
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 17 (2012), no. 10, 1–11.
ISSN: 1083-6489 DOI: 10.1214/EJP.v17-1768

Localization of solutions to stochastic porous media
equations: finite speed of propagation∗
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Abstract

It is proved that the solutions to the slow diffusion stochastic porous media equation
dX−∆(|X|m−1X)dt = σ(X)dWt, 1 < m ≤ 5, inO ⊂ Rd, d = 1, 2, 3, have the property
of finite speed of propagation of disturbances for P-a.s. ω ∈ Ω on a sufficiently small
time interval (0, t(ω)).
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1 Introduction

Let O be a bounded and open domain of Rd, d = 1, 2, 3, with smooth boundary ∂O.
Consider the stochastic porous media equation

dX −∆(|X|m−1X)dt = σ(X)dWt, t ≥ 0,

X = 0 on ∂O,
X(0) = x in O,

(1.1)

where m ≥ 1, Wt is a Wiener process in L2(O) of the form

Wt =

N∑
k=1

βk(t)ek. (1.2)

{βk}Nk=1 is a sequence of independent Brownian motions on a filtered probability space
{Ω,F ,Ft,P} while {ek}k∈N is an orthonormal system in L2(O) and

σ(X)Wt =

N∑
k=1

µkXekβk(t), (1.3)
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Localization of solutions to stochastic porous media equations: finite speed of propagation

where {µk} is a sequence of nonnegative numbers.
We assume that ek ∈ C2(O) and

N∑
k=1

µ2
ke

2
k(x) ≥ ρ > 0, ∀x ∈ O. (1.4)

Let H1
0 (O), H−1(O) denote standard Sobolev spaces on O with the norms ‖ · ‖1 and

| · |−1, respectively. The norm of Lp(O), 1 ≤ p ≤ ∞, is denoted by | · |p and the scalar
product by (·, ·). The scalar product in H−1(O) is denoted by (·, ·)−1. The space H−1(O)

will be denoted by H and set A = −∆, D(A) = H1
0 (O) ∩H2(O).

An H−1(O)-valued continuous Ft-adapted process X = X(t, ξ) is called a strong
solution to (1.1) on (0, T )×O if

X ∈ L2(Ω, C([0, T ];H)) ∩ L∞(0, T ;L2(Ω×O)), t ∈ [0, T ], (1.5)

|X|m−1X ∈ L2(0, T ;L2(Ω, H1
0 (O))), (1.6)

X(t) = x+

∫ t

0

∆(|X(s)|m−1X(s))ds+

∫ t

0

σ(X(s))dWs. (1.7)

Here we use the standard notation Lp(E;B), p ∈ [0,∞], for a measure space (E, E , µ)

and a Banach space B, i.e., Lp(E;B) denotes the space of all B-valued measurable maps
f : E → B such that |f |pB is µ-integrable.

The main result of this work, Theorem 2.3 below, amounts to saying that if 1 <

m ≤ 5, which is the case of slow diffusion under stochastic perturbation, then the
process X = X(t, ·) has the property of finite speed propagation of disturbances in the
following sense (see [4]): if x = 0 in Br(ξ0) = {ξ ∈ O; |ξ − ξ0| < r}, then there is a
function r = r(t, ω), decreasing in t, such that X(t, ξ, ω) = 0 in Br(t,ω)(ξ0) for 0 ≤ t ≤
t(ω), for P-a.e. ω ∈ Ω. In this sense, we speak about finite speed of propagation of
X(t). This localization property for stochastic porous media equations has resisted its
proof for quite some time, because the stochastic perturbation is a serious obstacle to
adapt localization proofs and techniques from the known deterministic case. This lock
was broken by the results in [6], and, particularly [9], which allow to transform the
problem to a deterministic partial differential equation (PDE) with random coefficients.
This latter PDE, however, is not of porous media or any other known type, so that the
necessary estimates become much more complicated, but eventually lead to success.

We mention that in the case 0 < m < 1 (fast diffusion) and if d = 1, also form = 0, the
solution X = X(t, x) has a finite extinction property with positive probability (see [7],
[6] respectively) which also can be seen as a localization property of stochastic flows
associated with equation (1.1).

The main result, Theorem 2.3, is formulated in Section 2 and proved in Section 3
via some arguments inspired by the local energy method of S.N. Antontsev [1] (see also
[2], [3], [4], [11], [12], [18] for some recent results on the localization of solutions to
deterministic porous media equations). However, the overlap is not large. In a few
words, the idea of the proof is to reduce equation (2.5) to a random partial differential
equation on (0, T ) × O and combine the energy method from [1]–[3], with some sharp
L∞ estimates obtained in the authors’ work [9].

Here, the discussion is confined to stochastic porous media equations with Dirich-
let homogeneous boundary conditions because the previous existence theory we invoke
and use here was developed so far in this case only. However, one might expect that ev-
erything extends mutatis mutandis to the Neumann reflection conditions on boundary.
As regards the case O = Rd, this still remains open. We shall use standard notations
and results for spaces of infinite dimensional adapted stochastic processes (see [10],
[15]).
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2 The main result

Proposition 2.1. Assume that x ∈ Lm+1(O). Then equation (1.1) has a unique strong
solution X. If x ≥ 0 a.e. in O, then X ≥ 0 a.e. in Ω×(0, T )×O and

E

∫ T

0

ds

∫
O

∣∣∇(|X|m−1X)
∣∣2 dξ + sup

t∈[0,T ]

E

∫
O
|X(t, ξ)|m+1dξ ≤ C

∫
O
|x|m+1dξ. (2.1)

Remark 2.2. Existence and uniqueness, as well as nonnegativity of solutions to equa-
tion (1.1) has been discussed in several papers (see [5], [6], [17]). But the notion of
solution was different. More precisely, solutions were not required to satisfy (1.6), but
only that

t 7→
∫ t

0

|X(s)|m−1X(s)ds

is a continuous process in H1
0 (O), and that (1.7) holds with the Laplacian in front of the

ds-integral. We refer to [16] for a detailed discussion. In the present paper, we need
the stronger notion of solution as in (1.5)–(1.7). For very recent results on existence of
such "strong" solutions for general SPDE of gradient type, including our situation as a
special case, we refer to [13].

Proof. We only give a sketch of the proof since the techniques are very close to [5],
[6]. Let β(r) denote the function |r|m−1r. We proceed as in [5], [6] and consider the
approximating equation

dXλ −∆βλ(Xλ)dt = σ(Xλ)dWt in (0, T )×O, λ > 0,

Xλ(0) = x in O,
(2.2)

where βλ = β(1 + λβ)−1, λ > 0, and 1 denotes the identity map. Equation (2.2) has a
unique solution Xλ in the sense of (1.5) to (1.7), which satisfies also (see [6], Lemma 3)

sup
t∈[0,T ]

E|Xλ(t)|22 ≤ C|x|22,

where C is a positive constant independent of λ.
Now, let ϕ(x) =

∫
Ω
jλ(x(ξ))dξ, where jλ(r) =

∫ r
0
βλ(s)ds (∈ C∞(R)). By a suitable

regularization, we apply Itô’s formula for ϕ in (2.5) and obtain that

E

∫
O
jλ(Xλ(t, ξ))dξ + E

∫ t

0

∫
O
|∇βλ(Xλ(s, ξ))|2dξ ds

=

∫
O
jλ(x(ξ))dξ + E

∫ t

0

N∑
k=1

∫
O
β′λ(Xλ(s, ξ))|Xλ(s, ξ)ek|2dξ ds

≤
∫
O
|x|m+1(ξ)dξ + CE

∫ t

0

∫
O
|Xλ(s, ξ)|m+1dξ ds, ∀λ > 0, t ∈ [0, T ].

(2.3)

Taking into account that

jλ(Xλ) =
1

m+ 1
|(1 + λβ)−1Xλ|m+1 +

1

2λ
|Xλ − (1 + λβ)−1Xλ|2,

by (2.3) we obtain that

1

m+1
E

∫
O
|(1+λβ)−1Xλ(t, ξ)|m+1dξ+E

∫ t

0

∫
O
|∇βλ(Xλ(s, ξ))|2dξ dx

≤ C
∫
O
|x(ξ)|m+1dξ, ∀λ > 0, t ∈ [0, T ].

(2.4)
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Moreover, arguing as in [5], [6], that is, by applying the Itô formula to the function
ϕ(X) = |X−|m+1

m+1, it follows that Xλ ≥ 0 a.e. in Ω× (0, T )×O.
This yields via the Burkholder-Davis-Gundy inequality (see the proof of Theorem 2.2

in [6]) that
E sup

0≤t≤T
|Xλ(t)−Xµ(t)|2−1e

−αt ≤ C max{λ, µ}, λ, µ > 0,

for some α > 0 and, therefore,

Xλ −→ X strongly in L2(Ω, C([0, T ];H))

and weakly star in L∞(0, T ;L2(Ω×O)),

Moreover, by (2.4) it follows that

βλ(Xλ) −→ η weakly in L2(Ω× (0, T );H1
0 (O)),

where η ∈ β(X) a.e. in Ω× (0, T )×O.
Then, letting λ tend to zero in (2.2), we obtain (1.5)–(1.7) and X ≥ 0, as claimed.

Also, (2.4) implies (2.1) by lower semicontinuity.

Everywhere in the sequel, Br(ξ0) ⊂ O shall denote the open ball {ξ; |ξ − ξ0| < r},
and Σr(ξ0) = {ξ ∈ Rd; |ξ − ξ0| = r} its boundary, and Bcr(ξ0) = O \ Br(ξ0), ξ0 ∈ O. As
mentioned in the introduction, O is an open and bounded domain of Rd with smooth
boundary ∂O, d = 1, 2, 3. Everywhere below, X is the solution to equation (1.1) in the
sense of definition (1.5)–(1.7) with initial data x.

Below, we are only concerned with small T > 0, so we may assume that T ≤ 1.
Furthermore, for a function g : [0, 1]→ R, we define its α-Hölder norm, α ∈ (0, 1), by

|g|α := sup
s,t∈[0,1]
s 6=t

|g(t)− g(s)|
|t− s|α

·

Let for α ∈
(
0, 1

2

)
ΩαH,R = {ω ∈ Ω | |βk(ω)|α ≤ R, 1 ≤ k ≤ N} .

Then, ΩαH,R ↗ Ω as R→∞ P-a.s.
Now, we are ready to formulate the main result.

Theorem 2.3. Assume that d = 1, 2, 3 and 1 < m ≤ 5, and that x ∈ L∞(O), x ≥ 0, is
such that

support{x} ⊂ Bcr0(ξ0), (2.5)

where r0 > 0 and ξ0 ∈ O. Fix α ∈
(
0, 1

2

)
and let for R > 0

δ(R) :=

 1

m+ 1

(ρ
2

)1/2

c−1
1

(
N∑
k=1

|∇ek|∞µk

)−1

× exp

[
1

2
(1−m)

(
1

2
c2 +

N∑
k=1

|ek|∞µk

)])
∧ 1,

where c1, c2 (depending on R) are as in Lemma 3.1 below and ρ as in (1.4). Define for
T ∈ (0, 1]

Ω
δ(R)
T :=

{
sup
t∈[0,T ]

|βk(t)| ≤ δ(R) for all 1 ≤ k ≤ N

}
.
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Then, for ω ∈ Ω
δ(R)
T ∩ ΩαH,R, there is a decreasing function r(·, ω) : [0, T ] → (0, r0], and

t(ω) ∈ (0, T ] such that for all 0 ≤ t ≤ t(ω),

X(t, ω) = 0 on Br(t,ω)(ξ0) ⊃ Br(t(ω),ω)(ξ0), and

X(t, ω) 6≡ 0 on Bcr(t,ω) ⊂ B
c
r(t(ω),ω)(ξ0).

(2.6)

Since Ω
δ(R)
T ↗ Ω as T → 0 up to a P-zero set, and hence

P

( ⋃
m∈N

⋃
n∈N

Ω
δ(m)
1/n ∩ ΩαH,m

)
= 1,

it follows that we have finite speed of propagation of disturbances (“localization") for
(Xt)t≥0 P-a.s.

As explicitly follows from the proof, the function t→ r(t) is a process adapted to the
filtration {Ft}.

Roughly speaking, Theorem 2.3 amounts to saying that, for ω ∈ Ω
δ(R)
T ∩ΩαH,R and for

a time interval [0, t(ω)] sufficiently small, the stochastic flow X = X(t, ξ, ω) propagates
with finite speed.

If we set rT (ω) = lim
t→T

r(t, ω), we see by (2.6) that X(t, ω) = 0 on BrT (ω), ∀t ∈ (0, t(ω))

and X(t) 6≡ 0 on BcrT (ω). It is not clear whether rT (ω) = 0 for some T > 0, that is,
whether the “hole filling" property holds in this case (see [18]).

It should be mentioned also that the assumption x ≥ 0 in O was made only to give a
physical meaning to the propagation process.

The conditions m ≤ 5 and x ∈ L∞(O) might seem unnatural, but they are technical
assumptions required by the work [9] on which the present proof essentially relies.

3 Proof of Theorem 2.3

For the proof we shall take ξ0 = 0 ∈ O and set Br = Br(0). The method of the proof
relies on some sharp integral energy type estimates of X = X(t) on arbitrary balls
Br ⊂ O.

It is convenient to rewrite equation (1.1) as a deterministic equation with random
coefficients. To this aim we consider the transformation

y(t) = eµ(t)X(t), t ≥ 0, (3.1)

where µ(t) = −
N∑
k=1

µkekβk(t).

Then we have (see, [6], Lemma 4.1)

dy

dt
− eµ∆(yme−mµ) +

1

2
µ̃y = 0, t > 0, P-a.s.,

y(0) = x,

ym ∈ H1
0 (O), ∀t > 0, P-a.s.,

(3.2)

where

µ̃ =

N∑
k=1

µ2
ke

2
k. (3.3)

By Proposition 2.1, we have P-a.s.

y ≥ 0, ym(t)e−mµ(t) ∈ H1
0 (O) ∩ L

m+1
m (O), a.e. t ≥ 0. (3.4)

As a matter of fact, in [9], a sharper result on equation (3.2) was proved. Namely, one
has
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Lemma 3.1. Assume that 1 ≤ d ≤ 3 and m ∈ [1, 5]. Then, if x ∈ L∞(O), the solution y

to (3.2) satisfies P-a.s. for every T > 0

y ∈ L∞((0, T )×O) ∩ C([0, T ];H), (3.5)

ym ∈ L2(0, T ;H1
0 (O)),

dy

dt
∈ L2(0, T ;H). (3.6)

Moreover, for every T ∈ (0, 1], α ∈ (0, 1
2 ), R > 0, there exist constants c1, c2 > 0 de-

pending on α, R, O, |x|∞, max
1≤k≤N

(|ek|∞, |∇ek|∞, |∆ek|∞), but not on T such that P-a.s. on

ΩαH,R,

‖y‖L∞((0,T )×O) ≤ c1 exp

[
c2 max

1≤k≤N
sup
t∈[0,T ]

|βk(t)|

]
. (3.7)

The first part of Lemma 3.1 is just Theorem 2.1 in [9], while (3.2) follows by the
proof of Lemma 3.1 in [9] (see (3.25)–3.28)).

Before we introduce our crucial energy functional φ in (3.14) below and explaining
the idea of the proof subsequently, we need some preparations by a few estimates on
the solution y to (3.2). Everywhere in the following we fix α ∈ (0, 1

2 ), α > 0 and assume
that x ≥ 0 so that (3.4) holds and fix T ∈ (0, 1].

By Green’s formula, it follows from (3.2) that

1

m+ 1

∫
O
ym+1(t, ξ)ψ(ξ)dξ +

∫ t

0

ds

∫
O
∇(yme−mµ) · ∇(eµymψ)dξ

+
1

2

∫ t

0

ds

∫
O
µ̃ym+1ψ dξ =

1

m+ 1

∫
O
xm+1(ξ)ψ(ξ)dξ, t ∈ (0, T ),

(3.8)

for all ψ ∈ C∞0 (O).

Fix r > 0 and let ρε ∈ C∞(R+) be a cut-off function such that ρε(s) = 1 for 0 ≤ s ≤
r + ε, ρε(s) = 0 for s ≥ r + 2ε and for χε = 1[r+ε,r+2ε],

lim
ε→0

∣∣∣∣ρ′ε(s) +
1

ε

∣∣∣∣χε(s) = 0, (3.9)

uniformly in s ∈ [0,∞). Roughly speaking, this means that ρε is a smooth approximation

of the function γε(s) = 1 on [0, r + ε], γε(s) = 0 on [r + 2ε,∞), γε(s) = −1

ε
(s− r − ε) + 1

on [r + ε, r + 2ε].
If in (3.8) we take ψ = ρε(|ξ|) (for ε small enough), setting ψε(ξ) = ρε(|ξ|), ξ ∈ O, we

obtain that

1

m+1

∫
O
(y(t, ξ))m+1ρε(|ξ|)dξ+

∫ t

0

ds

∫
O
∇(ye−µ)m·∇(eµymψε)dξ

+
1

2

∫ t

0

ds

∫
O
µ̃ym+1ψεdξ =

1

m+ 1

∫
O
xm+1ψεdξ.

(3.10)

On the other hand, we have∫
O
∇(ye−µ)m · ∇(eµymψε)dξ =

∫
O
|∇(ye−µ)m|2ψεe(m+1)µdξ

+(m+ 1)
1

2

∫
O

(∇(ye−µ)m · ∇µ)eµymψεdξ

+

∫
O

(∇(ye−µ)m · ν)(s, ξ)ρ′ε(|ξ|)(eµym)(s, ξ)dξ,

(3.11)

where ν(ξ) =
ξ

|ξ|
· (Since µ ∈ C2(O), the above calculation is justified.)
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Everywhere in the following, the estimates are taken P-a.s. on the set ΩαH,R ∩ Ω
δ(R)
T .

We set Bεr = Br+2ε \Br+ε. Then, by (3.10), (3.11), we see that

1

m+1

∫
Br+ε

ym+1(t, ξ)dξ +

∫ t

0

ds

∫
Br+2ε

ψεe
(m+1)µ|∇(ye−µ)m|2dξ ds

+
1

2

∫ t

0

ds

∫
Br+2ε

ψεµ̃y
m+1dξ ds

≤ 1

m+ 1

∫
Br+2ε

ψεx
m+1dξ

−(m+ 1)

∫ t

0

∫
Br+2ε

(∇(ye−µ)m · ∇µ)ψεe
µymdξ ds

−
∫ t

0

∫
Bεr

(∇(ye−µ)m · ν)(s, ξ)(eµym)(s, ξ)ρ′ε(|ξ|)dξ ds.

(3.12)

On the other hand, we have∫ t

0

∫
Bεr

|(∇(ye−µ)m · ν)eµymρ′ε(| · |)|dξ ds

≤

(∫ t

0

∫
Bεr

|ρ′ε(| · |)| |∇(ye−µ)m|2e(m+1)µdξ ds

)1
2

×

(∫ t

0

∫
Bεr

e(1−m)µy2m|ρ′ε(| · |)|dξ ds

)1
2

.

(3.13)

We introduce the energy function

φ(t, r) =

∫ t

0

∫
Br

|∇(ye−µ)m|2e(m+1)µdξ ds, t ∈ [0, T ], r ≥ 0. (3.14)

In order to prove (2.6), our aim in the following is to show that φ satisfies a differential
inequality of the form

∂φ

∂r
(t, r) ≥ Ctθ−1(φ(t, r))δ on ΩαH,R ∩ Ω

δ(R)
T for t ∈ [0, T ], r ∈ [0, r0],

where 0 < θ < 1 and 0 < δ < 1 and from which (2.6) will follow.
Taking into account that function φ is absolutely continuous in r, we have by (3.9),

a.e. on (0, r0),

lim
ε→0

∫ t

0

∫
Bεr

|ρ′ε(| · |)||∇(ye−µ)m|2e(m+1)µdξ ds =
∂φ

∂r
(t, r).

Then, letting ε→ 0 in (3.12), (3.13), we obtain that

1

m+ 1

∫
Br

ym+1(t, ξ)dξ + φ(t, r) +
1

2

∫ t

0

∫
Br

µ̃ym+1dξ ds

≤ 1

m+ 1

∫
Br

xm+1dξ − (m+ 1)

∫ t

0

∫
Br

(∇(ye−µ)m · ∇µ)eµymdξ ds

+

(
∂φ

∂r
(t, r)

) 1
2
(∫ t

0

ds

∫
Σr

y2me(1−m)µdξ

) 1
2

,

on ΩαH,R ∩ Ω
δ(R)
T , t ∈ [0, T ], r ∈ [0, r0].

(3.15)
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In order to estimate the right-hand side of (3.15), we introduce the following notations

K(t, r) =
1

2

∫ t

0

∫
Br

µ̃ym+1ds dξ (3.16)

H(t, r) = sup

{
1

m+ 1

∫
Br

ym+1(s, ξ)dξ, 0 ≤ s ≤ t
}
, (3.17)

and note that by assumption (1.4) we have

K(t, r) ≥ 1

2
ρ

∫ t

0

∫
Br

ym+1dξ ds, ∀t ∈ [0, T ], r ∈ [0, r0]. (3.18)

Then (3.15) yields, for r ∈ (0, r0],

H(t, r) + φ(t, r) +K(t, r) ≤ (m+ 1)

∫ t

0

∫
Br

|(∇(ye−µ)m · ∇µ)eµym|dξ ds

+

(
∂φ

∂r
(t, r)

) 1
2
(∫ t

0

∫
Σr

y2me(1−m)µdξ ds

) 1
2

(3.19)

because x ≡ 0 on Br. We note that, by the trace theorem, the surface integral arising in
the right-hand side of formula (3.19) is well defined because ∇(ye−µ)m ∈ L2([0, T ]×O)

and, by Lemma 3.1, y ∈ L∞((0, T )×O) P-a.s.

Now, we are going to estimate the right-hand side of (3.19).

By Cauchy–Schwarz and (3.18), we have∫ t

0

∫
Br

|(∇(ye−µ)m · ∇µ)eµym|dξ ds

≤ ‖ym−1e(1−m)µ|∇µ|2‖1/2L∞((0,T )×O)

×
(∫ t

0

ds

∫
Br

|∇(yme−mµ)|2e(m+1)µdξ

) 1
2
(∫ t

0

ds

∫
Br

ym+1dξ

) 1
2

≤ (2ρ−1)1/2‖ym−1e(1−m)µ|∇µ|2‖1/2L∞((0,T )×O)(φ(t, r))
1
2 (K(t, r))

1
2

≤ 1

2(m+ 1)
(φ(t, r) +K(t, r)), ∀t ∈ (0, T ], r ∈ (0, r0], on ΩαH,R ∩ Ω

δ(R)
T ,

(3.20)

by the definition of δ(R).

By (3.19), it follows that

H(t, r) + φ(t, r) +K(t, r) ≤
(
∂φ

∂r
(t, r)

) 1
2
(∫ t

0

ds

∫
Σr

y2me(1−m)µdξ

) 1
2

∀t ∈ [0, T ], r ∈ [0, r0], on ΩαH,R ∩ Ω
δ(R)
T .

(3.21)

In order to estimate the surface integral from the right-hand side of (3.21), we invoke
the following interpolation-trace inequality (see, e.g., Lemma 2.2 in [12])

|z|L2(Σr) ≤ C(|∇z|L2(Br) + |z|Lσ+1(Br))
θ|z|1−θLσ+1(Br), (3.22)

for all σ ∈ [0, 1] and θ = (d(1− σ) + σ + 1)/(d(1− σ) + 2(σ + 1)). Clearly, θ ∈
[

1
2 , 1
)
.
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We shall apply this inequality for z = (yme−µ)m and σ = 1
m . We obtain, by (3.17) that(∫

Σr

y2me(1−m)µdξ

) 1
2

≤ ‖e(1+m)µ‖1/2L∞((0,T )×O)

(∫
Σr

(ye−µ)2mdξ

) 1
2

≤ C‖e(1+m)µ‖1/2L∞((0,T )×O)(|∇(ye−µ)m|L2(Br)+|yme−mµ|
L
m+1
m (Br)

)θ|yme−mµ|1−θ
L
m+1
m (Br)

≤ C̃

((∫
Br

|∇(yme−mµ)|2e(m+1)µdξ

) 1
2

+H
m
m+1 (t, r)

)θ
(H

m
m+1 (t, r))1−θ, on ΩαH,R ∩ Ω

δ(R)
T ,

where, as will be the case below, C̃ is a positive function of ω ∈ ΩαH,R ∩ Ω
δ(R)
T , indepen-

dent of t and r, which may change below from line to line.
Integrating over (0, t) and applying first Minkowski’s (since θ ≥ 1

2 ) and then Hölder’s
inequality yields(∫ t

0

ds

∫
Σr

y2me(1−m)µdξ

) 1
2

≤ C̃

(∫ t

0

ds

(∫
Br

|∇(yme−mµ)|2e(m+1)µdξ +H
2m
m+1 (s, r)

)θ
H

2m(1−θ)
m+1 (s, r)

) 1
2

≤ C̃H
m(1−θ)
m+1 (t, r)t

1−θ
2 ((φ(t, r))

1
2 +H

m
m+1 (t, r))θ, on ΩαH,R ∩ Ω

δ(R)
T .

Substituting the latter into (3.21), we obtain that

φ+H ≤ C̃t 1−θ
2

(
∂φ

∂r

) 1
2

(φ
1
2 +H

m
m+1 )θH

m(1−θ)
m+1

≤ C̃t 1−θ
2

(
∂φ

∂r

) 1
2 (
φ

1
2H

m(1−θ)
(m+1)θ +H

m
(m+1)θ

)θ
,

∀t ∈ [0, T ], r ∈ [0, r0], on ΩαH,R ∩ Ω
δ(R)
T .

(3.23)

On the other hand, for H0 = H(T, r0), we have the estimate

φ
1
2H

m(1−θ)
(m+1)θ +H

m
(m+1)θ ≤ φ 1

2H
m(1−θ)
(m+1)θ +H

m
m+1−

1
2

0 H
m(1−θ)
(m+1)θ

+ 1
2 ≤ C̃(φ+H)

1
2 +

m(1−θ)
(m+1)θ ,

where C̃ := 2 max(1, H
m−1

2(m+1)

0 ) and where we used that by Young’s inequality, for all
p, q ∈ (0,∞),

φpHq ≤ (φ+H)p+q.

Substituting the latter into (3.23) yields

φ+H ≤ C̃t
1−θ
2

(
∂φ

∂r

) 1
2

(φ+H)
θ
2 +

m(1−θ)
m+1 on (0, T )× (0, r0)× ΩαH,R ∩ Ω

δ(R)
T ,

and therefore(
∂φ

∂r
(t, r)

) 1
2

≥ C̃t
θ−1
2 (φ(t, r))

2−θ
2 −

m(1−θ)
m+1 on (0, T )× (0, r0)× ΩαH,R ∩ Ω

δ(R)
T . (3.24)

Equivalently,

∂ϕ

∂r
(t, r) ≥ C̃tθ−1, on (0, T )× (r(t), r0)× ΩαH,R ∩ Ω

δ(R)
T , (3.25)
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where
ϕ(t, r) = (φ(t, r))θ+

2m(1−θ)
m+1 −1, (3.26)

and
r(t) := inf{r ≥ 0 | φ(t, r) > 0} ∧ r0.

We note that, by continuity,
φ(t, r(t)) = 0

and that, since φ(t, r) is increasing in t and r, we have φ(t, r) > 0, if r > r(t), and that
t 7→ r(t) is decreasing in t. Furthermore, the same is true for ϕ defined in (3.26), since
θ + 2m(1−θ)

m+1 − 1 > 0, because 0 < θ < 1 and m > 1.

Moreover, by (3.17) and (3.23) we see that

X(t, ξ) = 0 for ξ ∈ Br(t).

We recall that r(t) = r(t, ω) depends on ω ∈ Ω. Now, fix ω ∈ ΩαH,R × Ω
δ(R)
T . Our aim is to

show that
∃ t(ω) ∈ (0, T ] such that r(t, ω) > 0, ∀t ∈ [0, t(ω)]. (3.27)

Since we already noted that φ(t, r) > 0, if r > r(t), by (3.21), (3.26) and (3.1), we deduce
the property in (2.6) from (3.27). To show (3.27), we first note that by (3.25) for all
t ∈ (0, T )

ϕ(t, r0)(ω) ≥ C̃tθ−1(r0 − r(t, ω)),

hence
r(t, ω) ≥ r0 − (C̃(ω))−1t1−θϕ(t, r0)(ω).

So, because 0 < θ < 1, we can find t = t(ω) ∈ (0, T ), small enough, so that the right-
hand side is strictly positive. Now, (3.27) follows, since, as noted earlier, t 7→ r(t, ω) is
decreasing in t, which completes the proof of (2.6). By elementary considerations for
δ > 0, we have

P(ΩδT ) ≥ 2N

(
1−

√
T

2πδ2
e−δ

2/(2T )

)N
.

Hence ΩδT ↗ Ω as T → 0 up to a P-zero set and the last part of of the assertion also
follows.

Remark 3.2. In the deterministic case, for O = Rd the finite speed propagation pro-
perty: support {x} ⊂ Br0(ξ0) =⇒ support {X(t)} ⊂ Br(t)(ξ̃0) for some ξ̃0 ∈ Rd and

r = r(t), follows by the comparison principle X(t, ξ) ≤ U(t+ τ, ξ− ξ̃0), where U = U(t, ξ)

is the Barenblatt source solution

U(t, ξ) = t−
d

(m−1)d+2

[
C − m− 1

2m((m− 1)d+ 2)

|ξ|2

t
2

(m−1)d+2

] 1
m−1

+

(3.28)

(see [18]) and which has the support in {(t, ξ); |ξ|2 ≤ C1t
2

(m−1)d+2 }.
At least in the simpler case, where the noise is not function valued, i.e. independent

of ξ, this is similar in the stochastic case. More precisely, for m = 2, d = 1, O = R1 and
W (t) = β(t) = standard, real-valued Brownian motion, the function

Z(t, ξ) = U

(∫ t

0

k(s)ds, ξ

)
k(t), k(t) = eβ(t)− 1

2 t

is a solution to (1.1) and support Z ⊂
{

(t, ξ); |ξ|2 ≤ C1

(∫ t
0
k(s)ds

) 2
3

}
(see [14] for de-

tails). (We are indebted to the referee for pointing this out to us.) However, on bounded
domains, it is not clear, whether this is applicable.
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Remark 3.3. The finite dimensional structure of the Wiener processW (t) was essential
for the present approach, which is based on sharp estimates on solutions to equation
(3.2). A direct application of the above energy method in L2(Ω;L2(0, T ;H−1(O))) failed
for general cylindrical Wiener processes W (t).
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