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Abstract

Combining Stein’s method with heat kernel techniques, we show that the trace of the
jth power of an element of U(n,C),USp(n,C) or SO(n, R) has a normal limit with
error term C - j/n, with C' an absolute constant. In contrast to previous works, here
j may be growing with n. The technique might prove useful in the study of the value
distribution of approximate eigenfunctions of Laplacians.
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1 Introduction

There is a large literature on the traces of powers of random elements of compact
Lie groups. One of the earliest results is due to Diaconis and Shahshahani [6]. Using
the method of moments, they show that if M is random from the Haar measure of the
unitary group U(n,C), and Z = X + iY is a standard complex normal with X and Y
independent, mean 0 and variance % normal variables, then for j = 1,2, -, the traces
Tr(M7) are independent and distributed as \/jZ asymptotically as n — oo. They give
similar results for the orthogonal group O(n,R) and the group of unitary symplectic
matrices USp(2n,C). The moment computations of [6] use representation theory. It is
worth noting that there are other approaches to their moment computations: [25] uses
a version of integration by parts, [15] uses the combinatorics of cumulant expansions,
and [4] uses an extended Wick calculus. We mention that traces of powers of random
matrices have been studied for other matrix ensembles too ([3],[10],[34]), and that work
on traces of powers is still being actively developed with applications to number theory
[2].

Concerning the error in the normal approximation, Diaconis conjectured that for
fixed j, it decreases exponentially or even superexponentially in n. In an ingenious pa-
per (which is quite technical and seems tricky to apply to other settings), Stein [36] uses
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an iterative version of “Stein’s method” to show that for j fixed, Tr(M’) on O(n,R) is
asymptotically normal with error O(n~") for any fixed r. Johansson [16] proved Diaco-
nis’ conjecture for classical compact Lie groups using Toeplitz determinants and a very
detailed analysis of characteristic functions. Duits and Johansson [9] allow j to grow
with n in the unitary case, but do not obtain error terms or consider the symplectic and
orthogonal groups. We also note that in the unitary case when j > n, the situation is
not so interesting, since by work of Rains [27], the eigenvalues of M7 are simply n inde-
pendent points from the unit circle (and he proves analogous results for other compact
Lie groups).

The current paper studies the distribution of 7r(M7) using Stein’s method and heat
kernel techniques. This is a follow-up work to the paper [12], which used Stein’s method
and character theory to study the distribution of x (M), where x is the character of
an irreducible representation; the functions 7r(M7) are not irreducible characters for
j > 1, so do not fit into the framework of [12]. It should also be mentioned that the
heat kernel is a truly remarkable tool appearing in many parts of mathematics (see
the article [17] for a spirited defense of this statement with many references), and we
suspect that the blending of heat kernel techniques with Stein’s method will be useful
for other problems.

In earlier work, Meckes [23], used Stein’s method to study eigenfunctions of the
Laplacian (a topic of interest in quantum chaos and arithmetic [33], among other places).
We note two differences with her work. First, she uses geodesic flows and Liouville mea-
sure instead of heat kernels. Second, her infinitesimal version of Stein’s method [23],
[24] uses an exchangeable pair of random variables (W, W, ) with the conditional expec-
tation E[W, — W|W] divided by ¢ approximately proportional to W as ¢ — 0. In the
current paper the natural condition is that E[W, — W|W] divided by e is approximately
proportional to W as € — 0.

We do use some moment computations from [6], but as is typical with Stein’s method,
only a few low order moments are needed. It should also be mentioned that the con-
stants in our error terms can be made completely explicit (for instance in the unitary
case we prove a bound of %), but we do not work out the other constants as the book-
keeping is tedious and the true convergence rate is likely to be of a sharper order.

We note that there has been some follow-up work to the current paper. Dobler
and Stolz [7] extend our technique to the multivariate setting, and in [8] prove central
limit theorems for more general linear statistics such as those studied in [5], [16], [35].
Fulman and Rollin [13] modify the technique in the current paper to prove a central
limit theorem for the trace of AO, where A is a fixed n x n real matrix, and O is from
the Haar measure of the orthogonal group O(n, R).

The organization of this paper is as follows. Section 2 gives background on both
Stein’s method and the heat kernel. Section 3 treats the orthogonal groups, Section 4
treats the symplectic groups, and Section 5 treats the unitary groups.

2 Stein’s method and the heat kernel

In this section we briefly review Stein’s method for normal approximation, using
the method of exchangeable pairs [37]. One can also use couplings to prove normal
approximations by Stein’s method (see [28] for a survey), but the exchangeable pairs
approach is effective for our purposes. For a survey discussing both exchangeable pairs
and couplings, the paper [29] can be consulted.

Two random variables W, W’ on a state space G are called exchangeable if the distri-
bution of (W, W’) is the same as the distribution of (W', W). As is typical in probability
theory, let IE(A|B) denote the expected value of A given B. The following result of Rinott
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and Rotar [30] uses an exchangeable pair (W, W’) to prove a central limit theorem for
wW.

Theorem 2.1. ([30]) Let (W,W') be an exchangeable pair of real random variables
such that E(W) = 0, E(W?) =1 and E(W'|W) = (1 — a)W + R(W) with 0 < a < 1. Then
for all real x,

o "
P(Wﬁzo)f\/%/ % do

< g\/Var(E[(W’ - W)2|W]) + 19@ + 6\/iE|W/ — W

In practice, it can be quite challenging to construct exchangeable pairs satisfying
the hypotheses of Theorem 2.1, and such that the error terms are tractable and small.

Lemma 2.2 is a known inequality (already used in the monograph [37]) and useful
because often the right hand sides are easier to compute or bound than the left hand
sides. We include the short proof. Here M is an element of the state space G (in this
paper G is a compact Lie group).

Lemma 2.2. Let (W, W’) be as in Theorem 2.1.

1. Var(B[(W' — W2[W]) < Var(E[(W' — W)2|M]).
2. Letting E(W’|M) = (1 — a)W + R(M), one has that E(R(W)?) < E(R(M)?).

Proof. Jensen’s inequality states that if g is a convex function, and Z a random variable,
then g(IE(Z)) < E(g(Z)). There is also a conditional version of Jensen’s inequality (Sec-
tion 4.1 of [11]) which states that for any ¢ subalgebra F' of the o-algebra of all subsets
of G,

E(g(E(Z|F))) < E(9(Z2)).

Part 1 now follows by setting g(t) = t?, Z = E(W’ — W)?2|M), and letting F be the o-
algebra generated by the level sets of W. Part 2 follows by setting g(t) = t2, Z = R(M),
and letting F' be the o-algebra generated by the level sets of V. O

To construct an exchangeable pair to be used in our applications, we use the heat
kernel on GG. See [14], [31], [32], [22] for a detailed discussion of heat kernels on com-
pact Lie groups, including all of the properties stated in the remainder of this section.
The papers [18], [1], [26], [19], [20], [21] illustrate combinatorial uses of heat kernels
on compact Lie groups, and [19] also discusses the use of the heat kernel for finite
groups.

The heat kernel on G is defined by setting for M, N € Gand ¢t > 0,

K(t,M,N) = e *'¢,(M)$n(N), (2.1)

n>0

where the )\,, are the eigenvalues of the Laplacian repeated according to multiplicity,
and the ¢,, are an orthonormal basis of eigenfunctions of L?(G); these can be taken to
be the irreducible characters of G.

We use the following properties of the heat kernel. Let A denote the Laplacian of G.
Part 1 of Lemma 2.3 is from page 198 of [14]. Part 2 of Lemma 2.3 is immediate from
the expansion (2.1). Part 3 of Lemma 2.3 is Lemma 2.5 of [7].

Lemma 2.3. Let G be a compact Lie group, M, N € G, and t > 0.

1. K(t,M,N) converges and is non-negative for all M, N,t.
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2. éNeG K(t,M,N)dN = 1, where the integration is with respect to Haar measure of

3. For smooth ¢, ast — 0, one has that

K(t,M,N)$(N)dN = ¢(M) + t(Ap)(M) + O(t?).
NeG

The symmetry in M and N of K (¢, M, N) shows that the heat kernel is a reversible
Markov process with respect to the Haar measure of G. It is a standard fact ([30], [37])
that reversible Markov processes lead to exchangeable pairs (W, W'). Namely suppose
one has a Markov chain with transition probabilities K (z,y) on a state space X, and
that the Markov chain is reversible with respect to a probability distribution = on X.
Then given a function f on X, if one lets W = f(x) where z is chosen from 7 and
W’ = f(«') where 2’ is obtained by moving from = according to K(x,y), then (W, W’)
is an exchangeable pair. In the special case of the heat kernel on a compact Lie group
G, given a function f on G, one can construct an exchangeable pair (W, W’) by letting
W = f(M) where M is chosen from Haar measure, and W’ = f(M’), where M’ is
obtained by moving time ¢ from M via the heat kernel.

3 The orthogonal group

If X\ is an integer partition (possibly with negative parts) and m; denotes the mul-
tiplicity of part j in A, we define p\(M) = []; Tr(M7)™i. For example, ps33(M) =
Tr(M5)Tr(M3)2. Typ1ca11y we suppress the M and use the notation px. We let W = 7

if j is odd and let W =
of unity and come in conjugate pairs, p; = p_; is real. The main result of this section is
a central limit theorem for W with error term C - j/n, with C' an absolute constant.

The following moment computation of [15] (analogous to that of [6] for the full or-
thogonal group) will be helpful. In fact as the reader will see, in the applications of
Lemma 3.1, we only use fourth moments and lower.

Lemma 3.1. Let M be Haar distributed on SO(n,R). Let (a1, a2, -+ ,ax) be a vector
of non-negative integers. Let Zy,--- , Z be independent standard normal random vari-
ables. Letn; be 1 if j is even and 0 otherwise. Then ifn —1 > Zle ai,

k k k
HTT(Mj)aj = ng(@j) = HE(ﬂZj + )%,

Here
o 0 if ais odd
if j is odd, g;(a) _{ §4?(a—1)(a—3)---1 if aiseven

if jiseven, gj(a _1+Z(> (2k — 1)(2k — 3)--- 1.
k>1

Rains [26] (see also [18]) determined how the Laplacian acts on power sum symmet-
ric functions. We need his formula only in the following two cases.

Lemma 3.2. Let Agp(,) denote the Laplacian of SO(n,R).

1.
n—1)
Asompj = — (7 j Z PLj— z+f > pauj

1<z<J 1<l<j
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Asompij = —n—1)jpj; — 5°p2; = p; Y Prj-1+ip; Y pa—j+in.
1<i<j 1<i<j

We fix t > 0, and motivated by Section 2, define W’ to be W(M’), where M’ is
obtained from moving time ¢ from M via the heat kernel.
Lemma 3.3 computes the conditional expectation E[W’'|M].

Lemma 3.3. )
o — 1)
E[W|M] = (1 _ (”2)‘7> W+ R(M),
with

R(M) =t 5 Z Pl,j—l‘FT Z pai—j| +OF*) j odd,

1<i<j 1<i<j

and
| =DVG VG Vi o
R(M) =t T T o Z Prj-t 5 Z Pai—j +O(t°) j even.
1<I<; 1<I<j
Proof. Applying part 3 of Lemma 2.3 and part 1 of Lemma 3.2,

E[W’|M]
= WHt(AW)(M) + O(t?)

_ (n=1Vj Vi Vi 5

= W+t 5  PiT5 Z‘pl,jfl‘i‘? lezlfj +O(t%),
1<l<j 1<I<j

and the result follows. O

Lemma 3.4 computes E[(W’ — W)?|M], a quantity needed to apply Theorem 2.1.
Many cancelations occur, and a simple formula emerges.

Lemma 3.4.
E[(W' — W)?|M] = tj(n — paj) + O(t?).

Proof. Clearly

E[(W' —W)?|M] = E[(W')?|M] — 2WE[W'|M] + W2,
Suppose now that j is odd. By part 3 of Lemma 2.3 and part 2 of Lemma 3.2,
E[(W")*|M]
w2 4 éApj,j +0(t?)

= W24t |=(n—1)pj; — jpzy — D Z PLj—t +Pj Z pai—j +Jn
1<i<j 1<i<j

+O(t%).

By Lemma 3.3, —2WE[W’|M] is equal to

oWt ((n—1)iW2+p; Y prji—p; Y pa—j| +O0).
1<i<y 1<i<y
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Thus
E[(W)?|M] — 2WE[W'|M] + W? = tj(n — pa;) + O(t?),

as claimed. A very similar calculation shows that the same conclusion holds for j even.

O
Lemma 3.5. Suppose that 4j <n — 1. Then
Var(E[((W' — W)?|M]) = 253% + O(t3).
Proof. By Lemma 3.4,
Var(B[(W' — W)?|M]) = j2*Var(pa;) + O(t?).
The result now follows from Lemma 3.1. O

Lemma 3.6. Suppose that 4j <n — 1. Then

1. EW' —W)2 =tj(n— 1)+ O(?).
2. E(W' —W)* = 0(t?).

Proof. Lemma 3.4 implies that E(W’ — W)? = E[tj(n — pa;)] + O(t?). From Lemma 3.1,
E(p2;) = 1, which proves part 1 (only using that 2j <n —1).
For part 2, first note that since

E[(W' = W)'] = EW*) — 4E(W?W') + 6E[W?(W")?] — 4E[W (W')’] + E[(W")"],
exchangeability of (W, W’) gives that

EW —W)* = 2BE(W?) - SE(W3W’) 4 6E[W?(W’)?]
= 2E(W?) — SE[W3E[W’|M]] + 6E[W2E[(W')?|M]].

Supposing that j is odd and using Lemma 3.2, this simplifies to

2E(W*) — SE[W*] 4 6E[W*]

HE [4(n = )W+ 435 3 pry —AWRG Y par

1<i<j 1<i<y

HE [ —6(n — 1)jW* = 6W?p; > prji+6Wp; > paj

1<i<j 1<i<j

+E [—6iW>pa; + 6W2jn] + O(t?).
By Lemma 3.1, this simplifies to
t[12j(n — 1) — 18j(n — 1) — 65 + 6jn] + O(t*) = O(t?),
as claimed. A very similar calculation gives the same conclusion for j even. O

Next we bound a quantity appearing in the second term of Theorem 2.1.

Lemma 3.7. Suppose that4j <n — 1. Let

R(M) =t Y Z Pl,j—lJr? Z pa—;| +Ot*) j odd,

1<I<j 1<i<j
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and
R(M) =t T T o lel,jfl“v‘? Z‘pzlfj +O(t°) j even.
1<i<y 1<i<y
Then E[R?] < A-t?j* + O(t®), with A an absolute constant.

Proof. Suppose that j is odd. Applying Lemma 3.1 and keeping only terms with non-0
expectations, one has that

E[R?] = %E 4 Z (prj—1)® +4 Z (p)? -8 Z pLij—i| + O

1<i<j 1<i<j 1<i<j

l odd l odd l odd
_ 4 (j—1+1)—4 I +0
= 1 Z (J-1+1)- Z +0(¢°)
1<1<j 1<1<yj
1l odd l odd

< A2 40,

with A an absolute constant. The case of j even is proved in a similar way, as can be
seen by writing

1<i<y
1#5/2

_ R Vi 2
R=t 5 T o Z.pl,j—l+7 Z pa—j | +O(t).
1<I<y
Combining the above calculations leads to the main result of this section.
Theorem 3.8. Let M be chosen from the Haar measure of SO(n,R). Let W(M) =

Tr(M7) .o . . _ Tr(M7)-1 ... .
— ifj is odd and W(M) = 7 ifj is even. Then

o
P(W < xp) — \/%/ e do

with C an absolute constant.

Proof. The result is trivial if 45 > n — 1, so assume that 45 < n — 1. We apply Theorem
2.1 to the exchangeable pair (W, W’) with a = t("%)] and will take the limit ¢ — 0 in
each term (keeping j,n fixed). By part 1 of Lemma 2.2 and Lemma 3.5, the first term is
at most A - \fj/n with A an absolute constant. By part 2 of Lemma 2.2 and Lemma 3.7,
the second term is at most B-j/n, with B an absolute constant. By the Cauchy-Schwarz
inequality and Lemma 3.6,

EW — WP < VEW' —W)2E(W' — W)4 = 0(t3/?).

Thus the third term in Theorem 2.1 tends to 0 as ¢ — 0, and the result is proved. O

4 The symplectic group

0 I
-1 0
is defined as the set of 2n x 2n unitary matrices M with complex entries such that
MJM? = J; it consists of the matrices preserving an alternating form. As in Section 3,

Let J be the 2n x 2n matrix of the form < > with all blocks n x n. USp(2n, C)
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we use the notation that p) (M) = Hj Tr(M’)™i, and we typically suppress the M and

use the notation p). We let W = p—jj if j is odd and let W = % if j is even. Since
the eigenvalues of M are roots of unity and come in conjugate pairs, p; = p_; is real
valued. The main result of this section is a central limit theorem for W with error term
C - j/n, with C an absolute constant.

The following moment computation is the symplectic analog of Lemma 3.1. It was
proved by [6] under the slightly weaker assumption that n > Zle ar. As stated, Lemma
4.1 appears in [15], with a later proof in [25].

Lemma 4.1. Let M be Haar distributed on USp(2n,C). Let (ay,as9, - ,ax) be a vec-
tor of non-negative integers. Let Zi,--- ,Z; be independent standard normal random
variables. Let n; be 1 if j is even and 0 otherwise. Then if 2n 41 > Zle a;,

k

k k
E |[T7r@e9)® | = [0V g;(a;) = [ BW5Z; — nj)™,
j=1

j=1 j=1
where the polynomials g; are as in Lemma 3.1.

Rains [26] (see also [18]) determined how the Laplacian acts on power sum symmet-
ric functions. We need his formula only in the following two cases.

Lemma 4.2. Let Aygy(2n) denote the Laplacian of USp(2n, C).

1.

2n+1)j J J
Ayspen)pj = —%Pj ~ 5 Z Pai—j — 5 Z Pij—1-
1<i<j 1<I<j

Auspanypij = —(2n+1)jpj; — 5°p2; — i Z P21—j — Jpj Z prj—1+25°n.
1<i<j 1<i<j

As in the orthogonal case, we fix ¢t > 0, and define W’ to be W (M’), where M’ is
obtained by moving time ¢ from M via the heat kernel.

Lemma 4.3. ) )
. .
E[W'|M] = <1 - (";)‘7> W + R(M),
with

R(M) = —g > p2lfj_§ > prj—i| +O(t?) jodd,

1<i<j 1<i<j

and

R(M) =t @t DVi g Z Par—j — g Z prj—i| +O?) jeven.

2 _ .
1<I<; 1<I<j
Proof. Applying part 3 of Lemma 2.3 and part 1 of Lemma 4.2,
E[W’ W]
W+ t(AW) (M) 4+ O(t?)
Cn+DVi Vi Vi >
Wt | ——F—Dpj— T3 Z Pa—j = 5~ Z pLj-1| +O(t),

2
1<i<j 1<i<j

and the result follows. O
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Lemma 4.4 computes E[(W’ — W)?|M], a quantity needed to apply Theorem 2.1. As
in the orthogonal case, there are many cancelations, leading to a simple formula.

Lemma 4.4.
E[(W' — W)?|M] = tj (2n — pa;) + O(*).

Proof. Clearly
E[(W' — W)?|M] = E[(W')?|M] — 2WE[W'|M] + W?2.
Suppose that j is odd. By part 3 of Lemma 2.3 and part 2 of Lemma 4.2,
E[(W')?|M]
= W2+ éApj,j + O(t?)

= W2t |=@n+1)pj; —jpay—p; D, Puj—Dp; D Pij1+2n
1<i<j 1<i<y

+O0(t?).

By Lemma 4.3, —2WE[W'|M] is equal to

—2W?2 +t [(2n+ Vp;; + pj Z D21—j +Dj Z prj—1| +O).

1<i<j 1<i<y
Thus
E[(W')?|M] — 2WE[W'|M] + W? = tj 2n — pa;] + O(t?),
as needed. A similar computation proves the lemma for j even. O

Lemma 4.5. Suppose that 45 < 2n + 1. Then
Var(E[(W' — W)2|M]) = 2532 + O(t3).
Proof. By Lemma 4.4,
Var(E[(W' = W)?|M]) = j°t*Var(ps;) + O(t?).
The result now follows from Lemma 4.1. O

Lemma 4.6. Suppose that 45 < 2n + 1.

1. EW' —W)2 =tj(2n+ 1) + O(?).
2. B(W' —W)* = 0(t?).

Proof. Lemma 4.4 implies that E(W’'—W)? = E [tj (2n — pa;)] +O(t?). From Lemma 4.1,
E(p2;) = —1, which proves part 1 (even assuming that 2j < 2n + 1).
For part 2, first note that since

E[(W' = W)* = E(W*) — 4E(WW') + 6E[W?*(W')?] — 4E[W (W')*] + E[(W')*],
exchangeability of (W, W') gives that
EW —W)* = 2BW?) —SE(W3W’) + 6E[W?(W')?]
= 2E(W?) — SE[W3E[W’|M]] + 6E[W2E[(W')?|M]].
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Suppose j is odd. Using Lemma 4.3 and part 2 of Lemma 4.2, this becomes

2E(W?) — SE(W*) + 6E(W?)

HE 420 + )W+ 4W3/GST p 4G pay

1<i<j 1<i<j

HE | ~6(2n+ 1)jW* — 6jW2pa; — 6W2p; > prjy

1<i<j

Ht | —6W?p; Y paj+12Win| + O(t?).
1<i<y
By Lemma 4.1, this simplifies to
t[125(2n + 1) — 18§(2n + 1) + 65 + 12jn] + O(t?) = O(t?),
as claimed. A similar calculation gives the same result for j even. O

Lemma 4.7. Suppose that 45 < 2n + 1. Let

R(M) =t — Z Pa—j = =5~ Z pj—i| +O{*) jodd,

1<i<j 1<i<j

and

R(M) =t M - g Z Dal—j — g Z prj—1| +O?) j even.

2 , )
1<I<; 1<i<j
Then E[R?] < A -2 + O(¢®), with A an absolute constant.

Proof. Suppose that j is odd. Applying Lemma 4.1 and keeping only terms with non-0
contribution, one has that

2 f
E[R?] = TJE 4 Z (prj—1)® +4 Z (p1)* +8 Z pLij—1| +O(t%)
1<i<j 1<i<j 1<i<y
l odd l odd l odd
t%j , 3
= 5|4 DG -1+1) -4 > 1| +0#)
1<i<j 1<i<y
1l odd 1l odd

< A0,

with A an absolute constant. The case of j even is proved by a similar argument, after
writing

Vi Vi Vi
R=t 5 "5 Z Pai—j = 5~ Z prj-i| +O@).

1<i<y 1<I<j
1#5/2
O

Theorem 4.8. Let M be chosen from the Haar measure of USp(2n,C). Let W(M) =
Tr(M?) .o . . _ Tr(MI)41 g e s
—; ifjisodd, and W(M) = —; — ifj is even. Then

P(W L " Zal<c

<x9) — — e 2dx| < C-j/n,

‘ ( = 0) \/ﬂ . = .]/
with C an absolute constant.
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Proof. The result is trivial if 45 > 2n + 1, so assume that 45 < 2n + 1. We apply Theorem
2.1 to the exchangeable pair (W, W’) with a = WTH)] and will take the limit ¢ — 0 in
each term (keeping j,n fixed). By part 1 of Lemma 2.2 and Lemma 4.5, the first term is
at most A - \fj/n with A an absolute constant. By part 2 of Lemma 2.2 and Lemma 4.7,
the second term is at most B-j/n, with B an absolute constant. By the Cauchy-Schwarz
inequality and Lemma 4.6,

EW — WP < /EW' —W)2E(W’ — W)4 = O(t3/?).

Thus the third term in Theorem 2.1 tends to 0 as ¢t — 0, and the result follows. O

5 The unitary group

In this final section, we treat the unitary group U(n,C). We let p) be as in Section 3
and Section 4 and define the real valued random variable W = % The main result of
this section is a central limit theorem for W, with error term C'- j/n, with C' an absolute

constant. To begin, we recall the following moment computation from [6].

Lemma 5.1. Let M be Haar distributed on U(n,C). Let (a1, a2, -+ ,a;) and (by,- -+ ,bg)
be vectors of non-negative integers. Let Zi,--- ,Z) be independent standard complex
normal random variables. Then for all n > Zle (a; + b;),

k
E|[[7r) - Tr0) " | = 65 ]]i%as!
j=1

k .
= B |[[Wi%)" (Vi)

Rains [26] (see also [18]) determined how the Laplacian acts on power sum symmet-
ric functions. We require his formulas only in the following cases.

Lemma 5.2. Let Ay(,) denote the Laplacian of U(n, C).

1.
Aymypj = —njpj —J Z Dij—1-
1<i<j
2.
Aymypij = —2njpj;j — 25°p2j — 2jp; Z PlLj—1-
1<i<;
3.

Av(n) (iB7) = 25°n — 2njp;B5 — jp; Y Piy=i —JiB; >, Plj-i-
1<i<j 1<i<j

As in the orthogonal and symplectic cases, let W' = W (M’) where M’ is obtained by
moving time ¢ from M according to the heat kernel.
Lemma 5.3 computes the conditional expectation E[W'|M].

Lemma 5.3.
E[W'|M] = (1 —njt)W + R(M),

with

R(M) =t —\/g > Pz,j—z—\/z > pia| +0#).

1<i<j 1<i<y

EJP 17 (2012), paper 66. ejp.ejpecp.org
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Proof. Applying Lemma 2.3 and part 1 of Lemma 5.2 gives that

E[W’'|M]
W+ t(AW)(M) + O(t?)

‘ J J _
W+t |—njW — \/g Z Pl,j—1 —\/; Z Dij—1 +O(t2),

1<I<y 1<I<y

as desired. O

Lemma 5.4 computes E[(W’ — W)?|M]. As in the other cases, there are nice cance-
lations.

Lemma 5.4.
E[(W' = W)?*|M] = tj (2n — pa; — Pz;) + O(t?).

Proof. Clearly
E[(W' —W)2|M] = E[(W')?|M] — 2WE[W'|M] + W?2.
By Lemmas 2.3 and 5.2,
E[(W')?| M]

t o
= W+ ZA[PM +2p;D; + D) + O(t?)

= W2+t |—npj;—jps; —p; Z DLj—1 — NPjj — jD2;
1<i<j

+t|—pj Z Drj—1 + 2jn — 2np;p; — p; Z Dij—1 —Dj Z Dij—1
1<i<; 1<i<; 1<i<;

+O(t?).
By Lemma 5.3, —2WE[W'|M] is equal to

—2W? 4t |np; ; + 2np;B; + 1B + P D Prj-i
1<I<j

P Y Py +D; Y - +D; Y Prgi| +O(t).

1<I<j 1<I<j 1<I<j ]
Thus
E[(W')?|M] — 2WE[W'|M] + W? =tj [2n — pa; — Pa;] + O(t?),
and the lemma is proved. O

Lemma 5.5. Suppose that 45 < n. Then
Var(E[(W' — W)?|M]) = 453t% + O(t3).

Proof. By Lemmas 5.4 and 5.1,

Var(B(W' —W)2M]) = j**Var(py + ;) + O(t?)
= JP°E[(p2; + P2;)?] + O()
45312 + O(t?).
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Lemma 5.6. Suppose that 45 < n.

1. E(W' —W)? =t2jn + O(t?).
2. EW' —W)* = 0(t2).

Proof. Lemma 5.4 implies that E(W'—W)? = E [tj (2n — p2; — P2;)]+O(t?). From Lemma
5.1, E(p2;) = E(pz;) = 0, which proves part 1 (using only that 2j < n).
For part 2, first note that since

E[(W — W)Y = B(W*) — dAE(W*W') + 6E[W2(W')?] — 4E[W (W')?] + E[(W')4],
exchangeability of (W, W') gives that
EW —W)* = 2B(W?*) - SE(W3W’) + 6E[W?(W’)?]
= 2E(W?) — SE[W3E[W’|M]] + 6E[W2E[(W')?|M]].
Using Lemmas 5.2 and 5.3, this simplifies to
2E(W*) — SE[W*] + 6E[W*]

HE 8an4+8W3\/Z > pl,jl+8W3\/Z > b

1<I<j 1<I<j

+tIE —6’1’LW2pj’j — 6jW2p2j — 6W2pj Z Pli—1 — 677,W2m

1<I<j

+E | =65 W p3; — 6W’D; Y Piji + 12njW>
1<i<j

+tE —12nW2pj]Tj—6W2pj Z pl’j71—6W2pfj Z Di,j—1 +O(t2).
1<i<j 1<i<j

By Lemma 5.1, after dropping out terms with 0 expectation, there remains
tE[8Win — 6W2np; ; — 6W2np;; + 12W2jn — 12Wnp;5;] + O(t?)
= t[24jn — 65n — 6jn + 12jn — 245n] + O(t?)
o(t?),

as needed. O

Lemma 5.7. Let R =1 [—\/Zzlgkj Dlj—1 — \/gzlgkj pl,jl} + O(t?), and suppose
that 4j < n. Then E[R?] < £ 1+ O(#3).

Proof. Applying Lemma 5.1 and keeping only terms with non-0 contribution, one has
that

E[R?] = jt*B[ Y pi-ipi;-1) + O(t).
1<i<j
If j is odd, then by Lemma 5.1,

2 2 3 (' = 7% 2 3
BIRY =t 3 1 - D)+ 0¢) = L2624 o),
1<i<j
while if j is even, one obtains that
2 -4 3 3 _ 2 -2
B[R = T o L2+ o).
The result follows. O
EJP 17 (2012), paper 66. ejp.ejpecp.org
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Theorem 5.8. Let M be chosen from the Haar measure of U(n,C), and let W(M) =

ﬁ[Tr(Mj) + Tr(M7)]. Then

1 *o
To) — — e
0) V2r J_so

P(W < “Sde| < C-j/n,

with C' an absolute constant.

Proof. The result is trivial if 45 > n, so assume that 45 < n. We apply Theorem 2.1
to the exchangeable pair (W, W’) with a = tnj, and will take the limit ¢ — 0 in each
term. By part 1 of Lemma 2.2 and Lemma 5.5, the first term is at most % By Lemma
5.7 and part 2 of Lemma 2.2, the second term in Theorem 2.1 is at most %. By the
Cauchy-Schwarz inequality and Lemma 5.6,

EW — WP < VEW' —W)2E(W’ —W)i = 0(t3/?).
Thus the third term in Theorem 2.1 tends to 0 as ¢ — 0, and the result follows since
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