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Abstract

We discuss p-variation regularity of real-valued functions defined on [0, T]2, based on rectangu-
lar increments. When p > 1, there are two slightly different notions of p-variation; both of which
are useful in the context of Gaussian roug paths. Unfortunately, these concepts were blurred in
previous works [2, 3]; the purpose of this note is to show that the afore-mentioned notions
of p-variations are "ε-close". In particular, all arguments relevant for Gaussian rough paths go
through with minor notational changes.

Key words: higher dimensional p-variation, Gaussian rough paths.

AMS 2010 Subject Classification: Primary 60H99.

Submitted to EJP on March 4, 2011, final version accepted July 6, 2011.

∗The first author has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 258237

1880

DOI: 10.1214/EJP.v16-951

1

http://dx.doi.org/10.1214/EJP.v16-951


1 Higher-dimensional p-variation

Let T > 0 and ∆T = {(s, t) : 0≤ s ≤ t ≤ T} .We shall regard ((a, b) , (c, d)) ∈ ∆T ×∆T as (closed)
rectangle A⊂ [0, T]2;

A :=

�

a, b
c, d

�

:= [a, b]× [c, d] ;

if a = b or c = d we call A degenerate. Two rectangles are called essentially disjoint if their
intersection is empty or degenerate. A partition Π of a rectangle R ⊂ [0, T]2 is then a a finite set
of essentially disjoint rectangles, whose union is R; the family of all such partitions is denoted by
P (R). Recall that rectangular increments of a function f : [0, T]2 → R are defined in terms of f
evaluated at the four corner points of A,

f (A) := f

�

a, b
c, d

�

:= f

�

b
d

�

− f

�

a
d

�

− f

�

b
c

�

+ f

�

a
c

�

.

Let us also say that a dissection D of an interval [a, b] ⊂ [0, T] is of the form D =
�

a = t0 ≤ t1 ≤ · · · ≤ tn = b
�

; we write D ([a, b]) for the family of all such dissections.

Definition 1. Let p ∈ [1,∞). A function f : [0, T]2→R has finite p-variation if

Vp
�

f ; [s, t]× [u, v]
�

:=















sup
D=(t i)∈D([s,t])

D′=
�

t ′j
�

∈D([u,v])

∑

i, j

�

�

�

�

�

f

�

t i , t i+1
t ′j , t ′j+1

�

�

�

�

�

�

p















1
p

<∞;

it has finite controlled p-variation1 if

�

� f
�

�

p-var;[s,t]×[u,v] := sup
Π∈P ([s,t]×[u,v])

 

∑

A∈Π

�

� f (A)
�

�

p

!1/p

<∞.

The difference is that in the first definition (i.e. of Vp) the sup is taken over grid-like partitions,

¨�

t i , t i+1
t ′j , t ′j+1

�

: 1≤ i ≤ n, 1≤ j ≤ m

«

,

based on D, D′ where D =
�

t i : 1≤ i ≤ n
�

∈ D ([s, t]) and D′ =
�

t ′j : 1≤ j ≤ m
�

∈ D ([u, v]).

Clearly, not every partition is grid-like (consider e.g. [0, 2]2 = [0,1]2∪[1,2]×[0,1]∪[0, 2]×[1, 2])
hence

Vp
�

f ; R
�

≤
�

� f
�

�

p-var;R .

for every rectangle R⊂ [0, T]2.

1Our main theorem below will justify this terminology.
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Definition 2. A mapω :∆T×∆T → [0,∞) is called 2D control if it is continuous, zero on degenerate
rectangles, and super-additive in the sense that, for all rectangles R⊂ [0, T],

n
∑

i=1

ω
�

Ri
�

≤ω (R) , whenever
�

Ri : 1≤ i ≤ n
	

∈ P (R) .

Our result is

Theorem 1. (i) For any function f : [0, T]2→R and any rectangle R⊂ [0, T],
�

� f
�

�

1-var;R = V1
�

f ; R
�

. (1.1)

(ii) Let p ∈ [1,∞) and ε > 0. There exists a constant c = c
�

p,ε
�

≥ 1 such that, for any function
f : [0, T]2→R and any rectangle R⊂ [0, T],

1

c
�

p,ε
�

�

� f
�

�

(p+ε)-var;R ≤ Vp
�

f ; R
�

≤
�

� f
�

�

p-var;R . (1.2)

(iii) If f : [0, T]2→R is of finite controlled p-variation, then R 7→
�

� f
�

�

p
p-var;R is super-additive.

(iv) If f : [0, T]2 → R is continuous and of finite controlled p-variation, then R 7→
�

� f
�

�

p
p-var;R is a 2D

control. Thus, in particular, there exists a 2D control ω such that

∀ rectangles R⊂ [0, T] :
�

� f (R)
�

�

p ≤ω (R)

As will be seen explicitly in the following example, there exist functions f which are of finite p-
variation but of infinite controlled p-variation; that is,

Vp

�

f ; [0, T]2
�

<
�

� f
�

�

p-var;[0,T]2 =+∞

which also shows that one cannot take ε = 0 in (1.2). In the same example we see that p-variation
R 7→ Vp

�

f ; R
�p can fail to be super-additive2.

Example 1 (Finite (1/2H)-variation of fBM covariance, H ∈ (0,1/2]. ). Let βH denote fractional
Brownian motion with Hurst parameter H; its covariance is given by

CH (s, t) := E
�

βH
s β

H
t

�

:=
1

2

�

t2H + s2H − |t − s|2H
�

, s, t ∈ [0, T]2 , H ∈ (0, 1/2].

We show that CH has finite 1/ (2H)-variation in 2D sense3 and more precisely,

V1/(2H)

�

CH ; [s, t]2
�

≤ cH |t − s|2H , for every s ≤ t in [0, T] .

2... in contrast to controlled p-variation R 7→
�

� f
�

�

p

p-var;R which yields a 2D control, cf part (iv) of the theorem.
3This is a minor modification of the argument in [3] where it was assumed that D = D′.
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(By fractional scaling it would suffice to consider [s, t] = [0, 1] but this does not simplify the argument

which follows). Consider D =
�

t i
�

, D′ =
�

t ′j
�

∈ D [s, t]. Clearly4,

31− 1
2H

∑

j

�

�

�

�

E
�

βH
t i ,t i+1

βH
t ′j ,t

′
j+1

�

�

�

�

�

1
2H

≤ 31− 1
2H

�

�

�E
h

βH
t i ,t i+1

βH
·

i
�

�

�

1
2H

1
2H -var;[s,t]

≤
�

�

�E
h

βH
t i ,t i+1

βH
·

i
�

�

�

1
2H

1
2H -var;[s,t i]

(1.3)

+
�

�

�E
h

βH
t i ,t i+1

βH
·

i
�

�

�

1
2H

1
2H -var;[t i ,t i+1]

(1.4)

+
�

�

�E
h

βH
t i ,t i+1

βH
·

i
�

�

�

1
2H

1
2H -var;[t i+1,t]

, (1.5)

by super-additivity of (1D!) controls. The middle term (1.4) is estimated by
�

�

�E
h

βH
t i ,t i+1

βH
·

i
�

�

�

1
2H

1
2H -var;[t i ,t i+1]

= sup
(sk)∈D[t i ,t i+1]

∑

k

�

�

�E
h

βH
t i ,t i+1

βH
sk ,sk+1

i
�

�

�

1
2H

≤ cH

�

�t i+1− t i

�

� ,

where we used that
�

sk, sk+1
�

⊂
�

t i , t i+1
�

implies
�

�

�E
h

βH
t i ,t i+1

βH
sk ,sk+1

i
�

�

� ≤ cH

�

�sk+1− sk

�

�

2H
. The first

term (1.3) and the last term (1.5) are estimated by exploiting the fact that disjoint increments of
fractional Brownian motion have negative correlation when H < 1/2 (resp. zero correlation in the

Brownian case, H = 1/2); that is, E
�

βH
c,dβ

H
a,b

�

≤ 0 whenever a ≤ b ≤ c ≤ d. We can thus estimate
(1.3) as follows;

�

�

�E
h

βH
t i ,t i+1

βH
·

i
�

�

�

1
2H

1
2H -var;[s,t i]

=
�

�

�E
h

βH
t i ,t i+1

βH
s,t i

i
�

�

�

1
2H

≤ 2
1

2H−1

 

�

�

�E
h

βH
t i ,t i+1

βH
s,t i

i
�

�

�

1
2H
+ E

�

�

�

�βH
t i ,t i+1

�

�

�

2
�

1
2H

!

.

The covariance of fractional Brownian motion gives immediately E
�

�

�

�βH
t i ,t i+1

�

�

�

2
�

1
2H

= cH
�

t i+1− t i
�

. On

the other hand,
�

t i , t i+1
�

⊂
�

s, t i+1
�

implies
�

�

�E
h

βH
t i ,t i+1

βH
s,t i

i
�

�

�

1
2H ≤ cH

�

�t i+1− t i

�

�; hence

�

�

�E
h

βH
t i ,t i+1

βH
·

i
�

�

�

1
2H

1
2H -var;[s,t i]

≤ cH

�

�t i+1− t i

�

� .

As already remarked, the last term is estimated similarly. It only remains to sum up and to take the
supremum over all dissections D and D′.

Example 2 (Failure of super-addivity of (1/2H)-variation, infinite controlled (1/2H)-variation of
fBM covariance, H ∈ (0,1/2). ). We saw above that

V1/(2H)

�

CH ; [0, T]2
�

<∞.

4We write βH
a,b ≡ β

H
b − β

H
a .
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When H = 1/2 we deal with Brownian motion and see that its covariance has finite 1-variation, which,
by (i),(iv) of Theorem 1, constitues a 2D control for C1/2. In contrast, we claim that, for H < 1/2,
there does not exist a 2D control for the 1/ (2H)-variation of CH . In fact, the sheer existence of a
super-additive map ω (in the sense of definition 2) such that

∀ rectangles R⊂ [0, T] :
�

�CH (R)
�

�

1/(2H) ≤ω (R)

leads to a contradiction as follows: assume that such a ω exists. By super-addivity,

ω̄ (R) :=
�

�CH
�

�

1/(2H)
1/(2H)-var;R ≤ω (R)<∞

and ω̄ is super-additive (in fact, a 2D control) thanks to part (iv) of the theorem. On the other hand,
by fractional scaling there exists C such that

∀ (s, t) ∈∆T : ω̄
�

[s, t]2
�

= C |t − s| .

Let us consider the case T = 2 and the partition

[0, 2]2 = [0, 1]2 ∪ [1, 2]2 ∪ R∪ R′

with R= [0, 1]× [1,2], R′ = [1, 2]× [0,1]. Super-addivitiy of ω̄ gives

ω̄
�

[0,1]2
�

+ ω̄
�

[1, 2]2
�

+ ω̄ (R) + ω̄
�

R′
�

≤ ω̄
�

[0, 2]2
�

,

C (1− 0) + C (2− 1) + ω̄ (R) + ω̄
�

R′
�

≤ 2C ,

hence ω̄ (R) = ω̄
�

R′
�

= 0, and thus also

CH (R) = E
��

BH
1 − BH

0

��

BH
2 − BH

1

��

= 0;

which is false for H 6= 1/2 and hence the desired contradiction. En passant, we see that we must have
�

�CH
�

�

1/(2H)-var;[0,T]2 =+∞;

for otherwise part (iv) of Theorem 1 would yield a 2D control for the 1/ (2H)-variation of CH . This
also shows that, with f = CH and p = 1/ (2H) one has

Vp

�

f ; [0, T]2
�

<
�

� f
�

�

p-var;[0,T]2 =+∞.

Remark 1. The previous examples clearly show the need for Theorem 1; variational regularity of CH can
be controlled upon considering [(1/2H) + ε]-variation rather than 1/ (2H)-variation. In applications,
this distinction never matters. Existence for Gaussian rough paths for instance, requires 1/ (2H) < 2
and one can always insert a small enough ε. It should also be point out that, by fractional scaling,

�

�CH
�

�

[1/(2H)+ε]-var;[s,t]2 ∝ |t − s|2H ;

hence, even in estimates that involve directly that variational regularity of CH , no ε loss is felt.

Remark 2. The previous examples dealt with H ≤ 1/2 and reader may wonder about the case H > 1/2.
In this case 1/ (2H)< 1 and clearly the (non-trivial) covariance function of fBM with Hurst parameter
H will not be of finite 1/ (2H)-variation. Indeed, any continuous function f : [0, T]2 → R, with
f (0, ·) ≡ f (·, 0) ≡ 0, and finite p-variation for p ∈ (0,1), is necessarily constant (and then equal to
zero).

Acknowledgement 1. The authors are indebted to Bruce Driver for pointing out, in the most con-
structive and gentle way, that R 7→ Vp

�

f ; R
�p is not, in general, super-additive. P. Friz received fund-

ing from the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement nr. 258237.
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2 Proof of (i)

We claim the controlled 1-variation is exactly equal to its 1-variation. More precisely, for all rectan-
gles R⊂ [0, T]2 we have

�

� f
�

�

1-var;R = V1
�

f ; R
�

.

Proof. Trivially V1
�

f ; R
�

≤
�

� f
�

�

1-var;R. For the other inequality, assume Π is a partition of R. It is

obvious that one can find a grid-like partition Π̃, based on D × D′, for sufficiently fine dissections
D, D′, which refines Π in the sense that every A∈ Π can be expressed as

A= ∪iAi (essentially disjoint), Ai ∈ Π̃.

From the very definition of rectangular increments, we have f (A) =
∑

i f
�

Ai
�

and it follows that
�

� f (A)
�

�≤
∑

i

�

� f
�

Ai
�

�

�. (If |·| is replaced by |·|p , p > 1, this estimate is false.5) Hence
∑

A∈Π

�

� f (A)
�

�≤
∑

A∈Π̃

�

� f (A)
�

�≤
�

� f
�

�

1-var;R .

It now suffices to take the supremum over all such Π to see that
�

� f
�

�

1-var;R ≤ V1
�

f ; R
�

.

3 Proof of (ii)

The second inequality Vp
�

f ; R
�

≤
�

� f
�

�

p-var;R is trivial. Furthermore, if Vp
�

f ; R
�

= +∞ there is

nothing to show so we may assume Vp
�

f ; R
�

<+∞. We claim that, for all rectangle R⊂ [0, T]2,
�

� f
�

�

p+ε-var;R ≤ c
�

p,ε
�

Vp
�

f ; R
�

.

For the proof we note first that there is no loss in generality in taking R = [0, T]2; an affine
reparametrization of each axis will transform R into [0, T]2, while leaving all rectangular incre-
ments invariant. The plan is to show, for an arbitrary partition

�

Qk
�

∈ P
�

[0, T]2
�

, the estimate

 

∑

k

�

� f
�

Qk
�

�

�

p+ε

!
1

p+ε

≤ c
�

p,ε
�

Vp

�

f ; [0, T]2
�

.

where c depends only on p,ε for any partition
�

Qk
�

∈ P
�

[0, T]2
�

. The key observation is that for

a suitable choice of y, x , D =
�

t i
�

, D′ =
�

t ′j
�

we have

∑

k

�

� f
�

Qk
�

�

�

p+ε
=

∑

k

�

� f
�

Qk
�

�

�

p+ε−1
sgn

�

f
�

Qk
��

f
�

Qk
�

(3.1)

=
∑

i

∑

j

y

�

t i
t ′j

�

x

�

t i−1, t i
t ′j−1, t ′j

�

= :

∫

D×D′
y d x .

5One has
�

�

∑m
i=1 ai

�

�

p ≤
�

�

∑m
i=1

�

�ai

�

�

�

�

p ≤ mp−1
�
∑m

i=1

�

�ai

�

�

p�
and this is sharp as seen by taking ai ≡ 1.
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Indeed, we may take (as in the proof of part (i)) sufficiently fine dissections D =
�

t i
�

, D′ =
�

t ′j
�

∈
D [0, T] such that the grid-like partition based on D× D′ refines

�

Qk
�

; followed by setting6

x : = f

y : =
∑

k

�

� f
�

Qk
�

�

�

p−1+ε
sgn

�

f
�

Qk
��

IQ̂k

where Q̂k is the of the form (a, b]× (c, d] whenever Qk = [a, b]× [c, d]. Lemma 1 below, applied
with p+ ε instead of p, says

Vq

�

y; [0, T]2
�

≤ 4

�

�

�

�

�

∑

k

�

�x
�

Qk
�

�

�

p+ε

�

�

�

�

�

1
q

where q := 1/
�

1− 1/
�

p+ ε
��

denotes the Hölder conjugate of p+ ε. Since

1

p
+

1

q
= 1+

�

1

p
−

1

p+ ε

�

> 1,

noting also that y (0, ·) = y (·, 0) = 0, we can use Young-Towghi’s maximal inequality [4, Thm
2.1.], included for the reader’s convenience as Theorem 3 in the appendix, to obtain the estimate

∑

k

�

� f
�

Qk
�

�

�

p+ε ≤ c
�

p,ε
�

Vq

�

y; [0, T]2
�

Vp

�

x; [0, T]2
�

≤ 4c
�

p,ε
�

�

�

�

�

�

∑

k

�

�x
�

Qk
�

�

�

p+ε

�

�

�

�

�

1
q

Vp

�

x; [0, T]2
�

Since 1− 1
q
= 1

p+ε and x = f we see that

 

∑

k

�

� f
�

Qk
�

�

�

p+ε

!
1

p+ε

≤ 4c
�

p,ε
�

Vp

�

f ; [0, T]2
�

and conclude by taking the supremum over all partitions
�

Qk
�

∈ P
�

[0, T]2
�

.

Lemma 1. Fix p ≥ 1 and write p′ for the Hölder conjugate i.e. 1/p′+1/p = 1. Let
�

Q j

�

∈ P
�

[0, T]2
�

and y =
∑

j

�

�

�x
�

Q j

�

�

�

�

p−1
sgn

�

x
�

Q j

��

IQ̂ j
. Then

Vp′
�

y, [0, T]2
�

≤
�

�y
�

�

p′-var;[0,T]2 ≤ 4

 

∑

i

�

�x
�

Q i
�

�

�

p

!1/p′

.

6The "right-closed" form of Q̂k in the definition of y is tied to our definition of
∫

D×D′
y d x which imposes "right-end-

point-evaluation" of y . Recall also that Qk is really a point in ((a, b) , (c, d)) ∈ ∆T ×∆T ; viewing it as closed rectangle is
pure convention.
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Proof. Only the second inequality requires a proof. By definition,
�

Q j

�

forms a partition of [0, T]2

into essentially disjoint rectangles and we note that y (., 0) = y (0, .) = 0. Consider now another
partition

�

Ri
�

∈ P
�

[0, T]2
�

. The rectangular increments of y over Ri spells out as "+−−+ sum"
of y evaluated at the corner points of Ri . Recall that on each set Q̂ j the function y takes the consant
value

c j :=
�

�

�x
�

Q j

�

�

�

�

p−1
sgn

�

x
�

Q j

��

.

Since the corner points of Ri are elements of Q j1∪Q j2∪Q j3∪Q j4 for suitable (not necessarily distinct)
indices j1, . . . , j4 we clearly have the (crude) estimate

�

�y
�

Ri
�

�

�≤
∑

j∈{ j1, j2, j3, j4}

�

�c j

�

� (3.2)

and, trivially, any j /∈
�

j1, j2, j3, j4
	

is not required in estimating
�

�y
�

Ri
�

�

�. Let us distinguish a few
cases where we can do better than in 3.2.
Case 1: There exists j such that all four corner points of Ri are elements of Q j (equivalently:
∃ j : Ri ⊂ Q̂ j). In this case

y
�

Ri
�

= c j − c j − c j + c j = 0.

In particular, such an index j is not required to estimate
�

�y
�

Ri
�

�

�.
Case 2: There exists j such that precisely two corner points7 of Ri are elements of Q j . It follows that
the corner points of Ri are elements of Q j1 ∪Q j2 ∪Q j for suitable (not necessarily distinct) indices
j1, j2. Note however that j /∈

�

j1, j2
	

. In this case

y
�

Ri
�

= c j1 − c j2 − c j + c j = c j1 − c j2 .

In general, this quantity is non-zero (although it is zero when j1 = j2, which is tantamount to say
that Ri ⊂Q j1 ∪Q j). Even so, we note that

�

�y
�

Ri
�

�

�≤
�

�c j1

�

�+
�

�c j2

�

�

and again the index j is not required in order to estimate
�

�y
�

Ri
�

�

�.
Case 3: There exists j such that precisely one corner point of Ri is an element of Q j . In this case,
for suitable (not necessarily distinct) indices j1, j2, j3 with j /∈

�

j1, j2, j3
	

�

�y
�

Ri
�

�

�=
�

�c j1 − c j2 − c j3 + c j

�

�≤
�

�c j1 − c j2 − c j3

�

�+
�

�c j

�

� .

In this case, the index j is required to estimate
�

�y
�

Ri
�

�

�. (There is still the possibily for cancellation
between the other terms. If j2 = j3 for instance, then

�

�y
�

Ri
�

�

�≤
�

�c j1

�

�+
�

�c j

�

� and indices j2, j3 are not
required; this corresponds precisely to case 2 applied to Q j2 . Another possiblility is that

�

j1, j2, j3
	

are all distinct in which case
�

�y
�

Ri
�

�

� ≤
�

�c j1

�

�+
�

�c j2

�

�+
�

�c j3

�

�+
�

�c j

�

� is the best estimate and all four
indices j1, j2, j3, j are needed in the estimate.
The moral of this case-by-case consideration is that only those j ∈ φ (i) where

φ (i) :=
¦

j : precisely one corner point of Ri is an element of Q j

©

7The case that three corner points of Ri are elements of Q j already implies (rectangles!) that all four corner points of
Ri are elements of Q j . This is covered by Case 1.
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are required in estimating
�

�y
�

Ri
�

�

�; more precisely,
�

�y
�

Ri
�

�

�≤
∑

j∈φ(i)

�

�c j

�

� .

Since rectangles (here: Ri) have four corner points it is clear that #φ (i) ≤ 4 where # denotes the
cardinality of a set. Hence

�

�y
�

Ri
�

�

�

p′ ≤ 4p′−1
∑

j∈φ(i)

�

�c j

�

�

p′ ≡ 4p′−1
∑

j

φi, j

�

�c j

�

�

p′

where we introdudced the matrix φi, j with value 1 if j ∈ φ (i) and zero else. This allows us to write
∑

i

�

�y
�

Ri
�

�

�

p′ ≤ 4p′−1
∑

i

∑

j

φi, j

�

�c j

�

�

p′

= 4p′−1
∑

j

�

�c j

�

�

p′
∑

i

φi, j .

Consider now, for fixed j, the number of rectangles Ri which have precisely one corner point inside
Q j . Obviously, there can be a most 4 rectangles with this property. Hence

∑

i

φi, j = #
�

i : j ∈ φ (i)
	

≤ 4.

It follows that
∑

i

�

�y
�

Ri
�

�

�

p′ ≤ 4p′
∑

j

�

�c j

�

�

p′
= 4p′

∑

j

�

�

�x
�

Q j

�

�

�

�

(p−1)p′
= 4p′

∑

j

�

�

�x
�

Q j

�

�

�

�

p
,

where we used that
�

p− 1
�

p′ = p. Since
�

Ri
�

was an arbitrary partition of [0, T]2 we obtain
�

�y
�

�

p′

p′-var;[0,T]2
≤ 4p′

∑

i

�

�x
�

Q i
�

�

�

p
,

as desired. The proof is finished.

4 Proof of (iii)

The claim is super-additivity of

R 7→ sup
Π∈P (R)

∑

A∈Π

�

� f (A)
�

�

p
.

Assume
�

Ri : 1≤ i ≤ n
	

constitutes a partition of R. Assume also that Πi is a partition of Ri for every
1≤ i ≤ n. Clearly, Π := ∪n

i=1Πi is a partition of R and hence

n
∑

i=1

∑

A∈Πi

�

� f (A)
�

�

p
=
∑

A∈Π

�

� f (A)
�

�

p ≤ω (R)

Now taking the supremum over each of the Πi gives the desired result.
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5 Proof of (iv)

The assumption is that f : [0, T]2→R is continuous and of finite controlled p-variation. From (iii),

ω (R) :=
�

� f
�

�

p
p-var;R

is super-additive as function of R. It is also clear that ω is zero on degenerate rectangles. It remains
to be seen that ω : ∆T ×∆T → [0,∞) is continuous.

Lemma 2. Consider the two (adjacent) rectangles [a, b]× [s, t] and [a, b]× [t, u] in [0, T]2 .Then,

ω

�

a, b
s, u

�

≤ ω

�

a, b
s, t

�

+ω

�

a, b
t, u

�

+p2p−1ω

�

a, b
s, u

�1−1/p

min

¨

ω

�

a, b
t, u

�

,ω

�

a, b
s, t

�«1/p

.

Proof. From the very definition of ω ([a, b]× [s, u]), it follows that for every fixed ε > 0, there
exists a rectangular (not necessarily grid-like) partition of [a, b]×[s, u], say Π ∈ P ([a, b]× [s, u]),
such that

∑

R∈Π

�

� f (R)
�

�

p
>ω

�

a, b
s, u

�

− ε.

Let us divide Π in Πl ∪Πm∪Πr where Πl contains all R ∈ Π such that R⊂ [a, b]×[s, t], Πr contains
all R ∈ Π : R ⊂ [a, b]× [t, u] and Πm contains all remaining rectangles of Π (i.e. the one such that
their interior intersect with the line [a, b]× [t, t]. It follows that

∑

R∈Πl

�

� f (R)
�

�

p
+
∑

R∈Πm

�

� f (R)
�

�

p
+
∑

R∈Πr

�

� f (R)
�

�

p
>ω

�

a, b
s, u

�

− ε

Every R ∈ Πm can be split into (essentially disjoint) rectangles R1 ⊂ [a, b]× [s, t] and R2 ⊂ [a, b]×
[t, u]. Set Π1

m =
�

R1 : R1 ∈ Πm
	

and Π2
m similarly. Note that Πl ∪ Π1

m ∈ P ([a, b]× [s, t]) and
Π2

m ∪Πr ∈ P ([a, b]× [t, u]). Then, with

∆ :=
∑

R∈Πm

��

� f (R)
�

�

p −
�

� f
�

R1
�

�

�

p −
�

� f
�

R2
�

�

�

p�

we have
∑

R∈Πl∪Π1
m

�

� f (R)
�

�

p
+

∑

R∈Π2
m∪Πr

�

� f (R)
�

�

p
+∆>ω ([a, b]× [s, u])− ε

and hence ,we have

ω

�

a, b
s, t

�

+ω

�

a, b
t, u

�

+∆>ω

�

a, b
s, u

�

− ε.
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We now bound ∆. As f (R) = f
�

R1
�

+ f
�

R2
�

,

∆ =
∑

R j∈Πm

�

�

� f
�

R j
1

�

+ f
�

R j
2

�
�

�

�

p
−
�

�

� f
�

R j
1

�
�

�

�

p
−
�

�

� f
�

R j
2

�
�

�

�

p

≤
∑

R∈Πm

��

�

� f
�

R j
1

�
�

�

�+
�

�

� f
�

R j
2

�
�

�

�

�p
−
�

�

� f
�

R j
1

�
�

�

�

p
−
�

�

� f
�

R j
2

�
�

�

�

p
.

≤
∑

R∈Πm

��

�

� f
�

R j
1

�
�

�

�+
�

�

� f
�

R j
2

�
�

�

�

�p
−
�

�

� f
�

R j
1

�
�

�

�

p

If R j = [τ j ,τ j+1]×[c, d] , define R j
3 = [τ j ,τ j+1]×[s, u] . Then, quite obviously, we have

�

�

� f
�

R j
1

�
�

�

�

p
≤

ω
�

R j
3

�

and
�

�

� f
�

R j
2

�
�

�

�

p
≤ω

�

R j
3

�

. By the mean value theorem, there exists θ ∈ [0,1] such that

��

�

� f
�

R j
1

�
�

�

�+
�

�

� f
�

R j
2

�
�

�

�

�p
−
�

�

� f
�

R j
1

�
�

�

�

p

= p
��

�

� f
�

R j
1

�
�

�

�+ θ
�

�

� f
�

R j
2

�
�

�

�

�p−1 �
�

� f
�

R j
2

�
�

�

�

≤ p2p−1ω
�

R j
3

�1−1/p �
�

� f
�

R j
2

�
�

�

�

≤ p2p−1ω

�

τ j ,τ j+1
s, u

�1−1/p

ω

�

τ j ,τ j+1
t, u

�1/p

.

Hence, summing over j, and using Hölder inequality

∆ ≤ p2p−1
∑

j

ω

�

τ j ,τ j+1
s, u

�p−1

ω

�

τ j ,τ j+1
t, u

�

≤ p2p−1







∑

j

ω

�

τ j ,τ j+1
s, u

�







1−1/p





∑

j

ω

�

τ j ,τ j+1
t, u

�







1/p

≤ p2p−1ω

�

a, b
s, u

�1−1/p

ω

�

a, b
t, u

�1/p

Interchanging the roles of R1and R2, we also obtain that

∆≤ p2p−1ω

�

a, b
s, u

�1−1/p

ω

�

a, b
t, u

�1/p

,

which concludes the proof.

Continuity: ω is a map from ∆T ×∆T → [0,∞); the identification of points
��

a1, a2
�

,
�

a3, a4
��

∈

∆T × ∆T with rectangles in [0, T]2 of the form A =

�

a1, a2
a3, a4

�

=
�

a1, a2
�

×
�

a3, a4
�

is pure
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convention. If A is non-degenerate (i.e. a1 < a2, a3 < a4) and |h| = max4
i=1

�

�hi

�

� sufficiently small
then

Ah :=

�

�

a1+ h1
�

∨ 0,
�

a2+ h2
�

∧ T
�

a3+ h3
�

∨ 0,
�

a4+ h4
�

∧ T

�

is again a non-degenerate rectangle in [0, T]2. We can then set for r > 0, sufficiently small,

A◦;r := A(r,−r,r,−r), Ār := A(−r,r,−r,r)

and note that, whenever |h| is small enough to have A◦;|h| well-defined,

A◦;|h| ⊂ A⊂ Ā|h|, (5.1)

A◦;|h| ⊂ Ah ⊂ Ā|h|. (5.2)

The above definition of Ah (and A◦;r , Ār) is easily extended to degenerate A, such that the inclusions
(5.1),(5.2) remain valid: For instance, in the case a1 = a2 we would replace the first line in the
definition of Ah by

�

a1+ h1
�

∨ 0,
�

a2+ h2
�

∧ T if h1 ≤ 0≤ h2
�

a1+ h1
�

∨ 0, a2 if h1, h2 ≤ 0
a1,
�

a2+ h2
�

∧ T if h1, h2 ≥ 0
a1, a2 if h1 ≥ 0≥ h2

and similarly in the case a3 = a4. We will prove that, for any rectangle A⊂ [0, T]2,

ω
�

Ah
�

→ω (A) as |h| ↓ 0.

This end we can and will consider |h| is small enough to have A◦;|h| (and thus Ah, Ā|h|) well-defined.
By monotonicity of ω, it follows that

ω
�

A◦;|h|
�

≤ω
�

Ah
�

≤ω
�

Ā|h|
�

and the limits,

ω◦ (A) : = lim
r↓0
ω (A◦;r)≤ω (A) , (5.3)

ω̄ (A) : = lim
r↓0
ω
�

Ār�≥ω (A) ,

exist since ω (A◦;r) [resp. ω
�

Ār�] are bounded from above [resp. below] and increasing [resp.
decreasing] as r ↓ 0. It follows that

ω◦ (A)≤ lim
|h|↓0
ω
�

Ah
�

≤ lim
|h|↓0
ω
�

Ah
�

≤ ω̄ (A) .

The goal is now to show that ω◦ (A) =ω (A) ("inner continuity") and ω̄ (A) =ω (A) ("outer continu-
ity") since this implies that limω

�

Ah
�

= limω
�

Ah
�

=ω (A), which is what we want.
Inner continuity: We first show that ω◦ is super-additive in the sense of definition 2. To this end,

consider
�

Ri
	

∈ P (R), some rectangle R⊂ [0, T]2. For r small enough, the rectangles
¦

R0,r
i

©
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are well-defined and essentially disjoint. They can be completed to a partition of R0,r and hence, by
super-additivity of ω,

∑

i

ω
�

R0,r
i

�

≤ω
�

R0,r
�

;

sending r ↓ 0 yields the desired super-addivity of ω◦;
∑

i

ω◦
�

Ri
�

≤ω◦ (R) .

On the other hand, continuity of f on [0, T]2 implies
�

� f (A)
�

�

p ≤
�

� f (A◦,r)
�

�

p
+ o (1)

≤ ω (A◦,r) + o (1) as r ↓ 0

and hence
�

� f (A)
�

�

p ≤ω◦ (A), for any rectangle A⊂ [0, T]2. Using super-additivity ofω◦ immediately
gives

ω (R)
by def.
= sup

Π∈P (R)

∑

A∈Π

�

� f (A)
�

�

p ≤ω◦ (R) ;

together with (5.3) we thus have ω (R) =ω◦ (R). Since R was an arbitrary rectangle in [0, T]2 inner
continuity is proved.

Outer continuity: We assume A ⊂ (0, T )2 (i.e. 0 < a1 ≤ a2 < T, 0 < a3 ≤ a4 < T ) and take r > 0
small enough so that

Ār =

�

a1− r, a2+ r
a3− r, a4+ r

�

;

the general case A ⊂ [0, T]2 is handled by a (trivial) adaption of the argument for the remaining
cases (i.e. a1 = 0 or a2 = T or a3 = 0 or a4 = T). We first note that

ω
�

Ār�−ω (A) = ω

�

a1− r, a2+ r
a3− r, a4+ r

�

−ω
�

a1, a2
a3, a4

�

≤

�

�

�

�

�

ω

�

a1− r, a2+ r
a3− r, a4+ r

�

−ω
�

a1− r, a2
a3− r, a4+ r

�

�

�

�

�

�

+

�

�

�

�

�

ω

�

a1− r, a2
a3− r, a4+ r

�

−ω
�

a1, a2
a3− r, a4+ r

�

�

�

�

�

�

+

�

�

�

�

�

ω

�

a1, a2
a3− r, a4+ r

�

−ω
�

a1, a2
a3, a4+ r

�

�

�

�

�

�

+

�

�

�

�

�

ω

�

a1, a2
a3, a4+ r

�

−ω
�

a1, a2
a3, a4

�

�

�

�

�

�

Now we use lemma 2; with

∆ :=

�

�

�

�

�

ω

�

a1− r, a2+ r
a3− r, a4+ r

�

−ω
�

a1− r, a2
a3− r, a4+ r

�

�

�

�

�

�
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we have

∆ ≤ ω

�

a2, a2+ r
a3− r, a4+ r

�

+ cω
�

[0, T]2
�1−1/p

ω

�

a2, a2+ r
a3− r, a4+ r

�1/p

≤ ω

�

a2, a2+ r
0, T

�

+ cω
�

[0, T]2
�1−1/p

ω

�

a2, a2+ r
0, T

�1/p

,

and similar inequalities for the other three terms in our upper estimate on ω
�

Ār�−ω (A) above. So
it only remains to prove that for a ∈ (0, T )

ω

�

a, a+ r
0, T

�

, ω

�

a− r, a
0, T

�

, ω

�

0, T
a, a+ r

�

, and ω

�

0, T
a− r, a

�

converge to 0 when r tends to 0.But this is easy; using super-addivity of ω and inner-continuity we
see that

ω

�

a, a+ r
0, T

�

≤ ω

�

a, T
0, T

�

−ω
�

a+ r, T
0, T

�

→ 0 as r ↓ 0.

Other expressions are handled similarly and our proof of outer continuity is finished.

6 Appendix

6.1 Young and Young-Towghi discrete inequalities

6.1.1 One dimensional case.

Consider a dissection D =
�

0= t0, ..., tn = T
�

∈ D ([0, T]) . We define the "discrete integral" be-
tween x , y : [0, T]→ R as

I D =

∫

D

yd x =
n
∑

i=1

yt i
x t i−1,t i

.

Lemma 3. Let p, q ≥ 1, assume that θ = 1/p+ 1/q > 1. Assume x , y : [0, T]→ R are finite p- resp.
q-variation. Then there exists t i0 ∈ D\{0, T} (equivalently: i0 ∈ {1, . . . , n− 1}) such that

�

�

�

�

�

�

∫

D

yd x −
∫

D\
¦

t i0

©

yd x

�

�

�

�

�

�

≤
1

(n− 1)θ
|x |p-var,[0,T]

�

�y
�

�

q-var,[0,T]

Iterated removal of points in the dissection, using the above lemma, leads immediately to Young’s
maximal inequality which is the heart of the Young’s integral construction.
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Theorem 2 (Young’s Maximal Inequality). Let p, q ≥ 1, assume that θ = 1/p+1/q > 1, and consider
two paths x , y from [0, T] into R of finite p-variation and q-variation, with y0 = 0. Then

�

�

�

�

�

∫

D

yd x

�

�

�

�

�

≤ (1+ ζ (θ)) |x |p-var;[0,T]

�

�y
�

�

q-var;[0,T]

and this estimate is uniform over all D ∈ D ([0, T]).

Proof. Iterative removal of "i0" gives, thanks to lemma 3,
�

�

�

�

�

∫

D

yd x −
∫

{0,T}
yd x

�

�

�

�

�

≤
∑

n≥2

1

(n− 1)θ
|x |p-var,[0,T]

�

�y
�

�

q-var,[0,T]

≤ ζ (θ) |x |p-var,[0,T]

�

�y
�

�

q-var,[0,T]

Finally,
∫

{0,T} yd x = yT x0,T = y0,T x0,T since y0,T = yT − y0 and y0 = 0 and hence

�

�

�

�

�

∫

{0,T}
yd x

�

�

�

�

�

=
�

�y0,T x0,T

�

�≤ |x |p-var,[0,T]

�

�y
�

�

q-var,[0,T]

and we conclude with the triangle inequality.

Proof. (Lemma 3) Observe that, for any t i ∈ D\{0, T} with 1≤ i ≤ n− 1

I D − I D\{t i} = yt i ,t i+1
x t i−1,t i

We pick t i0 to make this difference as small as possible:

�

�

�I D − I D\
¦

t i0

©

�

�

�≤
�

�

�I D − I D\{t i}
�

�

� for all i ∈ {1, . . . , n− 1}

As an elementary consequence, we have

�

�

�I D − I D\
¦

t i0

©

�

�

�

1
θ ≤

1

n− 1

n−1
∑

i=1

�

�

�I D − I D\{t i}
�

�

�

1/θ
.

The plan is to get an estimate on
∑n−1

i=1

�

�

�I D − I D\{t i}
�

�

�

1/θ
independent of n. In fact, we shall see that

n−1
∑

i=1

�

�

�I D − I D\{t i}
�

�

�

1/θ
≤ |x |1/θp-var,[0,T]

�

�y
�

�

1/θ
q-var,[0,T] (6.1)

and the desired estimate

�

�

�I D − I D\
¦

t i0

©

�

�

�≤
�

1

n− 1

�θ

|x |p-var,[0,T]

�

�y
�

�

q-var,[0,T]
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follows. It remains to establish (6.1); thanks to Hölder’s inequality, using 1/
�

qθ
�

+ 1/
�

pθ
�

= 1,

n−1
∑

i=1

�

�

�I D − I D\{t i}
�

�

�

1/θ
=

 

n−1
∑

i=1

�

�

�yt i ,t i+1

�

�

�

1/θ �
�

�x t i−1,t i

�

�

�

1/θ
!θ

≤

 

m−1
∑

i=1

�

�

�yt i ,t i+1

�

�

�

q
!

1
qθ
 

n−1
∑

i=1

�

�

�x t i−1,t i

�

�

�

p
!

1
pθ

≤ |x |1/θp-var,[0,T]

�

�y
�

�

1/θ
q-var,[0,T] .

and we are done.

6.1.2 Young-Towghi maximal inequality (2D)

We now consider the two-dimensional case. To this end, fix two dissections D =
�

0= t0, ..., tn = T
�

and D′ =
�

0= t ′0, ..., t ′m = T
�

,and define the discrete integral between x , y : [0, T]2→ R as

I D,D′ =

∫

D×D′
yd x :=

∑

i

∑

j

y

�

t i
t ′j

�

x

�

t i−1, t i
t ′j−1, t ′j

�

. (6.2)

Lemma 4. Let p, q ≥ 1, assume that θ = 1/p + 1/q > 1. Assume x , y : [0, T]2 → R are finite p-
resp. q-variation. Then there exists t i0 ∈ D\{0, T} (equivalently: i0 ∈ {1, . . . , n− 1} such that for every
α ∈ (1,θ),

�

�

�

�

�

�

∫

D×D′
d x −

∫

D\
¦

t i0

©

×D′
yd x

�

�

�

�

�

�

≤
�

1

n− 1

�α�

1+ ζ
�

θ

α

��α

Vp

�

x; [0, T]2
�

Vq

�

y; [0, T]2
�

Iterative removal of "i0" leads to Young-Towghi’s maximal inequality.

Theorem 3 (Young-Towghi Maximal Inequality). Let p, q ≥ 1, assume that θ = 1/p+ 1/q > 1, and
consider x , y : [0, T]2 → R of finite p- resp. q-variation and y (0, ·) = y (·, 0) = 0. Then, for every
α ∈ (1,θ),

�

�

�

�

�

∫

D×D′
yd x

�

�

�

�

�

≤
�

�

1+ ζ
�

θ

α

��α

ζ (α) + (1+ ζ (θ))

�

Vp

�

x; [0, T]2
�

Vq

�

y; [0, T]2
�

and this estimate is uniform over all D, D′ ∈ D ([0, T])

Proof. Iterative removal of "i0" gives
�

�

�

�

�

∫

D×D′
yd x −

∫

{0,T}×D′
yd x

�

�

�

�

�

≤
∑

n≥2

�

1

n− 1

�α�

1+ ζ
�

θ

α

��α

Vp

�

x; [0, T]2
�

Vq

�

y; [0, T]2
�

≤ ζ (α)
�

1+ ζ
�

θ

α

��α

Vp

�

x; [0, T]2
�

Vq

�

y; [0, T]2
�

.
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It only remains to bound
∫

{0,T}×D′
yd x =

∑

j

y

�

T
t ′j

�

x

�

0, T
t ′j−1, t ′j

�

=

∫

D′
y

�

0, T
.

�

d x

�

0, T
.

�

where we used y

�

0
·

�

= 0 in the last equality. From Young’s 1D maximal inequality, we have

�

�

�

�

�

∫

{0,T}×D′
yd x

�

�

�

�

�

≤ (1+ ζ (θ))

�

�

�

�

�

y

�

0, T
0, .

�

�

�

�

�

�

q-var,[0,T]

�

�

�

�

�

x

�

0, T
0, .

�

�

�

�

�

�

p-var,[0,T]

≤ (1+ ζ (θ))Vp

�

x; [0, T]2
�

Vq

�

y; [0, T]2
�

The triangle inequality allows us to conclude.

Proof. (Lemma 4) Observe that, for any t i ∈ D\{0, T}

I D,D′ − I D\{t i},D′ =
∫

D′
y

�

t i , t i+1
·

�

x

�

t i−1, t i
·

�

=

∫

D′
y

�

t i , t i+1
0, ·

�

x

�

t i−1, t i
·

�

where we used y

�

·
0

�

= 0. We pick t i0 to make this difference as small as possible:

�

�

�I D,D′ − I D\
¦

t i0

©

,D′
�

�

�≤
�

�

�I D,D′ − I D\{t i},D′
�

�

� for all i ∈ {1, . . . , n− 1}

As an elementary consequence,

�

�

�I D,D′ − I D\
¦

t i0

©

,D′
�

�

�

1/α
≤

1

n− 1

n−1
∑

i=1

�

�

�I D,D′ − I D\{t i},D′
�

�

�

1/α
. (6.3)

The plan is to get an estimate on
∑n−1

i=1

�

�

�I D,D′ − I D\{t i},D′
�

�

�

1/α
independent of n and uniformly in

D′ ∈ D ([0, T]); in fact, we shall see that

∆D,D′ :=
n−1
∑

i=1

�

�

�I D,D′ − I D\{t i},D′
�

�

�

1/α
≤ cVp

�

x; [0, T]2
�1/α

Vq

�

y; [0, T]2
�1/α

(6.4)

with c = 1+ ζ
�

θ
α

�

and the desired estimate

�

�

�I D − I D\
¦

t i0

©

�

�

�≤
� c

n− 1

�α

Vp

�

x; [0, T]2
�

Vq

�

y; [0, T]2
�

follows. It remains to establish (6.4); to this end we consider the removal of t ′j ∈ D′\{0, T} from D′

and note that

�

I D,D′ − I D\{t i},D′
�

−
�

I D,D′\
n

t ′j
o

− I D\{t i},D′\
n

t ′j
o�

= y

�

t i , t i+1
t ′j , t ′j+1

�

x

�

t i−1, t i
t ′j−1, t ′j

�
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Using the elementary inequality |a|1/α− |b|1/α ≤ |a− b|1/α valid for a, b ∈R and α≥ 1 we have

�

�

�I D,D′ − I D\{t i},D′
�

�

�

1/α
−
�

�

�

�

I D,D′\
n

t ′j
o

− I D\{t i},D′\
n

t ′j
o

�

�

�

�

1/α

≤
�

�

�

�

�

I D,D′ − I D\{t i},D′
�

−
�

I D,D′\
n

t ′j
o

− I D\{t i},D′\
n

t ′j
o�
�

�

�

�

1/α

.

Hence, summing over i, we get

∆D,D′ −∆D,D′\
n

t ′j
o

≤
n−1
∑

i=1

�

�

�

�

�

I D,D′ − I D\{t i},D′
�

−
�

I D,D′\
n

t ′j
o

− I D\{t i},D′\
n

t ′j
o�
�

�

�

�

1/α

=
n−1
∑

i=1

�

�

�

�

�

y

�

t i , t i+1
t ′j , t ′j+1

�

�

�

�

�

�

1/α �
�

�

�

�

x

�

t i−1, t i
t ′j−1, t ′j

�

�

�

�

�

�

1/α

(6.5)

≤







n−1
∑

i=1

�

�

�

�

�

y

�

t i , t i+1
t ′j , t ′j+1

�

�

�

�

�

�

θq/α






1
θq






n−1
∑

i=1

�

�

�

�

�

x

�

t i−1, t i
t ′j−1, t ′j

�

�

�

�

�

�

θ p/α






1
θ p

≤





n−1
∑

i=1

�

�

�

�

�

y

�

t i , t i+1
t ′j , t ′j+1

�

�

�

�

�

�

q



1
αq




n−1
∑

i=1

�

�

�

�

�

x

�

t i−1, t i
t ′j−1, t ′j

�

�

�

�

�

�

p



1
αp

;

in the last step we used that the `θ p/α norm on Rn−1 is dominated by the `p norm (because θ p/α >
p). It follows that

∆D,D′ −∆D,D′\
n

t ′j
o

≤ Y 1/α
j X 1/α

j (6.6)

where

Yj :=





n−1
∑

i=1

�

�

�

�

�

y

�

t i , t i+1
t ′j , t ′j+1

�

�

�

�

�

�

q



1
q

, X j :=





n−1
∑

i=1

�

�

�

�

�

x

�

t i−1, t i
t ′j−1, t ′j

�

�

�

�

�

�

p



1
p

We pick t ′j0 ∈ D′\{0, T} (i.e. 1≤ j0 ≤ m− 1) to make this difference as small as possible,

∆D,D′ −∆D,D′\
n

t ′j0

o

≤∆D,D′ −∆D,D′\
n

t ′j
o

for all j ∈ {1, . . . , m− 1} ;

we shall see below that
�

�

�

�

∆D,D′ −∆D,D′\
n

t ′j0

o

�

�

�

�

≤
�

1

m− 1

�
θ
α

Vp

�

x; [0, T]2
�1/α

Vq

�

y; [0, T]2
�1/α

; (6.7)

iterated removal of " j0" yields

∆D,D′ ≤∆D,{0,T}+ ζ
�

θ

α

�

Vp

�

x , [0, T]2
�1/α

Vq

�

y, [0, T]2
�1/α

;

as in (6.5) we estimate

∆D,{0,T} =
n−1
∑

i=1

�

�

�

�

�

y

�

t i , t i+1
0, T

�

x

�

t i−1, t i
0, T

�

�

�

�

�

�

1/α

≤ · · · ≤ Vp

�

x , [0, T]2
�1/α

Vq

�

y, [0, T]2
�1/α
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and (6.4) follows, as desired. The only thing left is to establish (6.7). Using (6.6) we can write

∆D,D′ −∆D,D′\
n

t ′j0

o

≤







m−1
∏

j=1

∆D,D′ −∆D,D′\
n

t ′j
o







1
m−1

≤







m−1
∏

j=1

X 1/.α
j Y 1/α

j







1
m−1

=







m−1
∏

j=1

X p
j







1
m−1

1
αp






m−1
∏

j=1

Y q
j







1
m−1

1
αq

.

Using the geometric/arithmetic inequality, we obtain







m−1
∏

j=1

X p
j







1
m−1

1
αp

≤







1

m− 1

m−1
∑

j=1

X p
j







1
αp

≤
�

1

m− 1

�
1
αp







m−1
∑

j=1

n−1
∑

i=1

�

�

�

�

�

x

�

t i−1, t i
t ′j−1, t ′j

�

�

�

�

�

�

p






1
αp

≤
�

1

m− 1

�
1
αp

Vp

�

x , [0, T]2
�1/α

.

and, similarly,






m−1
∏

j=1

Y q
j







1
m−1

1
αq

≤
�

1

m− 1

�
1
αq

Vq

�

y, [0, T]2
�1/α

.

Using 1
αp
+ 1
αq
= θ
α

, we thus arrive at

∆D,D′ −∆D,D′\
n

t ′j0

o

≤
�

1

m− 1

�
θ
α

Vp

�

x , [0, T]2
�1/α

Vq

�

y, [0, T]2
�1/α

which is precisely the claimed estimate (6.7).
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