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Abstract

We discuss p-variation regularity of real-valued functions defined on [0, T]?, based on rectangu-
lar increments. When p > 1, there are two slightly different notions of p-variation; both of which
are useful in the context of Gaussian roug paths. Unfortunately, these concepts were blurred in
previous works [2, 3]; the purpose of this note is to show that the afore-mentioned notions
of p-variations are "e-close". In particular, all arguments relevant for Gaussian rough paths go
through with minor notational changes.
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1 Higher-dimensional p-variation

Let T > 0and A; = {(s,t): 0<s <t < T}.We shall regard ((a,b),(c,d)) € A; X A as (closed)

rectangle A C [0, T]%;
ab |\ .
A= ( c,d ) =lablxled:

if a = b or c = d we call A degenerate. Two rectangles are called essentially disjoint if their
intersection is empty or degenerate. A partition II of a rectangle R C [0, T]? is then a a finite set
of essentially disjoint rectangles, whose union is R; the family of all such partitions is denoted by
2 (R). Recall that rectangular increments of a function f : [0, T]?> — R are defined in terms of f
evaluated at the four corner points of A,

ab \ _ b a b a
Let us also say that a dissection D of an interval [a,b] < [0,T] is of the form D =
(a=ty<t;<---<t,=b); wewrite 2([a,b]) for the family of all such dissections.
Definition 1. Let p € [1,00). A function f : [0, T]*> — R has finite p-variation if

p
ti, t;
V, (fs[s,t] x [u,v]) == sup Z f ( W tlﬂ ) < 00;
D=(t;)e2([s,t]) i,j J i+
D’:(t;)e@([u,v])

it has finite controlled p-variationE] if

/p
{f|p-var;[s,t]><[u,v] = sup (Z |f (A)|p) < 00.

e ([s,t1x[u,v]) \ aen

The difference is that in the first definition (i.e. of V) the sup is taken over grid-like partitions,

ti, t
St iisisni<j<my,
J> i+l

based on D,D’ where D = (t;:1<i<n) € 2([s,t]) and D’ = (

/

j*
Clearly, not every partition is grid-like (consider e.g. [0,2]% = [0,1]%U[1,
hence

1<) < )E@([uv
2]x[0,1]uf0,2] x[1,2])

VP (f;R) = {f)p-var;R‘

for every rectangle R C [0, T1%.

1Our main theorem below will justify this terminology.
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Definition 2. Amap w : Ap X Ay — [0,00) is called 2D control if it is continuous, zero on degenerate
rectangles, and super-additive in the sense that, for all rectangles R C [0, T],

n
Za) (R;) £ w(R), whenever {R;:1<i<n}e?(R).
i=1
Our result is

Theorem 1. (i) For any function f : [0, T]> — R and any rectangle R < [0, T],

|f

lvarR V1 (f;R) : (1.1)

(i) Let p € [1,00) and € > 0. There exists a constant ¢ = ¢ (p,€) > 1 such that, for any function
f:10,T]*> = R and any rectangle R c [0, T],

1
¢ (p:“:) )f|(p+€)—var;R = Vp (f;R) = |f|p—var;R' (1.2)

(i) If f : [0, T]* — R is of finite controlled p-variation, then R — { f )i_var » IS super-additive.

() If f : [0,T]> = R is continuous and of finite controlled p-variation, then R — |f~§_var;R is a 2D
control. Thus, in particular, there exists a 2D control w such that

V rectangles R € [0,T] : |[f R)|’ < w(R)

As will be seen explicitly in the following example, there exist functions f which are of finite p-
variation but of infinite controlled p-variation; that is,

VP (f’ [O’ T]Z) < |f|p—var;[0,T]2 =+00

which also shows that one cannot take ¢ = 0 in (1.2). In the same example we see that p-variation
R—V, (f;R)" can fail to be super-additiveﬂ

Example 1 (Finite (1/2H)-variation of fBM covariance, H € (0,1/2]. ). Let B denote fractional
Brownian motion with Hurst parameter H; its covariance is given by

1
C(s,0):=E(pIB}") := 3 (e +527 — e =), 5,6 €[0,T)*, He (0,1/2].

We show that C¥ has finite 1/ (2H)-variation in 2D senseﬂ and more precisely,

V120 (CH; [s, t]z) <cylt —s|*, foreverys<tin [0,T].

p
p-var;R
3This is a minor modification of the argument in [J3]] where it was assumed that D = D’.

2... in contrast to controlled p-variation R — | f | which yields a 2D control, cf part (iv) of the theorem.
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(By fractional scaling it would suffice to consider [s,t] = [0, 1] but this does not simplify the argument
which follows). Consider D = (t;),D’ = (t;) €9 [s,t]. Clearl

1

1--- H H - 1-1 [ H:|
i ZH; ¢ |: ot 7, tJ+1i| = 3 f tlHIg svari[s,t]
< H ] 1.3
- ‘ [ﬁt tlﬂﬁ 2%1 -var; [s t; ] ( )
H
1.4
’ |:[3[ t1+1ﬁ :| ZH -var; [tntl+l] ( )
H
1.5
+|E [P ] ol (1.5)
by super-additivity of (1D!) controls. The middle term (|1.4) is estimated by
1
i = s Y|e (e IE
’ tistiva 2H [tpt1+1] (sk)eg[ti,ti+1]2k: tistitq Sk,5k+1
= CH|ti+1 — i,

2H .
et Psosess <cy \sk+1—sk| . The first

term and the last term (|1.5) are estimated by exploiting the fact that disjoint increments of

fractional Brownian motion have negative correlation when H < 1/2 (resp. zero correlation in the

where we used that [si,si1] C [ti, tiy1 ] implies ‘E [ H ]

Brownian case, H = 1/2); that is, E (/5 ) < 0 whenever a < b < ¢ < d. We can thus estimate
as follows;
1 1
2H 2H
[6t0,.8]] = |5 (et 6]
‘ tistit %—var;[s,ti] tistiv

IA

ﬁtt

i+1

H
2 (’E tl’tl+l 5>ti]
The covariance of fractional Brownian motion gives immediately E [

B [ H H ]
Listip1 78t

SCH|fi+1—fi|-

ZTL)

27 3
] =cy (tiy1 — ;). On

"o

H
titivy

the other hand, [t;,t;11] C [s,ti1q | implies

‘ [ﬁf fz+1[5H]

As already remarked, the last term is estimated similarly. It only remains to sum up and to take the
supremum over all dissections D and D’.

2H
Scy |tl+1

HVCIT‘[S[]

Example 2 (Failure of super-addivity of (1/2H)-variation, infinite controlled (1/2H)-variation of
fBM covariance, H € (0,1/2). ). We saw above that

Vi (€510, T1?) < oo.

*We write B, = By — B
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When H = 1/2 we deal with Brownian motion and see that its covariance has finite 1-variation, which,
by (i),(iv) of Theorem |1} constitues a 2D control for C1/2. In contrast, we claim that, for H < 1/2,
there does not exist a 2D control for the 1/ (2H)-variation of CH. In fact, the sheer existence of a
super-additive map w (in the sense of definition [2) such that

Y rectangles R C [0,T] : |CH (R)|1/(2H) < w(R)
leads to a contradiction as follows: assume that such a w exists. By super-addivity,

VEH) o b (R) < 00

() (R) = )CH|1/(2H)-var;R -

and @ is super-additive (in fact, a 2D control) thanks to part (iv) of the theorem. On the other hand,
by fractional scaling there exists C such that

Vis,)eAr:a([s,t]1*) =Clt —sl.
Let us consider the case T = 2 and the partition
[0,2]>=[0,112U[1,2]?URUR’
withR=1[0,1] x [1,2], R =[1,2] x [0, 1]. Super-addivitiy of & gives
@ ([0,11*) +a ([1,2)*)+a®+a (R) < @ ([0,2]%),

Cl-0+Cc2-D+oR®+a(R) < 2C,

hence & (R) = @ (R") =0, and thus also
c"®=E[(BY-BY) (By -B})] =0;

which is false for H # 1/2 and hence the desired contradiction. En passant, we see that we must have

H —_ .
|C |1/(2H)-var;|:0,T]2 = +00;

for otherwise part (iv) of Theorem (1| would yield a 2D control for the 1/(2H)-variation of C. This
also shows that, with f = C and p =1/ (2H) one has

VP (f’ [0, T]Z) < |f|p—var;[0,T]2 = +00.

Remark 1. The previous examples clearly show the need for Theorem variational regularity of CH can
be controlled upon considering [(1/2H) + €]-variation rather than 1/ (2H)-variation. In applications,
this distinction never matters. Existence for Gaussian rough paths for instance, requires 1/ (2H) < 2
and one can always insert a small enough ¢. It should also be point out that, by fractional scaling,
H 2H .
<, ™

1/(2H)+¢]-var;[s,t]? x lt S

hence, even in estimates that involve directly that variational regularity of CH, no ¢ loss is felt.

Remark 2. The previous examples dealt with H < 1/2 and reader may wonder about the case H > 1/2.
In this case 1/ (2H) < 1 and clearly the (non-trivial) covariance function of fBM with Hurst parameter
H will not be of finite 1/ (2H)-variation. Indeed, any continuous function f : [0,T]* — R, with
f(0,-) = f (-,0) =0, and finite p-variation for p € (0,1), is necessarily constant (and then equal to
zero).

Acknowledgement 1. The authors are indebted to Bruce Driver for pointing out, in the most con-
structive and gentle way, that R — V, (f;R)? is not, in general, super-additive. P Friz received fund-

ing from the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement nr. 258237.
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2 Proof of (i)

We claim the controlled 1-variation is exactly equal to its 1-variation. More precisely, for all rectan-
gles R c [0, T]? we have

|f|1—var;R = Vl (f;R) .

Proof. Trivially V; (f;R) < | f |1_Var_R. For the other inequality, assume II is a partition of R. It is

obvious that one can find a grid-like partition 1, based on D x D’, for sufficiently fine dissections
D, D’, which refines IT in the sense that every A € I can be expressed as

A= U;A; (essentially disjoint), A; € 1.

From the very definition of rectangular increments, we have f (A) = Y.. f (4;) and it follows that
|f (A)| <> |f (A)) \ (If |-| is replaced by |-|? , p > 1, this estimate is false Hence

PN TAC T —"

Aell Aell

It now suffices to take the supremum over all such II to see that } f |1_Var_R <V; (f;R). O

3 Proof of (ii)

The second inequality V, (f;R) < ) f |

nothing to show so we may assume v, ( f ;R) < +00. We claim that, for all rectangle R C [0, T]z,

|f|p+s—var;R sc (p; 8) Y (f;R) .

pvarR 8 trivial. Furthermore, if V, (f;R) = +oo there is

For the proof we note first that there is no loss in generality in taking R = [0,T]?; an affine
reparametrization of each axis will transform R into [0, T]?, while leaving all rectangular incre-
ments invariant. The plan is to show, for an arbitrary partition (Q;) € & ([O, T]Z), the estimate

1

(ZV@oWﬁWS“Rﬂ%@WJﬂ-

where ¢ depends only on p, ¢ for any partition (Q;) € & ([0, T]Z). The key observation is that for
a suitable choice of y,x,D = (¢;),D’ = (t;) we have

2l @™
k

;V@MH“wﬂﬂ@nﬁm) 31
- 33 )-()

= :f ydx.
DxD’

|p <mp! (Z:ﬂzl Iai

>One has ‘Z::l aiip = |Z:n=1 |ai

p) and this is sharp as seen by taking a; = 1.
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Indeed, we may take (as in the proof of part (i)) sufficiently fine dissections D = (t;),D’ = (t;) €
210, T] such that the grid-like partition based on D x D’ refines (Qy); followed by settin
x : =f
—1+
y o=l @I sen (F (@) T,
k

where Q, is the of the form (a, b] % (c,d] whenever Q; = [a, b] x [c,d]. Lemmabelow, applied
with p + € instead of p, says

q

Vv, (¥:[0,T1*) <4

2l @)™

where ¢ :=1/(1—1/(p+¢)) denotes the Holder conjugate of p + ¢. Since

noting also that y (0,-) = y(-,0) = 0, we can use Young-Towghi’s maximal inequality [4, Thm
2.1.], included for the reader’s convenience as Theorem [3]in the appendix, to obtain the estimate

SIF @I

k

IA

c(p,e) Vg (y; [o, T]z) Vv, (x; [o, T]z)

q

IA

4c (p, €) v, (x;[0,71%)

2 |x @™

Since 1 — 1 = L and x = f we see that
q pte

1

(Z |f (@) 1"“) " <ac(pe) v, (£500,77%)

and conclude by taking the supremum over all partitions (Q;) € & ([0, T]Z).

Lemma 1. Fix p > 1 and write p’ for the Holder conjugatei.e. 1/p’+1/p = 1. Let (Qj) e ([O, T]z)
-1
and y = ZJ. x (Qj) g sgn (x (Qj)) Iy, Then

1/p’
p’-var;[0,T1? =4 (Z |X (Ql) }p) .
i

5The "right-closed" form of Q, in the definition of y is tied to our definition of f oxp Y dx which imposes "right-end-
point-evaluation" of y. Recall also that Q, is really a point in ((a, b),(c,d)) € A; x A;; viewing it as closed rectangle is
pure convention.

Vy (3,10, T1%) <y
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Proof. Only the second inequality requires a proof. By definition, (Q ]-) forms a partition of [0, T]?
into essentially disjoint rectangles and we note that y (.,0) = y(0,.) = 0. Consider now another
partition (R;) € & ([O, T]z). The rectangular increments of y over R; spells out as "+ — —4 sum"
of y evaluated at the corner points of R;. Recall that on each set Q ; the function y takes the consant

value -
=[x (@) sen (2 (@)

Since the corner points of R; are elements of Q ;5 UQ;,uQ; uQ;, for suitable (not necessarily distinct)
indices ji, ..., j; we clearly have the (crude) estimate

y®) < D, e (3.2)

j€{irjarizia}

and, trivially, any j & {ji, j2,j3,J4} is not required in estimating 1 y (Ry) | Let us distinguish a few
cases where we can do better than in
Case 1: There exists j such that all four corner points of R; are elements of Q; (equivalently:
dj:R; C Qj). In this case

Yy (Rl) :Cj _Cj_cj+cj =0.

In particular, such an index j is not required to estimate | ¥ (R) \

Case 2: There exists j such that precisely two corner point of R; are elements of Q;. It follows that
the corner points of R; are elements of Q; UQ;, UQ); for suitable (not necessarily distinct) indices
J1, jo- Note however that j ¢ {j;, jo}. In this case

y(Ri) =cj,—cj,—cj+ci=cj —cj,.

In general, this quantity is non-zero (although it is zero when j; = j,, which is tantamount to say
thatR; C Q i, UQ;). Even so, we note that

|_}’ (Ri)| < |le| + {CJ'2|

and again the index j is not required in order to estimate | ¥ (R;) |
Case 3: There exists j such that precisely one corner point of R; is an element of Q;. In this case,
for suitable (not necessarily distinct) indices ji, jy, j with j & {ji, jo, ja}

|y (Ri)) = |C11 _Cjz_cjs—l_cj{ = |le _Cjz_cjs|+|cj}'

In this case, the index j is required to estimate \ y (R)) | (There is still the possibily for cancellation
between the other terms. If j, = j; for instance, then \ y (Ri)| < |cj1{ + |cj| and indices j,, j; are not
required; this corresponds precisely to case 2 applied to Q;,. Another possiblility is that {J1,J2, 73}
are all distinct in which case | y (Ri)} < |cj1| + }cj2| + {cjg} + |cj{ is the best estimate and all four
indices j;, jo, j3,j are needed in the estimate.

The moral of this case-by-case consideration is that only those j € ¢ (i) where

¢ () := { j : precisely one corner point of R; is an element of Q j}

’The case that three corner points of R; are elements of Q ; already implies (rectangles!) that all four corner points of
R; are elements of Q;. This is covered by Case 1.
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; more precisely,

SN

jeo(®)

are required in estimating | ¥ (R;)

|J’ (R;)

Since rectangles (here: R;) have four corner points it is clear that #¢ (i) < 4 where # denotes the
cardinality of a set. Hence

ly (R <47 > o =47 D disle
;

jeo®)

p/

where we introdudced the matrix ¢; ; with value 1 if j € ¢ (i) and zero else. This allows us to write
D@ = #7000l
i i
’_ p’
= ¥ 12 jeil” 2290
j i

Consider now, for fixed j, the number of rectangles R; which have precisely one corner point inside
Q;. Obviously, there can be a most 4 rectangles with this property. Hence

Z¢i,j=#{i:je¢(i)}s4.

IA

It follows that

Dy @I <# Yol =4 ‘x (@) e 3 ‘x (@)
i J

J J

p

)

where we used that (p — 1) p’ = p. Since (R;) was an arbitrary partition of [0, T]* we obtain

/

p /
p’-var;[0,T]2 <4 Z {X (QI)
i

as desired. The proof is finished. O

p
>

|y

4 Proof of (iii)

The claim is super-additivity of

R— sup Z|f(A)|p.

e#(R) Acll

Assume {R; : 1 <i < n} constitutes a partition of R. Assume also that IT; is a partition of R; for every
1 <i < n. Clearly, IT := U} Tl is a partition of R and hence

SIS @ =X @l <om

i=1 A€ll; Aell

Now taking the supremum over each of the I1; gives the desired result.
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5 Proof of (iv)

The assumption is that f : [0, T]?> — R is continuous and of finite controlled p-variation. From (iii),
|elP
w(R):= |f|p—var;R

is super-additive as function of R. It is also clear that w is zero on degenerate rectangles. It remains
to be seen that w : Ay X Ap — [0, 00) is continuous.

Lemma 2. Consider the two (adjacent) rectangles [a, b] x [s, t] and [a, b] x [t,u] in [0, T]? .Then,
w < w +w
s,u s, t t,u
1-1/p 1/p
+p2p_1a)(a’b) min{w(a’b),w(a’b)} .
s,u t,u s, t

Proof. From the very definition of w ([a, b] x [s,u]), it follows that for every fixed ¢ > 0, there
exists a rectangular (not necessarily grid-like) partition of [a, b] X [s,u], say I1 € & ([a, b] X [s,u]),

such that
b
I;T{f(R)|p>w( iu )—s.

Let us divide IT in IT; UII,, UTI, where II; contains all R € IT such that R C [a, b] X [s, t], I, contains
alReIl:R C [a,b] x [t,u] and IT,, contains all remaining rectangles of IT (i.e. the one such that
their interior intersect with the line [a, b] X [t, t]. It follows that

SIr@f+ 3 ®f+ S lr@f = ©F -
Rell, Rell, g

ReII;

Every R € I1,,, can be split into (essentially disjoint) rectangles R; C [a, b] X [s,t] and R, C [a, b] %
[t,u]. Set I} = {R;:R; €Il,} and I1? similarly Note that IT, UTI}, € & ([a,b] x [s,t]) and
Hrzn UL, € 2 ([a, b] x [t,u]). Then, with

A= [F®F - R - R)']

ReIl,,

we have

Y@+ D f®f+a>wle bl x[sul)-¢

RelIluM}, Ren?ul,

and hence ,we have
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We now bound A. As f(R) = f (Ry) + f (R,),

A = Z ‘f (R)+7£ (R)) ‘f ‘f(R;)p
< (’f le +‘f sz) )p_‘f(R;)p_‘f(Rg)p
C S (EI ) -

. ‘ N |P

IfR = [7;,741]%[c,d], define Ré = [}, Tj+1] X [s,u] . Then, quite obviously, we have ‘f (Rll)’ <
~ N [P

w (Ré) and |f (RJZ)

<w (Rg) . By the mean value theorem, there exists 6 € [0, 1] such that

(I )|+l ()" -7 (=)
p(if )‘” f(#)
f|R

p2Plw
1- 1/p 1/p
p—1 TiTjt1 Ti> Vit
p2X T w w .
s, u t,u

Hence, summing over j, and using Holder inequality

p—1
82 pi Yo T of T
- s, u t,u

J

p

+‘f(R£

/)

—1/p ‘

IA

IA

1-1/p 1/p

p2r-1 Zw Tj> Tj+1 Zw Tj T+t
s, U t,u

J J

1-1 1
-1 a, b /P (l,b /p
p2P " w w
s,u t,u

Interchanging the roles of R;and R,, we also obtain that

a,b 1 a,b e
< p—l ) )
A <p2 w(s,u) w(t,u) s

which concludes the proof. O

IA

IA

Continuity: w is a map from A; x A — [0, 00); the identification of points ((a;,a,), (as,a4)) €

ap, das

Ar X Ap with rectangles in [0, T]? of the form A = ( e
3, Y4

) = [ay,a5] X [ag,a4] is pure
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convention. If A is non-degenerate (i.e. a; < a,,a; < ay) and |h| = max;‘:1 {hi| sufficiently small

then
Ah = (ap+h1) VO, (ag+hy) AT
“\ (a3 +h3) VO, (ag+hy) AT

is again a non-degenerate rectangle in [0, T]Z. We can then set for r > 0, sufficiently small,
A% ,:A(r,—r,r,—r) AT ,:A(—r,r,—r,r)
and note that, whenever |h| is small enough to have A% well-defined,

ASE = A c Al (5.1)
ASl < A c Al (5.2)

The above definition of A" (and A%, A") is easily extended to degenerate A, such that the inclusions
(5.1),(5.2) remain valid: For instance, in the case a; = a, we would replace the first line in the
definition of A" by
(a1+h1) VO, (a2+h2) AT lfhl S OShZ
(a]_ +h1) \% O,Clz ifhl,hz <0
aq, (a2 +h2) AT ifhl,hz >0
aq,as lfhl Z 0 Z hz
and similarly in the case a; = a4. We will prove that, for any rectangle Ac [0, T 12,
w (A") = w(A) as |h| | 0.

This end we can and will consider |h| is small enough to have A% (and thus Ah,A””) well-defined.
By monotonicity of w, it follows that

w (A7) < o (A7) < w (A7)
and the limits,
w’(d) = lrifgw(Aw) <w(A), (5.3)
@A) =1rifgw (A7) > w(A),

exist since w (A%") [resp. w (A")] are bounded from above [resp. below] and increasing [resp.
decreasing] as r | 0. It follows that

w°(A) < limw (Ah < hma) Ah) <w(A).
|hl}O

The goal is now to show that w°(A) = w (A) ("inner continuity") and & (A) = w (A) ("outer continu-
ity") since this implies that limew (Ah) =limw Ah) = w (A), which is what we want.
Inner continuity: We first show that «w° is super-additive in the sense of deﬁmtlon I To this end,

consider {R;} € Z (R), some rectangle R C [0, T]?. For r small enough, the rectangles
0,
{rR"}
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are well-defined and essentially disjoint. They can be completed to a partition of R*" and hence, by
super-additivity of w,
Z w (R?’r) <w (Ro’r) ;
i
sending r | 0 yields the desired super-addivity of w®;

D e’ (R) w0 (R).

On the other hand, continuity of f on [0, T]* implies

If @) [f @)" +0)

<
< w@)+o(l)asr |0

and hence | f (A)|p < w° (A), for any rectangle A C [0, T]?. Using super-additivity of w°® immediately

gives

o®"E" sup S |F @) <o ®;

negw (R) Jen

together with || we thus have w (R) = w° (R). Since R was an arbitrary rectangle in [0, T]? inner
continuity is proved.

Outer continuity: We assume A C (0,T)? (ie. 0 <a; <a, < T,0 < a3 < a4 <T)and taker >0
small enough so that
Ar _ a, —r,as +r .
as—r,a,+r |’

the general case A C [0, T]? is handled by a (trivial) adaption of the argument for the remaining
cases (i.e. ay=0o0ra, =T or a3 =0 or ay = T). We first note that

= a; —rday,+r ap,a
r _ 1 > 42 1,42
wA)-wl@) = o B )
as —r,a4+r as,dy
w al—ra2+r o a, —r,dy
—rnas+r as —r,a4+r
—rI,dy —w a,a
—ra4+r ag —r,d4+71
+lew a;,ds —w ap,ds
—ras+r as,as+r
a;,as —w a;,as
as,az+r as,ay

w a, —rday+r w a, —r,dy
as—r,a4+r as—rn,as+r
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Now we use lemma [2}, with




we have

1/p
A < a)( as,ds +r )—l—cw([O,T]z)l_l/pw(aaz’a2+r )

as—r,as+r 3—TI,a4+7r
1
ay,ag +r 2\1-1/p az,as +r o
< w 0T +cw([0,T]) w 0T )

and similar inequalities for the other three terms in our upper estimate on w (A") — w (A) above. So
it only remains to prove that for a € (0, T)

a,a+r a—r,a 0, T d 0, T
@ 0, T » @ 0,T » @ a,a+r > and w a—r,a
converge to 0 when r tends to 0.But this is easy; using super-addivity of w and inner-continuity we
see that
a,a-+r < a, T _ a+rT
“\ or = “lor |7® or
— Qasr]O0.

Other expressions are handled similarly and our proof of outer continuity is finished.

6 Appendix

6.1 Young and Young-Towghi discrete inequalities
6.1.1 One dimensional case.

Consider a dissection D = (0 =tg,...,t,=T) € 2([0,T]). We define the "discrete integral" be-
tween x,y : [0,T] —» R as

n
ID = f ydx = Zytixtifbti.
D i=1

Lemma 3. Let p,q > 1, assume that 6 =1/p+1/q > 1. Assume x,y : [0,T] — R are finite p- resp.
q-variation. Then there exists t; € D\ {0, T} (equivalently: iy € {1,...,n — 1}) such that

1
ydx —J ydx| < — |x|p-var;[0,T] y|
JD D\{t; } (n—1)° { |q var,[0,T]

Iterated removal of points in the dissection, using the above lemma, leads immediately to Young’s
maximal inequality which is the heart of the Young’s integral construction.

1893



Theorem 2 (Young’s Maximal Inequality). Let p,q = 1, assume that 6 =1/p+1/q > 1, and consider
two paths x,y from [0, T] into R of finite p-variation and q-variation, with yy, = 0. Then

f ydx
D

and this estimate is uniform over all D € 9 ([0, T]).

< (1 + g(e)) |x|p-var;[0,T] |y|q-var;[O,T]

Proof. Iterative removal of "iy" gives, thanks to lemma [3]
f ydx — J ydx
D {0,T}

Finally, f{o T ydx = YrXo,r = Yo,rXo,r SinC€ Yo = Y1 — Yo and y, = 0 and hence

f ydx
{0,T}

and we conclude with the triangle inequality. O

IA

1
Z n——1)9 |x|p-var,[0,T] |y~q—var,[O,T]

n>2

A

£(0) x| pvar o1 |¥ | gvangor

= |y0,TxO,T| < || p-vas[o,7] |)’~q_var,[o,ﬂ

Proof. (Lemma 3)) Observe that, for any t; € D\ {0, T} with1<i<n-—-1

P ID\{t}_J’t Jt

i+1 tl 1.t

We pick t; to make this difference as small as possible:

12— iPMeod| < [P — 1P} forallie {1,...,n— 1}

As an elementary consequence, we have

S

ID\{t 1/ )

0 _ ID\{th S

S

B 1/6
The plan is to get an estimate on Z?le 1P — [P\{ti} independent of n. In fact, we shall see that

n—1 1 9
D D\{¢; 1/6 1/6
1P < %1 var 0,77 1Y |q»var,[0,T] (6.1)

and the desired estimate

1 0
D D\{t;
=1 { 0} = (n_ 1) |X|p-var,[0,T] ~y|q—var,[0,T]
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follows. It remains to establish (6.1); thanks to Holder’s inequality, using 1/ (¢0) +1/ (p6) =1,

—_

n—

1/0 n—1 1/9 1/0 0
ID - ID\{ti} = ( -yf stitl ti—1,t; )
i=1 i=1

1 1
m— q6 n—1 p po

i=1

1/9 1/6
= | |p var, [0, T] |q -var,[0,T] *
and we are done. O

6.1.2 Young-Towghi maximal inequality (2D)

We now consider the two dimensional case. To this end, fix two dissections D = (0 = ¢, ...,t, = T)
and D' = (0 =ty = T) and define the discrete integral between x, y : [0, T]* — R as

/ t; t; t;
D,D' _ L i i—1> %

I —J ydx = E E y ( ¢ )x ( t/'—p ¢ ) . (6.2)
DxD’ 1 j J J J

Lemma 4. Let p,q > 1, assume that 0 = 1/p +1/q > 1. Assume x,y : [0,T]*> — R are finite p-
resp. g-variation. Then there exists t; € D\ {0, T} (equivalently: iy € {1,...,n — 1} such that for every
a€e(1,0),

1 \¢ 0 \\* _ 9 ) 9
S I N e () ety

Iterative removal of "i;" leads to Young-Towghi’s maximal inequality.

Theorem 3 (Young-Towghi Maximal Inequality). Let p,q > 1, assume that 8 =1/p+1/q > 1, and
consider x,y : [0,T]1*> — R of finite p- resp. g-variation and y (0,-) = y (-,0) = 0. Then, for every
a€(1,0),

9 a
f ydx| < [(Hq(;)) a(a)+(1+cw))} v, (10, 712) v, (3 [0, 7T?)
DxD’

and this estimate is uniform over all D,D’ € 2 ([0, T])

nyn

Proof. Iterative removal of "i," gives

J ydx — J ydx
DxD’ {0,T}xD’

S (o) e

n>2

9 a
¢ (a) (1 +¢ (ED V, (x;[0,T1*) V,; (¥:[0,T1?).

IA
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It only remains to bound

T 0, T 0, T 0, T
{0,T}xD’ § j j-1r g D’ : :

where we used y ( O ) = 0 in the last equality. From Young’s 1D maximal inequality, we have

0, T 0,T
J ydx| < (1+§(9))y( 0 ) x( 0 )
{0,T}xD’ 7 lqwvarfo,1] >/ pvas[o,1]
< (A+L0NV, (x;[0,T1*) V, (¥;[0,T1%)
The triangle inequality allows us to conclude. O

Proof. (Lemma [4) Observe that, for any t; € D\ {0, T'}

o0 _ pp\{t}p f y( ti> tiva )x( ti—1, G )
tistiya ti—1,t;
D/ b

where we used y ( O ) = 0. We pick ¢; to make this difference as small as possible:

20— P\Ea 2| < 122 — [PMERD'| forall i € {1,...,n — 1}

As an elementary consequence,

1/a

ID,D/ _ ID\{fi}sD/ . (63)

, g 1 !
0 _ P\t 1.0 ‘ <
° “n-—1 ;

1/a

The plan is to get an estimate on Z?:_ll L AN independent of n and uniformly in

D’ € 2([0,T]); in fact, we shall see that

n—1
AD,D’ — E
i=1

withc=1+4+¢ (%) and the desired estimate

1/a 1/a

0.0 _ pp\{e}’ <cv, (x; [0, T]Z)l/a Vq (y; [0, T]Z) (6.4)

D _ ID\{tiO}

Cc a
< (n — 1) v, (x; (o, T]Z) Vq (J’; [0, T]z)

follows. It remains to establish 1D to this end we consider the removal of t§ € D'\ {0, T} from D’
and note that

(oo ) - (porle) i) - ( t ) ( fhont )

J Ui+l =17
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Using the elementary inequality |a|"/* — |b|"* < |a — b|"/* valid for a,b € R and a > 1 we have

DD _ ID\{ti};D/ 1/a B ID,D’\{t;.} _ ID\{ti},D/\{t;} 1/a

1/a

< (ID,D’ _ ID\{Q—},D') _ (ID,D’\{tg} _ ID\{ti},D’\{r;.})

Hence, summing over i, we get

APD _ AP}

n-l1 / / / / 1/a
< Z (ID’D/ _ID\{ti};D/) _ (ID,D \{tj} _ID\{ti},D \{tj})
i=1
—-1 1/a 1/a
_ S y( t; tl-‘rl ) x( t}'—litl; ) (6.5)
P £, i1 L1 L
ST 6q/a\ %1 [ 6p/a) B
S y l+1 ) x ( i— 1) [ )
i=1 ( tJ’tJ+1 Z J 1’ ]
n—1 bt q aiq n-1 A\ /P i
S y l+1 ) x ( i— 1; ) .
; ( tJ’tJ+1 i=1 - J

in the last step we used that the £97/% norm on R"~! is dominated by the ¢” norm (because 6p/a >
p). It follows that

AP APPE} < v/°x /e (6.6)

(s | omem (S (o))

We pick t;O € D'\ {0, T} (i.e. 1 < j, <m — 1) to make this difference as small as possible,

where

(5

=1

AP0 APPME} < A0 APPME} o an e 1L m— 1)
we shall see below that

0
AD,D' _ AD,D’\{tgo} < (L) ¢ Vp (X; [0, T]Z)l/a Vq (y’ [0, sz)l/a; (6.7)

m—1

iterated removal of "j," yields

ADD < ADAOT) 4 (g) v, (x.10,77) "V, (3 [0,772) "

as in (6.5) we estimate

L tia ti—1, 4
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1/a
<<V, (x, [0, T]2)1/a Vq (J’, [0, T]z)

n—1

ADAOTY — Z

i=1

1/a




and (6.4) follows, as desired. The only thing left is to establish (6.7)). Using we can write

1
m—1

w0t} < ([ aver_ sonle)
=

IA

(m—l
I_[X.l/ ayl/a
j J
=

([ m—1 m-lap (" q m—1 aq
- \T)  (Tv
\ =1 j=1

Using the geometric/arithmetic inequality, we obtain

IA
b
g

m—1
[ !
i1 J m-—1

A
~
|
| =
—_
N——
]
DM
M

IA
~
3
| =
—_
N——
—
N\
=
—
o
=
N
—
—
~
Q

and, similarly,

1 1
m—1 aq 1

m-1 q 1 07‘1 2 1/(1
[17 = (m) Vo (.[0.7T%) .
j=1

Using # + aiq = %, we thus arrive at

0
ADD _ AD,D’\{f}O} < (ﬁ) - Vv, (x, [0, T]z)l/a Vq (y, (0, T]z)l/a

which is precisely the claimed estimate (6.7). O
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