
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 16 (2011), Paper no. 74, pages 2039–2058.

Journal URL
http://www.math.washington.edu/~ejpecp/

Asymptotic normality of the Hill estimator for truncated
data∗

Arijit Chakrabarty
Statistics and Mathematics Unit

Indian Statistical Institute
7 S.J.S. Sansanwal Marg
New Delhi 110016, India
arijit@isid.ac.in

Abstract

The problem of estimating the tail index from truncated data is addressed in [2]. In that paper, a
sample based (and hence random) choice of k is suggested, and it is shown that the choice leads
to a consistent estimator of the inverse of the tail index. In this paper, the second order behavior
of the Hill estimator with that choice of k is studied, under some additional assumptions. In the
untruncated situation, asymptotic normality of the Hill estimator is well known for distributions
whose tail belongs to the Hall class, see [11]. Motivated by this, we show the same in the
truncated case for that class .
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1 Introduction

Historically, one of the most important statistical issues related to distributions with regularly vary-
ing tail is estimating the tail index. A detailed discussion on estimators of the tail index can be found
in Chapter 4 of [5]. One of the most popular estimators is the Hill estimator, introduced by [12].
For a one-dimensional non-negative sample X1, . . . , Xn, the Hill statistic is defined as

h(k, n) :=
1

k

k
∑

i=1

log
X(i)
X(k)

, (1.1)

where X(1) ≥ . . . ≥ X(n) are the order statistics of X1, . . . , Xn, and 1 ≤ k ≤ n is an user determined
parameter. It is well known that if X1, . . . , Xn are a i.i.d. sample from a distribution whose tail is
regularly varying with index −α and (kn) is a sequence of integers satisfying 1 � kn � n (where
“an � bn” means “an = o(bn)”, and “�” means the obvious opposite throughout the paper), then
h(kn, n) consistently estimates α−1. In a sense made precise by [14], the consistency of Hill statistic
is equivalent to the regular variation of the tail of the underlying distribution. Various authors have
studied the second order behavior of the Hill estimator; see for example [4], [3], [10], [9], [8] and
[6] among others. It is well known that if the tail of the i.i.d. random variables X1, . . . , Xn belongs
to the Hall class (defined in Assumption B below) then

p

k
�

h(k, n)−
1

α

�

=⇒ N
�

0,
1

α2

�

.

This assumption is stronger than just assuming that the tail is regularly varying with index −α.

While there are real life phenomena that do exhibit the presence of heavy tails, in lot of the cases
there is a physical upper bound on the possible values. For example most internet service providers
put an upper bound on the size of a file that can be transferred using an internet connection provided
by them. Clearly the natural model for such phenomena is a truncated heavy-tailed distribution, a
distribution which fits a heavy-tailed distribution till a certain point and then decays significantly
faster. This can be made precise in the following way. Suppose that H, H1, . . . are i.i.d. random
variables so that P(H > ·) is regularly varying with index −α, α > 0 and that L, L1, L2, . . . are i.i.d.
random variables independent of (H, H1, H2, . . .). All these random variables are assumed to take
values in the positive half line. We observe the sample X1, . . . , Xn given by

X j := H j1(H j ≤ Mn) + (Mn+ L j)1(H j > Mn) , (1.2)

where Mn, representing the truncating threshold, is a sequence of positive numbers going to infinity.
Strictly speaking, the model is actually a triangular array {Xn j : 1 ≤ j ≤ n}. However, in practice
we shall observe only one row of the triangular array, and hence we denote the sample by the
usual notation X1, . . . , Xn. The random variable L can be thought of to have a much lighter tail,
a tail decaying exponentially fast for example. However the results of this article are true under
milder assumptions. The motivation behind adding this component in the model is that there are
situations where a power law fits the bulk of the data, while the tail tapers off much faster. For
example, human inter contact times were studied by [13]. Their finding is that a truncated Pareto
distribution, a model that “has a power law tendency at the head part and decays exponentially at
the tail”, is appropriate. The results of the current paper, however, are true when L ≡ 0, and hence
the reader may choose to think of the model (1.2) without the L.
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It was observed in Chakrabarty and Samorodnitsky (2009) that if the sequence Mn goes to infinity
slow enough so that

lim
n→∞

nP(H > Mn) =∞ , (1.3)

then a priori choosing a k so that the Hill estimator is consistent is a problem. The problem stems
from the fact that under the assumption of hard truncation (1.3), in order to be consistent, kn should
satisfy

nP(H > Mn)� kn� n .

A natural choice of kn would be
kn = nP(H > Mn)

β ,

for some β ∈ (0,1) which is meant to be specified by the user. However the problem with this choice
is that the quantity P(H > Mn) is unknown. In order to overcome that problem, the following sample
based choice of k was suggested in that paper:

k̂n :=









n







1

n

n
∑

j=1

1(X j > γX(1))







β








, (1.4)

where γ ∈ (0,1) is also a user determined parameter. The intuition behind this choice is that the
ration of kn and k̂n as defined above, will converge in probability, to a known constant. It has been
shown in that article that this choice of k̂n leads to a consistent estimator of α−1 when (1.3) is true,
or when that limit is zero.

In this paper, we investigate the second order behavior of h(k̂n, n) under the assumption (1.3) and
some additional assumptions. We hope to address the case when the corresponding limit is zero
in future. Knowing the second order behavior of an estimator, at least asymptotically, helps in
constructing confidence intervals for the unknown parameter. While the problem is motivated by
statistics, it is an interesting mathematical problem in itself. The complexity in analyzing the second
order behavior of h(k̂n, n) arises from the fact that now we are dealing with a random sum, and the
number of summands is heavily dependent on the summands themselves. Also, a quick inspection
will reveal that conditioning on the number of summands will completely destroy the i.i.d. nature
of the sample, and thus make the analysis even more difficult.

In Section 2, the result that the Hill estimator with k = k̂n is asymptotically normal with mean 1/α,
which is the main result of the article, is stated. The result is proved in Section 3. A few examples
are studied in Section 4.

2 Asymptotic normality of the Hill estimator

Suppose that we have a one-dimensional non-negative sample X1, . . . , Xn given by (1.2). The fol-
lowing assumption makes precise the idea that the random variable L has “a much lighter tail”.
Assumption A: There exists a sequence (εn) such that

lim
n→∞

P(H > Mn)
−(1−β)εn = 0 , (2.1)

and lim
n→∞

nP(H > Mn)P(L > εnMn) = 0 . (2.2)
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Our next assumption is that the tail of H is in the Hall class (see [11]).
Assumption B: As x →∞,

P(H > x) = C x−α+O
�

x−ᾱ
�

,

for some C > 0 and 0< α < ᾱ.

The main result of this paper, Theorem 2.1 below, describes the second order behavior of h(k̂n, n),
where h(·, ·) and k̂n are as defined in (1.1) and (1.4) respectively, under suitable bounds on the
growth rate of Mn. The proof is postponed until Section 3.

Theorem 2.1. Suppose that assumptions A and B hold, β is in the range

α

2ᾱ−α
< β < 1 ,

and Mn satisfies
Mα

n � n�min
¦

(log Mn)
−2Mα(2−β)

n , Mβ(2ᾱ−α)
n

©

, (2.3)

as n→∞. Then,
p

k̂n

�

h(k̂n, n)−
1

α

�

=⇒ N
�

0,
1

α2

�

. (2.4)

We next point out that for random variables whose tails are second order regularly varying as defined
in, for example, (2.3.24) of [5], then Assumption B is automatically satisfied; see the discussion
following Example 2.3.11 on page 49 of the same reference. By the tail being second order regularly
varying, we mean that there is a function A : (0,∞)−→R which is regularly varying with index ρα
where ρ < 0, such that

lim
t→∞

P(H>t x)
P(H>t) − x−α

A(t)
= x−α

xρα− 1

ρ/α
(2.5)

for all x > 0.

Corollary 1. Suppose that Assumption A holds, and the tail of H satisfies (2.5). Let

(1− 2ρ)−1 < β < 1 ,

and Mn’s satisfy
Mα

n � n�min
¦

(log Mn)
−2Mα(2−β)

n , Mαβ(1−2ρ)
n

©

.

Then (2.4) holds.

We end this section with a couple of remarks.

Remark 1

Assumption B and (2.5) are not equivalent. Example 3 below satisfies the former but not the latter.

Remark 2

It would be nice if Corollary 1 could be extended to cases with ρ = 0. Unfortunately, the author has
not been able to achieve that.
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3 Proof of Theorem 2.1

We start with a brief outline of the plan of the proof. Define

Un :=
n
∑

j=1

1(X j > γMn) ,

Vn :=
n
∑

j=1

1(X j > γX(1)) ,

k̃n :=
�

n1−βUβn
�

.

Note that
k̂n :=

�

n1−βVβn
�

.

Since we are dealing with a random sum, a natural way of proceeding is conditioning on the number
of summands. However, as commented earlier, conditioning on Vn or k̂n destroys the i.i.d. nature
of the sample. Hence, we condition on Un = un, where (un) is any sequence of integers satisfying
un ∼ nP(H > γMn). Lemma 3.1 is a general result, which allows us to claim weak convergence of
the unconditional distribution based on that of the conditional distribution. Clearly, by conditioning
on Un, h(k̃n, n) becomes the Hill statistic with a deterministic k applied to a triangular array. The
second order behavior of that is studied in Lemma 3.4. In view of Lemma 3.1, this translates to
second order behavior of (the unconditional distribution of) h(k̃n, n). In order to argue the claim
of Theorem 2.1, all we need is showing that h(k̃n, n) and h(k̂n, n) are not very far apart, and that is
done in Lemma 3.5. For Lemma 3.4 and Lemma 3.5, we need that the tail empirical process, after
suitable centering and scaling, converge to a Brownian Motion. This is shown in Lemma 3.3.

We now proceed to execute the plan described above. Throughout this section, the hypotheses of
Theorem 2.1 will be assumed, even it is not explicitly mentioned.

Lemma 3.1. Suppose that (Bn : n≥ 1) is a sequence of discrete random variables satisfying

Bn

bn

P−→ 1 ,

for some deterministic sequence (bn). Assume that (An : n ≥ 1) is a family of random variables such
that whenever b̂n is any deterministic sequence satisfying b̂n ∼ bn as n −→∞ and P(Bn = b̂n) > 0, it
follows that

P(An ≤ ·|Bn = b̂n) =⇒ F(·) , (3.1)

for some c.d.f. F . Then An =⇒ F.

Proof. It suffices to show that every subsequence of (An) has a further subsequence that converges
weakly to F . Since every sequence that converges in probability has a subsequence that converges
almost surely, we can assume without loss of generality that

Bn

bn
−→ 1 a.s. . (3.2)
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Fix a continuity point x of F and define a function fn :R−→ [0,1] by

fn(u) =

(

P(An≤x ,Bn=u)
P(Bn=u) , if P(Bn = u)> 0

0, otherwise.

Clearly, for all n≥ 1,
P(An ≤ x) = E fn(Bn) .

By (3.1) and (3.2), it follows that
fn(Bn)−→ F(x) a.s. .

By the bounded convergence theorem, it follows that

lim
n→∞

E fn(Bn) = F(x) ,

and this completes the proof.

Lemma 3.2. For any sequence (vn) satisfying

vn ∼ nP(H > γMn)
β , (3.3)

it holds that

lim
n→∞

p
vn

�

n

vn
P
�

H > b(n/vn)y
−1/α

�

− y
�

= 0 (3.4)

uniformly on compact sets in [0,∞), and

lim
T→∞

lim sup
n→∞

p
vn

∫ ∞

T

�

�

�

�

n

vn
P
�

H > b(n/vn)s
�

− s−α
�

�

�

�

ds

s
= 0 . (3.5)

where

b(y) := inf
�

x :
1

P(H > x)
≥ y
�

. (3.6)

Proof. Assumption B means that there is C ∈ (0,∞) with

f1(x) := x−α− C x−ᾱ ≤ P(H > x)≤ x−α+ C x−ᾱ =: f2(x) ,

for all x . The function f2 is strictly decreasing, whereas f1 is eventually so. Thus, for y large,

f −1
1 (1/y)≤ b(y)≤ f −1

2 (1/y) .

Clearly, for ξ > 0,

f −1
2 (ξ)≤

�

ξ− Cξᾱ/α
�−1/α

= ξ−1/α+O
�

ξ(ᾱ−α−1)/α
�

as ξ ↓ 0 .

A similar estimate holds for f −1
1 , and they together show that

b(y) = y1/α+O
�

y(1+α−ᾱ)/α
�

,

as y →∞. Thus, given δ > 0, there is C̄ <∞ such that
�

�P(H > x b(y))− x−α y−1
�

�≤ C̄ x−α y−ᾱ/α for all x ≥ δ, y ≥ C̄ .
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Let (vn) be a sequence satisfying (3.3). Thus, for n large and x ≥ δ,

p
vn

�

�

�

�

n

vn
P(H > b(n/vn)x)− x−α

�

�

�

�

≤ C̄ x−α
vᾱ/α−1/2

n

nᾱ/α−1
.

Notice that

vᾱ/α−1/2
n

nᾱ/α−1
= O

�

n1/2P(H > Mn)
β(ᾱ/α−1/2)

�

= o(1) ,

the last line following from (2.3). These show (3.4) and (3.5).

Lemma 3.3. Suppose that (un) is a sequence of integers satisfying

un ∼ nP(H > γMn) , (3.7)

and let

vn := [n1−βuβn ]− un , (3.8)

M̃n := γMn . (3.9)

Let for n≥ 1, Yn,1, . . . , Yn,n be i.i.d. with c.d.f. Fn, defined as

Fn(x) := P(H ≤ x |H ≤ M̃n) .

Then,
p

vn

 

1

vn

n−un
∑

i=1

δYn−un ,i/b((n−un)/vn)(y
−1/α,∞]− y

!

=⇒W (y) (3.10)

in D[0,∞), where D[0,∞) is endowed with the topology of uniform convergence on compact sets and
W is the standard Brownian Motion on [0,∞).

Proof. For simplicity sake, denote wn := n− un. It is easy to see by (2.3) that

1� wnP(H > M̃n)�
p

vn�
p

wn . (3.11)

Let (Γi : i ≥ 1) be the arrivals of a unit rate Poisson Process. Define

φn(s) :=
Γwn+1

vn
F̄n(s

−1/αb(wn/vn)) ,

where Ḡ := 1− G for any function G. By the discussion on page 24 in [15], it follows that

lim
n→∞

wn

vn
P(H > b(wn/vn)) = 1 . (3.12)

It follows by (3.11) that

lim
n→∞

wn

vn
P(H > M̃n) = 0 .
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This in conjunction with (3.12) implies that

b(wn/vn) = o(M̃n) .

It is easy to see that vn satisfies (3.3). Hence, for n large enough,

wn

vn
F̄n(s

−1/αb(wn/vn))− s

=
1

P(H ≤ M̃n)

�

wn

vn
P
�

H > s−1/αb(wn/vn)
�

−
wn

vn
P(H > M̃n)

−s+ sP(H > M̃n)
�

,

and hence in view of (3.4) and (3.11), it follows that for 0< T <∞,

lim
n→∞

p
vn sup

0≤s≤T

�

�

�

�

wn

vn
F̄n(s

−1/αb(wn/vn))− s

�

�

�

�

= 0 . (3.13)

Also note that,

sup
0≤s≤T

�

�

�

�

φn(s)−
wn

vn
F̄n(s

−1/αb(wn/vn))

�

�

�

�

=

�

�

�

�

Γwn+1

wn
− 1

�

�

�

�

wn

vn
F̄n(T

−1/αb(wn/vn))

= Op(w
−1/2
n )O(1)

= op(v
−1/2
n ) .

This in conjunction with (3.13) shows that

p
vn
�

φn(s)− s
� P−→ 0 (3.14)

in D[0,∞). Recall that since 1� vn� wn, in D[0,∞),

p
vn

 

1

vn

wn
∑

i=1

1
�

Γi ≤ vns
�

− s

!

=⇒W (s) ;

see (9.7), page 294 in [15]. Hence, it follows by the continuous mapping theorem and Slutsky’s
theorem that

p
vn

 

1

vn

wn
∑

i=1

1
�

Γi ≤ vnφn(s)
�

−φn(s)

!

=⇒W (s) (3.15)

in D[0,∞). By similar arguments as those in the proof of Theorem 9.1 in [15], it follows that

wn
∑

i=1

δYwn ,i/b(wn/vn)(y
−1/α,∞] d

=
wn
∑

i=1

1
�

Γi ≤ vnφn(s)
�

.

This along with (3.14) and (3.15) shows (3.10).
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Lemma 3.4. Let (un) be a sequence of integers satisfying (3.7) and let (vn) and (M̃n) be as defined in
(3.8) and (3.9) respectively. Then,

p
vn

 

1

vn

vn
∑

i=1

log
Y(n−un,i)

Y(n−un,vn)
−

1

α

!

=⇒ N
�

0,
1

α2

�

,

where Y(n,1) ≥ . . .≥ Y(n,n) are the order statistics of Yn,1, . . . , Yn,n, and the latter is as defined in Lemma
3.3.

Proof. Once again, let us denote wn := n− un. An application of Vervaat’s lemma (Proposition 3.3
in [15]) to (3.10) shows that

p
vn

�

� Y(wn,vn)

b(wn/vn)

�−α

− 1

�

=⇒−W (1) (3.16)

jointly with (3.10). This in particular, shows that
 

p
vn

(

1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(x ,∞]− x−α
)

,
Y(wn,vn)

b(wn/vn)

!

=⇒ (W (x−α), 1) ,

in D(0,∞]×R, jointly with (3.16), where D(0,∞] is also endowed with the topology of uniform
convergence on compact sets. Using the continuous mapping theorem, it follows that

p
vn

(

1

vn

wn
∑

i=1

δYwn ,i/Y(wn ,vn)
(x ,∞]− x−α

Y−α(wn,vn)

b(wn/vn)−α

)

=⇒W (x−α) , (3.17)

in D(0,∞], jointly with (3.16). As in the proof of Proposition 9.1 in [15], we shall apply the map ψ
from D(0,∞] to R, defined by

ψ( f ) :=

∫ ∞

1

f (s)
ds

s
,

to conclude that

p
vn

(

1

vn

vn
∑

i=1

log
Y(wn,i)

Y(wn,vn)
−

1

α

Y−α(wn,vn)

b(wn/vn)−α

)

=⇒
∫ ∞

1

W (x−α)
d x

x
, (3.18)

jointly with (3.16). This implies that

p
vn

(

1

vn

vn
∑

i=1

log
Y(n,i)

Y(n,vn)
−

1

α

)

=⇒
∫ ∞

1

W (x−α)
d x

x
−

1

α
W (1)

as desired. Thus, it suffices to show (3.18).

To that end, note that for 1< T <∞, the map ψT , defined by

ψT ( f ) :=

∫ T

1

f (s)
ds

s
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is continuous and has compact support. Also, as T −→∞,

ψT (W (s
−α)) =⇒ψ(W (s−α)) .

Some calculations will show that ψ applied to the left hand side of (3.17) gives the left hand side
of (3.18). Thus, all that needs to be done is justifying the application of ψ to (3.17), and for that, it
suffices to check that for all ε > 0,

lim
T→∞

lim sup
n→∞

P
�

p
vn

∫ ∞

T

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/Y(wn ,vn)
(x ,∞]

−x−α
Y−α(wn,vn)

b(wn/vn)−α

�

�

�

�

d x

x
> ε

�

= 0 .

Note that on the set {Y(wn,vn)/b(wn/vn)> 1/2},

∫ ∞

T

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/Y(wn ,vn)
(x ,∞]− x−α

Y−α(wn,vn)

b(wn/vn)−α

�

�

�

�

d x

x

=

∫ ∞

T Y(wn ,vn)/b(wn/vn)

�

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]− u−α
�

�

�

�

�

du

u

≤
∫ ∞

T/2

�

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]− u−α
�

�

�

�

�

du

u
.

Since P[Y(wn,vn)/b(wn/vn)≤ 1/2] goes to zero, it suffices to show that

lim
T→∞

limsup
n→∞

P
�

p
vn

∫ ∞

T/2

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]

−u−α
�

�

�

�

du

u
> ε

�

= 0 . (3.19)

Clearly,

∫ ∞

T/2

�

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]− u−α
�

�

�

�

�

du

u

≤
∫ ∞

T/2

�

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]−
wn

vn
F̄n
�

ub(wn/vn)
�

�

�

�

�

�

du

u

+
wn

vn

∫ ∞

T/2

�

�F̄n
�

ub(wn/vn)
�

− P
�

H > ub(wn/vn)
�

�

�

du

u

+

∫ ∞

T/2

�

�

�

�

wn

vn
P
�

H > ub(wn/vn)
�

− u−α
�

�

�

�

du

u
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=

∫ ∞

T/2

�

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]−
wn

vn
F̄n
�

ub(wn/vn)
�

�

�

�

�

�

du

u

+
wn

vn

∫ M̃n/b(wn/vn)

T/2

�

�F̄n
�

ub(wn/vn)
�

− P
�

H > ub(wn/vn)
�

�

�

du

u

+
wn

vn

∫ ∞

M̃n

P(H > u)
du

u

+

∫ ∞

T/2

�

�

�

�

wn

vn
P
�

H > ub(wn/vn)
�

− u−α
�

�

�

�

du

u

=: I1+ I2+ I3+ I4 .

Since vn is defined by (3.8), (3.3) holds. By (3.5), it follows that

lim
T→∞

limsup
n→∞

p
vn I4 = 0 .

Karamata’s theorem (Theorem VIII.9.1, page 281 in [7]) implies that

I3 = O
�

wn

vn
P(H > M̃n)

�

= o
�

v−1/2
n

�

,

the second equality following from (3.11). For I2, note that

F̄n
�

ub(wn/vn)
�

− P
�

H > ub(wn/vn)
�

= −
P(H > M̃n)P

�

H ≤ ub(wn/vn)
�

P(H ≤ M̃n)
.

Also, it is easy to see from (2.3) that

lim
n→∞

wnP(H > M̃n)p
vn

log

¨

M̃n

b(wn/vn)

«

= 0 . (3.20)

Thus,

I2 = O

�

wn

vn
P(H > M̃n) log

M̃n

b(wn/vn)

�

= o
�

v−1/2
n

�

,

the second equality following from (3.20).

Thus, all that remains is showing

lim
T→∞

lim sup
n→∞

P[
p

vn I1 > ε] = 0 . (3.21)

Notice that

E





1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]



=
wn

vn
F̄n
�

ub(wn/vn)
�

.
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Letting C to be a finite positive constant independent of n, whose value may change from line to
line, observe that

P[
p

vn I1 > ε]

≤
p

vn

ε
E(I1)

= C
p

vn

∫ ∞

T/2

E

�

�

�

�

�

1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]−
wn

vn
F̄n
�

ub(wn/vn)
�

�

�

�

�

�

du

u

≤ C
p

vn

∫ ∞

T/2

Var





1

vn

wn
∑

i=1

δYwn ,i/b(wn/vn)(u,∞]





1/2
du

u

≤ C
p

wn
p

vn

∫ ∞

T/2

F̄n
�

ub(wn/vn)
�1/2 du

u

≤ C

∫ ∞

T/2

p
wn
p

vn
P
�

H > ub(wn/vn)
�1/2 du

u
.

By (3.12), the integrand clearly converges to u−α/2 as n −→∞. By (3.6), the integrand is bounded
above by

�

P(H > ub(wn/vn))
P(H > b(wn/vn))

�1/2

,

which by the Potter bounds (Proposition 2.6 in [15]) is bounded above by 2u−α/3 for n large enough.
An appeal to the dominated convergence theorem shows (3.21) and thus completes the proof.

Lemma 3.5. As n−→∞,
p

k̃n

¦

h(k̃n, n)− h(k̂n, n)
© P−→ 0 . (3.22)

Proof. We start with showing that
p

k̂n

�

k̂n

k̃n
− 1

�

P−→ 0 . (3.23)

In the proof of Theorem 3.2 in Chakrabarty and Samorodnitsky (2009), it has been shown that
under the assumption of hard truncation (left inequality in (2.3)),

Un

nP(H > γMn)
P−→ 1 , (3.24)

Vn

nP(H > γMn)
P−→ 1 , (3.25)

and
k̂n

nP(H > γMn)β
P−→ 1 . (3.26)

In view of (3.26), it suffices to show that

n1/2P(H > Mn)
β/2

�

k̂n

k̃n
− 1

�

P−→ 0 .
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Note that,
n1−βVβn

n1−βUβn + 1
≤

k̂n

k̃n
≤

n1−βVβn + 1

n1−βUβn
,

n1−βVβn

n1−βUβn + 1
≤
�

Vn

Un

�β

≤
n1−βVβn + 1

n1−βUβn
,

and

n1−βVβn + 1

n1−βUβn
−

n1−βVβn

n1−βUβn + 1
=

n1−βVβn + n1−βUβn + 1

n1−βUβn (n1−βUβn + 1)

= Op

�

n−1P(H > Mn)
−β
�

= op

�

n−1/2P(H > Mn)
−β/2

�

,

the equality in the second line following from (3.24) and (3.25), and that in the third line following
from (2.3). Thus, it suffices to show that

n1/2P(H > Mn)
β/2

�

�

Vn

Un

�β

− 1

�

P−→ 0 .

By the mean value theorem, it follows that as x −→ 1,

xβ − 1= O(|x − 1|) .

Hence, in view of the fact that Vn/Un converges to 1 in probability, it suffices to show that

n1/2P(H > Mn)
β/2
�

Vn

Un
− 1
�

P−→ 0 .

Using (3.24) once again, all that needs to be shown is

Vn− Un = op

�

n−1/2P(H > Mn)
−(1−β/2)

�

.

Note that on the set {Mn ≤ X(1) ≤ Mn(1+ εn)}, where εn is chosen to satisfy Assumption A,

0≤ Un− Vn ≤
n
∑

j=1

1
�

γMn < X j ≤ γMn(1+ εn)
�

=: Tn .

Thus, it suffices to show that
lim

n→∞
P(X(1) ≤ Mn(1+ εn)) = 1 , (3.27)

lim
n→∞

P(X(1) ≥ Mn) = 1 , (3.28)

and Tn = op

�

n−1/2P(H > Mn)
−(1−β/2)

�

. (3.29)

For (3.27), note that as n−→∞,

P(X(1) ≤ Mn(1+ εn)) =
�

1− P(H > Mn)P(L > εnMn)
�n −→ 1 ,
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the convergence following from (2.2) in Assumption A. This shows (3.27). For (3.28), observe that

P(X(1) < Mn)≤
�

1− P(H > Mn)
�n .

By (2.3), the right hand side converges to zero, and hence (3.28) holds. Clearly, (3.29) will follow
if it can be shown that

E(Tn) = o
�

n−1/2Mα(1−β/2)
n

�

,

and
Var(Tn) = o

�

n−1Mα(2−β)
n

�

.

Set
pn := P(γMn < X1 ≤ γ(1+ εn)Mn) ,

and note that,

nM−α(2−β)n Var(Tn) ≤ n2M−α(2−β)n pn

� n3/2M−α(1−β/2)n pn = n1/2M−α(1−β/2)n E(Tn)

� pnMα(2−β)
n ,

the inequalities in the last two lines following by (2.3). Thus, for (3.29), it suffices to show that

pn = o(P(H > Mn)
2−β) . (3.30)

For n large enough so that γ(1+ εn)< 1, notice that

pn = P(H > γMn)− γ−αM−αn (1+ εn)
−αl
�

γMn(1+ εn)
�

= γ−αM−αn l
�

γMn(1+ εn)
�

¦

1− (1+ εn)
−α
©

+P(H > γMn)

¨

1−
l
�

γMn(1+ εn)
�

l(γMn)

«

,

where
l(x) := xαP(H > x) .

The first term on the right hand side is clearly O(εnP(H > Mn)), which by (2.1), is
o
�

P(H > Mn)2−β
�

. For the second term, notice that by Assumption B,

l
�

γMn(1+ εn)
�

l(γMn)
− 1 = O

�

Mα−ᾱ
n

¦

(1+ εn)
α−ᾱ− 1

©�

= O(εn)

= o(P(H > Mn)
1−β) ,

the last step following from (2.1). This shows (3.30), and thus completes the proof of (3.23).

Next, we show that for all η ∈R, as n−→∞,

p

k̃n log
X(n,[k̃n+ηk̃1/2

n ])

X(n,k̃n)

P−→−
η

α
. (3.31)
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Let (un) be a sequence of positive integers satisfying (3.7) For n large enough so that 1 ≤ un <

[n1−βuβn ] ≤ n and 1 ≤ un < [n1−βuβn ] + η[n1−βuβn ]1/2 ≤ n, the conditional distribution of
�

X(k̃n)
, X([k̃n+ηk̃1/2

n ])

�

given that Un = un is same as the (unconditional) distribution of

�

Y(n−un,[n1−βuβn ]−un)
, Y(n−un,[n1−βuβn ]+η[n1−βuβn ]1/2−un)

�

,

where {Y(n, j) : 1 ≤ j ≤ n} is as defined in Lemma 3.3, with M̃n as in (3.9). Define vn as in (3.8) By
Lemma 3.3, it follows that

p
vn

 

1

vn

n
∑

i=1

δYn−un ,i/b((n−un)/vn)(y
−1/α,∞]− y

!

=⇒W (y)

in D[0,∞). Using Vervaat’s lemma, it follows that

p
vn

�

� Y(n−un,[vn x])

b((n− un)/vn)

�−α

− x

�

=⇒−W (x) (3.32)

in D[0,∞). From here, we conclude that
�

p
vn

�

� Y(n−un,[vnsn])

b((n− un)/vn)

�−α

− sn

�

,
p

vn

�

� Y(n−un,vn)

b((n− un)/vn)

�−α

− 1

��

=⇒ (−W (1),−W (1)) ,

where sn := 1+ηv−1
n [n

1−βuβn ]1/2. Since the limit process is C[0,∞)× C[0,∞) valued, this can be
done using Skorohod’s Theorem (Theorem 2.2.2 in [1]). Using the Delta method with x 7→ − 1

α
log x ,

it follows that
�

p
vn

�

log
Y(n−un,[vnsn])

b((n− un)/vn)
+

1

α
log sn

�

,
p

vn log
Y(n−un,vn)

b((n− un)/vn)

�

=⇒
�

1

α
W (1),

1

α
W (1)

�

.

Since,
lim

n→∞

p
vn log sn = η ,

it follows that
p

vn log
Y(n−un,[n1−βuβn ]−un)

Y(n−un,[n1−βuβn ]+η[n1−βuβn ]1/2−un)

P−→−
η

α
.

What we have shown is that whenever (un) is a sequence satisfying (3.7), the conditional distri-
bution of the left hand side of (3.31) given Un = un converges weakly to −η/α. By an appeal to
Lemma 3.1, this shows (3.31).
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Coming to the proof of (3.22), note that
p

k̃n

�

h(k̂n, n)− h(k̃n, n)
�

=
1
p

k̃n







k̂n
∑

i=1

log
X(i)
X(k̃n)

−
k̃n
∑

i=1

log
X(i)
X(k̃n)






+

k̂n
p

k̃n

log
X(k̃n)

X(k̂n)

+
p

k̃n

�

1

k̂n
−

1

k̃n

� k̂n
∑

i=1

log
X(i)
X(k̂n)

=: A+ B+ C .

Clearly,

C =
p

k̃n

�

1−
k̂n

k̃n

�

h(k̂n, n)
P−→ 0 ,

the convergence in probability following from (3.23) and the fact that

h(k̂n, n)
P−→ 1/α ,

which has been shown in [2]. For showing that B
P−→ 0, fix ε > 0 and let η := εα/6. Note that

P(|B|> ε)

≤ P

�

k̂n

k̃n
> 2

�

+ P





p

k̃n

�

�

�

�

�

k̂n

k̃n
− 1

�

�

�

�

�

> η



+ P





p

k̃n log
X(k̃n−ηk̃1/2

n )

X(k̃n+ηk̃1/2
n )

> 3
η

α



 .

By (3.23) and (3.31), it follows that B
P−→ 0. Since for 0< ε < 1,

P(|A|> ε)≤ P





p

k̃n

�

�

�

�

�

k̂n

k̃n
− 1

�

�

�

�

�

> ε



+ P



log
X(k̃n−k̃1/2

n )

X(k̃n+k̃1/2
n )

> 1



 ,

it is immediate that A
P−→ 0. This completes the proof.

Proof of Theorem 2.1. In view of Lemma 3.5, it suffices to show that

p

k̃n

�

h(k̃n, n)−
1

α

�

=⇒ N
�

0,
1

α2

�

. (3.33)

Define

S1 :=
Un
∑

i=1

log
X(i)
X(k̃n)

S2 :=
k̃n
∑

i=Un+1

log
X(i)
X(k̃n)
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and note that on the set {Un ≤ k̃n},

h(k̃n, n) =
1

k̃n
(S1+ S2) .

Let un be a sequence of integers satisfying (3.7) and define vn and M̃n as in (3.8) and (3.9). For n
large enough, note that

[S2|Un = un]
d
=

vn
∑

i=1

log
Y(n−un,i)

Y(n−un,vn)
=: S̃2 ,

where {Y(n, j) : 1≤ j ≤ n} is as defined in the statement of Lemma 3.4. By Lemma 3.4, it follows that

p
vn

�

1

vn
S̃2−

1

α

�

=⇒ N
�

0,
1

α2

�

.

This along with the fact that

p
vnS̃2

�

1

[n1−βuβn ]
−

1

vn

�

=−
S̃2

[n1−βuβn ]

un
p

vn
= Op(1)o(1) ,

shows that




p

k̃n

�

1

k̃n
S2−

1

α

�

�

�

�

�

�

Un = un



=⇒ N
�

0,
1

α2

�

.

Since this is true for all sequence of integers (un) satisfying (3.7), by Lemma 3.1 it follows that

p

k̃n

�

1

k̃n
S2−

1

α

�

=⇒ N
�

0,
1

α2

�

.

On the set {1≤ X(1) ≤ 2Mn},

S1
p

k̃n

≤
Un log(2Mn)
p

k̃n

= Op

�

n1/2P(H > Mn)
1−β/2 log Mn

�

= op(1) .

Since the probability of that set converges to one, it follows that

S1
p

k̃n

P−→ 0 .

This completes the proof.

4 Examples

In this section, we study some specific examples of c.d.f.s for which Theorem 2.1 hold.
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Example 1

Suppose that
P(H > x) = C x−α ,

for x large, where C > 0. Let at least one of the following hold:

Condition on β Condition on L
1. 0< β < 1 L ≡ 0

2. max(0, 1− 1/α)< β < 1 P(L > x) = O
�

x−θ
�

where θ := α(1−β)
1−α(1−β)

Assume that Mn satisfies
Mα

n � n� (log Mn)
−2Mα(2−β)

n . (4.1)

Then (2.4) holds.

To see this, suppose that 1. holds, i.e.,
0< β < 1

and
L ≡ 0 .

Set
ᾱ :=

α

β
(1+ β/2) . (4.2)

Thus,
α

2ᾱ−α
=
β

2
< β < 1 ,

and
β(2ᾱ−α) = 2α > α(2− β) .

Therefore the assumptions of Theorem 2.1 hold.

Now suppose that 2. holds. Notice that by (4.1)

n1/θM−(1+α/θ)n � M
α
θ
(2−β)−(1+ α

θ
)

n = M−α(1−β)n .

Thus, if εn is chosen to satisfy

n1/θM−(1+α/θ)n � εn� M−α(1−β)n ,

then (2.1) and (2.2) hold. If ᾱ is defined by (4.2), then the premise of Theorem 2.1 is satisfied.

Example 2

Suppose that
P(H > x) = C x−α+ x−ᾱ(1+ o(1) as x →∞ ,

for some C > 0 and 0< α < ᾱ. Let at least one of the following hold:
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Condition on β Condition on L
1. α

2ᾱ−α < β < 1 L ≡ 0

2. max( α
2ᾱ−α , 1− 1/α)< β < 1 P(L > x) = O

�

x−θ
�

where θ := min{α(2−β),β(2ᾱ−α)}−α
1−α(1−β)

Assume that Mn satisfies (3.33). Then, by similar calculations as in Example 1, (2.4) holds.

Example 3

Let

P(H > x) =
1

2
x−α

�

1+ x−1 exp sin log x
�

, x ≥ 1 .

As mentioned in Remark 1, this example is significant in that it satisfies Assumption B but not (2.5);
see Exercise 2.7, page 61 in [5]. Setting

ᾱ := α+ 1 ,

the conditions are exactly same as those of Example 2. That is, if either 1. or 2. of Example 2 holds
and Mn satisfies (3.33), then (2.4) holds.
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