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Abstract

We consider systems of interacting diffusions with local population regulation representing populations
on countably many islands. Our main result shows that the total mass process of such a system is bounded
above by the total mass process of a tree of excursions with appropriate drift and diffusion coefficients. As
a corollary, this entails a sufficient, explicit condition for extinction of the total mass as time tends to infin-
ity. On the way to our comparison result, we establish that systems of interacting diffusions with uniform
migration between finitely many islands converge to a tree of excursions as the number of islands tends
to infinity. In the special case of logistic branching, this leads to a duality between a tree of excursions
and the solution of a McKean-Vlasov equation.
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1 Introduction

In population dynamics and population genetics a prominent role is played by diffusion processes on
IG with I = [0,∞) or I = [0, 1] driven by stochastic differential equations (SDEs) of the form

dXt(i) =

[∑
j∈G

Xt(j)m(j, i)−Xt(i) + µ
(
Xt(i)

)]
dt+

√
σ2
(
Xt(i)

)
dBt(i), i ∈ G, (1.1)

for t ≥ 0 where G is a finite or countable set and (Bt(i))t≥0, i ∈ G, are independent standard Brownian
motions and where (m(j, i))j,i∈G is a stochastic matrix. We will refer to the solution (Xt)t≥0 of (1.1) as
(G,m, µ, σ2)-process. In appropriate timescales and for suitable choices of µ and σ2, the component Xt(i)

describes the (rescaled) population size on island i ∈ G at time t ≥ 0, or the relative frequency of a genetic
type that is present on island i ∈ G at time t ≥ 0. The linear interaction term on the right-hand side
of (1.1) models a mass flow between the islands, which might be caused by migration of individuals or
a flow of genes. Here we will use a picture from population dynamics. The coefficient σ2(x) then is the
infinitesimal variance of the local population size given its current value x ∈ [0,∞). A classical case are
Feller’s branching diffusions where σ2(x) = const · x for x ∈ [0,∞). Moreover the drift term µ describes
the mean growth rate of a local population apart from immigration from other islands and emigration. A
prototypical example is µ(x) = x(K − x), i.e. logistic growth.

∗University of Munich, Germany. E-mail: hutzenthaler@bio.lmu.de

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v17-2278
http://arXiv.org/abs/1104.1060v1
mailto:hutzenthaler@bio.lmu.de


Interacting diffusions and trees of excursions

Here we address the question of the maximal effect of the migration matrix m(i, j)i,j∈G for fixed µ and
σ2. We will show in Theorem 3.8 that the total mass process (

∑
i∈GXt(i))t≥0 of (Xt)t≥0 is dominated by

a tree of excursions, which has been constructed in [21]. This dominating process does not depend on G

or on the migration matrix. The intuition which leads to this comparison result is as follows. Consider a
model with supercritical population-size independent branching and additional deaths due to competition
within each island of G, i.e., µ is a concave function with µ(0) = 0 and σ2 is a linear function. Now compare
different distributions of individuals over space. If there is at most one individual on each island, then there
are no deaths due to competition until the next birth or migration event. If, however, all individuals are on
the same island, then there are deaths due to competition. The effect of the population-size independent
branching is the same in both situations. We infer that more individuals survive if the distribution of
individuals is more uniform over space. Now the migration dynamics which distributes mass uniformly
over space would be uniform migration on G. As there is no uniform migration on an infinite set G, we
approximate G with larger and larger finite subsets and consider uniform migration on the finite subsets.
This intuition leads to considering an N -island model (XN

t )t≥0 for N ∈ N which is the solution of (1.1) with
G := {1, . . . , N} and m(i, j) := 1

N , i, j ∈ G, that is, the solution of

dXN
t (i) =

[
1
N

N∑
j=1

XN
t (j)−XN

t (i) + µ
(
XN
t (i)

)]
dt+

√
σ2
(
XN
t (i)

)
dBt(i), i ∈ {1, 2, . . . , N}, (1.2)

for t ∈ [0,∞) for every N ∈ N. We will refer to this N -island model as (N,µ, σ2)-process. Now if the
initial configuration XN

0 converges in distribution to X0 as N → ∞, then the above intuition leads to the
assertion that the total mass of the (G,m, µ, σ2)-process is dominated by the limit of the total mass process
of an N -island model (XN

t )t≥0 as N →∞

∑
i∈G

Xt(i) ≤ lim
N→∞

N∑
i=1

XN
t (i), t ≥ 0, (1.3)

where the stochastic order being used here will be specified in (3.14) below. We confirm this intuition in
Theorem 3.8. Please note that a comparison result analogous to (1.3) of a (G,m, µ, σ2)-process with an
N -island process cannot be expected in general for finite N ∈ N.

Next we review part of the literature on the comparison and on the limit in (1.3) and begin with
the limits of the N -island model as N → ∞. Starting with Kac (1957) and McKean (1967), the case of
exchangeable initial configurations XN

0 , N ∈ N, (so that
∑N
j=1X

N
0 (j) is O(N) as N →∞) has been studied

intensively (e.g. [18, 30, 35] and the references therein). The most general result assumes the drift and
the diffusion coefficient to depend continuously on xi and on the measure 1

N

∑N
j=1 δxj for x ∈ IN . If,

in addition, certain Lyapunov conditions hold and if σ(x) 6= 0 for all x ∈ I, then (XN
t (i))t≥0 converges

in distribution as N → ∞ to a limiting process (Mt)t≥0 for every i ∈ N which in our case solves the
McKean-Vlasov equation

dMt =
[
EMt −Mt + µ(Mt)

]
dt+

√
σ2
(
Mt

)
dBt (1.4)

for t ∈ [0,∞), see Theorem 4.1 of [18]. In particular, the Lyapunov assumptions of this theorem are
satisfied if the coefficients are locally Lipschitz continuous and satisfy a linear growth condition, see
Proposition 5.1 of [18]. To the best of our knowledge, our case of Hölder- 1

2 -continuous diffusion coefficients
which are not strictly positive has not been considered so far. Proposition 4.29 below fills this gap. The
idea of comparing a (G,m, µ, σ2)-process with a limit of N -island processes is due to Hutzenthaler and
Wakolbinger (2007). Their Proposition 2.2 establishes for the case of an associated initial configuration
X0 with identically distributed marginals and concave µ that Xt(i) ≤ Mt in a suitable stochastic order for
every t ∈ [0,∞) and every i ∈ G. As a corollary hereof and of an extinction result for the McKean-Vlasov
process (1.4), Hutzenthaler and Wakolbinger (2007) obtain a sufficient condition for local extinction of the
(G,m, µ, σ2)-process, see Theorem 1 in [23].

In this paper we focus on initial configurations with bounded total mass (so that
∑N
j=1X

N
0 (j) is O(1)

as N → ∞). The main difficulty here is that the limit of (XN
t )t≥0 as N → ∞ was unknown so far. We

will establish convergence of (XN
t )t≥0 as N → ∞ in Theorem 3.3 below for the case of additive σ2. This
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Interacting diffusions and trees of excursions

is the first convergence result of the N -island process in case of bounded total mass (together with the
concurrent preprint [13] of Dawson and Greven who consider interacting Wright-Fisher diffusions with
selection and rare mutations). The limiting process turns out to be a forest of (mass) excursions started
in xi, i ∈ N. This forest of excursions has been constructed and analysed in [21] and has been denoted
as virgin island model, see also Section 2 for a formal definition. In this model, every migrant populates
a new island, similar to the infinite-alleles model in which every mutation produces a new allele. Jean
Bertoin turned this idea into a tree of alleles [7] and a partition into colonies [6] (see also Section 7 of
Pardoux and Wakolbinger (2010) for a connection with the virgin island model). In particular, Bertoin [7]
shows in case of state-independent branching that the virgin island model is the diffusion approximation
of a discrete mass branching process.

Here is a brief heuristics how a forest of (mass) excursions emerges from the (N,µ, σ2)-processes as
N → ∞. Due to bounded initial mass, the total mass up to a finite time is also bounded in N ∈ N, see
Lemma 4.7. So the total mass that immigrates into a fixed island is of order O(1/N) as N → ∞. Among
this immigrated mass might be a “successful” founder producing a substantial family. The probability of
this event is of order O(1/N) (this follows from (2.4) since S(ε) ∼ S

′
(0)ε as ε → ∞). Among N islands,

there is then a Poisson number of islands having a founder whose progeny reaches a fixed level δ > 0,
say. Moreover all of these founders are on distinct islands. The reason for this is that the probability to
have two successful founders on the same island is of order O(1/N2). Consequently, this does not appear
within N islands in the limit as N → ∞, see Lemma 4.21 for the details. Thus, in the limit as N → ∞,
every “successful” emigrant populates a previously unpopulated island. The evolution of the population
size on every freshly populated island is described by a random (mass) excursion. These mass excursions
are born (densely in time) in a Poissonian manner on ever new islands with an intensity proportional to
the currently extant mass, and, once born, follow the SDE

dYt = −Ytdt+ µ(Yt)dt+
√
σ2(Yt) dBt . (1.5)

Formally, this is described by means of the excursion measure Q associated with (1.5) in the sense of
Pitman and Yor (1982) (see also [21]). The intensity measure with which a path (ηt)t≥0 spawns a “daughter”
excursion born at time t ≥ 0 is ηt dt⊗ Q. The roots of the forest are random paths which are independent
solutions of (1.5). The virgin island model is then a countable family V := {(s, χ)} of islands where island
(s, χ) is populated at time s ≥ 0 and carries mass χt−s at time t ≥ 0.

One tree of excursions in the forest of excursions is illustrated in Figure 1. Note that Figure 1 does not
contain the whole tree. In fact islands are populated by emigrants densely in time but only finitely many
excursions started by these emigrants reach a given strictly positive height. Now a noteworthy observation
is that the tree structure provides us with independence of disjoint subtrees. Putting this differently, the
virgin island model is a branching process in discrete time in the sense of Jiřina (1958) except that there
are now infinitely many types, one for each excursion path. Due to this branching structure, the virgin
island model is easier to study than the N -island process. Several authors considered analogue of the
virgin island model in the case of state-independent branching; see [1, 5, 6, 7, 14, 20, 29, 42, 46] for a
selection of articles.

To state our convergence result of Theorem 3.3 more formally, denote the population size spectrum
of the (N,µ, σ2)-process as ζNt :=

∑N
i=1 δXNt (i) for all t ∈ [0,∞) and for every N ∈ N. Furthermore

define the population size spectrum of the virgin island model as ζt :=
∑

(s,χ)∈V δχt−s for all t ∈ [0,∞).

Our convergence result asserts that the population size spectra converge in distribution, i.e., ζN → ζ in
distribution as N →∞; see Theorem 3.3 for the precise statement.

Now we state the comparison result (1.3) more precisely. Recall that µ is the infinitesimal mean in a
non-spatial situation. We assume µ to be subadditive. Then a population of size x that is separated into two
islands experiences (in sum) a larger growth rate than a population of the same size that is concentrated
on one island. Thus the virgin island model should offer in expectation a more prolific evolution of the
total mass than a model (1.1) with the same coefficients µ and σ2. The infinitesimal variance σ2 has an
impact on a comparison in distribution. More precisely the stochastic order in (1.3) depends on whether
σ2 is superadditive, additive or subadditive. In our prototype example of additive σ2, the stochastic order
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Figure 1: Subtree of the Virgin Island Model. Only offspring islands with a certain excursion height are drawn. Note that infinitely
many islands are colonized e.g. between times s1 and s2.

is the usual increasing order. In that case we have that

E

[
f
(∑
i∈G

Xt(i)
)]
≤ E

[
f
( ∑

(s,χ)∈V

χt−s

)]
, t ≥ 0, (1.6)

for every non-decreasing function f : [0,∞)→ [0,∞). If σ2 is superadditive or subadditive, then we will use
concave, non-decreasing functions and convex, non-decreasing functions, respectively. In fact Theorem 3.8
is a comparison result not only on the one-dimensional, but on the finite dimensional distributions. Thereby
results on the distribution of the total mass of the virgin island model have an immediate impact on the
distribution of interacting diffusions with local population regulation.

As a very special application of our comparison result, we obtain a sufficient condition for global extinc-
tion for interacting diffusions with local population regulation. Here we speak of global extinction if the
total mass

∑
i∈GXt(i) converges to zero in distribution as t → ∞ whenever

∑
i∈GX0(i) < ∞. Theorem 2

of [21] shows under certain assumptions that global extinction of the virgin island model with coefficients
µ and σ is equivalent to ∫ ∞

0

y

σ2(y)/2
exp

(∫ y

0

−x+ µ(x)

σ2(x)/2
dx

)
dy ≤ 1. (1.7)

As a consequence of (1.6), if condition (1.7) is satisfied, then the (G,m, µ, σ2)-process dies out globally
no matter what the migration matrix m(·, ·) is. Here are further implications of our comparison result.
Theorem 2 of [21] together with (1.6) implies an upper bound for the survival probability of (Xt)t≥0.
Theorem 3 of [21] yields an upper bound for E[

∫∞
0

∑
i∈GXs(i)ds] if the left-hand side of (1.7) is strictly

smaller than one and an upper bound for the growth rate of
∫ t

0
E[
∑
i∈GXs(i)ds] as t → ∞ if (1.7) fails to

hold. Moreover Theorem 4 of [21] implies an upper bound for the growth rate of
∑
i∈GXt(i) as t → ∞

if (1.7) fails to hold.
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Here is a selection of models for which one could think of a similar comparison result. Mueller and
Tribe (1994) investigate a one-dimensional SPDE analog of interacting Feller branching diffusions with
logistic growth. Bolker and Pacala (1997) propose a branching random walk in which the individual
mortality rate is increased by a weighted sum of the entire population. Etheridge (2004) studies two
diffusion limits hereof. The “stepping stone version of the Bolker-Pacala model” is a system of interacting
Feller branching diffusions with non-local logistic growth. The “superprocess version of the Bolker-Pacala
model” is an analog of this in continuous space. Blath, Etheridge and Meredith (2007) study a two-type
version hereof, which is a spatial extension of the classical Lotka-Volterra model. Fournier and Méléard
(2004) generalize the model of Bolker and Pacala (1997) by allowing spatial dependence of all rates. A
model in discrete time and discrete space is constructed in Birkner and Depperschmidt (2007). In that
paper an individual has a Poisson number of offspring with mean depending on the current configuration
and, once created, offspring take an independent random walk step from the location of their mother.

2 The virgin island model

The virgin island model without immigration has been introduced in [21]. Here we slightly generalize
this model by adding independent immigration of mass.

The virgin island model is an analog of (1.1) in which every emigrant populates a new island. Islands
with positive mass at time zero evolve as the one-dimensional diffusion (Yt)t≥0 solving (1.5). The following
assumption guarantees existence and uniqueness of a strong [0,∞)-valued solution of equation (1.5), see
e.g. Theorem IV.3.1 in [24].

Assumption 2.1. The set I is an interval of length |I| ∈ (0,∞] which is either of the form [0, |I|] if |I| <∞ or
of the form [0,∞) if |I| =∞. The functions µ : I → R and σ2 : I → [0,∞) are locally Lipschitz continuous in
I and satisfy µ(0) = 0 = σ2(0) and if |I| <∞, then µ(|I|) ≤ 0 = σ2(|I|). The function σ2(·) is strictly positive
on (0, |I|) and the function µ(·) is globally upward Lipschitz continuous, that is, µ(x) − µ(y) ≤ Lµ|x− y|
whenever x > y ∈ I where Lµ ∈ [0,∞) is a finite constant. Furthermore σ2 satisfies the growth condition
σ2(y) ≤ Lσ(y + y2) for all y ∈ I where Lσ ∈ [0,∞) is a finite constant.

Note that zero is a trap for (Yt)t≥0, that is, Yt = 0 implies Yt+s = 0 for all s ≥ 0.
Mass emigrates from each island at rate one and colonizes new islands. A new population should evolve

as the process (Yt)t≥0 and should start from a single individual which has mass zero due to the diffusion
approximation. Thus we need the law of excursions of (Yt)t≥0 from the trap zero. For this, define the set
of excursions from zero by

U :=
{
χ ∈ C

(
(−∞,∞), [0,∞)

)
: T0 ∈ (0,∞], χt = 0 ∀ t ∈ (−∞, 0] ∪ [T0,∞)

}
(2.1)

where Ty = Ty(χ) := inf{t > 0: χt = y} is the first hitting time of y ∈ [0,∞). The set U is furnished
with locally uniform convergence. For existence of the excursion measure Q and in order to apply the
results of [21], we need to assume additional properties of µ(·) and of σ2(·). For the motivation of these
assumptions, we refer the reader to [21]. Assume

∫ ε
0

y
σ2(y)dy < ∞ for some 0 < ε < |I|. Then the scale

function S : I → [0,∞) defined through

s(z) := exp
(
−
∫ z

0

−x+ µ(x)

σ2(x)/2
dx
)
, S(y) :=

∫ y

0

s(z) dz, z, y ∈ I. (2.2)

is well-defined.

Assumption 2.2. The functions µ(·) and σ2(·) satisfy∫ ε

0

y

σ2(y)
dy <∞ and

∫ |I|
ε

y

σ2(y)s(y)
dy <∞ (2.3)

for some 0 < ε < |I|.

Under Assumption 2.2, the process (Yt)t≥0 hits zero in finite time almost surely and the expected total em-
igration intensity of the virgin island model is finite, see Lemma 9.5 and Lemma 9.6 in [21]. Moreover the
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scale function S(·) is well-defined and satisfies S
′
(0) = 1. A generic example which satisfies Assumption 2.2

is µ(y) = c1y
κ1 − c2yκ2 , σ2(y) = c3y

κ3 where c1, c2, c3 > 0, κ2 > κ1 ≥ 1 and κ3 ∈ [1, 2). Assumption 2.2 is not
met by σ2(y) = y2.

The excursion measure Q of the SDE (1.5) has first been described in Pitman and Yor (1982). Here we
use the description of Q as limit of the law of (Yt)t≥0 started in ε > 0 and rescaled with S(ε) as ε → 0.
More formally, under Assuming 2.1 and 2.2, Theorem 1 in [21] implies that there exists a unique σ-finite
measure Q on U such that

lim
ε→0

1

S(ε)
E
ε
[
F (Y )

]
=

∫
F (χ)Q(dχ) (2.4)

for every bounded continuous function F : C
(
[0,∞), [0,∞)

)
→ R for which there exists a δ > 0 such that

F (χ) = 0 whenever supt≥0 χt < δ. The reader might want to think of Q as describing the evolution of
a population founded by a single individual. In the special case σ2(y) = 2βy, µ(y) = cy with β > 0 and
c ∈ R, the process (Yt)t≥0 is Feller’s branching diffusion whose law is infinitely divisible. In that case the
excursion measure coincides with the canonical measure.

Having introduced the excursion measure, we now construct the virgin island model with constant
immigration rate θ ∈ [0,∞) and started in (xk)k∈N ⊂ I. Let {(Y k,xkt )t≥0 : k ∈ N} be independent solutions
of (1.5) such that Y k,xk0 = xk almost surely. Moreover let Πθ be a Poisson point process on [0,∞)× U with
intensity measure

E
[
Πθ(dt⊗ dψ)

]
= θ dt⊗Q(dψ). (2.5)

The elements of the Poisson point process Πθ are the islands whose founders immigrated into the system.
Next we construct all islands which are colonized from a given mother island. Let {Π(n,s,χ) : (n, s, χ) ∈
N0 × [0,∞) × C

(
[0,∞), I

)
} be a set of independent Poisson point processes on [0,∞) × U with intensity

measure
E
[
Π(n,s,χ)(dt⊗ dψ)

]
= χt−s dt⊗Q(dψ) (n, s, χ) ∈ N0 × [0,∞)× C

(
[0,∞), I

)
. (2.6)

All ingredients are assumed to be independent. The elements of the Poisson point process Π(n,s,χ) are the
islands which descend from an island with population size trajectory (χt−s)t≥0 and where the ancestral
lineages of individuals living on these islands have exactly n ∈ N0 migration events. Now the 0-th genera-
tion is a random σ-finite measure on [0,∞)×C

(
[0,∞), I

)
defined through V(0) :=

∑
k∈N δ(0,Y k,xk ) + Πθ. The

(n+ 1)-st generation, n ≥ 0, is the random σ-finite measure on all islands which have been colonized from
islands of the n-th generation, that is, V(n+1) :=

∑
(s,ξ)∈V(n) Π(n,s,ξ) for all n ∈ N0. The virgin island model

V is then the sum of all of these measures

V :=
∑

n∈N≥0

V(n). (2.7)

We call V the virgin island model with immigration rate θ and initial configuration (xk)k∈N.

3 Main results

We begin with convergence of the N -island process. In this convergence, we allow the drift function
µN and the diffusion function σN to depend on N in order to include the case of weak immigration. For
example, one could be interested in an N -island model with logistic branching and weak immigration at
rate θ

N on each island. In that case, one would set µN (x) = θ
N + γx(K − x) and σ2

N (x) := x for x ∈ I. The
equation of the N -island process now reads as

dXN
t (i) =

[
1

N

N∑
j=1

XN
t (j)−XN

t (i) + µN
(
XN
t (i)

)]
dt+

√
σ2
N

(
XN
t (i)

)
dBt(i) (3.1)

where i = 1, . . . , N and where (Bt(i))t≥0, i ∈ N, are independent standard Brownian motions. The idea to
include weak immigration into a convergence result is due to [12] who independently obtain convergence
of an N -island model using different methods.

Define µ̃N (x) := µN (x)−µN (0) for x ∈ I. For the (N,µN , σ
2
N )-process to converge, we need assumptions

on µN , σ2
N and on the initial distribution.
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Assumption 3.1. Define I := [0,∞). The functions µN , µ : I → R are locally Lipschitz continuous on I.
The sequence (µN )N∈N converges pointwise to µ as N →∞. In addition, N ·µN (0)→ θ ∈ [0,∞) as N →∞
and 0 ≤ NµN (0) ≤ 2θ for all N ∈ N. The diffusion functions σ2

N and σ2 are linear, that is, σ2
N (x) = βNx

and σ2(x) = βx for some constants βN , β > 0 and all N ∈ N. Furthermore βN converges to β as N → ∞.
Assumptions 2.1 and 2.2 hold for µ and σ2. Moreover (µN )N∈N is uniformly upward Lipschitz continuous,
that is, µN (x)− µN (y) ≤ Lµ|x− y| for all x ≥ y ∈ I, N ∈ N and some constant Lµ ∈ [0,∞).

Here is an example. If µN (x) = θ
N + C1x

κ1 − C2x
κ2 and σ2

N (x) = x, then Assumption 3.1 is satisfied if
1 ≤ κ1 < κ2 and C2(κ1 − 1) > 0.

Assumption 3.2. The random variables (X0(i))i∈N and (XN
0 (i))i≤N are defined on the same probability

space for each N ∈ N. There exists a random permutation πN1 , . . . , π
N
N of {1, . . . , N} for each N ∈ N such

that

lim
N→∞

E

[ N∑
i=1

|X0(i)−XN
0 (πNi )|

]
= 0. (3.2)

Furthermore the total mass of X0(·) has finite expectation E
[∑

i∈NX0(i)
]
<∞.

If (xi)i∈N ⊂ I is a summable sequence, then Assumption 3.2 is satisfied for X0(i) = xi and XN
0 (i) = xi,

i ≤ N ∈ N.
Next we introduce the topology for the weak convergence of the N -island process. What will be rele-

vant here is not any specific numbering of the islands but the statistics (or “spectrum”) of their population
sizes, described by the sum of Dirac measures at each time point, that is,( N∑

i=1

δXNt (i)

)
t≤T

(3.3)

where δx is the Dirac measure on x ∈ I. The state space of the measure-valued process (3.3) is the set
Mσ

(
I
)

of σ-finite measures on I. We equip the state space Mσ

(
I
)

with the vague topology on I \ {0}.
For weak convergence ofMσ

(
I
)
-valued processes, we equip the space of càdlàg-functions from [0,∞) to

Mσ

(
I
)

with the Skorokhod topology (e.g. [16]).
Now we formulate the convergence of the (N,µN , σ

2
N )-process defined in (3.1).

Theorem 3.3. Suppose that
(
µN
)
N∈N and

(
σ2
N

)
N∈N satisfy Assumption 3.1 and that the initial configura-

tions (XN
0 (i))i≤N and (X0(i))i∈N satisfy Assumption 3.2. Then, for every T ∈ [0,∞), we have that( N∑

i=1

δXNt (i)

)
t≤T

w−→
( ∑

(s,η)∈V

δηt−s

)
t≤T

as N →∞ (3.4)

in distribution where V is the virgin island model with immigration rate θ = limN→∞NµN (0) and initial
configuration (X0(i))i∈N.

The proof is deferred to Section 4.

Remark 3.4. For readability we rewrite the convergence in terms of test functions. The weak conver-
gence (3.4) is equivalent to

lim
N→∞

E

[
F

(( N∑
i=1

f
(
XN
t (i)

))
t≤T

)]
= E

[
F

(( ∑
(s,η)∈V

f
(
ηt−s

))
t≤T

)]
. (3.5)

for every bounded continuous function F on C
(
[0, T ],R

)
and every continuous function f : I → R with

compact support in (0, |I|). This equivalence follows from Theorem 2.2 of [38] ifMσ

(
I
)

is equipped with
the weak topology, the case of the vague topology follows analogously. Applications often require functions
f with non-compact support. The following condition might be useful in that case. Let F̄ be a continuous
function on C

(
[0, T ],R

)
satisfying the Lipschitz condition

∣∣F̄ (η)− F̄ (η̄)∣∣ ≤ LF̄ n∑
j=1

∣∣ηtj − η̄tj ∣∣ ∀ η, η̄ ∈ C
(
[0, T ],R

)
(3.6)
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for some 0 ≤ t1 ≤ · · · ≤ tn ≤ T . In addition let f̄ : I → R be a continuous function satisfying |f̄(x)| ≤ Lf̄x

for all x ∈ I. Then following the arguments in the proof of Lemma 4.21 below, one can show that (3.5)
holds with F and f replaced by F̄ and f̄ , respectively. �

The assumptions of Theorem 3.3 are satisfied for branching diffusions with local population regulation.
A prominent example is the N -island model with logistic drift µ(x) = γx(K − x) and with σ2(x) = 2βx for
x ∈ [0,∞) and some constants γ,K, β > 0. More generally, Theorem 3.3 can be applied if µ(x) = γx− c(x)

and σ2(x) = 2βx for x ∈ [0,∞) where c(·) is a concave function with c
′
(0) ∈ R. We believe that Theorem 3.3

also holds for non-linear infinitesimal variances such as σ2(x) = x(1 − x) in case of the Wright-Fisher
diffusion. Our proof requires linearity only for one argument which is the step from equation (4.105) to
equation (4.106).

In case of logistic branching, we obtain a noteworthy duality of the total mass process

Vt :=
∑

(s,χ)∈V

χt−s, t ≥ 0. (3.7)

of the virgin island model with the mean field model (Mt)t≥0 defined in (1.4). By Theorem 3 of [23],
systems of interacting Feller branching diffusions with logistic drift satisfy a duality relation which for the
(N, γy(K − y), 2βy)-process reads as

E
yδ1
[
e−

γ
β x

∑N
i=1X

N
t (i)

]
= E

x1
[
e−

γ
βX

N
t (1)y

]
∀ x, y, t ≥ 0 (3.8)

where the notation Eyδ1 refers to the initial configuration XN
0 = (y, 0, . . . , 0) and Ex1 refers to XN

0 =

(x, . . . , x). This duality is established in [23] via a generator calculation, in Swart (2006) via dualities
between Lloyd-Sudbury particle models and in [3] by following ancestral lineages of forward and backward
processes in a graphical representation. Now let N →∞ in (3.8). Then the left-hand side converges to the
Laplace transform of the total mass process of the virgin island model (without immigration) according
to Theorem 3.3 and the right-hand side converges to the Laplace transform of the mean field model (1.4)
according to Proposition 4.29 below. This proves the following corollary.

Corollary 3.5. Let (Vt)t≥0 be the total mass process of the virgin island model without immigration
starting on only one island. Furthermore let (Mt)t≥0 be the solution of (1.4), both with coefficients
µ(y) = γy(K − y) and σ2(y) = 2βy for y ∈ [0,∞) where γ,K, β > 0. Then

E
y
[
e−

γ
β xVt

]
= E

x
[
e−

γ
βMty

]
∀ x, y, t ≥ 0 (3.9)

where Ey and Ex refer to V0 = y and M0 = x, respectively.

Together with known results on the mean field model (1.4), this corollary leads to a computable expres-
sion for the extinction probability of the virgin island model.

Corollary 3.6. Let (Vt)t≥0 be as in Corollary 3.5. Then Vt converges to a random variable V∞ in distribu-
tion as t→∞. If ∫ ∞

0

exp

(
Kγx− γβ

2
x2

)
· exp(−x) dx ≤ 1, (3.10)

then P[V∞ = 0] = 1. If condition (3.10) fails to hold, then

P
y[V∞ = 0] = 1−Py[V∞ =∞] =

∫ ∞
0

e−
γ
β yx Γρ(dx) ∈ (0, 1) (3.11)

where Py refers to V0 = y ∈ (0,∞). The parameter ρ ∈ (0,∞) is the unique solution of∫ ∞
0

y
ρ
β
(
K − y

)
exp

(γK − 1

β
y − γ

2β
y2
)
dy = 0 (3.12)

and the probability distribution Γρ is defined by

Γρ(dx) =
Cρ
βx

exp
(∫ x

K

(ρ− z) + γz(K − z)
βz

dz
)
dx (3.13)

on (0,∞) where Cρ is a normalizing constant.
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Proof. Theorem 2 of [21] shows convergence in distribution of Vt to V∞ as t → ∞ and P(V∞ = 0) = 1

if (3.10) holds. If (3.10) fails to hold, then Corollary 3.5 together with convergence of Vt implies conver-
gence in distribution of Mt to a variable M∞ as t→∞. The distribution of M∞ is necessarily an invariant
distribution of the mean field model (1.4) and is nontrivial. Lemma 5.1 of [23] shows that there is exactly
one nontrivial invariant distribution for (1.4) and this distribution is given by (3.13).

The second main result is a comparison of systems of locally regulated diffusions with the virgin island
model. For its formulation, we introduce three stochastic orders which are inspired by Cox et al. (1996).
Let Z = (Zt)t≥0 and Z̃ = (Z̃t)t≥0 be two stochastic processes with state space I. We say that Z is dominated
by Z̃ with respect to a set F of test functions on path space if

Z ≤F Z̃ :⇐⇒ E
[
F (Z)

]
≤ E

[
F (Z̃)

]
∀ F ∈ F. (3.14)

The first order is ’the usual stochastic order’ ≤st in which Z is dominated by Z̃ if there is a coupling of Z
and Z̃ in which Zt is dominated by Z̃t for all t ≥ 0 almost surely. Assuming path continuity, an equivalent
condition is as follows. Denote the set of non-decreasing test functions of n ∈ N≥0 arguments by

F (n)
+± := F (n)

+±(S) :=
{
f : Sn → R| f is non-decreasing, f is bounded or f ≥ 0

}
(3.15)

for a set S ⊆ [0,∞). Furthermore let F+± be the set of non-decreasing functions which depend on finitely
many time-space points

F+± := F+±(G,S) :=
{
F : C

(
[0,∞)×G,S

)
→ R|∃n ∈ N0 ∃ (t1, i1), . . . , (tn, in) ∈ [0,∞)×G

∃f ∈ F (n)
+±(S) such that F (η) = f

(
ηt1(i1), . . . , ηtn(in)

)}
.

(3.16)

If there is no space component, then we simply write F+±(S). In this notation, Z ≤st Z̃ is equivalent to
Z ≤F+± Z̃, see Subsection 4.B.1 in Shaked and Shanthikumar (1994).

We will use two more stochastic orders. In the literature, the set of non-decreasing, convex functions is
often used. Here an adequate set is the collection of non-decreasing functions whose second order partial
derivatives are non-negative. As we do not want to assume smoothness, we slightly weaken the latter
assumption. We say for 1 ≤ i, j ≤ n that a function f : Rn → R is (i, j)-convex if

f(z + h1ei + h2ej)− f(z + h1ei)− f(z + h2ej) + f(z) ≥ 0 ∀ z ∈ Rn, h1, h2 ≥ 0. (3.17)

Note that if f is smooth, then this is equivalent to ∂2

∂xi∂xj
f ≥ 0. In addition note that f is (i, i)-convex if and

only if f is convex in the i-th component. Moreover we say that f is (i, j)-concave if −f is (i, j)-convex.
A function is called directionally convex (e.g. Shaked and Shanthikumar 1990) if it is (i, j)-convex for all
1 ≤ i, j ≤ n. Such functions are also referred to as L-superadditive functions (e.g. Rüschendorf 1983).
Define the set of increasing, directionally convex functions as

F (n)
++ :=

{
f ∈ F (n)

+± : f is (i, j)-convex for all 1 ≤ i, j ≤ n
}

(3.18)

and similarly F+− with ’(i, j)-convex’ replaced by ’(i, j)-concave’. Furthermore define F++ and F+− as

in (3.16) with F (n)
+± replaced by F (n)

++ and F (n)
+−, respectively. Now we have introduced three stochastic

orders ≤F+± , ≤F+− and ≤F++ . Note that F (n)
++ contains all mixed monomials and that F (n)

+− contains all
functions 1− exp

(
−
∑n
i=1 λixi

)
with λ1, . . . , λn ≥ 0.

For the solution (Xt)t≥0 of (1.1) to be well-defined, we additionally assume the migration matrix to be
substochastic.

Assumption 3.7. The set G is (at most) countable and the matrix (m(j, i))j,i∈G is non-negative and sub-
stochastic, i.e., m(j, k) ≥ 0 and

∑
i∈Gm(j, i) ≤ 1 for all j, k ∈ G.

Note that Assumption 2.1 together with Assumption 3.7 guarantees existence and uniqueness of a strong
solution of (1.1) with values in {x ∈ IG : |x| < ∞}. This follows from Proposition 2.1 and inequality (48)
of [23] by letting the weight function σi ↗ 1 for i ∈ G and using monotone convergence.
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Theorem 3.8. Assume 2.1, 2.2 and 3.7. If µ is concave and if σ2 is superadditive, then we have that(∑
i∈G

Xt(i)

)
t≥0

≤F+−([0,∞))

(
Vt

)
t≥0

. (3.19)

If µ is concave and σ2 is subadditive, then inequality (3.19) holds with F+− replaced by F++. If µ is
subadditive and σ2 is additive, then inequality (3.19) holds with F+− replaced by F+±.

The proof is deferred to Section 5. Comparisons of diffusions at fixed time points are well-known. Cox et
al. (1996) establish a comparison between the finite-dimensional distributions of two diffusions where the
test functions have product structure. To the best of our knowledge, Theorem 3.8 is the first comparison
result with general test functions on the finite-dimensional distributions. The techniques we develop for
this in Subsection 5.1 might allow to generalize the comparison results of Cox et al. (1996) on interacting
diffusions and the comparison results of Bergenthum and Rüschendorf (2007) on semimartingales.

The assumption of µ being subadditive is natural in the following sense. Let us assume that letting two
1-island processes with initial masses x and y, respectively, evolve independently is better in expectation
for the total mass than letting one 1-island process with initial mass x+ y evolve. This assumption implies
that

µ(x+ y) = lim
t→0

EXx+y
t − x− y

t
≤ lim
t→0

EXx
t +EXy

t − x− y
t

= µ(x) + µ(y) (3.20)

for all x, y, x+ y ∈ I and thus subadditivity of the infinitesimal mean µ. If σ2 is not additive, then we need
the stronger assumption of µ being concave for Lemma 5.4.

From Theorem 3.8 and a global extinction result for the virgin island model, we obtain a condition for
global extinction of systems of locally regulated diffusions. According to Theorem 2 of [21], the total mass
of the virgin island model converges in distribution to zero as t → ∞ if and only if condition (3.21) below
is satisfied. Together with Theorem 2, this proves the following corollary.

Corollary 3.9. Assume 2.1, 3.7 and 2.2. Suppose that µ is subadditive and σ2 is additive, or that µ is
concave and σ2 is superadditive. Then∫ |I|

0

y

σ2(y)/2
exp

(∫ y

0

−x+ µ(x)

σ2(x)/2
dx

)
dy ≤ 1, (3.21)

implies global extinction of the solution (Xt)t≥0 of (1.1), that is,
∑
i∈GXt(i)

w−→ 0 as t → ∞ whenever∑
i∈GX0(i) <∞ almost surely.

Proof. The function [0,∞) 3 x 7→ 1− e−λx ∈ F+± ∩F+− for every λ ∈ [0,∞). If σ2 is superadditive (or even
additive), then Theorem 2 above and Theorem 2 of [21] imply that

E

[
1− e−λ

∑
i∈GXt(i)

]
≤ E

[
1− e−λVt

] t→∞−−−→ 0 (3.22)

for all λ ∈ [0,∞). Convergence of the Laplace transform then implies weak convergence.

In case of logistic branching (µ(y) = γy(K − y), σ2(y) = 2βy), condition (3.21) simplifies to condi-
tion (3.10).

4 Convergence to the virgin island model

4.1 Outline

First we outline the intuition behind the proof. The virgin island process is a tree of excursions whereas
the N -island process has no tree structure. It happens in the latter process that different emigrants
colonize the same island. In addition, the N -island process is not loop-free. An individual could migrate
from island 1 to island 3 and then back to island 1. That these two effects vanish in the limit as the number
of islands tends to infinity will be established in two separate steps.

The first step ensures that the limit of the N -island process as N → ∞ is loop-free. For this purpose,
we decompose the N -island process according to the number of migration steps. Throughout the paper,
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we say that an individual has migration level k ∈ N0 at time t ∈ [0,∞) if its ancestral lineage contains
exactly k migration steps. For example, an individual starting on island 1 at time 0, moving to island 3 and
then back to island 1 has migration level 2. Let N ∈ N. We define a system {(XN,k

t (i))t≥0 : k ∈ N0, i ≤ N}
of diffusions such that XN,k

t (i) consists of the mass on island i at time t with migration level k. Recall
µ̃N (x) = µN (x) − µN (0) for all x ∈ I. Define XN,k

0 (i) = 1k=0X
N
0 (i) for all i ∈ {1, . . . , N} and k ∈ N0. Let{(

XN,k
t (i), Bkt (i)

)
t≥0

: i ≤ N, k ∈ N0

}
be a solution of

dXN,k
t (i) =

 1

N

N∑
j=1

XN,k−1
t (j)−XN,k

t (i)

 dt+ 1k=0µN (0) dt

+
XN,k
t (i)∑

m≥0X
N,m
t (i)

µ̃N

(∑
m≥0

XN,m
t (i)

)
dt

+

√√√√ XN,k
t (i)∑

m≥0X
N,m
t (i)

σ2
N

(∑
m≥0

XN,m
t (i)

)
dBkt (i)

(4.1)

for all t ∈ [0,∞), i = 1, . . . , N and k ∈ N0 where XN,−1
t := 0 for t ≥ 0 and i ≤ N and where the family

{(Bkt (i))t≥0 : i, k ∈ N0} is a system of independent standard Brownian motions. Here we implicitly used
the continuous extension of x

x+y µ̃N (x+ y) and of x
x+yσ

2
N (x+ y) as functions of (x, y) ∈ [0,∞)2 \ {(0, 0)} into

the point (0, 0), where N ∈ N. Any weak solution of (4.1) will be denoted as a (N,µN , σ
2
N )-process with

migration levels. See Lemma 4.3 for existence of a weak solution of (4.1).
Lemma 4.23 below indicates that the individuals with migration level k at a fixed time are concentrated

on essentially finitely many islands in the limit N → ∞. A later migration event will not hit these essen-
tially finitely many islands because hitting a fixed island has probability 1

N . Therefore we expect that all
individuals on an island have the same migration level. Inserting this into (4.1) suggests to consider the
solution

{
(ZN,kt (i))t≥0 : i ≤ N, k ∈ N0

}
of

dZN,kt (i) =

(
1

N

N∑
j=1

ZN,k−1
t (j)− ZN,kt (i) + 1k=0µN (0) + µ̃N

(
ZN,kt (i)

))
dt

+

√
σ2
N

(
ZN,kt (i)

)
dBkt (i), ZN,k0 (i) = XN,k

0 (i), i = 1, ..., N,

(4.2)

where ZN,−1
t := 0 for all t ≥ 0 and i ≤ N . We will refer to this solution as the loop-free (N,µN , σ

2
N )-process

or as loop-free N -island model. Note that this is a (Ḡ, m̄, µ, σ2)-process with Ḡ := {1, 2, . . . , N} × N0

and migration matrix m̄
(
(i, k), (j, l)

)
= 1

N 1l=k+1 for (i, k), (j, l) ∈ Ḡ. In particularly, we may and will

choose
{

(ZN,kt (i))t≥0 : i ≤ N, k ∈ N0

}
to be the solution of (4.2) with respect to the Brownian motion of

a weak solution of (4.1) for every N ∈ N. Consequently there exists a unique strong solution under
Assumption 2.1. Lemma 4.25 below establishes the assertion that the distance between the (N,µN , σ

2
N )-

process with migration levels and the loop-free (N,µN , σ
2
N )-process converges to zero in a suitable sense

as N → ∞. It turns out that some difficulties arise from the different forms of the diffusion coefficients
in the (N,µN , σ

2
N )-process with migration levels and in the loop-free (N,µN , σ

2
N )-process. As we could

not resolve these difficulties, we additionally assume for Lemma 4.25 that σ2
N is linear. Then we have that

xσ2
N (y)/y = σ2

N (x) for x = XN,k
t (i) and y =

∑∞
m=0X

N,m
t (i) and the diffusion coefficients in (4.1) and in (4.2)

are similar. Our proof of Lemma 4.25 is a moment estimate in the spirit of Yamada and Watanabe (1971).
In Subsection 4.3 we show that two emigrants colonize different islands in the limit N → ∞. Let us

rephrase this more formally. Recall that {(Bkt (i))t≥0 : i ≤ N} is independent of {(Blt(i))t≥0 : l < k, i ≤ N}.
Thus, conditioned on {

∑N
j=1 Z

N,k−1
t (j) : t ≥ 0}, the loop-free (N,µN , σ

2
N )-process (ZN,kt (i))t≥0 on island i

with migration level k ≥ 1 evolves as the solution of

dY N,ζt,s =
ζN (t)

N
dt− Y N,ζt,s dt+ µ̃N

(
Y N,ζt,s

)
dt+

√
σ2
N

(
Y N,ζt,s

)
dBt, t ≥ s, (4.3)

starting at time s = 0 in Y N,ζs,s = 0 driven by the Brownian motion (Bt)t≥0 = (Bkt (i))t≥0 for each i ≤ N where

ζN (t) :=
∑N
j=1 Z

N,k−1
t (j). Note that (Y N,ζt,s (i))t≥s, i ≤ N , are independent and identically distributed. Now
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let ζN : [0,∞)→ N · I := {N ·x : x ∈ I} be a fixed path and let (Ȳ N,ζt,s (i))t≥s, i ≤ N , be independent solutions

of (4.3). We are interested in the total mass
(∑N

i=1 Ȳ
N,ζ
t,s (i)

)
t≥s as N → ∞. As Ȳ N,ζs,s (i) = 0 and as the

immigration rate on island i tends to zero, the process (Ȳ N,ζt,s (i))t≥s converges to zero as N →∞ for every

i ∈ N. However, as mass of order O( ζNN ) immigrates on a fixed island, the probability that the excursion

started by these immigrants reaches a certain level δ > 0, say, is of order O( ζNN ) as the convergence in (2.4)
indicates. Now as there are N independent trials, the Poisson limit theorem should imply that( N∑

i=1

δȲ N,ζt,s (i)

)
s≤t≤T

w−→
(∫

δηt−uΠ(du, dη)

)
s≤t≤T

as N →∞ (4.4)

where Π is a Poisson point process with intensity measure lim
N→∞

ζN (u)du⊗Q(dη) if this limit exists. We will

prove (4.4) in Lemma 4.21 by reversing time.
For convergence of the loop-free (N,µN , σ

2
N )-process, we do not need to assume linearity of the diffu-

sion function. Here we may replace Assumption 3.1 with the following weaker assumption.

Assumption 4.1. The functions µN , µ : I → R and σ2
N , σ

2 : I → [0,∞) are locally Lipschitz continuous on I.
The sequence (µN , σ

2
N )N∈N converges pointwise to (µ, σ2) as N →∞. In addition, N ·µN (0)→ θ ∈ [0,∞) as

N →∞ and NµN (0) ≤ 2θ for all N ∈ N. The functions µN and σ2
N satisfy µN (0) ≥ 0 = σ2

N (0) and if |I| <∞,
then µN (|I|) ≤ 0 = σ2

N (|I|). Assumption 2.1 and 2.2 hold for µ and σ2. Moreover (µN )N∈N is uniformly
upward Lipschitz continuous in zero, that is µN (x)− µN (y) ≤ Lµ|x− y| for all x ≥ y ∈ I, N ∈ N and some
constant Lµ ∈ [0,∞). The sequence (σ2

N )N∈N satisfies the uniform growth condition σ2
N (y) ≤ Lσ(y+y2) for

all y ∈ I, N ∈ N where Lσ ∈ [0,∞) is a finite constant and satisfies that lim inf0<y→0 infN∈N σ
2
N (y)/σ2(y) >

0.

Note that if σ2
N is linear, then Assumption 4.1 implies Assumption 3.1.

some steps of our proof are based on second-moment estimates and require the following assumption
of uniformly finite second moments of the initial distribution. This assumption is then relaxed in further
steps.

Assumption 4.2. The initial distribution satisfies that

sup
N∈N

E

[( N∑
i=1

XN
0 (i)

)2]
<∞. (4.5)

4.2 Preliminaries

In this subsection we establish preliminary results such as moment estimates and existence of the
processes. The quick reader might want to skip this subsection. We begin with weak existence of the
N -island process with migration levels.

Lemma 4.3. Assume 4.1. The (N,µN , σ
2
N )-process with migration levels exists in the weak sense, that is,

equation (4.1) has a weak solution for every N ∈ N.

Proof. As the proof is fairly standard, we only give an outline. Approximate (4.1) with stochastic differ-
ential equations for which weak solutions exist. For example, approximate µN and σ2

N locally uniformly
with bounded continuous functions µN,n and σ2

N,n, respectively. Consider the solution (XN,k,n
t )t≥0 of (4.1)

with µN and σ2
N replaced by µN,n and σ2

N,n, respectively, and which only depends on the migration levels
k ≤ n. Then this solution has a weak solution according to Theorem V.23.5 and Theorem V.20.1 of [40] as
the coefficients are bounded and continuous and the stochastic differential equation is finite-dimensional.
Show that the formal generator hereof converges to the formal generator associated with (4.1). In addition
establish tightness of (XN,k,n)n∈N using moment estimates as in Lemma 4.7 for fixed N ∈ N but uniformly
in n ∈ N. Then apply the tightness criterion of Aldous (1978). Then there exists a converging subsequence
and its limit solves the martingale problem associated with (4.1), see Lemma 4.5.1 in [16]. From this
solution of the martingale problem, construct a weak solution of (4.1) as in Theorem V.20.1 of [40].

Next we prove that the N -island model with migration levels is indeed a decomposition of the N -island
model (3.1).
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Lemma 4.4. Assume 4.1. Fix N ∈ N and let
{(
XN,k
t (i), Bkt (i)

)
t≥0

: k ∈ N0, i ≤ N
}

be a solution of (4.1).

Then
{

(X̃N
t (i))t≥0 : i ≤ N

}
defined through

X̃N
t (i) :=

∑
k≥0

XN,k
t (i), t ≥ 0, i ≤ N, (4.6)

is the unique solution of the N -island model (3.1) corresponding to standard Brownian motions defined
through

dBt(i) = 1∑
m≥0X

N,m
t (i)>0

∑
k≥0

√√√√ XN,k
t (i)∑

m≥0X
N,m
t (i)

dBkt (i) + 1∑
m≥0X

N,m
t (i)=0dB

0
t (i) t ≥ 0 (4.7)

for every i ≤ N .

Proof. The process (Bt(i))t≥0 is a continuous martingale with quadratic variation process [B(i), B(j)]t =

δijt. Therefore Lévy’s characterization (e.g. Theorem IV.33.1 in [40]) implies that (4.7) defines a standard
Brownian motion. Moreover it follows from summing (4.1) over k ∈ N0 that

(
X̃N
t (i)

)
t≥0

solves (3.1).
Pathwise uniqueness of (3.1) has been established in Proposition 2.1 of [23].

In the following lemmas, let the process {(XN,k
t (i), Bkt (i))t≥0 : k ∈ N0, i ≤ N} be a solution of (4.1) and

let the process {(ZN,kt (i), Bkt (i))t≥0 : k ∈ N0, i ≤ N} be the solution of (4.2). Define a stopping time τ̃NK ∈
[0,∞) through

τ̃NK := inf
{
t ≥ 0:

N∑
i=1

∑
m≥0

(
XN,m
t (i) + ZN,mt (i)

)
≥ K

}
(4.8)

for every K ∈ [0,∞) and every N ∈ N.

Lemma 4.5. Assume 4.1. Then we have that

sup
t≤T

E

[ N∑
i=1

∞∑
k=0

XN,k
t (i)

∣∣∣(XN,l
0 )l∈N0

= (xN1l=0)l∈N0

]
≤
(

2θT +

N∑
i=1

xNi

)
eLµT (4.9)

for every configuration xN ∈ IN , every T ∈ [0,∞) and every N ∈ N. The analogous assertion holds for the
loop-free (N,µN , σ

2
N )-processes, N ∈ N.

Proof. Fix N ∈ N and T < ∞. By Assumption 4.1 we have that µN (x) ≤ Lµx + 2θ
N for all x ∈ I. According

to Lemma 4.4,
{

(X̃N
t (i))t≥0 : i ≤ N

}
defined through (4.6) is a solution of (3.1). Sum (3.1) over i ≤ N , stop

at time τ̃NK and take expectations to obtain that

E

[ N∑
i=1

X̃N
t∧τ̃NK

(i)

]
≤

N∑
i=1

xNi +

∫ t

0

LµE

[ N∑
i=1

X̃N
s∧τ̃NK

(i)

]
+ 2θ ds (4.10)

for every t ≤ T and K ∈ [0,∞). Note that the right-hand side is finite. Now Gronwall’s inequality implies
that

E

[ N∑
i=1

X̃N
t∧τ̃NK

(i)

]
≤
( N∑
i=1

xNi + 2θT
)
eLµT (4.11)

for all t ≤ T and K ∈ [0,∞). Letting K →∞, path continuity and Fatou’s lemma yield that

sup
t≤T

E

[ N∑
i=1

X̃N
t (i)

]
= sup
t≤T

E

[ N∑
i=1

lim inf
K→∞

X̃N
t∧τ̃NK

(i)

]

≤ sup
t≤T

lim inf
K→∞

E

[ N∑
i=1

X̃N
t∧τ̃NK

(i)

]
≤
( N∑
i=1

xNi + 2θT
)
eLµT .

(4.12)

This proves inequality (4.9). The inequality for the loop-free N -island process follows similarly.
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Lemma 4.6. Assume 3.2 and 4.1. Then we have that

∑
k≥0

sup
N∈N

sup
t≤T

N∑
i=1

(
EXN,k

t (i) +EZN,kt (i)
)
<∞ (4.13)

for every T ∈ [0,∞).

Proof. We prove inequality (4.13) for the solution of (4.1). The estimate for the solution of (4.2) is analo-
gous.

Recall µ̃N (x) = µN (x) − µN (0) for all x ∈ I. Apply Itô’s formula to
∑N
i=1X

N,k
t (i), take expectations,

estimate µ̃N (x) ≤ Lµx for all x ∈ I and take suprema to obtain that

sup
N∈N

sup
t≤T

E

N∑
i=1

XN,k
t (i) ≤ 1k=0 sup

N∈N
E

N∑
i=1

XN
0 (i)

+

∫ T

0

2θ1k=0 + sup
N∈N

sup
s≤t

E

N∑
i=1

(
XN,k−1
s (i) + LµX

N,k
s (i)

)
dt

(4.14)

for all T ≥ 0 and all k ∈ N0. Note that the right-hand side is finite due to Lemma 4.5 and Assumption 3.2.
Summing over k ≤ K ∈ N and applying Gronwall’s inequality implies that

K∑
k=0

sup
N∈N

sup
t≤T

E

N∑
i=1

XN,k
t (i) ≤

(
sup
M∈N

E

M∑
i=1

XM
0 (i) + 2θT

)
· e(1+Lµ)T (4.15)

for every K ∈ N. Letting K →∞ proves (4.13).

Lemma 4.7. Assume 4.1. Then we have that

E

[(
sup
t≤T

N∑
i=1

∑
m≥0

XN,m
t (i)

)2∣∣∣(XN,l
0 )l∈N0

= (xN1l=0)l∈N0

]

≤ 4

[( N∑
i=1

xNi

)2

+ 2θT + 1

](
1 + T (4θ + Lσ)eLµT

)
e(2Lµ+Lσ)T

(4.16)

for every configuration xN ∈ IN , every T ∈ [0,∞) and every N ∈ N. The analogous assertion holds for the
loop-free (N,µN , σ

2
N )-process.

Proof. Fix N ∈ N, T ∈ [0,∞) and a configuration xN ∈ IN . According to Lemma 4.4, (
∑∞
m=0X

N,m
t )t≥0 is

an N -island model. Recall from Assumption 4.1 that µN (x) ≤ Lµx+ 2θ
N =: µ̄N (x) for all x ∈ I. Thus Lemma

3.3 of [23] implies that the (N,µN , σ
2
N )-process is dominated by the (N, µ̄N , σ

2
N )-process (X̄N

t )t≥0 starting
in X̄N

0 = xN . Using Itô’s formula and σ2
N (x) ≤ Lσ(x+ x2) for all x ∈ I, we get that

E

[( N∑
i=1

X̄N
t∧τ̃NK

(i)
)2
]

=
( N∑
i=1

xNi

)2

+E

[∫ t∧τ̃NK

0

2Lµ

( N∑
i=1

X̄N
s (i)

)2

+ 4θ

N∑
i=1

X̄N
s (i) +

N∑
i=1

σ2
N

(
X̄N
s (i)

)
ds

]

≤
( N∑
i=1

xNi

)2

+

∫ t

0

(2Lµ + Lσ)E

[( N∑
i=1

X̄N
s∧τ̃NK

(i)
)2
]

+ (4θ + Lσ)
(

2θT +

N∑
i=1

xNi

)
eLµT ds

≤
( N∑
i=1

xNi

)2(
1 + T (4θ + Lσ)eLµT

)
+

∫ t

0

(2Lµ + Lσ)E
[( N∑

i=1

X̄N
s∧τ̃NK

(i)
)2]

ds+T
(
4θ + Lσ

)(
2θT + 1

)
eLµT

(4.17)

for every t ≤ T and every K ∈ N. We used Lemma 4.5 for the last but one inequality and the estimate
a ≤ 1 + a2 for a ∈ R for the last inequality. Note that the right-hand side is finite. Applying Doob’s L2
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submartingale inequality (e.g. Theorem II.70.2 in [39]) to the submartingale
∑N
i=1 X̄

N
t (i), using Fatou’s

lemma and applying Gronwall’s inequality to (4.17), we conclude that

E

[
sup
t≤T

( N∑
i=1

∑
m≥0

XN,m
t (i)

)2
]
≤ 4 sup

t≤T
E

[( N∑
i=1

X̄N
t (i)

)2]
≤ 4 sup

t≤T
E

[
lim inf
K→∞

( N∑
i=1

X̄N
t∧τ̃NK

(i)
)2]

≤ 4 sup
t≤T

lim inf
K→∞

E

[( N∑
i=1

X̄N
t∧τ̃NK

(i)
)2]
≤ 4

[( N∑
i=1

xNi

)2

+ 2θT + 1

](
1 + T (4θ + Lσ)eLµT

)
e(2Lµ+Lσ)T .

(4.18)

The proof in the case of the loop-free N -island model is analogous.

Recall τ̃NK from (4.8). Next we show that stopping at the time τ̃NK has no impact within a finite time
interval in the limit K →∞.

Lemma 4.8. Assume 4.1 and 4.2. Then any solution of (4.1) satisfies that

lim sup
K→∞

sup
N∈N

E

[
sup
t≤T

N∑
i=1

∑
m≥0

XN,m
t (i)1τ̃NK≤T

]
= 0 (4.19)

for every T ∈ [0,∞). The analogous assertion holds for the loop-free (N,µN , σ
2
N )-process.

Proof. Rewriting {τ̃NK ≤ T} = {supt≤T
∑N
i=1

∑
m≥0(XN,m

t (i) + ZN,mt (i)) ≥ K}, the assertion follows from
the Markov inequality and from the second-moment estimate of Lemma 4.7.

Lemma 4.9. Assume 4.1. Then the N -island process (XN
t )t≥0 solving the SDE (3.1) satisfies that

E

[
1
N

N∑
i=1

sup
t∈[0,T ]

(
XN
t (i)

)2 ∣∣∣XN
0 = xN

]

≤ 2

(
1
N

N∑
i=1

(
xNi
)2

+ 24Tθ2

N2 + 8LσT
(

2θT
N + 1

N

N∑
i=1

xNi

)
eLµT

)
exp

(
40(1 + T )(1 + Lµ + Lσ)2T

) (4.20)

for every configuration xN ∈ IN , every T ∈ [0,∞) and every N ∈ N.

Proof. Fix N ∈ N and xN ∈ IN throughout the proof. Assumption 4.1 implies that µN (x) ≤ Lµx + 2θ
N =:

µ̄N (x) for all x ∈ I. Thus Lemma 3.3 of [23] implies that the (N,µN , σ
2
N )-process (XN

t )t≥0 is dominated by
the (N, µ̄N , σ

2
N )-process (X̄N

t )t≥0 starting in X̄N
0 = xN . Applying Doob’s L2 submartingale inequality (e.g.

Theorem II.70.2 in [39]), Jensen’s inequality and σ2
N (x) ≤ Lσ(x+ x2) for all x ∈ I, we get that

E

[
sup
t∈[0,T ]

(
X̄N
t (i)− xNi

)2]

= E

 sup
t∈[0,T ]

(∫ t

0

1
N

N∑
j=1

X̄N
s (j)− X̄N

s (i) + LµX̄
N
s (i) + 2θ

N ds+

∫ t

0

σN (X̄N
s (i))dBs(i)

)2


≤ 2E

[(∫ T

0

1
N

N∑
j=1

X̄N
s (j) + (Lµ + 1)X̄N

s (i) + 2θ
N ds

)2]
+ 2E

[
sup
t∈[0,T ]

(∫ t

0

σN
(
X̄N
s (i)

)
dBs(i)

)2
]

≤ 6T

∫ T

0

E

[(
1
N

N∑
j=1

X̄N
s (j)

)2

+ (Lµ + 1)2
(
X̄N
s (i)

)2

+ 4θ2

N2

]
ds+ 8

∫ T

0

E
[
σ2
N

(
X̄N
s (i)

)]
ds

≤
∫ T

0

E

[
6T 1

N

N∑
j=1

(
X̄N
s (j)

)2

+
(
6T (Lµ + 1)2 + 8Lσ

)(
X̄N
s (i)

)2

+ 24Tθ2

N2 + 8LσX̄
N
s (i)

]
ds
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for all i ∈ {1, 2, . . . , N} and, using Lemma 4.5,

E

[
1
N

N∑
i=1

sup
t∈[0,T ]

(
X̄N
t (i)

)2]− 2 1
N

N∑
i=1

(
xNi
)2 ≤ 2E

[
1
N

N∑
i=1

sup
t∈[0,T ]

(
X̄N
t (i)− xNi

)2]

≤ 40(1 + T )(1 + Lµ + Lσ)2

∫ T

0

E

[
1
N

N∑
i=1

sup
r∈[0,s]

(
X̄N
r (i)

)2
]
ds+ 48Tθ2

N2 + 16LσT
1
N

(
2θT +

N∑
i=1

xNi

)
eLµT

for all T ∈ [0,∞). The right-hand side is finite due to Lemma 4.7. Therefore, Gronwall’s lemma implies
that

E

[
1
N

N∑
i=1

sup
t∈[0,T ]

(
XN
t (i)

)2] ≤ E[ 1
N

N∑
i=1

sup
t∈[0,T ]

(
X̄N
t (i)

)2]

≤

(
2 1
N

N∑
i=1

(
xNi
)2

+ 48Tθ2

N2 + 16LσT
1
N

(
2θT +

N∑
i=1

xNi

)
eLµT

)
exp

(
40(1 + T )(1 + Lµ + Lσ)2T

) (4.21)

for all T ∈ [0,∞) and this finishes the proof.

Next we prove some preliminary results for the solution (Y N,ζt,s )t≥0 of (4.3).

Lemma 4.10. Assume 4.1. Let ζN : [0,∞)→ N ·I = {N · x : x ∈ I} be a locally square Lebesgue integrable
function for every N ∈ N. Then we have that

E
x
[(

sup
s≤t≤T

Y N,ζt,s

)2]
≤ CT

[
x+ x2 +

∫ T

s

ζN (r)

N
+
(ζN (r)

N

)2

dr
]

(4.22)

for all x ∈ I, 0 ≤ s ≤ T , N ∈ N and some constant CT <∞ which does not depend on x, N or on ζN .

Proof. The proof is similar to the proof of Lemma 4.7, so we omit it.

Lemma 4.11. Assume 4.1. Let ζN : [0,∞) → N ·I be a locally square Lebesgue integrable function for
every N ∈ N. Furthermore let

(
Y N,ζt,s (i)

)
t≥s, i ≤ N , be independent solutions of (4.3) starting in Y N,ζs,s (i) =

0, i ≤ N , for every N ∈ N. Then we have that

E

[
sup
s≤t≤T

( N∑
i=1

Y N,ζt,s (i)
)2
]
≤ CT

[∫ T

s

ζN (r) +

(
ζN (r)

)2
N

dr
]

(4.23)

for all 0 ≤ s ≤ T , N ∈ N and some constant CT <∞ which does not depend on N or ζN .

Proof. The proof is similar to the proof of Lemma 4.7, so we omit it.

Lemma 4.12. Assume 4.1 and fix T ∈ [0,∞). Let (Y N,ζt,s )t≥s and (Y N,ζ̃t,s )t≥s be two solutions of (4.3) with

respect to the same Brownian motion such that Y N,ζs,s = x and Y N,ζ̃s,s = y. If ζN , ζ̃N : [0, T ]→ N ·I are square
Lebesgue integrable, then we have that

E
[
(Y N,ζt,s − Y

N,ζ̃
t,s )+

]
≤ eLµ(t−s)

(
1

N

∫ t

s

(ζN (r)− ζ̃N (r))+ dr + (x− y)+

)
(4.24)

for all N ∈ N, for all 0 ≤ s ≤ t ≤ T and all x, y ∈ I where z+ = max(z, 0) for all z ∈ R.

Proof. As in Theorem 1 of Yamada and Watanabe (1971) [47], an approximation of x → x+ with C2-
functions (see also the proof of Lemma 4.25 for this approximation) results in

d
(
Y N,ζt,s − Y

N,ζ̃
t,s

)+
= 1

Y N,ζt,s −Y
N,ζ̃
t,s ≥0

d
(
Y N,ζt,s − Y

N,ζ̃
t,s

)
. (4.25)

Taking expectations, the upward Lipschitz continuity of µ̃N implies that

E
[(
Y N,ζt,s − Y

N,ζ̃
t,s

)+]
≤ (x− y)+ +

1

N

∫ t

s

(ζN (r)− ζ̃N (r)
)+
dr + Lµ

∫ t

s

E
[(
Y N,ζr,s − Y N,ζ̃r,s

)+]
dr

(4.26)
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for all t ≥ s. The right-hand side is finite due to Lemma 4.10. Therefore, Gronwall’s inequality im-
plies (4.24).

Now we study the solution (Y N,ct,s )t≥s of (4.3) in which ζN ≡ c is a constant c ∈ [0,∞) for every N ∈ N
with N ≥ c/|I|. Let a point α ∈ (0, |I|) be fixed. Recall the scale function S from (2.2). Define the scale
function SN of (Y N,ct,s )t≥s through

sN (z) := exp
(
−
∫ z

α

c/N

σ2
N (x)/2

dx−
∫ z

0

−x+ µ̃N (x)

σ2
N (x)/2

dx
)
, SN (y) :=

∫ y

0

sN (z) dz (4.27)

for all y, z ∈ I. We point out that using two reference points (α and 0) in the definition of SN is unusual
but this definition differs from the standard definition with a single reference point α only by a constant
factor. The next two lemmas involve the speed measures

m(dy) :=
2

σ2(y)s(y)
dy, mN (dy) :=

2

σ2
N (y)sN (y)

dy (4.28)

as measures on (0, |I|) for every N ∈ N. Note that under Assumption 4.1, mN (·) converges as a measure
on (0, |I|) vaguely to m(·) as N →∞.

Lemma 4.13. Assume 4.1 and 2.2. If ζN : [0,∞) → N ·I is locally square Lebesgue integrable for every
N ∈ N, then

lim
δ→0

sup
N∈N

∫ δ

0

∣∣∣Ex[fN (Y N,ζt,s )
]
−E0

[
fN (Y N,ζt,s )

]∣∣∣mN (dx) = 0 (4.29)

for all s ≤ t <∞ and all functions fN : I → R, N ∈ N, with supx 6=y∈I supN∈N
|fN (x)−fN (y)|

|x−y| <∞.

Proof. Fix s ≤ t < ∞ and define C := supx 6=y∈I supN∈N
|fN (x)−fN (y)|

|x−y| ∈ [0,∞). Let (Y N,ζ,xu,s )u≥s and

(Y N,ζ,0u,s )u≥s be solutions of (4.3) with respect to the same Brownian motion satisfying Y N,ζ,xs,s = x and
Y N,ζ,0s,s = 0. According to Assumptions 4.1 and 2.2, there exist real numbers ε, δ0 ∈ (0, |I| ∧ α) such that

σ2
N (y) ≥ εσ2(y) for all y ∈ [0, δ0] and all N ∈ N and such that

∫ δ0
0
y/σ2(y) dy <∞. The first-moment estimate

of Lemma 4.12 provides us with the inequality

sup
N∈N

∫ δ

0

∣∣∣Ex[fN (Y N,ζt,s )
]
−E0

[
fN (Y N,ζt,s )

]∣∣∣mN (dx)

≤ sup
N∈N

∫ δ

0

E

[
C
∣∣Y N,ζ,xt,s − Y N,ζ,0t,s

∣∣]mN (dx) ≤ sup
N∈N

∫ δ

0

C · eLµt · xmN (dx)

≤ CeLµt
∫ δ

0

x
2

εσ2(x)
dx · exp

(∫ δ0

0

2Lµz

εσ2(z)
dz
)

(4.30)

for every δ ∈ (0, δ0). The right-hand side of (4.30) converges to zero as δ → 0 by the dominated convergence
theorem.

Lemma 4.14. Assume 4.1. If c > 0, then

c

N
mN ((0, δ)) −→ 1 as N →∞ (4.31)

for every δ ∈ (0, |I| ∧ α) such that
∫ δ

0
y/σ2(y) dy <∞ and infy∈(0,δ) infN∈N σ

2
N (y)/σ2(y) > 0.

Proof. Fix δ ∈ (0, |I| ∧ α) such that
∫ δ

0
y/σ2(y) dy < ∞ and infy∈(0,δ) infN∈N σ

2
N (y)/σ2(y) > 0 and fix c ∈

(0,∞). Integration by parts yields that

c

N
mN

(
(0, δ)

)
=

∫ δ

0

c/N

σ2
N (y)/2

exp
(∫ y

α

c/N

σ2
N (x)/2

dx
)

exp
(∫ y

0

−x+ µ̃N (x)

σ2
N (x)/2

dx
)
dy

=

[
exp

(∫ y

α

c/N

σ2
N (x)/2

dx+

∫ y

0

−x+ µ̃N (x)

σ2
N (x)/2

dx
)]δ

0

−
∫ δ

0

−y + µ̃N (y)

σ2
N (y)/2

exp
(∫ y

α

c/N

σ2
N (x)/2

dx+

∫ y

0

−x+ µ̃N (x)

σ2
N (x)/2

dx
)
dy

(4.32)
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for every N ∈ N. As σ2
N is Lipschitz continuous in [0, α] and σN (0) = 0,

∫ 0

α
1

σ2
N (x)/2

dx = −∞ for every

N ∈ N. Letting N →∞ in (4.32) and applying the dominated convergence theorem shows that

lim
N→∞

c

N
mN

(
(0, δ)

)
= exp

(∫ δ

0

−x+ µ(x)

σ2(x)/2
dx
)
−
∫ δ

0

−y + µ(y)

σ2(y)/2
exp

(∫ y

0

−x+ µ(x)

σ2(x)/2
dx
)
dy

= exp
(∫ δ

0

−x+ µ(x)

σ2(x)/2
dx
)
−
[
exp

(∫ y

0

−x+ µ(x)

σ2(x)/2
dx
)]δ

0

(4.33)

which is equal to one.

We recall the following lemma from [21], see Lemma 9.8 there.

Lemma 4.15. Assume 2.1 and 2.2. Let Q be the excursion measure defined through (2.4). Then∫ (∫ ∞
0

χt dt

)
Q(dχ) =

∫ |I|
0

y

σ2(y)/2
exp

(∫ y

0

−x+ µ(x)

σ2(x)/2
dx

)
dy <∞. (4.34)

The last result of this subsection is a variation of the second moment estimate of Lemma 4.7. Define a
stopping time τNK ∈ [0,∞] through

τNK := inf
({
t ≥ 0:

N∑
i=1

XN
t (i) ≥ K

}
∪ {∞}

)
(4.35)

for every K ∈ [0,∞) and every N ∈ N.

Lemma 4.16. Assume 4.1, 2.2 and 4.2. Then we have that

sup
N∈N

N∑
i=1

E

[(
sup
t∈[0,T ]

XN
t∧τNK

(i)

)2]
<∞ (4.36)

for all T ∈ [0,∞) and all K ∈ N.

Proof. Fix T ∈ [0,∞) and K ∈ N. Lemma 3.3 in [23] shows that, on the event {τNK ≥ t}, XN
t (i) is bounded

from above by Y N,K+NµN (0)
t,0 for all t ∈ [0, T ] almost surely for every N ∈ N. By Assumption 4.1 we have

that NµN (0) ≤ 2θ for all N ∈ N. Together with the second-moment estimate of Lemma 4.10, this implies
that

N∑
i=1

E

[(
sup
t∈[0,T ]

XN
t∧τNK

(i)

)2]
≤

N∑
i=1

E

[
E
XN0 (i)

[(
sup
t∈[0,T ]

Y N,K+2θ
t,0

)2]]

≤ CT
N∑
i=1

(
E
[
XN

0 (i)
]

+E
[(
XN

0 (i)
)2]

+ T
K + 2θ

N
+ T

(K + 2θ)2

N2

)
≤ CT

(
sup
M∈N

E

[ M∑
i=1

XM
0 (i)

]
+ sup
M∈N

E

[∣∣∣ M∑
i=1

XM
0 (i)

∣∣∣2]+ T (K + 2θ) + T (K + 2θ)2

)
(4.37)

for every N ∈ N and some constant CT <∞. The right-hand side is finite due to Assumption 4.2.

4.3 Poisson limit of independent diffusions with vanishing immigration

In this subsection, we prove (4.4) which is the central step in the proof of Theorem 3.3. Our proof
is based on reversing time in the stationary process. For the time reversal, we consider the following
stationary situation. Excursions from zero of the solution process (Yt)t≥0 of the SDE (1.5) start at times
given by the points of an homogeneous Poisson point process onR with rate 1. This process of immigrating
excursions is invariant for the dynamics of (Yt)t≥0 restricted to non-extinction, see (4.38). Now the time
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reversal of an excursion is again governed by the excursion measure, see Lemma 4.17. As a consequence,
reversing time in the process of immigrating excursions does not change the distribution.

Let us retell this argument more formally. Consider a Poisson point process Π on (−∞,∞) × U with
intensity measure ds⊗Q. Then

∑
(s,η)∈Π δ(ηt−s)t≥0

is the process of immigrating excursions. Note that at a
fixed time t,

∑
(s,η)∈Π δηt−s is a Poisson point process on (0,∞) with intensity measure∫ ∞

−∞
Q(ηt−s ∈ dy) ds =

∫ 0

−∞
Q(η−s ∈ dy) ds = m(dy) (4.38)

where m is the speed measure defined in (4.28). Here we used that ηt = 0 for t ∈ (−∞, 0] for all η ∈ U . The
relation (4.38) between the speed measure and the excursion measure has been established in Lemma 9.8
of [21] by exploiting a well-known explicit formula for Ey

∫∞
0
f(Ys) ds. It is also well-known (e.g. (15.5.34)

in [27]) that the speed measure m is an invariant measure for the sub-Markov semigroup E·f(Yt)1Yt>0.
This can also be seen from (4.38) by noting that Q(ηs ∈ dy) is an entrance measure for this sub-Markov
semigroup. Thus the process of immigrating excursions is indeed invariant for the dynamics of (Yt)t≥0

restricted to non-extinction.
Now we show that reversing time in the process of immigrating excursions does not change the distri-

bution of the process. The process (Yt)t≥0 restricted to non-extinction is time-reversible when started in
the invariant measure m, that is,∫

I

E
xF
(
(Yt)t≤T

)
1YT>0m(dx) =

∫
I

E
xF
(
(YT−t)t≤T

)
1YT>0m(dx) (4.39)

for every T ∈ [0,∞) and every non-negative measurable function on C
(
[0, T ]

)
, see Section 13 of Chapter

15 in [27]. The next lemma shows that if the speed measure m is replaced by the left-hand side of (4.38),
then (4.39) can be extended to allow for extinction. First we state the Markov property of the excursion
measure. Definition (2.4) of Q as rescaled law of (Yt)t≥0 together with the Markov property of (Yt)t≥0

implies that ∫
F
((
ηt
)

0≤t≤T

)
F̃
((
ηT+t

)
t≥0

)
Q(dη) =

∫
F
((
ηt
)

0≤t≤T

)
E
ηT F̃

((
Yt
)
t≥0

)
Q(dη) (4.40)

for all measurable functions F, F̃ : C
(
[0,∞), [0,∞)

)
→ [0,∞) satisfying F (0) = 0 = F̃ (0) and every T ∈

[0,∞). Here and below, 0 denotes the function which is ≡ 0.

Lemma 4.17. Assume 2.1 and 2.2. Then∫ ∫ ∞
−∞

F
(
(ηt−s)t∈R

)
dsQ(dη) =

∫ ∫ ∞
−∞

F
(
(ηT−t−s)t∈R

)
dsQ(dη) (4.41)

for all T ∈ R and all measurable functions F : C
(
[0,∞)

)
→ [0,∞).

Proof. It suffices (see e.g. Theorem 14.12 in [28]) to establish (4.41) for Fn(η) :=
∏n
i=1 fi(ηti) where

t1 < . . . < tn ∈ R and f1, . . . , fn ∈ Cb
(
[0,∞), [0,∞)

)
. If Fn(0) > 0, then both sides of (4.41) are infinite.

For the rest of the proof, we assume Fn(0) = 0, that is, fi(0) = 0 for at least one i ∈ {1, . . . , n}. We may
even assume fi ∈ Cc

(
(0,∞), [0,∞)

)
for at least one i ∈ {1, . . . , n}. Otherwise approximate fi monotonically

from below with test functions which have compact support. In addition, we may without loss of generality
assume t1 = 0 = T . Otherwise use a time translation.

If Fn vanishes on {η : η0 = 0 or ηtn = 0}, then (4.41) is essentially (4.39). To see this, consider∫ ∞
−∞

∫
1η−s>0Fn

(
(ηt−s)t∈R

)
1ηtn−s>0Q(dη)ds

=
(4.40)

∫ ∞
−∞

∫
1η−s>0E

η−s
[
Fn
(
(Yt)t∈[0,tn]

)
1Ytn>0

]
Q(dη)ds

=
(4.38)

∫
I

E
x
[
Fn
(
(Yt)t∈[0,tn]

)
1Ytn>0

]
m(dx).

(4.42)
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Applying (4.39) with T = tn, reversing the calculation in (4.42) and substituting s− tn 7→ s shows that∫ ∞
−∞

∫
1η−s>0Fn

(
(ηt−s)t∈[0,tn]

)
1ηtn−s>0Q(dη)ds

=

∫ ∞
−∞

∫
1η−s>0Fn

(
(ηtn−t−s)t∈[0,tn]

)
1ηtn−s>0Q(dη)ds.

=

∫ ∞
−∞

∫
1η−tn−s>0Fn

(
(η−t−s)t∈[0,tn]

)
1η−s>0Q(dη)ds.

(4.43)

We prove (4.41) with F replaced by Fn by induction on n ∈ N. The base case n = 1 follows from a time
translation. The induction step n−1→ n follows directly from (4.43) if f1(0) = 0 = fn(0). If fn(0) > 0, then∫ ∫ ∞

−∞
Fn
(
(ηt−s)t∈[0,tn]

)
1η−s>01ηtn−s=0 dsQ(dη)

= fn(0)

(∫ ∫ ∞
−∞

Fn−1

(
(ηt−s)t∈[0,tn]

)
1η−s>0

(
1− 1ηtn−s>0

)
dsQ(dη)

)
= fn(0)

(∫ ∫ ∞
−∞

Fn−1

(
(η−t−s)t∈[0,tn]

)
1η−s>0

(
1− 1η−tn−s>0

)
dsQ(dη)

)
=

∫ ∫ ∞
−∞

Fn
(
(η−t−s)t∈[0,tn]

)
1η−s>01η−tn−s=0 dsQ(dη).

(4.44)

For the second step we used linearity, applied the induction hypothesis and equation (4.43) and again
used linearity. Adding (4.43) and (4.44) proves the induction step in case of f1(0) = 0. The remaining case
f1(0) > 0 follows from a similar calculation as in (4.44). This completes the proof of Lemma 4.17.

Lemma 4.18. Assume 2.1 and 2.2. Then the solution process (Yt)t≥0 of the SDE (1.5) satisfies that∫
I

E
xF
(
(Yt)t∈[0,T ]

)
m(dx) =

∫ ∫ T

−∞
F
(
(ηT−t−s)t∈[0,T ]

)
dsQ(dη) (4.45)

for all measurable functions F : C
(
[0, T ], I

)
→ [0,∞) satisfying F (0) = 0 and all T ∈ [0,∞).

Proof. Express the speed measure in terms of the excursion measure as in (4.38)∫
I

E
xF
(
(Yt)t∈[0,T ]

)
m(dx) =

∫ 0

−∞

∫
1η−s>0E

η−sF
(
(Yt)t∈[0,T ]

)
Q(dη) ds

=

∫ ∫ ∞
−∞

1η−s>0F
(
(ηt−s)t∈[0,T ]

)
dsQ(dη)

=

∫ ∫ T

−∞
F
(
(ηT−t−s)t∈[0,T ]

)
Q(dη) ds.

(4.46)

The last two steps are the Markov property (4.40) and Lemma 4.17, respectively.

With Lemma 4.18 in hand, we now reverse time to prove a first version of the Poisson approxima-
tion (4.4).

Lemma 4.19. Assume 4.1 and 2.2. Let c, s ∈ [0,∞) be real numbers. Let (Y N,ct,s )t≥s be the solution of (4.3)
with ζN (·) ≡ c and Y N,cs,s = 0 for every N ∈ N with N ≥ c/|I|. Then

lim
N→∞

NE0
[
fN (Y N,ct,s )

]
= c

∫ t

s

∫
f0(χt−r)Q(dχ) dr (4.47)

for all t ∈ [s,∞) and all functions fN : I → R, N ∈ N0, with supx 6=y∈I supN∈N
|fN (x)−fN (y)|

|x−y| < ∞, with

limN→∞N |fN (0)| = 0 and with limN→∞ fN (y) = f0(y) for all y ∈ I.
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Proof. If c = 0, then both sides of (4.47) are equal to zero. So for the rest of the proof we assume c > 0.
Let ε, δ0 ∈ (0, |I| ∧ α) be such that σ2

N (y) ≥ εσ2(y) for all y ∈ [0, δ0] and such that
∫ δ0

0
y/σ2(y) dy < ∞.

Lemma 4.14 provides us with N/mN

(
(0, δ)

)
→ c as N →∞ for all δ ∈ (0, δ0). Thus

lim
N→∞

NE0
[
fN (Y N,ct,s )

]
= lim
N→∞

N

mN

(
(0, δ)

) lim
N→∞

∫ δ

0

E
0
[
fN (Y N,ct,s )

]
mN (dx)

=: c lim
N→∞

∫ δ

0

E
x
[
fN (Y N,ct,s )

]
mN (dx) + C(δ)

(4.48)

for all δ ∈ (0, δ0) and all t ∈ [s,∞) where C : [0, δ0] → R is a suitable function. The term C(δ) converges to
zero as δ → 0 according to Lemma 4.13.

The speed measure mN is an invariant (non-probability) measure for (Y N,ct,s )t≥0, see e.g. (15.5.34)

in [27]. Thus we may reverse time. As we let N → ∞, we will exploit that (Y N,ct,s )t≥0 converges weakly to
the solution process (Yt)t≥s of the SDE (1.5). In addition, mN (dy) converges vaguely to m(dy) as N → ∞
due to the dominated convergence theorem and Assumptions 4.1 and 2.2 as the densities converge. These
observations imply that

lim
N→∞

∫ δ

0

E
x
[
fN (Y N,ct,s )

]
mN (dx) = lim

N→∞

∫
I

fN (y)Py
[
Y N,ct,s ≤ δ

]
mN (dy)

=

∫
I

f0(y)Py
[
Yt−s ≤ δ

]
m(dy) =

∫ ∫ t

−∞
f0

(
χt−r

)
1χs−r≤δdr Q(dχ)

δ→0−−−→
∫ ∫ t

s

f0

(
χt−r

)
dr Q(dχ).

(4.49)

The last but one step is Lemma 4.18 and the last step follows from the dominated convergence theorem
together with Lemma 4.15. Putting (4.48) and (4.49) together completes the proof of Lemma 4.19.

Next we use induction to generalize Lemma 4.19 to test functions which depend on finitely many time
coordinates. For this let Es,T be the following set of bounded functions on C

(
[s, T ], I

)
for 0 ≤ s ≤ T < ∞

which depend on finitely many coordinates and which are globally Lipschitz continuous in every coordinate

Es,T :=

{
C
(
[s, T ], I

)
3 η 7→

n∏
i=1

fi(ηti) ∈ R : n ∈ N, s ≤ t1 < . . . < tn ≤ T,

f1, ..., fn ∈ C
(
I,R

)
are bounded and globally Lipschitz continuous}

(4.50)

for every T ∈ [s,∞) and every s ∈ [0,∞). Due to the Lipschitz continuity and boundedness of f1, . . . , fn,
there exists a constant LF ∈ (0,∞) such that

|F (η)− F (η̄)| ≤ LF
n∑
j=1

|ηtj − η̄tj | ∀ η, η̄ ∈ C
(
[s, T ], I

)
(4.51)

for all F ∈ Es,T and all 0 ≤ s ≤ T <∞. Note that the set Es,T is closed under multiplication and separates
points in C([s, T ], I) for all 0 ≤ s ≤ T < ∞. Thus the linear span of Es,T is an algebra which separates
points in C([s, T ], I) for all 0 ≤ s ≤ T < ∞. According to Theorem 3.4.5 in [16] the linear span of Es,T is
distribution determining for measures on C([s, T ], I) and so is Es,T for all 0 ≤ s ≤ T <∞.

Lemma 4.20. Assume 4.1 and 2.2. Let 0 ≤ s ≤ T < ∞. Suppose that ζ : [s,∞) → [0,∞) and that

ζ̂N : [s,∞) → N ·I are square Lebesgue integrable and that
∫ T
s
|ζ(r) − ζ̂N (r)|dr → 0 as N → ∞. Let

(Y N,ζ̂t,s )t∈[s,∞) satisfy (4.3). Then

lim
N→∞

NE0F
(
(Y N,ζ̂t,s )t∈[s,T ]

)
=

∫ ∞
s

ζ(r)

∫
F
(
(χt−r)t∈[s,T ]

)
Q(dχ) dr ∈ R (4.52)

for all functions F ∈ Es,T .
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Proof. Let LF ∈ (0,∞) be such that F satisfies (4.51) and let F be bounded by CF ∈ (0,∞). Moreover, let

(Yt)t∈[s,∞) be the pathwise unique stochastic process such that (Yt)t∈[s,∞) and (Y N,ζ̂t,s )t∈[s,∞) are solutions
of (4.3) with respect to the same Brownian motion. Lemma 4.12 implies that∣∣∣ lim

N→∞
NE0F

((
Y N,ζ̂t,s

)
t∈[s,T ]

)
− lim
N→∞

NE0F
((
Y N,ζt,s

)
t∈[s,T ]

)∣∣∣
≤ lim
N→∞

NLF

n∑
j=1

E
0
∣∣∣Y N,ζ̂tj ,s − Y

N,ζ
tj ,s

∣∣∣
≤ LT · neLµT lim

N→∞

∫ T

0

∣∣ζ̂N (r)− ζ(r)
∣∣dr = 0.

(4.53)

Therefore, it suffices to prove (4.52) with ζ̂N replaced by ζ. A similar argument shows that we may assume
ζ to be bounded; otherwise replace ζ by min(ζ,M) and let M →∞.

We begin with the case of ζ being a simple function. W.l.o.g. we consider ζ(·) =
∑n
i=1 ci1[ti−1,ti)(·)

where c1, ..., cn ≥ 0 and t0 = s as we may let F depend trivially on further time points. The proof of (4.52)
is by induction on n. The case n = 1 has been settled in Lemma 4.19. For the induction step we split up
the left-hand side of (4.52) into two terms according to whether the process at time t1 is essentially zero
or not. In order to formalize the notion “essentially zero”, choose a function φδ ∈ C2

(
I, [0, 1]

)
such that

φδ(x) = 1 for x ≥ 2δ and φδ(x) = 0 for x ≤ δ for every δ ∈ (0, |I|). Furthermore define F̄2(η) :=
∏n
i=2 fi(ηti)

for all η ∈ C([t1, T ], I).
First we consider the case that the process is away from 0 at time t1. The following equation (4.57)

shows that we may discard immigration after time t1. For this, note that the moment estimate of Lemma
4.12 implies that∣∣∣∣∣∣EyF̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)
−EyF̄2

((
Yt−t1

)
t∈[t1,T ]

)∣∣∣− ∣∣∣EzF̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)
−EzF̄2

((
Yt−t1

)
t∈[t1,T ]

)∣∣∣∣∣∣
≤
∣∣∣EyF̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)
−EzF̄2

((
Y N,ζt−t1

)
t∈[t1,T ]

)∣∣∣+
∣∣∣EyF̄2

((
Yt−t1

)
t∈[t1,T ]

)
−EzF̄2

((
Yt−t1

)
t∈[t1,T ]

)∣∣∣
≤ 2LF

n∑
j=2

eLµ(tj−s)|y − z|

(4.54)

for all y, z ∈ I and all N ∈ N. Consequently, the sequence of functions

I 3 y 7→ φδ(y)f1(y)
∣∣∣EyF̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)
−EyF̄2

((
Yt−t1

)
t∈[t1,T ]

)∣∣∣ ∈ R, N ∈ N, (4.55)

is uniformly globally Lipschitz continuous and satisfies that

lim
N→∞

φδ(y)f1(y)
∣∣∣EyF̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)
−EyF̄2

((
Yt−t1

)
t∈[t1,T ]

)∣∣∣ = 0 (4.56)

for all y ∈ I and all δ ∈ (0, |I|). Lemma 4.19 thus implies that

lim
N→∞

NE0

[
φδ
(
Y N,c1t1,s

)
f1

(
Y N,c1t1,s

)
·
∣∣∣EY N,c1t1,s F̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)
−EY

N,c1
t1,s F̄2

((
Yt−t1

)
t∈[t1,T ]

)∣∣∣] = 0 (4.57)

for all δ ∈ (0, |I|). If the process is essentially zero at time t1 (that is 1−φδ
(
Y N,ζt1,s

)
≈ 1), then we may restart

the process at time t1 in the state 0. The Lipschitz continuity of f1, . . . , fn together with the moment
estimate of Lemma 4.12 provides us with

lim sup
N→∞

NE0

[(
1− φδ

(
Y N,c1t1,s

))∣∣∣f1

(
Y N,c1t1,s

)
E
Y
N,c1
t1,s F̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)
− f1(0)E0F̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)∣∣∣]
≤ lim sup

N→∞
NE0

[(
1− φδ

(
Y N,c1t1,s

))
nLF e

LµtnY N,c1t1,s

]
= nLF e

Lµtnc1

∫ t1

s

∫ [(
1− φδ(χt1−r)

)
χt1−r

]
Q(dχ) dr

(4.58)

EJP 17 (2012), paper 71.
Page 22/49

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2278
http://ejp.ejpecp.org/


Interacting diffusions and trees of excursions

for all δ ∈ (0, |I|). The last step is Lemma 4.19. By the dominated convergence theorem together with
Lemma 4.15, the right-hand side of (4.58) converges to zero as δ → 0. Therefore, using (4.57), (4.58),
the Markov property, Lemma 4.19, limN→∞E

0
[
φδ(Y

N,c1
t1,s )

]
= 0 for all δ > 0 and applying the induction

hypothesis

lim
N→∞

NE0
[
F
((
Y N,ζt,s

)
t∈[s,T ]

)]
= lim
N→∞

NE0
[(
φδ
(
Y N,c1t1,s

)
+ 1− φδ

(
Y N,c1t1,s

))
F
((
Y N,ζt,s

)
t∈[s,T ]

)]
= lim
δ→0

lim
N→∞

NE0
[
φδ
(
Y N,c1t1,s

)
f1

(
Y N,c1t1,s

)
E
Y
N,c1
t1,s F̄2

((
Yt−t1

)
t∈[t1,T ]

)]
+ lim
δ→0

lim
N→∞

E
0
[
1− φδ

(
Y N,c1t1,s

)]
f1(0) lim

N→∞
NE0

[
F̄2

((
Y N,ζt,t1

)
t∈[t1,T ]

)]
= lim
δ→0

∫ t1

s

c1

∫
φδ
(
χt1−r

)
f1

(
χt1−r

)
E
χt1−r

[
F̄2

((
Yt−t1

)
t∈[t1,T ]

)]
Q(dχ) dr

+ f1(0)

∫ ∞
t1

ζ(r)

∫
F̄2

(
(χt−r)t∈[t1,T ]

)
Q(dχ) dr

=

∫ ∞
s

ζ(r)

∫
F
(

(χt−r)t∈[s,T ]

)
Q(dχ) dr.

(4.59)

The last step follows from the pointwise convergence φδ(x) → 1 as δ → 0 for every x ∈ (0, |I|) together
with the dominated convergence theorem and from the Markov property (4.40). Finally let ζ be integrable.
Approximate ζ with simple functions (ζn)n∈N. Applying Lemma 4.12, it is straight forward to show that
equation (4.52) with ζ replaced by ζn converges to equation (4.52) as n→∞.

Lemma 4.21. Assume 4.1 and 2.2. Fix s ∈ [0,∞). Suppose that ζ : [s,∞)→ [0,∞) and ζ̂N : [s,∞)→ N · I
are locally square integrable functions for N ∈ N and that ζ̂N → ζ as N → ∞ in L1

loc. Let (Y N,ζ̂t,s (i))t∈[s,∞),

i ≤ N , be independent solutions of (4.3) satisfying Y N,ζ̂s,s (i) = 0 for every N ∈ N. Then we have that

( N∑
i=1

δ
Y N,ζ̂t,s (i)

)
s≤t≤T

w−→
(∫

δηt−uΠ(du, dη)
)
s≤t≤T

as N →∞ (4.60)

where Π is a Poisson point process on [s,∞) × U with intensity measure ζ(u)du ⊗ Q(dη). Moreover let F̄
be a continuous function from C

(
[s,∞),R

)
to R satisfying the Lipschitz condition

∣∣F̄ (η)− F̄ (η̄)∣∣ ≤ LF̄ n∑
j=1

∣∣ηtj − η̄tj ∣∣ ∀ η, η̄ ∈ C
(
[s,∞),R

)
(4.61)

for some s ≤ t1 ≤ · · · ≤ tn ≤ T , some n ∈ N and some LF̄ ∈ (0,∞). In addition let f̄ : I → R be a continuous
function satisfying |f̄(x)| ≤ Lf̄x for all x ∈ I. Then we have that

lim
N→∞

E

[
F̄

(( N∑
i=1

f̄
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)]
= E

[
F̄

((∫
f̄
(
ηt−u

)
Π(du, dη)

)
t∈[s,∞)

)]
. (4.62)

Proof. Let F ⊆ C2
c

(
I ∩ (0,∞),R

)
be a countable dense subset of Cc

(
I ∩ (0,∞),R

)
. Tightness of{( N∑

i=1

δ
Y N,ζ̂t,s (i)

)
t∈[s,∞)

: N ∈ N
}

(4.63)

follows from tightness of {( N∑
i=1

f
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

: N ∈ N
}

∀ f ∈ F . (4.64)

This type of argument has been established in Theorem 2.1 of Roelly-Coppoletta (1986) for the weak
topology and C0. Following the proof hereof, one can show the analogous argument for the vague topology
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and Cc. Fix f ∈ F and define SNt,s :=
∑N
i=1 f

(
Y N,ζ̂t,s (i)

)
for all t ∈ [s,∞) and N ∈ N. Note that f is globally

Lipschitz continuous. For K ∈ N and fixed t ∈ [s,∞), global Lipschitz continuity of f implies that

P

[∣∣SNt,s∣∣ ≥ K] ≤ Lf
K
E

[ N∑
i=1

Y N,ζ̂t,s (i)

]
≤ Lf

K
sup
M∈N

ME0

[
YM,ζ̂
t,s (1)

]
(4.65)

for some constant Lf < ∞ and for all N ∈ N. The right-hand side is finite according to Lemma 4.12 and
converges to zero as K → ∞. This proves tightness of SNt,s, N ∈ N, for every t ∈ [s,∞). For the second
part of the Aldous criterion, fix T ∈ [s,∞) and let τN , N ∈ N, be stopping times which values in [s, T ]. In
addition define

GNt f(x) :=
( ζ̂N (t)

N
− x+ µ̃N (x)

)
f
′
(x) +

1

2
σ2
N (x)f

′′
(x) ∀ x ∈ I, t ∈ [s,∞), N ∈ N. (4.66)

The functions µ̃N , σN and σ2
N are uniformly globally Lipschitz continuous on the support of f according

to Assumption 4.1. Therefore there exists a constant Cf ∈ [1,∞) such that |GNt f(x)| ≤ Cf
( ζ̂N (t)

N + x
)

and(
f
′
σN
)2

(x) ≤ C2
fx for all x ∈ I, t ∈ [s,∞) and all N ∈ N. For fixed η > 0 and δ̄ ∈ [0, 1], we use Itô’s formula

to obtain that

η2
P

[∣∣SNτN+δ,s − SNτN ,s
∣∣ > η

]
≤ E

[(
SNτN+δ,s − SNτN ,s

)2]
= E

[( N∑
i=1

∫ τN+δ

τN

GNu f
(
Y N,ζ̂u,s (i)

)
du+

N∑
i=1

∫ τN+δ

τN

(
f
′
·σN

)(
Y N,ζ̂u,s (i)

)
dBu(i)

)2
]

≤ 3C2
fE

[(∫ τN+δ

τN

ζ̂N (u)du
)2
]

+ 3C2
fE

[( N∑
i=1

∫ δ

0

Y N,ζ̂τN+u,s(i)du
)2
]

+ 3

N∑
i=1

E

[∫ δ

0

(
f
′
σN
)2(

Y N,ζ̂τN+u,s(i)
)
du
]

≤ 3C2
fδE

[∫ τN+δ

τN

(
ζ̂N (u)

)2
du

]
+ 3C2

fδE

[∫ δ

0

( N∑
i=1

Y N,ζ̂τN+u,s(i)
)2

du

]

+ 3C2
fE

[∫ δ

0

N∑
i=1

Y N,ζ̂τN+u,s(i)du
]

≤ δ̄·3C2
f sup
M∈N

∫ T+1

s

(
ζ̂M (u)

)2

du+ δ̄·6C2
f sup
M∈N

E
0

[
sup

s≤u≤T+1

( M∑
i=1

YM,ζ̂
u,s (i)

)2
]

+ δ̄3C2
f

(4.67)

for all δ ≤ δ̄ and for all N ∈ N. The right-hand side of (4.67) is finite by Lemma 4.11. Letting δ̄ → 0, the
left-hand side of (4.67) converges to zero uniformly in N ∈ N and δ ≤ δ̄. This proves tightness of (4.63)
according to the Aldous criterion, see Aldous (1978).

Next we prove convergence of finite-dimensional distributions. Let n ∈ N, f ∈ F with f ≥ 0, s ≤ t1 ≤
· · · ≤ tn and λ1, · · · , λn ∈ [0,∞) be arbitrary. Using independence we obtain that

E

[
e
−

∑n
j=1 λjS

N
tj,s

]
= E

[
e
−

∑N
i=1

∑n
j=1 λjf

(
Y N,ζ̂tj ,s

(i)
)]

=

N∏
i=1

[
Ee
−

∑n
j=1 λjf

(
Y N,ζ̂tj ,s

(i)
)]

=

(
1−

NE0
[
1− e−

∑n
j=1 λjf

(
Y N,ζ̂tj ,s

(1)
)]

N

)N (4.68)

for all N ∈ N. Note that 1 − e−
∑n
j=1 λjf(xj) =

∑n
j=1

(
1− e−λjf(xj)

)
e−

∑j−1
i=1 λif(xi) for all x1, . . . , xn ∈ [0,∞).
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Applying Lemma 4.20 to each summand of this telescope sum we get that

lim
N→∞

E

[
e
−

∑n
j=1 λjS

N
tj,s

]
= exp

(
− lim
N→∞

NE0
[
1− e−

∑n
j=1 λjf

(
Y N,ζ̂tj ,s

(1)
)])

= exp

(
−
∫ ∫ ∞

s

ζ(r)
(

1− e−
∑n
j=1 λjf

(
ηtj−r

))
drQ(dη)

)
= E

[
exp

(
−

n∑
j=1

λj

∫
f
(
ηtj−u

)
Π(du, dη)

)]
.

(4.69)

This proves convergence of finite-dimensional distributions.
It remains to prove (4.62), which includes non-bounded test functions. Let F̄ and f̄ as in (4.62). By

the previous step and by the Skorokhod representation of weak convergence (e.g. Theorem II.86.1 in [39])
there exists a version of

{(∑N
i=1 δY N,ζ̂t,s (i)

)
t∈[s,∞)

: N ∈ N
}

which converges almost surely as N → ∞. For

every K ∈ N, let hK : [0,∞)→ [0, 1] be a continuous function which satisfies hK(x) = 1 for every x ∈ [ 1
K ,K]

and hK(x) = 0 for every x 6∈ [ 1
2K , 2K]. Then f̄ ·hK ∈ Cc

(
I ∩ (0,∞),R

)
for all K ∈ N. Thus{

M ∧ F̄
(( N∑

i=1

(
f̄ ·hK

)(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)
: N ∈ N

}
(4.70)

converges almost surely as N →∞ for all M,K ∈ N. Next we observe that

lim
N→∞

∣∣∣∣E[F̄(( N∑
i=1

f̄
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)]
−E

[
M ∧ F̄

(( N∑
i=1

f̄
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)]∣∣∣∣
= lim
N→∞

∣∣∣∣E[F̄(( N∑
i=1

f̄
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)
1
F̄
(

(
∑N
i=1 f̄(Y N,ζ̂t,s (i)))t∈[s,∞)

)
>M

]∣∣∣∣
≤ sup
N∈N

1

M
E

[(
F̄

(( N∑
i=1

f̄
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

))2]

≤ 1

M
2F̄
(
0
)

+
1

M
sup
N∈N

2L2
F̄L

2
f̄E

[( n∑
j=1

N∑
i=1

Y N,ζ̂tj ,s (i)

)2]

≤ 1

M
2F̄
(
0
)

+
1

M
2L2

F̄L
2
f̄n

2 sup
N∈N

E

[
sup

t∈[s,tn]

( N∑
i=1

Y N,ζ̂t,s (i)
)2
]

(4.71)

for all M ∈ N. The right-hand side is finite due to Lemma 4.11 for every M ∈ N and converges to zero as
M →∞. The Lipschitz condition (4.61) implies that

lim
N→∞

∣∣∣∣E[M ∧ F̄(( N∑
i=1

f̄
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)]
−E

[
M ∧ F̄

(( N∑
i=1

(
f̄ ·hK

)(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)]∣∣∣∣
≤ lim
N→∞

n∑
j=1

LF̄Lf̄E

[ N∑
i=1

Y N,ζ̂tj ,s (i)
(

1− hK
(
Y N,ζ̂tj ,s (i)

))]

≤ lim
N→∞

n∑
j=1

LF̄Lf̄E

[ N∑
i=1

Y N,ζ̂tj ,s (i)
(
1

supt∈[s,tn] Y
N,ζ̂
t,s (i)≥K + 1

Y N,ζ̂tj ,s
(i)≤ 1

K

)]

≤
nLF̄Lf̄
K

sup
N∈N

E

[
sup

t∈[s,tn]

( N∑
i=1

Y N,ζ̂t,s (i)
)2
]

+ LF̄Lf̄

n∑
j=1

lim
N→∞

NE0
[
Y N,ζ̂tj ,s (1) ∧ 1

K

]

≤
nLF̄Lf̄
K

sup
N∈N

E
0

[
sup

t∈[s,tn]

( N∑
i=1

Y N,ζ̂t,s (i)
)2
]

+ LF̄Lf̄

n∑
j=1

∫ tj

s

ζ(r)

∫
χtj−r ∧ 1

K Q(dχ) dr

(4.72)

for allM,K ∈ N. For the last step, we applied Lemma 4.20. The right-hand side of (4.72) is finite according
to Lemmas 4.11 and 4.15 and converges to zero as K → ∞ for every M ∈ N according to the dominated
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convergence theorem. Thus

lim
N→∞

E

[
F̄

(( N∑
i=1

f̄
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)]
= lim
M→∞

lim
N→∞

E

[
M ∧ F̄

(( N∑
i=1

f̄
(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)]

= lim
M→∞

lim
K→∞

lim
N→∞

E

[
M ∧ F̄

(( N∑
i=1

(
f̄ ·hK

)(
Y N,ζ̂t,s (i)

))
t∈[s,∞)

)]
= lim
M→∞

lim
K→∞

E

[
M ∧ F̄

((∫ (
f̄ ·hK

)(
ηt−u

)
Π(du, dη)

)
t∈[s,∞)

)]
= E

[
F̄

((∫
f̄
(
ηt−u

)
Π(du, dη)

)
t∈[s,∞)

)]
.

(4.73)

The last equality follows from the dominated convergence theorem together with Assumption 2.2. This
proves (4.62).

Remark: Instead of referring to Theorem 2.1 of Roelly-Coppoletta (1986) one could alternatively apply
Theorem 3.1 of Jakubowski (1986).

4.4 Convergence of the loop-free process

Recall the loop-freeN -island process from (4.2). The following lemma shows that the loop-freeN -island
process converges to the virgin island model.

Lemma 4.22. Assume 4.1, 2.2, 3.2 and 4.2. Then we have that( N∑
i=1

∞∑
k=0

δZN,kt (i)

)
t≤T

w−→
( ∑

(s,η)∈V

δηt−s

)
t≤T

as N →∞ (4.74)

for every T ∈ [0,∞).

Proof. Fix T ∈ [0,∞). Let F ⊆ C2
c

(
(0,∞),R

)
be a countable dense subset of Cc

(
(0,∞),R

)
. Tightness of

the left-hand side of (4.74) in N ∈ N follows from tightness of{( N∑
i=1

∞∑
k=0

f
(
ZN,kt (i)

))
t≤T

: N ∈ N
}

∀ f ∈ F . (4.75)

This type of argument has been established in Theorem 2.1 of Roelly-Coppoletta (1986) for the weak
topology and C0. Following the proof hereof, one can show the analogous argument for the vague topology
and Cc. Fix f ∈ F and define SNt :=

∑N
i=1

∑∞
k=0 f

(
ZN,kt (i)

)
for all t ≤ T and N ∈ N. For fixed t ∈ [0,∞),

global Lipschitz continuity of f implies that

P

[∣∣SNt ∣∣ ≥ K] ≤ Lf
K
E

[ N∑
i=1

∞∑
k=0

ZN,kt (i)

]
≤ Lf

K
sup
M∈N

E

[ M∑
i=1

∞∑
k=0

ZM,k
t (i)

]
(4.76)

for some constant Lf <∞ and for all K,N ∈ N. The right-hand side is finite according to Lemma 4.5. This
proves tightness of (4.75) for every fixed time point. For the second part of the Aldous criterion, let τN ,
N ∈ N, be stopping times which are uniformly bounded by T . In addition define H(x) :=

∑N
i=1

∑∞
k=0 f(xki )

and

GNH(x) :=

N∑
i=1

∞∑
k=0

(
1k>0

N

N∑
j=1

xk−1
j − xki + 1k=0µN (0) + µ̃N (xki )

)
f
′
(xki ) +

N∑
i=1

∞∑
k=0

1

2
σ2
N (xki )f

′′
(xki ) (4.77)

for all x = (xki )i≤N,k∈N0 ∈ IN×N0 . Assumption 4.1 implies that the functions µN , σN and σ2
N are uniformly

globally Lipschitz continuous on the support of f . Moreover NµN (0) is bounded by 2θ uniformly in N ∈ N.
Therefore there exists a constant CH ∈ [1,∞) such that |GNH(x)| ≤ CH

(
2θ +

∑N
i=1

∑∞
k=0 x

k
i

)
for all x =
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(xki )i≤N,k∈N0
and all N ∈ N and such that

(
(f
′
σN )(y)

)
≤ CHy for all y ∈ I and N ∈ N. For fixed η > 0 and

δ̄ ∈ [0, 1], we use Itô’s formula to obtain that

η2
P

[∣∣SNτN+δ − SNτN
∣∣ > η

]
≤ E

[(
SNτN+δ − SNτN

)2]
= E

[(∫ τN+δ

τN

GNH
(
ZN,·u (·)

)
du+

N∑
i=1

∞∑
k=0

∫ τN+δ

τN

(
f
′
·σN

)(
ZN,ku (i)

)
dBku(i)

)2
]

≤ 2C2
HE

[(∫ δ

0

2θ +

N∑
i=1

∞∑
k=0

ZN,kτN+u(i) du
)2
]

+ 2

N∑
i=1

∞∑
k=0

E

[∫ δ

0

(
f
′
σN
)2(

ZN,kτN+u(i)
)
du
]

≤ δ̄·4C2
H sup
M∈N

E

[
sup
t≤T+1

(
2θ +

M∑
i=1

∞∑
k=0

ZM,k
t (i)

)2
]

(4.78)

for all δ ≤ δ̄ and for all N ∈ N. The second step follows from (a + b)2 ≤ 2a2 + 2b2 for a, b ∈ R and from

Itô’s isometry. In the last step we used that
(∫ δ

0
h(u)du

)2
≤ δ

∫ δ
0

(h(u))2du for every integrable function h.
The right-hand side of (4.78) is finite according to Lemma 4.7. Letting δ̄ → 0, the left-hand side of (4.78)
converges to zero uniformly in N ∈ N and δ ≤ δ̄. Tightness of (4.75) now follows from the Aldous criterion,
see Aldous (1978).

It remains to identify the limit of the left-hand side of (4.74) by proving that

lim
N→∞

E exp
(
−

n∑
j=1

λj

m∑
k=0

N∑
i=1

f
(
ZN,ktj (i)

))
= E exp

(
−

n∑
j=1

λj

m∑
k=0

∑
(s,η)∈V(k)

f
(
ηtj−s

))
(4.79)

for all λ1, . . . , λn ≥ 0, for all 0 ≤ t1 ≤ · · · ≤ tn, for all m,n ∈ N0 and for all non-negative f ∈ C2
c ((0,∞)).

Lemma 4.6 justifies to restrict the summation over k to finitely many summands. We prove (4.79) by
induction on m ∈ N0 using the Poisson limit (4.60) for independent one-dimensional diffusions. Define
F (η) :=

∑n
j=1 λjf(ηtj ) for every η ∈ C([0,∞), I). Note that F satisfies the Lipschitz condition (3.6) for

some constant LF ∈ (0,∞). Let
(
Y N,ζt,0 (i)

)
t≥0

and
(
Ỹ N,ζt,0 (i)

)
t≥0

be solutions of (4.3) with respect to the

Brownian motion (B0
t (i))t≥0 such that Y N,ζ0,0 (i) = X0(i), Ỹ N,ζ0,0 (i) = 0 and ζN (·) ≡ NµN (0) for every N ∈ N

and i ∈ N. In addition let
(
Yt(i)

)
t≥0

, i ∈ N, be independent solutions of (1.5) with Y0(·) ≡ X0(·). Note that

ZN,0· (i) is the solution of (4.3) with respect to the Brownian motion (B0
t (i))t≥0 with ZN,00 (i) = XN

0 (i) for
every i ≤ N and every N ∈ N. Recall the random permutation πN from Assumption 3.2. The first-moment
estimate of Lemma 4.12 implies that

∣∣∣E[exp

(
−

N∑
i=1

F
((
ZN,0t (i)

)
t≥0

))]
−E

[
exp

(
−

N∑
i=1

F
((
Y N,ζt,0 (i)

)
t≥0

))]∣∣∣
≤ LF

n∑
j=1

N∑
i=1

E

[∣∣∣ZN,ζtj ,0
(πNi )− Y N,ζtj ,0

(i)
∣∣∣] ≤ LF eLµtn n∑

j=1

E

[ N∑
i=1

∣∣∣XN
0 (πNi )−X0(i)

∣∣∣]
for all N ∈ N. of Lemma 4.12. Letting N →∞ the right-hand side converges to zero according to Assump-
tion 3.2. The process

(
Y N,ζ·,0 (i)

)
i≤N in turn is close to

(
Ỹ N,ζ·,0 (i)

)
i≤N except for islands with a significant

amount of mass at time zero. Formalizing this we use Lemma 4.12 to obtain that

lim
K→∞

lim
N→∞

∣∣∣E[exp

(
−

N∑
i=K+1

F
((
Y N,ζt,0 (i)

)
t≥0

))]
−E

[
exp

(
−

N∑
i=1

F
((
Ỹ N,ζt,0 (i)

)
t≥0

))]∣∣∣
≤ lim
K→∞

LFne
Lµtn

∞∑
i=K+1

E
[
X0(i)

]
+ lim
K→∞

lim
N→∞

E

[
1− exp

(
−

K∑
i=1

F
((
Ỹ N,ζt,0 (i)

)
t≥0

))]
.

The first summand on the right-hand side is zero according to Assumption 3.2. Note that µN → µ and
σN → σ as N →∞ by Assumption 4.1. Thus

(
Ỹ N,ζt,0 (i)

)
t≥0

converges in distribution to the zero function as
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N →∞ for every fixed i ∈ N. Consequently the second summand on the right-hand side is zero. Moreover(
Y N,ζt,0 (i)

)
t≥0

converges in distribution to
(
Yt(i)

)
t≥0

as N → ∞ for every fixed i ∈ N. These observations
imply that

lim
N→∞

E

[
exp

(
−

N∑
i=1

F
((
ZN,0t (i)

)
t≥0

))]

= lim
K→∞

lim
N→∞

E

[
exp

(
−

K∑
i=1

F
((
Y N,ζt,0 (i)

)
t≥0

))]
E

[
exp

(
−

N∑
i=K+1

F
((
Y N,ζt,0 (i)

)
t≥0

))]

= lim
K→∞

E

[
exp

(
−

K∑
i=1

F
((
Yt(i)

)
t≥0

))]
lim
N→∞

E

[
exp

(
−

N∑
i=1

F
((
Ỹ N,ζt,0 (i)

)
t≥0

))]

= E

[
exp

(
−
∞∑
i=1

F
((
Yt(i)

)
t≥0

))]
E

[
exp

(
−
∑

(s,η)∈Πθ

F
(
(ηt−s)t≥0

))]

= E

[
exp

(
−

∑
(s,η)∈V(0)

F
(
(ηt−s)t≥0

))]
.

The last but one step follows from Lemma 4.21 with ζ̂N (·) ≡ NµN (0) and ζ(·) ≡ θ. This proves (4.79) in the
base case m = 0.

For the induction step m→ m+ 1, we observe that a version of (ZN,m+1
t (i))t≥0 conditioned on ζN (r) :=∑N

j=1 Z
N,m
r (j), r ≥ 0, is given by the one-dimensional diffusion (Y N,ζt,0 )t≥0 with vanishing immigration.

Thus we may realize (ZN,m+1
t (i))t≥0 by choosing a suitable version of (ZN,mt (j))t≥0, j = 1, . . . , N , and

by independently sampling a version of (Y N,ζt,0 )t≥0 whose driving Brownian motion is independent of

{(ZN,mt (j))t≥0 : j = 1, . . . , N}. Tightness of
{(∑N

i=1

∑m̃
k=0 δZN,kt (i)

)
t≤T

}
together with the induction hy-

pothesis implies that ( N∑
i=1

m̃∑
k=0

δZN,kt (i)

)
t≤T

w−→
( m̃∑
k=0

∑
(s,η)∈V(k)

δηt−s

)
t≤T

as N →∞ (4.80)

for every m̃ ≤ m. Thanks to the Skorokhod representation of weak convergence (e.g. Theorem II.86.1
in [39]), we may assume that the convergence in (4.80) holds almost surely. As a consequence we obtain
that ( N∑

i=1

δZN,mt (i)

)
t≤T
−→

( ∑
(s,η)∈V(m)

δηt−s

)
t≤T

as N →∞ (4.81)

holds almost surely. Using arguments from the proof of (4.62), one can deduce from this that( N∑
i=1

ZN,mt (i)

)
t≤T

w−→
(
V

(m)
t

)
t≤T

as N →∞ (4.82)

holds almost surely where the total mass of the n-th generation of the virgin island model is defined as

V
(n)
t :=

∑
(s,η)∈V(n)

ηt−s, t ≥ 0, (4.83)

for every n ∈ N0. Together with continuity of
(
ηs
)
s≤T 7→

∫ t
0
|ηs − V (m)

s | ds, (4.82) implies that

∫ t

0

∣∣ N∑
i=1

ZN,ms (i)− V (m)
s

∣∣ ds N→∞−−−−→ 0 almost surely. (4.84)

Now the main step of the proof is Lemma 4.21 with ζ̂N (t) :=
∑N
i=1 Z

N,m
t (i) and ζ(t) := V

(m)
t for all t ≥ 0.
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Lemma 4.21 implies that

E

[
exp

(
−

N∑
i=1

F
((
ZN,m+1
t

)
t≤T

))
|
(
ZM,m
·

)
M∈N

]
= E

[
exp

(
−

N∑
i=1

F
((
Y N,ζt,0

)
t≤T

))∣∣∣(ZM,m
·

)
M∈N

]
−→ E

[
exp

(
−
∫
F
(
(ηt−s)t≤T

)
Π(m+1)(ds, dη)

)∣∣∣V(m)
]

as N →∞

(4.85)

almost surely. Here Π(m+1) conditioned on V(m) is a Poisson point process on [0,∞) × U with intensity
measure

E

[
Π(m+1)(ds, dη)|V(m)

]
= V (m)

s ds⊗Q(dη)

=
∑

(r,ψ)∈V(m)

ψs−rds⊗Q(dη) =
∑

(r,ψ)∈V(m)

EΠ(r,ψ)(ds, dη).
(4.86)

Due to this decomposition of Π(m+1), we may realize Π(m+1) conditioned on V(m) as the independent
superposition of {Π(m,s,ψ) : (s, ψ) ∈ V(m)}. In other words, Π(m+1) is equal in distribution to the (m + 1)st-
generation of the virgin island model. Therefore we get that

lim
N→∞

E

[
exp

(
−
m+1∑
k=0

N∑
i=1

F
((
ZN,kt (i)

)
t≤T

))]

= E

[
lim
N→∞

exp
(
−

m∑
k=0

N∑
i=1

F
(
ZN,k· (i)

))
E

[
exp

(
−

N∑
i=1

F
(
ZN,m+1
· (i)

))∣∣∣(ZM,m
·

)
M∈N

]]

= E

[
exp

(
−

m∑
k=0

∑
(s,η)∈V(k)

F
(
(ηt−s)t≤T

))
E

[
exp

(
−

∑
(s,η)∈V(m+1)

F
(
(ηt−s)t≤T

))∣∣∣V(m)
]]

= E

[
exp

(
−
m+1∑
k=0

∑
(s,η)∈V(k)

F
(
(ηt−s)t≤T

))]
which proves (4.79) and completes the proof of Lemma 4.22.

4.5 Reducing to the loop-free (N,µN , σ
2
N )-process

Next we show that the (N,µN , σ
2
N )-process with migration levels and the loop-free (N,µN , σ

2
N )-process

are identical in the limit N →∞. Our proof formalizes the following intuition. The individuals of a certain
migration level are concentrated on essentially finitely many islands. That these finitely many islands are
populated by migrants of a different migration level has a probability of order 1

N . As a consequence, all
individuals on one fixed island have the same migration level in the limit N →∞. This intuition is subject
of Lemma 4.24.

First we show that a generation cannot be dispersed uniformly over all islands. To obtain this inter-
pretation from the following lemma, assume XN,k

t (i) ≈ 1
N for all i ≤ N and some time t ≥ 0. Then the

cutting operation in (4.87) has no effect for N large enough. However it is clear that the total mass of
all individuals with migration level k does not tend to zero as N → ∞. Thus, as a consequence of the
following lemma, XN,k

t (i) ≈ 1
N cannot be true.

Lemma 4.23. Assume 4.1, 3.2 and 4.2. Then any solution of (4.1) satisfies

∑
k≥0

sup
N∈N

E

[ N∑
i=1

(
XN,k
t (i) ∧ δ

)]
δ→0−−−→ 0 (4.87)

for all t ∈ [0,∞). The assertion is also true if XN,k
t (i) is replaced by ZN,kt (i).
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Proof. Fix T ∈ [0,∞) and t ∈ [0, T ]. According to Lemma 4.6, for each ε > 0, there exists a k0 ∈ N such
that ∑

k≥k0

sup
N∈N

sup
s≤T

E

[ N∑
i=1

XN,k
s (i)

]
≤ ε. (4.88)

Thus it suffices to prove convergence of every summand in (4.87). In addition, if we forget the migration
levels in the (N,µN , σ

2
N )-process with migration levels, then we obtain the N -island model. More formally,

Lemma 4.4 shows that

X̄N
t (i) :=

∑
m≥0

XN,m
t (i) ∀ i ≤ N, t ≥ 0 (4.89)

defines an N -island model. Recall τ̃NK from (4.8) and fix K ∈ N. According to Lemma 4.8 it suffices to
prove (4.87) with expectation being restricted to the event {τ̃NK > t} for every N ∈ N. Now Lemma 3.3

in [23] shows that, on the event {τ̃NK > t}, X̄N
t (i) is stochastically bounded above by Y N,K+NµN (0)

t,0 . Hence

we get for all N,K ∈ N, k ∈ N0 and δ̃ > 0 that

E

[ N∑
i=1

(
XN,k
t (i) ∧ δ

)
1τ̃NK>t

]

≤
N∑
i=1

E

[
1X̄N0 (i)≤δ̃

(
XN,k
t (i) ∧ δ

)
1τ̃NK>t

]
+ δE

[ N∑
i=1

1X̄N0 (i)>δ̃

]

≤
N∑
i=1

E
X̄N0 (i)∧δ̃

[
Y
N,K+NµN (0)
t,0 ∧ δ

]
+
δ

δ̃
E

[ N∑
i=1

X̄N
0 (i)

]
≤ NE0

[
Y
N,K+NµN (0)
t,0 ∧ δ

]
+ Ct

N∑
i=1

E

[(
X̄N

0 (i) ∧ δ̃
)]

+
δ

δ̃
sup
M∈N

E

[ M∑
i=1

X̄M
0 (i)

]
(4.90)

for some constant Ct <∞. The last step follows from Lemma 4.12. Next we let N →∞ and δ → 0 in (4.90).
Applying Lemma 4.21 with ζ̂N := K +NµN (0) and using Assumption 3.2, we see that the limit of (4.90) as
N →∞ and as δ → 0 is bounded above by

lim
δ→0

(K + θ)

∫ ∫ t

0

(
χt−r ∧ δ

)
dr Q(dχ) + CtE

[ ∞∑
i=1

(
X̄0(i) ∧ δ̃

)]
(4.91)

for every K ∈ N and δ̃ > 0. The first summand in (4.91) is zero by the dominated convergence theorem and
Lemma 4.15. The last summand converges to zero as δ̃ → 0 by the dominated convergence theorem and
Assumption 3.2. This completes the proof of (4.87). The proof of (4.87) with XN,k

t (i) replaced by ZN,kt (i)

is similar

Now we prove that all individuals on a fixed island have the same migration level in the limit N → ∞.
More precisely, we show that XN,k

t (i) and
∑
m 6=kX

N,m
t (i) cannot be big at the same time for any i ≤ N or

any k ∈ N0.

Lemma 4.24. Assume 4.1, 3.2 and 4.2. Then any solution of (4.1) satisfies

lim
N→∞

sup
s,t≤T

E

[ N∑
i=1

∑
k≥0

XN,k
s (i)

∑
m6=k

XN,m
t (i)

]
= 0 (4.92)

for every T ∈ [0,∞). The assertion is also true if XN,k
t (i) is replaced by ZN,kt (i).

Proof. We begin with the case s = t. Fix K ∈ N and recall τ̃NK from (4.8). By the uniform local Lipschitz
continuity of µN , there exists a finite constant LK such that µ̃N (x) ≤ LKx for all x ≤ K and all N ∈ N.
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Applying Itô’s formula, we see that

d

N∑
i=1

∑
k≥0

XN,k

t∧τ̃NK
(i)
∑
m6=k

XN,m

t∧τ̃NK
(i) ≤ 2

N∑
i=1

∑
k≥0

XN,k

t∧τ̃NK
(i)µN (0) dt

+

N∑
i=1

∑
k≥0

XN,k

t∧τ̃NK
(i)
∑
m 6=k

(
1

N

N∑
j=1

XN,m−1

t∧τ̃NK
(j) dt+ LKX

N,m

t∧τ̃NK
(i) dt+ dMN,m

t (i)

)

+

N∑
i=1

∑
k≥0

∑
m6=k

XN,m

t∧τ̃NK
(i)

(
1

N

N∑
j=1

XN,k−1

t∧τ̃NK
(j) dt+ LKX

N,k

t∧τ̃NK
(i) dt+ d M̃N,k

t (i)

)
(4.93)

where (MN,m
t (i))t≥0 and (M̃N,k

t (i))t≥0 are suitable martingales for each i ≤ N and k,m ∈ N0. Now take
expectations to obtain that

E

[ N∑
i=1

∑
k≥0

XN,k

t∧τ̃NK
(i)
∑
m 6=k

XN,m

t∧τ̃NK
(i)

]
≤ 2µN (0)

∫ t

0

E

[ N∑
i=1

∑
k≥0

XN,k

s∧τ̃NK
(i)
]
ds

+

∫ t

0

E

[ N∑
i=1

∑
k≥0

XN,k

s∧τ̃NK
(i)

1

N

N∑
j=1

∑
m≥0

XN,m−1

s∧τ̃NK
(j)

]
ds

+

∫ t

0

E

[∑
k≥0

1

N

N∑
j=1

XN,k−1

s∧τ̃NK
(j)

N∑
i=1

∑
m≥0

XN,m

s∧τ̃NK
(i)

]
ds

+ 2LK

∫ t

0

E

[ N∑
i=1

∑
k≥0

XN,k

s∧τ̃NK
(i)
∑
m 6=k

XN,m

s∧τ̃NK
(i)

]
ds

(4.94)

for every N ∈ N and t ≤ T . Note that the right-hand side is finite. Using Gronwall’s inequality, µN (0) ≤
2θ/N and

∑N
i=1

∑
k≥0X

N,k

t∧τ̃NK
(i) ≤ K, we conclude that

sup
t≤T

E

[ N∑
i=1

∑
k≥0

XN,k

t∧τ̃NK
(i)
∑
m 6=k

XN,m

t∧τ̃NK
(i)

]
≤ 1

N
T (4θK + 2K2)·e2LKT (4.95)

for every N ∈ N. Letting N →∞ proves (4.92) in the case s = t. For the case s < t, apply Itô’s formula in

XN,k

s∧τ̃NK
(i)
∑
m6=k

∫ t∧τ̃NK

s∧τ̃NK
dXN,m

r (i) (4.96)

and use similar estimates as above. The case s > t is analogous to the case s < t.

Knowing that there is asymptotically at most one generation on every island, we are now in a position
to prove that

(
XN,k
t (i)

)
t≥0

and
(
ZN,kt (i)

)
t≥0

are close to each other.

Lemma 4.25. Assume 3.1, 3.2 and 4.2. For each N ∈ N, let{(
XN,k
t (i), B̄kt (i)

)
t≥0

: k ∈ N0, i ≤ N
}

(4.97)

be a solution of (4.1) and let {
(ZN,kt (i))t≥0 : k ∈ N0, i ≤ N

}
(4.98)

be the unique solution of (4.2) with
{

(Bkt (i))t≥0

}
replaced by

{
(B̄kt (i))t≥0

}
. Then

E

[ N∑
i=1

∞∑
k=0

∣∣XN,k
t (i)− ZN,kt (i)

∣∣] −→ 0 as N →∞ (4.99)

for every t ∈ [0,∞).
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Proof. In the first step, assume that σ2
N and µN are uniformly globally Lipschitz continuous and bounded.

The general case will later be handled by a stopping argument.
Define x+ := max(x, 0) and x− := (−x)+ for all x ∈ R. We first prove (4.99) with |x| replaced by x+ and

x−, respectively, separately. As R 3 x 7→ x+ is not differentiable, we will apply Itô’s formula to φn being
defined as follows. Let 1 = a0 > a1 > · · · > an > · · · > 0 satisfy∫ 1

a1

1

u
du = 1,

∫ a1

a2

1

u
du = 2, ...,

∫ an−1

an

1

u
du = n, ... (4.100)

Note that an → 0 as n → ∞. For every n ∈ N, there exists a continuous function ψn : R → [0,∞) with
support in (an, an−1) such that

0 ≤ ψn(u) ≤ 2

nu
for all u > 0 and

∫ an−1

an

ψn(x) dx = 1. (4.101)

Note that ψn(u) ≤ 2
nan

for all u ≥ 0 and n ∈ N. With this, we define the function

φn(x) := 1x>0

∫ x

0

dy

∫ y

0

ψn(u) du, x ∈ R, (4.102)

for every n ∈ N. These functions satisfy φn ∈ C2(R), |φ′n(x)| ≤ 1, φ
′′

n(x) = 1x>0ψn(x), φn(x) ≤ x+ and
φk(x)→x+ as k →∞ for every x ∈ R and n ∈ N.

Denote the difference process by ∆k
t (i) := XN,k

t (i) − ZN,kt (i) for all i ∈ G, t ≥ 0, k ∈ N0 and N ∈ N.
The dependence on N is suppressed for the sake of a more compact notation. By definition of φn, x+ ≤
φn(x) + an−1 ∧ x+ for all x ∈ R and n ∈ N. Thus

E

[ N∑
i=1

∞∑
k=0

(
∆k
t (i)

)+] ≤ ∞∑
k=K+1

sup
M∈N

M∑
i=1

E

[
XM,k
t (i)

]

+E

[ N∑
i=1

K∑
k=0

φN2

(
∆k
t (i)

)]
+

∞∑
k=0

sup
M≥1

E

[ M∑
i=1

(
aN2−1 ∧XM,k

t (i)
)] (4.103)

for all K ∈ N and N ∈ N. The first summand on the right-hand side converges to zero as K →∞ uniformly
in N ∈ N according to Lemma 4.6. The last summand on the right-hand side converges to zero as N →∞
according to Lemma 4.23. Consequently

lim sup
N→∞

E

[ N∑
i=1

∞∑
k=0

(
∆k
t (i)

)+
]
≤ lim sup

K→∞
lim sup
N→∞

E

[ N∑
i=1

K∑
k=0

φN2

(
∆k
t (i)

)]
. (4.104)

To estimate the right-hand side, we apply Itô’s formula to obtain that

d

N∑
i=1

φN2

(
∆k
t (i)

)
=

N∑
i=1

φ
′

N2


√√√√XN,k

t (i)·σ2
N

(∑∞
m=0X

N,m
t (i)

)
∑∞
m=0X

N,m
t (i)

−
√
σ2
N

(
ZN,kt (i)

) dB̄kt (i)

+

N∑
i=1

φ
′

N2

(
∆k
t (i)

)( 1

N

N∑
j=1

∆k−1
t (j)−∆k

t (i)

)
dt

+

N∑
i=1

φ
′

N2

(
∆k
t (i)

)(XN,k
t (i)·µ̃N

(∑∞
m=0X

N,m
t (i)

)
∑∞
m=0X

N,m
t (i)

− µ̃N
(
ZN,kt (i)

))
dt

+

N∑
i=1

φ
′′

N2

(
∆k
t (i)

)
2


√√√√XN,k

t (i)·σ2
N

(∑∞
m=0X

N,m
t (i)

)
∑∞
m=0X

N,m
t (i)

−
√
σ2
N

(
ZN,kt (i)

)
2

dt

(4.105)
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for every k ∈ N0. Now we simplify the last summand on the right-hand side using the assumption of σ2
N

being linear. This linearity implies that x · σ2
N (y)/y = σ2

N (x) for x = XN,k
t (i) and y =

∑∞
m=0X

N,m
t (i). In

addition take expectations, estimate |φ′N2(x)| ≤ 1 and use −φ′N2(x) · x ≤ 0 for x ∈ R. Thus we have that

d

dt
E

[ N∑
i=1

φN2

(
∆k
t (i)

)]
≤ E

[ N∑
j=1

∣∣∆k−1
t (j)

∣∣]+E
[ N∑
i=1

∣∣µ̃N(XN,k
t (i)

)
− µ̃N

(
ZN,kt (i)

)∣∣]

+E

[ N∑
i=1

∣∣∣XN,k
t (i)·µ̃N

(∑∞
m=0X

N,m
t (i)

)
∑∞
m=0X

N,m
t (i)

− µ̃N
(
XN,k
t (i)

)∣∣∣]

+E

[ N∑
i=1

φ
′′

N2

(
∆k
t (i)

)
2

(√
σ2
N

(
XN,k
t (i)

)
−
√
σ2
N

(
ZN,kt (i)

))2]
(4.106)

for every t ≥ 0, k ∈ N0 and N ∈ N. The last but one summand on the right-hand side is estimated
as follows. Let δ > 0. In case of XN,k

t (i) ≥ δ, apply the inequality | aa+b µ̃N (a+ b)− µ̃N (a)| ≤ 2Lµb with

a = XN,k
t (i) and b =

∑∞
m 6=kX

N,m
t (i). In case of XN,k

t < δ, use |µ̃N (x)| ≤ Lµx for all x ≥ 0. For the last
summand on the right-hand side, use (

√
x−√y)2 ≤ |x− y| and |σ2

N (x)− σ2
N (y)| ≤ Lσ|x− y| for x, y ∈ [0,∞).

Moreover recall φ
′′

N2(x) ≤ 2
N2x+ for all x > 0. Define L := Lµ ∨ Lσ. Hence, we get that

d

dt
E

[ N∑
i=1

φN2

(
∆k
t (i)

)]
≤ E

[ N∑
j=1

∣∣∆k−1
t (j)

∣∣]+ LE
[ N∑
i=1

∣∣XN,k
t (i)− ZN,kt (i)

∣∣]

+ 2LE

[ N∑
i=1

1XN,kt (i)≥δ

∑
m6=k

XN,m
t (i)

]

+ 2LE

[ N∑
i=1

(
XN,k
t (i) ∧ δ

)]
+E

[ N∑
i=1

L
(
∆k
t (i)

)+
N2
(
∆k
t (i)

)+ ]
(4.107)

for every t ≥ 0, k ∈ N0 and N ∈ N. Summing over k ∈ {0, . . . ,K} leads to

d

dt
E

[ K∑
k=0

N∑
i=1

φN2

(
∆k
t (i)

)]

≤ (1 + L)E

[ ∞∑
k=0

N∑
i=1

∣∣∣∆k
t (i)

∣∣∣]+
2L

δ
E

[ ∞∑
k=0

N∑
i=1

XN,k
t (i)

∑
m 6=k

XN,m
t (i)

]

+ 2LE

[ ∞∑
k=0

N∑
i=1

(
XN,k
t (i) ∧ δ

)]
+ (K + 1)

L

N

(4.108)

for every t ≥ 0 and K,N ∈ N. The last three summands on the right-hand side of (4.108) converge to
zero uniformly in t ∈ [0, T ] if we first let N → ∞ and then δ → 0. This follows from Lemma 4.24 and
Lemma 4.23. After inserting (4.108) into (4.104), we see that

lim sup
N→∞

E

[ N∑
i=1

∞∑
k=0

(
∆k
t (i)

)+
]
≤
∫ t

0

(1 + L) lim sup
N→∞

E

[ N∑
i=1

∞∑
k=0

∣∣∣∆k
s(i)

∣∣∣] ds (4.109)

for all t ∈ [0, T ]. Note that the right-hand side is finite by Lemma 4.6. Similarly we obtain (4.109) with (·)+

replaced by | · |. Finally apply Gronwall’s inequality to arrive at (4.99).
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In the second step, we consider functions σ2
N and µN which are not globally Lipschitz-continuous. For

each K > 0 choose function σ2
N,K and µN,K which agree with σN and µN , respectively, on [0,K] and

which are uniformly globally Lipschitz continuous and uniformly bounded. Existence of such functions
follows from the uniform local Lipschitz continuity of σ2

N and µN . Recall the stopping time τ̃NK , K,N ∈
N, from (4.8). The process {

(
ZN,ms (i)

)
s≤t : i ≤ N,m ∈ N0} agrees with the loop-free (N, σ2

N,K , µN,K)-

process on the event {τ̃NK > t}. Furthermore the process {
(
XN,m
s (i)

)
s≤t : i ≤ N,m ∈ N0} agrees with

an (N, σ2
N,K , µN,K)-process with migration levels on {τ̃NK > t}. Therefore

lim sup
N→∞

E

[ N∑
i=1

∞∑
k=0

∣∣∣XN,k
t (i)− ZN,kt (i)

∣∣∣1τ̃NK>t
]

= 0 (4.110)

for every K > 0 by the preceding step. Lemma 4.8 handles the event {τ̃NK ≤ t}. This completes the proof
of Lemma 4.25.

4.6 Proof of Theorem 3.3

Proof of Theorem 3.3. First we prove Theorem 3.3 under the additional Assumption 4.2. This will be
relaxed later.

We begin with convergence of finite-dimensional distributions. Recall Es,T from (4.50). Let F (η) =∏n
j=1 fj(ηtj ) ∈ Es,T satisfy the Lipschitz condition (4.51) with Lipschitz constant LF ∈ (0,∞) and let F be

bounded by CF < ∞. Furthermore let the function f : I → R have compact support in (0, |I|), let f be
bounded by Cf <∞ and let f be globally Lipschitz continuous with Lipschitz constant Lf ∈ (0,∞). Recall
the (N,µN , σN )-process with migration levels from (4.1). We will exploit below that all individuals on one
island have the same migration level in order to show that

lim
N→∞

EF

(( N∑
i=1

f
(
XN
t (i)

))
t≤T

)
= lim
N→∞

EF

(( N∑
i=1

∞∑
k=0

f
(
XN,k
t (i)

))
t≤T

)
. (4.111)

Assuming (4.111) we now prove convergence of finite-dimensional distributions. We may replace the
(N,µN , σ

2
N )-process with migration levels in (4.111) by the loop-free process because of Lemma 4.25 and

the Lipschitz continuity of F and f . Hence (4.111) and Lemma 4.25 imply that

lim
N→∞

EF

(( N∑
i=1

f
(
XN
t (i)

))
t≤T

)
= lim
N→∞

EF

(( N∑
i=1

∞∑
k=0

f
(
XN,k
t (i)

))
t≤T

)

= lim
N→∞

EF

(( N∑
i=1

∞∑
k=0

f
(
ZN,kt (i)

))
t≤T

)
= EF

(( ∑
(s,η)∈V

f
(
ηt−s

))
t≤T

)
.

(4.112)

The last equality is the convergence of the loop-free (N,µN , σ
2
N )-process to the virgin island model and

has been established in Lemma 4.22.

Next we prove (4.111). According to Lemma 4.4 if we ignore the migration levels in the (N,µN , σ
2
N )-

process with migration levels, then we obtain a version of the (N,µN , σ
2
N )-process, that is,

lim
N→∞

EF

(( N∑
i=1

f
(
XN
t (i)

))
t≤T

)
= lim
N→∞

EF

(( N∑
i=1

f
( ∞∑
m=0

XN,m
t (i)

))
t≤T

)
(4.113)

For proving (4.111) we observe that

∣∣∣1− ∞∑
k=0

1xk≥δ

∣∣∣ ≤ 1xm≤δ ∀ m∈N0
+ 1∃m 6=l : xm≥δ,xl≥δ·

∞∑
k=0

1xk≥δ

≤ 1xm≤δ ∀ m∈N0 +
1

δ2

∞∑
k=0

xk
∑
l 6=k

xl
(4.114)
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for every sequence (xk)k∈N0
⊆ [0,∞) and every δ > 0. Thus we get that

E

∣∣∣ N∑
i=1

f
( ∞∑
m=0

XN,m
t (i)

)(
1−

∞∑
k=0

1XN,kt (i)≥δ

)∣∣∣
≤ Lf

N∑
i=1

E

[ ∞∑
m=0

XN,m
t (i) ∧ δ

]
+ Cf

N∑
i=1

1

δ2
E

[ ∞∑
k=0

XN,k
t (i)

∑
l 6=k

XN,l
t (i)

]
=: C(N, δ, t)

(4.115)

for all N ∈ N, t ≥ 0 and δ > 0. The second summand on the right-hand side converges to zero as N → ∞
according to Lemma 4.24. The first summand on the right-hand side converges to zero as δ → 0 uniformly
in N ∈ N according to Lemma 4.23. Using (4.115) we obtain that

1

LF

∣∣∣EF(( N∑
i=1

f
( ∞∑
m=0

XN,m
t (i)

))
t≤T

)
−EF

(( N∑
i=1

∞∑
k=0

f
(
XN,k
t (i)

))
t≤T

)∣∣∣
≤

n∑
j=1

E

[ N∑
i=1

∞∑
k=0

1XN,ktj
(i)≥δ

∣∣∣f( ∞∑
m=0

XN,m
tj (i)

)
− f

(
XN,k
tj (i)

)∣∣∣]

+

n∑
j=1

C(N, δ, tj) +

n∑
j=1

E

[ N∑
i=1

∞∑
k=0

1XN,ktj
(i)<δ

∣∣∣f(XN,k
tj (i)

)∣∣∣]

≤ Lf
δ

n∑
j=1

E

[ N∑
i=1

∞∑
k=0

XN,k
tj (i)

∑
m 6=k

XN,m
tj (i)

]

+

n∑
j=1

C(N, δ, tj) + Lf

n∑
j=1

E

[ N∑
i=1

∞∑
k=0

XN,k
tj (i) ∧ δ

]

(4.116)

for all N ∈ N and δ > 0. Letting first N → ∞ and then δ → 0, the right-hand side converges to zero
according to Lemmas 4.24 and 4.23 and according to the preceding step. Inserting this into (4.113)
proves (4.111).

The next step is to prove tightness. This is analogous to the tightness proof in Lemma 4.21. Use
Lemmas 4.8 and 4.16 instead of Lemma 4.11. So we omit this step.

It remains to prove Theorem 3.3 in the case when Assumption 4.2 fails to hold. Fix T ∈ [0,∞). Let
H : DMF (I) ([0, T ]) → R be a bounded continuous function on measure-valued càdlàg-paths. It follows

from Assumption 3.2 that
∑N
i=1X

N
0 (i) converges in L1 and thus also in distribution to

∑
i∈GX0(i). By the

Skorokhod representation theorem (e.g. Theorem II.86.1 in [39]), there exists a version of {XN
0 (·) : N ∈ N}

such that
∑N
i=1X

N
0 (i) converges almost surely to

∑
i∈GX0(i) as N → ∞. Now the previous step implies

that

E

[
H

(( N∑
i=1

δXNt (i)

)
t≤T

)
|XN

0 (·)
]
N→∞−−−−→ E

[
H

(( ∑
(u,η)∈V

δηt−u

)
t≤T

)
|X0(·)

]
(4.117)

almost surely. Taking expectations and applying the dominated convergence theorem results in

E

[
H

(( N∑
i=1

δXNt (i)

)
t≤T

)]
N→∞−−−−→ E

[
H

(( ∑
(u,η)∈V

δηt−u

)
t≤T

)]
(4.118)

almost surely. This finishes the proof of Theorem 3.3.
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4.7 McKean-Vlasov limit of the N-island model as N →∞
Proposition 4.29 below establishes convergence of the N -island model as N → ∞ in the case of ex-

changeable initial configurations. First we prove estimate (4.122) which implies pathwise uniqueness and
monotonicity of the solution. The following lemma is a special case of Lemma 4.12. Define x+ = max(x, 0)

for all x ∈ R.

Lemma 4.26. Let Assumption 2.1 be fulfilled, let x, y ∈ I, s ∈ [0,∞) and let ζ, ζ̄ : [s,∞) → I be locally

square Lebesgue integrable. Then there exists a unique strong solution (Y ζ,xt,s , Ȳ
ζ̄,y
t,s )t∈[s,∞) of

dY ζ,xt,s = ζ(t) dt− Y ζ,xt,s dt+ µ
(
Y ζ,xt,s

)
dt+

√
σ2
(
Y ζ,xt,s

)
dBt (4.119)

dȲ ζ̄,xt,s = ζ̄(t) dt− Ȳ ζ̄,xt,s dt+ µ
(
Ȳ ζ̄,xt,s

)
dt+

√
σ2
(
Ȳ ζ̄,xt,s

)
dBt (4.120)

having almost surely continuous paths and satisfying Y ζ,xs,s = x, Ȳ ζ̄,ys,s = y for all s ≥ 0. Moreover

E

[
(Y ζ,xt,s − Ȳ

ζ̄,y
t,s )+

]
≤ eLµ(t−s)

(∫ t

s

(
ζ(r)− ζ̄(r)

)+
dr +

(
x− y

)+)
(4.121)

for all t ∈ [s,∞).

Lemma 4.27. Let Assumption 2.1 be fulfilled. Moreover let (Mt)t≥0 and (M̄t)t≥0 be two solutions of the
McKean-Vlasov equation (1.4) with respect to the same Brownian motion having almost surely continuous
paths and satisfying E[|M0|+ |M̄0|] <∞. Then

sup
t∈[0,T ]

E
[
(Mt − M̄t)

+
]
≤ eLµT+TeLµT

E
[
(M0 − M̄0)+

]
(4.122)

for all T ∈ [0,∞).

Proof. Applying Lemma 4.26 and Jensen’s inequality yields that

E
[
(Mt − M̄t)

+
]

=

∫ ∫
E

[(
Y
E[M ],x
t,0 − Y E[M̄ ],y

t,0

)+
]
P(M0 ∈ dx, M̄0 ∈ dy)

≤ eLµT
(∫ t

0

(
E[Mr]−E[M̄r]

)+
dr +E

[(
M0 − M̄0

)+])
≤ eLµT

∫ t

0

E
[(
Mr − M̄r

)+]
dr + eLµTE

[(
M0 − M̄0

)+]
(4.123)

for all t ∈ [0, T ] and all T ∈ [0,∞). Therefore, Gronwall’s inequality implies inequality (4.122).

Lemma 4.28. Let Assumption 2.1 be fulfilled and letM0 be an I-valued random variable withE[|M0|] <∞.
Then the McKean-Vlasov equation (1.4) has a unique strong solution (Mt)t≥0.

Proof. Fix a standard Brownian motion (Bt)t≥0 which is independent of M0. Let the processes (Z(k))t≥0,
k ∈ N0, be the unique strong solutions of

dZ
(k)
t = 1k≥1E

[
Z

(k−1)
t

]
dt− Z(k)

t dt+ µ
(
Z

(k)
t

)
dt+

√
σ2
(
Z

(k)
t

)
dBt (4.124)

and Z
(k)
0 = M0 for k ∈ N0. We show by induction on k ∈ N0 that Z(k)

t ≤ Z
(k+1)
t for all t ∈ [0,∞)

and k ∈ N0 almost surely. The base case k = 0 follows from E
[
Z

(0)
t

]
≥ 0 for all t ∈ [0,∞) and from

a time inhomogeneous version of the monotonicity result in Lemma 3.3 in [23]. For the induction step
k → k + 1, note that the induction hypothesis implies that E

[
Z

(k)
t

]
≤ E

[
Z

(k+1)
t

]
for all t ∈ [0,∞). Thus the

induction step follows from a time inhomogeneous version of the monotonicity result in Lemma 3.3 in [23].
Consequently the process (Mt)t≥0 defined through Mt =↑ limk→∞ Z

(k)
t for t ∈ [0,∞) is a well-defined

progressively measurable stochastic process with values in I ∪ {∞}. Note that Lemma 4.26 implies that

E
[
Z

(k)
t

]
≤ eLµt

(
E
[
M0

]
+

∫ t

0

1k≥1E
[
Z(k−1)
s

]
ds
)
≤ eLµt

(
E
[
M0

]
+

∫ t

0

E
[
Z(k)
s

]
ds
)

(4.125)
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for all k ∈ N0 and all t ∈ [0,∞). By induction on k ∈ N0, we get that E[Z
(k)
t ] is finite for all k ∈ N0 and all

t ∈ [0,∞). Therefore the monotone convergence theorem and Gronwall’s lemma result in

E
[
Mt

]
= E

[
lim
k→∞

Z
(k)
t

]
= lim
k→∞

E
[
Z

(k)
t

]
≤ eLµT+TeLµT

E [M0] (4.126)

for all t ∈ [0, T ] and all T ∈ [0,∞). Next we show that (Mt)t≥0 solves the McKean-Vlasov equation (1.4).
Define a stopping time τK := inf({t ∈ [0,∞) : Mt ≥ K} ∪ {∞}) ∈ [0,∞] for every K ∈ N. Doob’s L2

inequality (e.g. Theorem II.70.2 in [39]) implies that

E

[∫ T∧τK

0

∣∣∣µ(Ms)− µ
(
Z(k)
s

)∣∣∣ ds]+E

[
sup
t∈[0,T ]

(∫ t∧τK

0

σ(Ms)dBs −
∫ t∧τK

0

σ
(
Z(k)
s

)
dBs

)2
]

≤
∫ T

0

E

[∣∣∣µ(Ms∧τK )− µ
(
Z

(k)
s∧τK

)∣∣∣ ds]+ 4

∫ T

0

E

[(
σ
(
Ms∧τK

)
− σ

(
Z

(k)
s∧τK

))2
]
ds

≤

(
sup

x 6=y∈[0,K]

|µ(x)−µ(y)|
|x−y| + 4 sup

x 6=y∈[0,K]

|σ2(x)−σ2(y)|
|x−y|

)∫ T

0

E

[∣∣Ms∧τK − Z
(k)
s∧τK

∣∣] ds
(4.127)

for all T ∈ [0,∞), K ∈ N and all k ∈ N0. The right-hand side converges to 0 as k →∞ for every K ∈ N and
every T ∈ [0,∞) by the dominated convergence theorem. Thus, letting k →∞ in (4.124) and using (4.127),
we conclude that (Mt)t≥0 solves the McKean-Vlasov equation (1.4) for all t ∈ [0, τK ] almost surely for all
K ∈ N, that is, (Mt)t≥0 is a solution of the McKean-Vlasov equation (1.4). This proves existence of a
solution.

Applying Lemma 4.27 twice implies that two solutions (Mt)t≥0 and (M̄t)t≥0 of (1.4) with respect to
the same Brownian motion and with the same initial point have the same finite-dimensional distributions.
Together with path continuity this yields pathwise uniqueness and – together with weak existence – that
the SDE (1.4) is exact (Definition V.9.3 in [40]). Moreover Lemma 4.27 implies almost sure monotonicity
and continuity of the solution in the initial point. More precisely if M0 ≤ M̄0 almost surely then Mt ≤ M̄t

almost surely for all t ∈ [0,∞) and, due to path continuity, Mt ≤ M̄t for all t ∈ [0,∞) almost surely. The
proof of Theorem V.13.1 in [40] shows that if the solution of an exact SDE is almost surely continuous in
the initial point, then there exists a unique strong solution. This finishes the proof of Lemma 4.28.

Recall the (N,µ, σ2)-island process (XN
t )t≥0 from (1.2). LetM1(I) be the set of probability measures on

I equipped with the Prohorov metric, which induces weak convergence (see e.g. Theorem 3.3.1 in [16]).
Moreover letM2

1(I) = {ν ∈ M1(I) : 〈v, x2〉 =
∫
x2ν(dx) < ∞ be the set of probability measures on I with

finite second moments on which a sequence (νn)n∈N converges to ν ∈M2
1(I) if and only if νn → ν as n→∞

in M1(I) and supn∈N〈νn, x2〉 < ∞. The space C([0,∞),M1(I)) is endowed with the topology of uniform
convergence and the subspace C([0,∞),M2

1(I)) is endowed with a topology such that νn → ν as n→∞ in
C([0,∞),M2

1(I)) if and only if νn → ν as n→∞ in C([0,∞),M1(I)) and supn∈N supt∈[0,T ]〈νn(t), x2〉 <∞ for
every T ∈ [0,∞), for details see Appendix B in [18].

Proposition 4.29. Let Assumption 2.1 be fulfilled and let M0 be an I-valued random variable. More-
over let XN

0 (j), j ≤ N , be exchangeable random variables with values in I for every N ∈ N such that
supN∈NE[(XN

0 (1))2] <∞, such thatXN
0 (1)→M0 in distribution asN →∞ and such that 1

N

∑N
j=1 δXN0 (j) →

E[δM0 ] in distribution inM2
1(I) as N →∞. Let (XN

t )t≥0 be the unique solution of (1.2) and let (Mt)t≥0 be
the unique solution of (1.4). Then (XN

t (i))t≥0 → (Mt)t≥0 in distribution as N → ∞ for every i ∈ N and(
1
N

∑N
i=1 δXNt (i)

)
t∈[0,∞)

→
(
E
[
δMt

])
t∈[0,∞)

in distribution in C([0,∞),M2
1) as N → ∞. Moreover we have

that

√
NE

[∣∣XN
t (1)−Mt

∣∣] ≤ e(1+Lµ)t

(√
NE

[∣∣XN
0 (1)−M0

∣∣]+

∫ t

0

(
Var

(
Ms)

) 1
2 ds

)
∈ [0,∞) (4.128)

for all N ∈ N and all t ∈ [0,∞).

Proof. Theorem 4.1 of Gärtner (1988) establishes an analogous assertion under general assumptions in-
cluding the ellipticity assumption that (in our notation) σ2(x) > 0 for all x ∈ I. This assumption is not
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satisfied in our situation. Nevertheless, parts of the proof of Theorem 4.1 of Gärtner (1988) carry over to
our situation.

We only prove the assertion for i = 1, the general case being analogous. First we show that the
distributions of the sequence ( 1

N

∑N
k=1 δXNt (k), X

N
t (1))t∈[0,∞), N ∈ N, are relatively sequentially weakly

compact. For this, we introduce more notation. Let A(ν) : C2(I) → C(I), ν ∈ M2
1(I), be operators defined

through

A(ν)f(x) = f
′
(x)

(∫
I

zν(dz)− x+ µ(x)

)
+ 1

2f
′′
(x)σ2(x) (4.129)

for all x ∈ I, f ∈ C2(I) and all ν ∈ M2
1(I) and let the operators GN : C2(IN ) → C(IN ), N ∈ N, be defined

through

GNf(x) =

N∑
k=1

∂
∂xk

f(x)

(
1
N

N∑
j=1

xj − xk + µ(xk)

)
+ 1

2

N∑
k=1

∂2

∂x2
k
f(x)σ2(xk) =

N∑
k=1

Ak
(

1
N

N∑
j=1

δxj

)
f(x)

for all x ∈ IN , f ∈ C2(IN ) and all N ∈ N where Ak is the operator A acting on the k-th variable. Note that
the N -island process (1.2) solves the well-posed martingale problem for GN for every N ∈ N. The functions
µ and σ are continuous so that Assumption (A) of [18] is satisfied except for σ(0) = 0 and σ(I) = 0 if |I| <∞.
Define functions λ : [0,∞) 3 x 7→ 2(1 + Lµ + 2θ + Lσ)(1 + x) ∈ (0,∞) and ϕ : I 3 x 7→ 1 + x2 ∈ (0,∞). Then∫∞

1
dx/λ(x) =∞ and 〈ν,A(ν)ϕ〉 ≤ λ

(
〈ν, ϕ〉

)
for every ν ∈M2

1(I) due to Assumption 2.1 so that Assumption
(B) of [18] is satisfied. Lemma 4.9 and the inequality a ≤ 1 + a2 for a ∈ R yield that

lim
r→∞

sup
N∈N

P

[
sup
t∈[0,T ]

1
N

N∑
k=1

(
XN
t (k)

)2 ≥ r] ≤ lim
r→∞

1

r
sup
N∈N

E

[
sup
t∈[0,T ]

1
N

N∑
k=1

(
XN
t (k)

)2]

≤ lim
r→∞

2

r

(
24Tθ2 + 8LσT

(
2θT + 1

)
eLµT + (1 + 8LσTe

LµT ) sup
N∈N

E

[(
XN

0 (1)
)2])

e40(1+T )(1+Lµ+Lσ)2T

= 0

for every T ∈ [0,∞). This implies assumption (i) of Lemma 1.4 of [18]. The proof of assertion (ii) in the
proof of Theorem 1.5 of [18] only requires that supx∈I∩[0,r](|µ(x)|+ |σ(x)|) <∞ for every r ∈ [0,∞) (which
follows from Assumption 2.1) and carries over to our situation without further changes. This implies
assumption (ii) of Lemma 1.4 of [18]. Lemma 1.4 of [18] thus yields that the distributions of the se-
quence

(
1
N

∑N
k=1 δXNt (k)

)
t∈[0,∞)

, N ∈ N, are relatively sequentially weakly compact in C([0,∞),M2
1(I)).

In addition, the proof of Theorem 4.1 of [18] shows relative weak compactness of (XN
t (1))t≥0, N ∈

N, in C([0,∞), I) (without using Assumptions (C) or (E) in [18]). This proves that the distributions
of the sequence

(
XN
t (1), 1

N

∑N
k=1 δXNt (k)

)
t∈[0,∞)

, N ∈ N, are relatively sequentially weakly compact in

C([0,∞), I ×M2
1(I)).

Next we identify the weak limit of the sequence
(
XN
t (1), 1

N

∑N
k=1 δXNt (k)

)
t∈[0,∞)

, N ∈ N. Let (Mt(j))t≥0

be the unique strong solution of (1.4) with respect to the Brownian motion (Bt(j))t≥0 for every j ∈ N such
that M0(j), j ∈ N, are independent copies of M0. As in Theorem 1 of Yamada and Watanabe (1971) [47],
an approximation of the function R 3 x→ |x| ∈ [0,∞) with C2-functions (see also the proof of Lemma 4.25
for this approximation) results in

d
∣∣XN

t (j)−Mt(j)
∣∣ = sgn

(
XN
t (j)−Mt(j)

)
d
(
XN
t (j)−Mt(j)

)
(4.130)

for all j ∈ {1, . . . , N} and all N ∈ N. Taking expectations and using Assumption 2.1 yields that

E

[
1

N

N∑
j=1

∣∣XN
t (j)−Mt(j)

∣∣]−E[ 1

N

N∑
j=1

∣∣XN
0 (j)−M0(j)

∣∣]

≤ 1

N

N∑
j=1

∫ t

0

E

[∣∣∣ 1

N

N∑
k=1

XN
s (k)−E

[
Ms(j)

]∣∣∣+ sgn
(
XN
s (j)−Ms(j)

)(
µ
(
XN
s (j)

)
− µ

(
Ms(j)

))]
ds

≤
∫ t

0

E

[∣∣∣ 1

N

N∑
k=1

Ms(k)−E
[
Ms(1)

]∣∣∣]ds+ (1 + Lµ)

∫ t

0

E

[
1

N

N∑
j=1

∣∣∣XN
s (j)−Ms(j)

∣∣∣]ds
(4.131)
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for all N ∈ N and all t ∈ [0,∞). Therefore, Gronwall’s inequality implies that

E

[∣∣XN
t (1)−Mt(1)

∣∣] = E

[
1

N

N∑
j=1

∣∣XN
t (j)−Mt(j)

∣∣]

≤ e(1+Lµ)t

(
E

[
1

N

N∑
j=1

∣∣XN
0 (j)−M0(j)

∣∣]+

∫ t

0

E

[∣∣∣ 1

N

N∑
k=1

Ms(k)−E
[
Ms(1)

]∣∣∣]ds)

≤ e(1+Lµ)t

(
E

[∣∣XN
0 (1)−M0(1)

∣∣]+

∫ t

0

(
Var

( 1

N

N∑
k=1

Ms(k)
)) 1

2

ds

)
= e(1+Lµ)t

(
E

[∣∣XN
0 (1)−M0(1)

∣∣]+
1√
N

∫ t

0

(
Var

(
Ms(1)

)) 1
2

ds

)
(4.132)

for all N ∈ N and all t ∈ [0,∞). This proves inequality (4.128). Moreover we infer that∣∣∣∣E [e−∑n
j=1 λjX

N
tj

(1)−
∑n
j=1 λ̃j

1
N

∑N
k=1 fj

(
XNtj

(k)
)]
−E

[
e−

∑n
j=1 λjMtj

(1)−
∑n
j=1 λ̃jE

[
fj

(
Mtj

(1)
)]]∣∣∣∣

≤
n∑
j=1

λjE
[∣∣∣XN

tj (1)−Mtj (1)
∣∣∣]+

n∑
j=1

λ̃jE

[∣∣∣ 1

N

N∑
k=1

fj
(
XN
tj (k)

)
−E

[
fj
(
Mtj (1)

)]∣∣∣]

≤
n∑
j=1

(
λj + λ̃j sup

x6=y∈I

|fj(x)−fj(y)|
|x−y|

)
E

[∣∣∣XN
tj (1)−Mtj (1)

∣∣∣]+

n∑
j=1

λ̃j
1√
N

(
Var

(
fj
(
Mtj (1)

))) 1
2

(4.133)

for all N ∈ N, 0 ≤ t1 < t2 < . . . < tn < ∞, λ1, . . . , λn, λ̃1, . . . λ̃n ∈ [0,∞), all globally Lipschitz continu-
ous functions f1, . . . , fn : I → [0,∞) and all n ∈ N. The right-hand side converges to 0 as N → ∞ due
to inequality (4.132). This identifies the limit and, together with tightness, implies that the sequence(
XN
t (1), 1

N

∑N
k=1 δXNt (k)

)
t∈[0,∞)

, N ∈ N, converges to
(
Mt,E

[
δMt

])
t∈[0,∞)

in distribution in C([0,∞), I ×
M2

1(I)). This finishes the proof of Proposition 4.29.

5 Comparison with the virgin island model

As in Section 4, we define a loop-free process. Let
{

(Z
(k)
t (i))t≥0 : k ∈ N0, i ∈ G

}
be the solution of

dZ
(k)
t (i) =

(∑
j∈G

Z
(k−1)
t (j)m(j, i)− Z(k)

t (i) + µ
(
Z

(k)
t (i)

))
dt

+

√
σ2
(
Z

(k)
t (i)

)
dBkt (i), Z

(k)
0 (i) = 1k=0X0(i), i ∈ G, k ∈ N0,

(5.1)

where we agree on Z
(−1)
t (i) := 0 for t ≥ 0 and i ∈ G. We will refer to this process as the loop-free

(G,m, µ, σ2)-process. The main two steps in our proof of Theorem 3.8 are as follows. Lemma 5.8 below
shows that the total mass of the (G,m, µ, σ2)-process is dominated by the total mass of the loop-free
(G,m, µ, σ2)-process. Lemma 5.10 then proves that the total mass of the loop-free (G,m, µ, σ2)-process is
dominated by the total mass of the virgin island model. Our proof of Lemma 5.10 exploits the hierarchical
structure of the loop-free process. Note that conditioned on migration level k−1, the islands with migration
level k are independent one-dimensional diffusions. We prepare this in Subsection 5.2 by studying the one-
dimensional time-inhomogeneous diffusion

dY ζ,xt,s (i) = ζ(t) dt− Y ζ,xt,s (i)dt+ µ
(
Y ζ,xt,s (i)

)
dt+

√
σ2
(
Y ζ,xt,s (i)

)
dBt(i) (5.2)

where Y ζ,xs,s = x ∈ I and s ≥ 0. The path ζ ∈ C
(
[0,∞), I

)
will later represent the mass immigrating from

lower migration levels.
The core of the comparison result is the following generator calculation which manifests the intuition

that separating mass onto different islands increases the total mass. If ζ ≡ c is constant, then a formal
generator of (Y c,·t,s )t≥s is

G(c)f(x) :=
(
c− x+ µ(x)

)
f
′
(x) +

1

2
σ2(x)f

′′
(x) x ∈ I (5.3)
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where f ∈ C2(I), see e.g. Section 5.3 in [16]. Recall F (1)
++ from (3.18).

Lemma 5.1. Assume 2.1. Suppose that c, c1, c2 ∈ I satisfy c ≤ c1 + c2. Assume µ to be subadditive, that is,
µ(x+ y) ≤ µ(x) + µ(y) for all x, y ∈ I with x+ y ∈ I. Let x, y, x+ y ∈ I. If σ2 is superadditive, then

G(c)f(x+ y) ≤
(
G(c1)f(·+ y)

)
(x) +

(
G(c2)f(x+ ·)

)
(y) ∀ f ∈ F (1)

+− ∩ C2. (5.4)

If σ2 is subadditive, then

G(c)f(x+ y) ≤
(
G(c1)f(·+ y)

)
(x) +

(
G(c2)f(x+ ·)

)
(y) ∀ f ∈ F (1)

++ ∩ C2. (5.5)

If σ2 is additive, then

G(c)f(x+ y) ≤
(
G(c1)f(·+ y)

)
(x) +

(
G(c2)f(x+ ·)

)
(y) ∀ f ∈ F (1)

+± ∩ C2. (5.6)

Proof. For f ∈ F (1)
+−∩C2, the first derivative is non-negative and the second derivative is nonpositive. Thus

G(c)f(x+ y) = f
′
(x+ y)

(
c− (x+ y) + µ(x+ y)

)
+

1

2
f
′′
(x+ y)σ2(x+ y)

≤ f
′
(x+ y)

(
c1 − x+ µ(x)

)
+

1

2
f
′′
(x+ y)σ2(x)

+ f
′
(x+ y)

(
c2 − y + µ(y)

)
+

1

2
f
′′
(x+ y)σ2(y)

=
(
G(c1)f(·+ y)

)
(x) +

(
G(c2)f(x+ ·)

)
(y).

(5.7)

This is inequality (5.4). The proof of inequality (5.5) is analogous. If σ2 is additive, then σ2(x + y) =

σ2(x) + σ2(y) and no property of f
′′

is needed in the above calculation.

As a remark, we observe that the operator on the right-hand side of (5.4) is a formal generator of the
superposition

(
Y c1,xt,s + Ỹ c2,yt,s

)
t≥s of two independent solutions of (5.2). This follows from Theorem 4.10.1

in [16].

We will lift inequality (5.4) between formal generators to an inequality between the associated semi-
groups. For this we use an integration by parts formula. For its formulation, let GS and GT be two
generators associated with the semigroups (St)t≥0 and (Tt)t≥0, respectively. Then, for t ∈ [0,∞), we have
that

Stf − Ttf =

∫ t

0

Tt−s
(
GS − GT

)
Ssf ds (5.8)

if Ssf ∈ D(GS) ∩ D(GT ) for all s ≤ t, see p. 367 in Liggett (1985). The idea of using (5.8) for a comparison

is borrowed from Cox et al. (1996). As the generator inequality (5.4) holds for functions in F (1)
+−, we need

to show that the semigroup of (Y x,·t,s )t≥s preserves F (1)
+−. This is subject of the following subsection.

5.1 Preservation of convexity

We write xn := (x1, . . . , xn) for x1, . . . , xn ∈ R and n ∈ N. The i-th unit row vector is denoted as ei for

every i ∈ N. Recall F (n)
++ from (3.18).

Lemma 5.2. For every n ∈ N and f ∈ F (n)
++

(
[0,∞)

)
, we have that

f
(
xn +

k∑
j=1

hjeij

)
− f

(
xn +

k∑
j=2

hjeij

)
≥ f

(
xn + h1ei1

)
− f

(
xn
)

(5.9)

for all xn ∈ [0,∞)n, all h1, . . . , hk ≥ 0, all (i1, . . . , ik) ∈ {1, . . . , n}k and all k ∈ N. The reverse inequality

holds if F (n)
++ is replaced by F (n)

+−.
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Proof. The proof is by induction on k ∈ N. The base case k = 1 is trivial. Now assume that (5.9) holds for
some k ≥ 1. Fix xn ∈ [0,∞)n, h1, . . . , hk ≥ 0 and (i1, . . . , ik) ∈ {1, . . . , n}k. Applying the induction hypothesis
at location xn +

∑k
j=2 hjeij to the index tuple (i1, ik+1), we obtain that

f
(
xn +

k∑
j=2

hjeij + h1ei1 + hk+1eik+1

)
− f

(
xn +

k∑
j=2

hjeij + hk+1eik+1

)

≥ f
(
xn +

k∑
j=2

hjeij + h1ei1

)
− f

(
xn +

k∑
j=2

hjeij

)
≥ f

(
xn + h1ei1

)
− f

(
xn
)
.

(5.10)

The last step is again the induction hypothesis.

Lemma 5.3. Let n ∈ N, c ∈ [0,∞) and f ∈ F (n+1)
++

(
[0,∞)

)
. Then the two functions

f̃ : [0,∞)n → R, xn → f(x1, . . . , xn, xn) (5.11)

and

f̄ : [0,∞)n → R, xn → f(x1, . . . , xn, c) (5.12)

are elements of F (n)
++

(
[0,∞)

)
. This is also true if F++ is replaced by F+− and F+±, respectively.

Proof. The functions f̃ and f̄ are non-decreasing and either bounded or non-negative. It is clear that f̄
is again (i, j)-convex for 1 ≤ i, j ≤ n and that f̃ is (i, j)-convex for 1 ≤ i, j ≤ n − 1. It remains to prove
(i, n)-convexity of f̃ for 1 ≤ i ≤ n. Applying Lemma 5.2 at location xn+1 to the index tuple (i, n, n + 1), we
obtain for all h1, h2 ≥ 0 that

f
(
xn + h1ei + h2en, xn + h2

)
= f

(
xn+1 + h1ei + h2en + h2en+1

)
|xn+1=xn

≥
(
f
(
xn+1 + h2en + h2en+1

)
+ f

(
xn+1 + h1ei

)
− f

(
xn+1

))
|xn+1=xn

= f
(
xn + h2en, xn + h2

)
+ f

(
xn + h1ei, xn

)
− f

(
xn, xn

)
,

(5.13)

that is, f̃ is (i, n)-convex.

Lemma 5.4. Assume 2.1. Let n ∈ N and f ∈ F (n+1)
+±

(
[0,∞)

)
. Then the function

(x1, . . . , xn) 7→ Ef
(
x1, . . . , xn, Y

ζ,xn
t,s

)
(5.14)

is an element of F (n)
+±
(
[0,∞)

)
for every 0 ≤ s ≤ t. If µ is concave, then this property still holds if F (n+1)

+± is

replaced by F (n+1)
++ and if F (n)

+± is replaced by F (n)
++, respectively.

Proof. Fix 0 ≤ s ≤ t and n ∈ N. We only prove the case of µ being concave and f ∈ F (n+1)
++ as the remaining

cases are similar. According to Lemma 5.3, it suffices to prove that

f̃ : [0,∞)n+1 → R, (x1, . . . , xn+1) 7→ Ef
(
x1, . . . , xn, Y

ζ,xn+1

t,s

)
(5.15)

is an element of F (n+1)
++

(
[0,∞)

)
. Let (Y ζ,xt,s )t≥s, x ∈ I, be solutions of (5.2) with respect to the same Brownian

motion. It is known that Y ζ,xt,s ≤ Y ζ,x+h
t,s holds almost surely for all x ≤ x + h ∈ I, see e.g. Theorem V.43.1

in [40] for the time-homogeneous case. Thus the function f̃ is again non-decreasing. Moreover f̃ inherits
(i, j)-convexity from f for every 1 ≤ i, j ≤ n. It remains to show that f̃ is (i, n+ 1)-convex for 1 ≤ i ≤ n+ 1.

If i ≤ n, then (i, n+ 1)-convexity of f at the point
(
x1, . . . , xn, Y

ζ,xn+1

t,s

)
implies that

f̃
(
xn+1 + h1ei + h2en+1

)
= Ef

(
xn + h1ei, Y

ζ,xn+1

t,s + Y
ζ,xn+1+h2

t,s − Y ζ,xn+1

t,s

)
≥ Ef

(
xn + h1ei, Y

ζ,xn+1

t,s

)
+Ef

(
xn, Y

ζ,xn+1+h2

t,s

)
−Ef

(
xn, Y

ζ,xn+1

t,s

)
= f̃

(
xn+1 + h1ei

)
+ f̃

(
xn+1 + h2en+1

)
− f̃

(
xn+1

) (5.16)
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for every h1, h2 ≥ 0 and (x1, . . . , xn) ∈ [0,∞)n, that is, (i, n + 1)-convexity of f̃ in the case i ≤ n. One can
establish convexity of

y 7→ f̃(x1, . . . , xn, y) (5.17)

as in Lemma 6.1 of [23] (this Lemma 6.1 shows concavity if f is (n+ 1, n+ 1)-concave and smooth; for the
general case, approximate f , µ and σ with smooth functions and exploit that convexity is preserved under
pointwise limits). This step uses concavity of µ. Consequently, f̃ is (n + 1, n + 1)-convex. This completes

the proof of f̃ ∈ F (n+1)
++

(
[0,∞)

)
.

Lemma 5.4 extends Proposition 16 of Cox et al. (1996) [11]. This Proposition 16 is used in [11] to
establish a comparison result between diffusions with different diffusion functions, see Theorem 1 in [11].
Using the above Lemma 5.4, this comparison result can be extended to more general test functions.

5.2 Decomposition of a one-dimensional diffusion with immigration into subfamilies

Feller’s branching diffusion with immigration can be decomposed into independent families which
originate either from an individual at time zero or from an immigrant, see e.g. Theorem 1.3 in Li and Shiga
(1995). A diffusion does in general not agree with its family decomposition if individuals interact with each
other, e.g. if the branching rate depends on the population size. If the drift function is subadditive and
if the branching function is superadditive, however, then we get at least a comparison result. In that
situation, the diffusion is dominated by its family decomposition. More precisely, the total mass increases
in the order ≤F+− if we let all subfamilies evolve independently, see Lemma 5.7 below. The following
lemma is a first step in this direction.

Lemma 5.5. Assume 2.1. Let x, y, x+ y ∈ I and let ζ, ζ̃ : [0,∞)→ [0,∞) be locally Lebesgue integrable. If
µ is concave and σ2 is superadditive, then(

Y ζ+ζ̃,x+y
t,s

)
t≥s
≤F+−([0,∞))

(
Y ζ,xt,s + Ỹ ζ̃,yt,s

)
t≥s

, ∀ s ≥ 0, (5.18)

where
(
Y ζ,xt,s

)
t≥s and

(
Ỹ ζ̃,xt,s

)
t≥s are independent processes. If µ is concave and σ2 is subadditive, then

inequality (5.18) holds with F+− replaced by F++. If µ is subadditive and σ2 is additive, then inequal-
ity (5.18) holds with F+− replaced by F+±.

Proof. Let Fn(η) = fn(ηt1 , . . . , ηtn) ∈ F+−([0,∞)) where fn ∈ F (n)
+−([0,∞)). We begin with the case of ζ, ζ̃

being simple functions. W.l.o.g. we consider ζ(t) =
∑n
i=1 ci1[ti−1,ti)(t) and ζ̃(t) =

∑n
i=1 c̃i1[ti−1,ti)(t) where

c1, ..., cn, c̃1, . . . , c̃n ≥ 0, t0 = s and tn+1 = ∞ as we may let Fn depend trivially on further time points. We
will prove by induction on n ∈ N that

EFn

((
Y ζ+ζ̃,x+y
t,s

)
t≥s

)
≤ EFn

((
Y ζ,xt,s + Ỹ ζ̃,yt,s

)
t≥s

)
. (5.19)

For the base case n = 1 additionally assume f1 ∈ C2. Approximate σ and µ with functions σl, µl ∈ C∞(R)

having the following properties. All derivatives σ(k)
l ,µ(k)

l , k ∈ N0, are bounded, µl is concave and σ2
l is

superadditive. Both functions vanish at zero. If |I| <∞, then µl(|I|) ≤ 0 = σ2
l (|I|). Moreover µl(x)→ µ(x)

and σ2
l (x) → σ2(x) as l → ∞ for all x ∈ I. Let (Y ζ,x,lt,s )t≥s, x ∈ I, be solutions of (5.2) with σ2 and µ

replaced by σ2
l and µl, respectively, and let (Ỹ ζ̃,y,lt,s )t≥s, y ∈ I, be an independent version hereof. Then

x 7→ Stf1(x) := Ef1

(
Y c1,x,lt,s

)
is twice continuously differentiable for every t ≥ s, see Theorem 8.4.3 in

Gikhman and Skorokhod (1969). In addition, Lemma 5.4 proves Stf1 ∈ F (1)
+− for all t ∈ [s, t1]. Consequently,

we may apply Lemma 5.1 to Stf1 ∈ F (1)
+− ∩ C2 for every t ∈ [s, t1] and the integration by parts formula (5.8)

yields that

E

[
f1

(
Y c1+c̃1,x+y,l
t1

)]
≤ E

[
f1

(
Y c1,x,lt1 + Ỹ c̃1,y,lt1

)]
. (5.20)

Now as l → ∞, (Y c1,x,lt )t≥0 converges weakly to (Y c1,xt )t≥0 for every x ∈ I, see Lemma 19 in Cox et al.
(1996) for a sketch of the proof. Therefore letting l → ∞ in (5.20) proves (5.19) for n = 1 if f1 ∈ C2. The
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case of general f1 ∈ F (1)
+− follows by approximating f1 with smooth functions in F (1)

+−. For the induction
step n→ n+ 1, define

f̃n(y1, . . . , yn) := Efn+1

(
y1, . . . , yn, Y

ζ+ζ̃,yn
tn+1,tn

)
∀ (y1, . . . , yn) ∈ In. (5.21)

Note that the induction hypothesis implies that

f̃n(x1 + y1, . . . , xn + yn) ≤ Efn+1

(
x1 + y1, . . . , xn + yn, Y

ζ,xn
tn+1,tn + Ỹ ζ̃,yntn+1,tn

)
(5.22)

and that Lemma 5.4 implies that f̃n ∈ F (n)
+−. Therefore, using the Markov property and the induction

hypothesis, we get that

EFn+1

(
Y ζ+ζ̃,x+y
·,s

)
= Ef̃n

(
Y ζ+ζ̃,x+y
t1,s , . . . , Y ζ+ζ̃,x+y

tn,s

)
≤ Ef̃n

(
Y ζ,xt1,s + Ỹ ζ̃,yt1,s, . . . , Y

ζ,x
tn,s + Ỹ ζ̃,ytn,s

)
≤ E

[
E

[
fn+1

(
x1 + y1, . . . , xn + yn, Y

ζ,xn
tn+1,tn + Ỹ ζ̃,yntn+1,tn

)∣∣∣
xi=Y

ζ,x
ti,s

, yi=Ỹ
ζ̃,y
ti,s

]]
= EFn+1

((
Y ζ,xt,s + Ỹ ζ̃,yt,s

)
t≥s

)
(5.23)

for all x, y ∈ I satisfying x+ y ∈ I. The last step follows from the Markov property and from independence
of the two processes. This proves (5.19).

In case of general functions ζ and ζ̃, approximate ζ and ζ̃ with simple functions ζl and ζ̃l, l ∈ N, respec-
tively. The process Y ζl,x·,s converges in the sense of finite-dimensional distributions in L1, see Lemma 4.10,
and due to tightness also weakly to the process Y ζ,x·,s . This completes the proof as the remaining cases are
analogous.

Lemma 5.6. Assume 2.1 and 2.2. Then we have that( N∑
i=1

δ
Y

0, x
N

t,s (i)

)
s≤t≤T

w−→
(∫ x

0

∫
δηt−sΠ(dy, dη)

)
s≤t≤T

as N →∞ (5.24)

for all x ≥ 0 and all s ≤ T where Π is a Poisson point process on [0,∞)×U with intensity measure Leb⊗Q.

Proof. The proof is analogous to the proof of Lemma 4.21. For convergence of finite-dimensional distribu-
tions use the convergence (2.4) instead of Lemma 4.21. Tightness follows from an estimate as in (4.67)
together with boundedness (see Lemma 9.9 in [21]) of second moments.

Finally we prove the main result of this subsection. The following lemma shows that the total mass
increases if we let all subfamilies evolve independently. In the special case of µ and σ2 being linear, in-
equality (5.25) is actually an equality according to the classical family decomposition of Feller’s branching
diffusion with immigration.

Lemma 5.7. Assume 2.1. Let ζ : [0,∞) → [0,∞) be locally Lebesgue integrable and let x ∈ I. If the drift
function µ is concave and the diffusion function σ2 is superadditive, then(

Y ζ,xt,s

)
t≥s
≤F+−([0,∞))

(∫ x

0

∫
ηt−sΠ(dy, dη) +

∫ ∞
s

∫
ηt−uΠ̃(du, dη)

)
t≥s

(5.25)

for every s ≥ 0 where Π is a Poisson point process on [0,∞)×U with intensity measure Leb⊗Q and where
Π̃ is an independent Poisson point process on [0,∞)×U with intensity measure ζ(s) ds⊗Q. If µ is concave
and σ2 is subadditive, then (5.25) holds with F+− replaced by F++. If µ is subadditive and σ2 is additive,
then (5.25) holds with F+− replaced by F+±.
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Proof. The idea is to split the initial mass and the immigrating mass into smaller and smaller pieces. Fix
s ≥ 0. Let µ be concave and let σ2 be superadditive. According to Lemma 5.5(

Y ζ,xt,s

)
t≥s
≤F+−([0,∞))

( N∑
i=1

Y
0, xN
t,s (i) +

N∑
i=1

Ỹ
ζ
N ,0
t,s (i)

)
t≥s

(5.26)

for every N ∈ N where all processes are independent of each other. Letting N → ∞ in (5.26), the right-
hand side of (5.26) converges to the right-hand side of (5.25), see Lemma 4.21 and Lemma 5.6. The
remaining cases are analogous.

5.3 The (G,m, µ, σ2)-process is dominated by the loop-free (G,m, µ, σ2)-process

Lemma 5.8. Assume 2.1. If µ is concave and σ2 is superadditive, then(
Xt

)
t≥0
≤F+−(G,[0,∞))

( ∞∑
k=0

Z
(k)
t

)
t≥0

. (5.27)

If µ is concave and σ2 is subadditive, then inequality (5.27) holds with F+− replaced by F++. If µ is
subadditive and σ2 is additive, then inequality (5.27) holds with F+− replaced by F+±.

Proof. Assume that µ is subadditive and that σ2 is superadditive. We follow the proof of Lemma 5.5 and
begin with a generator calculation similar to Lemma 5.1. Let GX and GZ denote the formal generators of
(G,m, µ, σ2)-process and of the loop-free (G,m, µ, σ2)-process, respectively. Assume that f ∈ C2

(
[0,∞)G

)
∩

F (1)
+−
(
[0,∞)G

)
depends only on finitely many coordinates. Associated with this test function is

f̃
(

(x
(k)
i )i∈G,k∈N0

)
:= f

( ∞∑
k=0

x
(k)
·

)
(5.28)

where (x
(k)
i )i∈G,k∈N0 ∈ IG×N0 . Note that f̃ ∈ D(GZ) = C2

(
IG×N0

)
. The first partial derivatives fi :=(

∂
∂xi

)
f
(∑∞

k=0 x
(k)
·
)
, i ∈ G, are non-negative and the second partial derivatives

fii :=
(
∂2

∂x2
i

)
f

( ∞∑
k=0

x
(k)
·

)
, i ∈ G, (5.29)

are nonpositive. Thus we see that(
GXf

)( ∞∑
k=0

x
(k)
·

)
=
∑
i∈G

fi

[∑
j∈G

( ∞∑
k=0

x
(k)
j m(j, i)−

∞∑
k=0

x
(k)
i + µ

( ∞∑
k=0

x
(k)
i

))]
+

1

2

∑
i∈G

fii·σ2
( ∞∑
k=0

x
(k)
i

)
≤
∞∑
k=0

[∑
i∈G

fi

(∑
j∈G

x
(k)
j m(j, i)− x(k)

i + µ
(
x

(k)
i

))
+

1

2

∑
i∈G

fii·σ2
(
x

(k)
i

)]

=

∞∑
k=0

[∑
i∈G

fi

(∑
j∈G

x
(k−1)
j m(j, i)− x(k)

i + µ
(
x

(k)
i

))
+

1

2

∑
i∈G

fii·σ2
(
x

(k)
i

)]
= GZ f̃

((
x

(k)
i

)
i∈G,k∈N0

)

(5.30)

for every (x
(k)
i )i∈G,k∈N0

∈ IG×N0 . Now we wish to apply the integration by parts formula (5.8). In order to

guarantee x 7→ E
xf(Xs) ∈ D(GX), approximate f with smooth functions in F (1)

+−, approximate µ and σ as
in the proof of Lemma 5.5 and approximate G with finite sets. Moreover in order to exploit the generator
inequality (5.30) in the integration by parts formula (5.8), we note that x 7→ E

xf(Xs) ∈ F (1)
+− (see Lemma

6.1 in [23]). Therefore the integration by parts formula (5.8) together with inequality (5.30) implies that

E

∑∞
k=0 x

(k)
·
(
f
(
Xt

))
≤ Ex

(·)
·

(
f
( ∞∑
k=0

Z
(k)
t

))
∀ f ∈ F (1)

+−
(
[0,∞)G

)
(5.31)

EJP 17 (2012), paper 71.
Page 44/49

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2278
http://ejp.ejpecp.org/


Interacting diffusions and trees of excursions

for all (x
(k)
i )i∈G,k∈N0

∈ IG×N0 . In addition note that (Xt)t≥0 is stochastically non-decreasing in its ini-
tial configuration, see Lemma 3.3 in [23]. As stochastic monotonicity is the only input into the proof of
Lemma 5.4, the assertion of Lemma 5.4 holds also for (Xt)t≥0. Thus, for all f ∈ F (n+1)

+−
(
[0,∞)G

)
, we have

that (
IG
)n 3 (x1, . . . , xn) 7→ E

xnf
(
x1, . . . , xn, Xt

)
∈ F (n)

+−
(
IG
)
. (5.32)

Using this, the assertion follows as in the proof of Lemma 5.5 by induction on the number of arguments of
F ∈ F+−

(
[0,∞)G

)
.

5.4 The loop-free process is dominated by the virgin island model

We show in Lemma 5.10 below that the total mass of the loop-free process is dominated by the total
mass of the virgin island model. In the proof of this lemma, we use that the Poisson point processes
appearing in the definition of the virgin island model preserve convexity in a suitable way. This is subject
of the following lemma.

Lemma 5.9. For every vector z = (z1, . . . , zm) ∈ [0,∞)m, m ∈ N, let Π(z) be a Poisson point process
on a Polish space S with intensity measure

∑m
i=1 ziµi where µ1, . . . , µm are fixed measures on S. If f ∈

F (n+1)
+−

(
[0,∞)

)
, n ∈ N, then the function

f̃ : [0,∞)n+m → R, (x, z) 7→ Ef
(
x, 〈g,Π(z)〉

)
(5.33)

is an element of F (n+m)
+−

(
[0,∞)

)
for every measurable test function g : S → [0,∞) satisfying 〈g, µi〉 =∫

g dµi <∞ for i = 1, . . . ,m. Analogous results hold if F+− is replaced by F++ and F+±, respectively.

Proof. The function f̃ is non-decreasing in the first n variables and (i, j)-concave for all 1 ≤ i, j ≤ n.
Furthermore f̃ is non-decreasing in the last m variables as Π(z) is stochastically non-decreasing in z. Fix
1 ≤ i, j ≤ m and h1, h2 ≥ 0. Let the Poisson point processes Π(z), Π(h1ei) and Π(h2ej) be independent. Fix
z ∈ [0,∞)m, x ∈ [0,∞)n and a measurable test function g : S → [0,∞). Note that Π(z) + Π(h1ei) + Π(h2ej)

has the same distribution as Π(z+h1ei+h2ej). Therefore, using (n + 1, n + 1)-concavity of f in the point
(x, 〈g,Π(z)〉), we obtain that

Ef
(
x,
〈
g,Π(z+h1ei+h2ej)

〉)
+Ef

(
x,
〈
g,Π(z)

〉)
= Ef

(
x,
〈
g,Π(z)

〉
+
〈
g,Π(h1ei)

〉
+
〈
g,Π(h2ej)

〉)
+Ef

(
x,
〈
g,Π(z)

〉)
≤ Ef

(
x,
〈
g,Π(z)

〉
+
〈
g,Π(h1ei)

〉)
+Ef

(
x,
〈
g,Π(z)

〉
+
〈
g,Π(h2ej)

〉)
= f̃(x, z + h1ei) + f̃(x, z + h2ej).

(5.34)

For the last step, note that Π(z) + Π(h1ei) has the same distribution as Π(z+h1ei) and that Π(z) + Π(h2ej) has
the same distribution as Π(z+h2ej). This proves (n + i, n + j)-concavity of f̃ for all 1 ≤ i, j ≤ m. Similar
arguments prove (i, n+ j)-concavity for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Recall the total mass process (V
(n)
t )t≥0 of the n-th generation of the virgin island model from (4.83) for

every n ∈ N0. Define |Z(k)
t | :=

∑
i∈G Z

(k)
t for t ∈ [0,∞) and k ∈ N0.

Lemma 5.10. Assume 2.1 and 3.7. If µ is concave and σ2 is superadditive, then((∣∣Z(k)
t

∣∣)
k=0,...,k0

)
t≥0
≤
F+−

(
{0,...,k0},[0,∞)

) ((V (k)
t

)
k=0,...,k0

)
t≥0

(5.35)

for every k0 ∈ N0. If µ is concave and σ2 is subadditive, then inequality (5.35) holds with F+− replaced by
F++. If µ is subadditive and σ2 is additive, then inequality (5.35) holds with F+− replaced by F+±.

Proof. We prove (5.35) by induction on k0 ∈ N0. The base case k0 = 0 follows from |Z(0)
· |

d
= V

(0)
· . We apply

Lemma 5.7 for the induction step k0 → k0 + 1. Fix

Fn+1(χ) = fn+1(χ(k1)
s1 , . . . , χ(kn+1)

sn+1
) ∈ F+−

(
{0, . . . , k0 + 1}, [0,∞)

)
(5.36)

EJP 17 (2012), paper 71.
Page 45/49

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2278
http://ejp.ejpecp.org/


Interacting diffusions and trees of excursions

where k1, . . . , kn+1 ∈ {0, . . . , k0 + 1} and 0 ≤ s1 ≤ · · · ≤ sn+1. Let Πi,ζ , i ∈ G, ζ ∈ C
(
[0,∞), [0,∞)

)
, be

independent Poisson point processes on [0,∞) × U , independent of {Z(0), . . . , Z(k0)} and with Πi,ζ d
= Πζ

where Πζ has intensity measure
EΠζ(du, dη) = ζ(u)du⊗Q(dη). (5.37)

Note that conditioned on ζ
(k0)
i (·) :=

∑
j∈G Z

(k0)
· (j)m(j, i), the law of Z(k0+1)

· (i) is equal to the law of

Y
ζ
(k0)
i ,0
·,0 (i) (defined in (5.2)) where Y

ζ
(k0)
i ,0
·,0 (i), i ∈ G, are independent of each other. Thus conditioning

on {Z(0), . . . , Z(k0)} and applying Lemma 5.7 with x = 0 and s = 0, we obtain that

E

[
Fn+1

((∣∣Z(k)
∣∣)
k=0,...,k0+1

)]
= E

{
E

[
Fn+1

((∣∣Z(k)
∣∣)
k=0,...,k0

,
∑
i∈G

Y
ζ
(k0)
i ,0
·,0 (i)

) ∣∣∣ (Z(k)
)
k=0...k0

]}
≤ E

[
Fn+1

((∣∣Z(k)
∣∣)
k=0,...,k0

,
∑
i∈G

∫ ∞
0

∫
η·−uΠi,ζ

(k0)
i (du, dη)

)]
= E

[
Fn+1

((∣∣Z(k)
∣∣)
k=0,...,k0

,

∫ ∞
0

∫
η·−uΠ

∑
i∈G ζ

(k0)
i (du, dη)

)]
≤ E

[
Fn+1

((∣∣Z(k)
∣∣)
k=0,...,k0

,

∫ ∞
0

∫
η·−uΠ|Z

(k0)|(du, dη)
)]
.

(5.38)

The last inequality follows from
∑
i∈G ζ

(k0)
i (·) =

∑
j∈G Z

(k0)
·

∑
i∈Gm(j, i) ≤ |Z(k0)

· |, where we used the
inequality

∑
i∈Gm(j, i) ≤ 1 from Assumption 3.7, and where we used that Fn+1 is non-decreasing. Next we

would like to apply the induction hypothesis. However the right-hand side of (5.38) depends on (|Z(k0)
t |)t≥0

through a continuum of time points and not only through finitely many time points. To remedy this, we
approximate the Poisson point process on the right-hand side of (5.38) by approximating (|Z(k0)

t |)t≥0 with
simple functions. For each N 3 m ≥ max(sn, 2n), choose a discretization {t0, . . . , tm2} of [0,m] of maximal
width 2

m such that t0 = 0, tm2 = m and {s1, . . . , sn} ⊂ {t0, . . . , tm2}. Define li := ki if ti ∈ {s1, . . . , sn} and
li := 0 otherwise. For a path (χt)t≥0 ∈ C

(
[0,∞), [0,∞)

)
, define

(
Dmχ

)
(t) :=

m2∑
i=1

χti−1
1[ti−1,ti)(t) for t ≥ 0. (5.39)

Note that (Dmχ)(t) → χt for every t ≥ 0 as m → ∞. Thus the intensity measure EΠDmχ
(k0)

(du, dη)

converges to EΠχ(k0)

(du, dη) as m→∞. This convergence of the intensity measures implies weak conver-

gence of the Poisson point process ΠDmχ
(k0)

to the Poisson point process Πχ(k0)

. Due to Lemma 5.9, the
function f̄ : [0,∞)m

2+1 → R defined through

f̄
(
χ

(l0)
t0 , . . . , χ

(lm2 )
tm2

)
= Efn+1

(
χ(k1)
s1 , . . . , χ(kn)

sn ,

∫ ∞
0

∫
η·−uΠDmχ

(k0)

(du, dη)
)

(5.40)

is an element of Fm
2+1

+−
(
[0,∞)

)
. Now we apply the induction hypothesis and obtain that

E

[
F
((∣∣Z(k)

∣∣)
k=0,...,k0

,

∫ ∞
0

∫
η·−uΠ|Z

(k0)|(du, dη)
)]

= lim
m→∞

E

[
F
((∣∣Z(k)

∣∣)
k=0,...,k0

,

∫ ∞
0

∫
η·−uΠDm|Z(k0)|(du, dη)

)]
≤ lim
m→∞

E

[
F
((
V (k)

)
k=0,...,k0

,

∫ ∞
0

∫
η·−uΠDmV

(k0)

(du, dη)
)]

= E

[
F
((
V (k)

)
k=0,...,k0

,

∫ ∞
0

∫
η·−uΠV (k0)

(du, dη)
)]

= E

[
F
((
V (k)

)
k=0,...,k0

, V (k0+1)
)]
.

(5.41)

Putting (5.38) and (5.41) together completes the induction step.
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5.5 Proof of the comparison result of Theorem 3.8

Proof of Theorem 3.8. We prove the case of µ being concave and σ2 being superadditive. The remaining
two cases are analogous. According to Lemma 5.8 we have that(∑

i∈Λ

Xt(i)

)
t≥0

≤F+−([0,∞))

(∑
i∈Λ

∞∑
k=0

Z
(k)
t (i)

)
t≥0

(5.42)

for every finite subset Λ ⊆ G. Letting Λ ↗ G, we see that the total mass of the (G,m, µ, σ2)-process is
dominated by the total mass of the loop-free (G,m, µ, σ2)-process. Now we get from Lemma 5.10 that( k0∑

k=0

∣∣Z(k)
t

∣∣)
t≥0

≤F+−([0,∞))

( k0∑
k=0

V
(k)
t

)
t≥0

(5.43)

for every k0 ∈ N. Letting k0 → ∞, we obtain that the total mass of the loop-free (G,m, µ, σ2)-process
is dominated by the total mass of the virgin island model. Therefore, the total mass of the (G,m, µ, σ2)-
process is dominated by the total mass of the virgin island model.
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