for all z′ ∈ R2. Since m

integrates to one and is smooth, there must exist some open set A such that m(z′) > 0

for all z′ ∈ A. Combining this observation with (11.7), we get

m(z) ≥
∫
A

pt(z
′, z)m(z′)dz′ > 0 .

Hence we deduce that m(z) is positive at any point z which satisfies the stated assump-
tion. Applying this result to the information on the positivity of pt in Proposition 11.1
and Proposition 11.7, we obtain the conclusions about the positivity of m(z) in Theo-
rem 3.4.

To deduce the statements that m(z) = 0 for z = (x, y) with x ≥ 0 if σy > and σx = 0,
we use Proposition 11.7, which states that if w ∈ H+ = {z = (x, y) ∈ R2 : x ≥ 0}, then
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pt(ζ, w) = 0 for all t > 0 if ζ ∈ H−, where H− is defined to be the complement of H+.
This implies that if z ∈ H+, then

m(z) =

∫
H+

pt(w, z)m(w)dw .

Integrating this expression over H+ and interchanging the order of integration, we get∫
H+

m(z)dz =

∫
H+

φ(w)m(w)dw .

where φ(w) =
∫
H+

pt(w, z)dz. Since m(z), φ(z) ≥ 0 for all z, this implies that for

Lebesgue-almost-every z ∈ H+, either m(z) = 0 or φ(z) = 1. Yet from Proposition 11.7,
we know that given any w ∈ H−, there exists a time t > 0 so that pt(z, w) > 0 for all
z ∈ R2. Because z 7→ pt(z, w) is continuous, we know φ(w) < 1 for every w ∈ H+. This
implies that m(z) = 0 for almost every z ∈ H+. Since m(z) is continuous, this forces
m(z) = 0 for all z ∈ H+. This completes the proof of Theorem 3.4.

12 Minorization and Geometric Ergodicity

We now establish the minorization condition we need to complete the proof of Theo-
rem 3.2. Specifically, we seek a probability measure ν and positive constants α, R, and
T so that

inf
{z∈R2:|z|≤R}

PT (z, · ) ≥ αν( · ) (12.1)

and R > KT where KT is the constant from Lemma 6.1. This condition is a localized
version of the classical Doeblin condition and central to the theory of Harris chains
[21, 26, 18]. While the Lyapunov condition ensures the existence of an invariant mea-
sure and guarantees sufficiently rapid returns to the “center of phase space” to produce
geometric mixing, the minorization condition ensures the existence of probabilistic mix-
ing.

To summarize our current situation, we pause to prove the following intermediate
result.

Theorem 12.1. If the minorization condition holds from (12.1), then the Markov semi-
group Pt generated by (3.1) satisfies the conclusions of Theorem 3.2.

Proof of Theorem 12.1. By Theorem 1.3 in [18], there exist constants ᾱ ∈ (0, 1) and β >
0 such that ρβ(µ1PT , µ2PT ) ≤ ᾱρβ(µ1, µ2). Results such as this are quite classical. Other
proofs can be found, for example, in [26]. Combining this estimate with Proposition 6.2
immediately implies that for any n ∈ {0} ∪N

ρβ(µ1PnT , µ2PnT ) ≤ ᾱn−1ρβ(µ1PT , µ2PT ) ≤ ᾱn
(1 + βKT

ᾱ

)
ρ0(µ1, µ2) . (12.2)

To extend this estimate to an arbitrary t ≥ 0, we define a nonnegative integer n and
τ ∈ (0, 1) so that t = nT + τ and observe that

ρβ(µ1Pt, µ2Pt) = ρβ(µ1PτPnT , µ2PτPnT ) ≤ ᾱn
(1 + βKT

ᾱ

)
ρ0(µ1Pτ , µ2Pτ )

≤ ᾱn
(1 + βKT

ᾱ

)
ρ0(µ1, µ2) ≤ ᾱ t

T

(1 + βKT

ᾱ2

)
ρ0(µ1, µ2)

As noted in Remark 6.3, for any β′ ≥ 0 there exists a constant C so that ρβ′(ν1, ν2) ≤
Cρβ(ν1, ν2) for all probability measure νi. This completes the proof.
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12.1 Minorization when σx > 0

Now since for each t > 0, (z, z′) 7→ pt(z, z
′) is continuous and everywhere positive,

it is elementary that for any R > 0 there exists a positive constant α = α(R, t) > 0

so that inf{pt(z, z′) : z, z′ ∈ Rd, |z|, |z′| ≤ R} ≥ α. The minorization condition follows
immediately from this, since for any measurable set A

Pt(z,A) =

∫
A

pt(z, z
′)dz′ ≥ αLeb(A ∩BR(0)) = αLeb(BR(0))ν(A)

where Leb is Lebesgue measure and ν(A) = Leb(A ∩BR(0))/Leb(BR(0)).

12.2 Minorization when σx = 0

We now state and prove a lemma which shows that the needed minorization condi-
tion follows quickly from continuity and a relaxed positivity assumption. In Section 11.2,
this relaxed positivity assumption was shown to hold by using a very explicit control the-
ory argument coupled with some stochastic analysis.

Lemma 12.2. Let P (z, dz′) be a Markov transition kernel on Rd such that P (z, dz′) =

p(z, z′)dz′ with p : Rd × Rd → [0,∞) jointly continuous. If there exists z∗ ∈ Rd and a
compact set B such that for all z ∈ B, p(z, z∗) > 0 there exist α ∈ (0, 1) and a probability
measure ν such that

inf
z∈B

P (z, · ) ≥ α ν(·) .

Proof. Since z 7→ p(z, z∗) is continuous, it achieves its minimum on the compact set
B. Since p(z, z∗) is strictly positive for all z ∈ B, we know that for some α ∈ (1/2, 0),
p(z, z∗) > 2α for all z ∈ B. By the joint continuity of p, for each z ∈ B there exists a
δz > 0 be such that p(y, x) > α for all (y, x) ∈ Bδz (z) × Bδz (z∗). Since {Bδz (z) : z ∈ B}
is an open cover of the compact set B, we can extract a finite subcover. Let K be the
collection of points z associated with this finite subcover. If δ = min{δz : z ∈ K}, then
δ > 0 since δz > 0 and K is finite. Now since

B ⊂
⋃
z∈K

Bδz (z)

we have that p(y, x) > α for all (y, x) ∈ B × Bδ(z∗). Then P (y,A) ≥ αLeb(Bδ(z)(z))ν(A),
where ν(A) = Leb(A∩Bδ(z∗))/Leb(Bδ(z)(z)) and Leb is Lebesgue measure on Rd, since

P (y,A) =

∫
A

p(y, x)dx ≥
∫
A∩Bδ(z∗)

p(y, x)dx ≥ αLeb(A ∩Bδ(z∗)) .

13 Conclusion

We describe a general methodology for building a Lyapunov function in a setting
where the global stability of the systems requires flux of probability into regions which
are clearly dissipative from the rest of phase space. We are most interested in problems,
like the example considered here, where the noise plays an essential role in creating
this transport is some regions. The algorithm makes use of local Lyapunov functions,
which are constructed as solutions to Poisson equations in different regions, and are
then patched together to form one global Lyapunov function. We apply these tech-
niques to one specific example in the plane to illustrate how the addition of noise gives
rise to an invariant probability measure for a system whose purely deterministic dynam-
ics exhibit instability. Furthermore, our resulting “super” Lyapunov function enables
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us to extract a stronger convergence than what is usually proved in the Harris-chain
setting—indeed, an exponential convergence independent of initial condition—to this
equilibrium measure. En route to proving this convergence, we employ explicit control-
theoretic constructions and we rely on the tools of Malliavin calculus. It is our hope
that the simple and specific applications of control theory and Malliavin calculus in our
model problem will be of independent interest.

Of course, further work remains to be done: the application of these methods to
other examples, for instance, and the development of more general theorems about
noise-induced stabilization. In particular, in the planar system we consider, patching the
local Lyapunov functions turns out to be one of the most delicate and important parts of
the proof. Therefore, it would be especially interesting to find more general approaches
to the problem of patching Lyapunov functions, and more general conditions under
which it can be done successfully.

When our construction works, it is likely to produce a Lyapunov function which
provides strong control over the excursions towards infinity and a nearly sharp rate
for the convergence to equilibrium. However, the construction of such a function is
laborious. It would be interesting to obtain a simpler “partial fluid limit” which captures
only the minimal stochasticity at infinity needed to stabilize the system. This may arise
as an extension to our work in the direction of [14, 23, 15, 27]. Such an approach might
allow simpler proofs of stabilization without necessarily proving the existence of strong
Lyapunov function.

A Comparison Proposition

Proposition A.1. Suppose f ∈ C(R) is a non-increasing function and that φ(t) and ψ(t)

are C1 functions on R satisfying φ(0) = ψ(0) and φ′(t) ≤ f(φ(t)), ψ′(t) = f(ψ(t)) for all
t ≥ 0 then φ(t) ≤ ψ(t) for all t ≥ 0.

Proof of Proposition A.1. For all 0 ≤ r ≤ t, we have that

φ(t) ≤ φ(r) +

∫ t

r

f(φ(s))ds and ψ(t) = ψ(r) +

∫ t

r

f(ψ(s))ds

which implies

ψ(t)− φ(t) ≥ (ψ(r)− φ(r)) +

∫ t

r

(f(ψ(s))− f(φ(s)))ds .

Let T1 = inf{t > 0 : ψ(t) − φ(t) < 0}. Suppose for contradiction that T1 < ∞. Then by
continuity, ψ(T1) − φ(T1) = 0 and there exists T2 ∈ (T1,∞) such that for all t ∈ (T1, T2),
ψ(t)− φ(t) < 0. Then for all t ∈ (T1, T2),

ψ(t)− φ(t) ≥ (ψ(T1)− φ(T1)) +

∫ t

T1

(f(ψ(s))− f(φ(s)))ds . (A.1)

Now since f is non-increasing, ψ(t) < φ(t) implies that f(ψ(t)) ≥ f(φ(t). Hence this
combined with (A.1) implies that for all t ∈ (T1, T2), ψ(t)− φ(t) ≥ 0. This is a contradic-
tion. Hence T1 must be infinite and φ(t) ≤ ψ(t) for all t ≥ 0.
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