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Abstract

This paper concerns the first hitting time τ0 of the origin for random walks on d-dimensional
integer lattice with zero mean and a finite 2+ δ absolute moment (δ ≥ 0). We derive detailed
asymptotic estimates of the probabilities Px[τ0 = n] as n→∞ that are valid uniformly in x , the
position at which the random walks start .
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Introduction

Let S x
n = x + X1 + · · ·+ Xn be a random walk on the d-dimensional square lattice Zd starting at x

where the increments X j are i.i.d. random variables defined on some probability space (Ω,F , P)
and taking values in Zd . Let X be a random variable having the same law as X1 and ψ(θ) the
characteristic function of X : ψ(θ) = EeiX ·θ , θ ∈ T d , where T d stands for the d-dimensional torus
Rd/(2πZ)d ∼= [−π,π)d and E indicates the expectation by P. Throughout the paper we suppose
unless explicitly stated otherwise that the distribution of X is aperiodic (strongly aperiodic in the
sense of Spitzer [11]), i.e., |ψ(θ)|< 1 for θ ∈ T d \ {0} (which imposes no essential restriction) and
that

EX = 0 and E|X |2+δ <∞, (0.1)

for a constant δ ≥ 0.

This paper concerns the asymptotic evaluation of the hitting-time distribution

fx(k) = P[τx
0 = k] (k = 1, 2, . . .)

as k → ∞, where τx
0 = inf{n > 0 : S x

n = 0}, the first time that S x
n hits the origin after time 0

(inf; = ∞), which plays a fundamental role in the theory of random walk and its applications.
We derive asymptotic formulae of fx(k) with certain bounds for error terms valid uniformly in x
for each dimension d = 1, 2, . . .: under δ = 0, in particular, the asymptotic form is determined in
any parabolic region x2 ≤ ak. In general the estimates will depend on δ and we shall mainly (or
essentially) consider the case 0 ≤ δ ≤ 2 and only occasionally the case δ > 2. For the computation
of fx(k) we use the Fourier analytic method as in [10].

When the walk is started at the origin there are several results. In Kesten [10] it is proved, among
many other things, that if the walk is one-dimensional and aperiodic, and satisfies that for some
1 ≤ α ≤ 2, |θ |−α(1−ψ(θ)) converges to a positive constant, C say, as θ → 0, then the asymptotic
form of f0(k) is Cαk−2+1/α(1+ o(1)) if 1 < α ≤ 2 (with Cα = (α− 1) sin(π/α)C1/α/Γ(1/α)) and
πC[k(lg k)2]−1(1+ o(1)) if α = 1; in the particular case α = 2 this implies in our setting that if
d = 1, f0(k) =

p

E|X |2/2π k−3/2(1 + o(1)). For the two dimensional walk satisfying (0.1) with
δ = 0 Jain and Pruitt show that f0(k) = c[k(lg k)2]−1(1 + o(1)) (Section 4 of [9]). (This result
actually follows from Kesten’s result (for α = 1), the latter being based only on an estimate of the
characteristic function of f0 (see Remark at the end of the subsection 4.1). The proof of [9] is rather
probabilistic and quite different from Kesten’s proof.). Combined with the ratio limit theorem ([10],
[11]) these give the asymptotic form of the tail P[τx

0 > k] (for each x) in the cases d = 1 and
2 (with δ = 0) but there seems to be no results on estimation of fx uniformly valid for x except
for a few special cases. Recently Y. Hamana ([7]) has proved that for the simple random walk,
f0(2k) = π[k lg2 k]−1[1+O((lg lg k)/ lg k)] if d = 2 , f0(2k) = cd k−d/2[1+O((lg k)−N )] if d ≥ 3 (cd
is a certain positive constant and N > 0 may be arbitrary) and applied these results to the study of
the range of the pinned walk. (In [6] the error term is improved to O(k−5/8) for d = 3.)

For d ≥ 2 we have studied in [15] the random variable Zn = ]{S0
1 , S0

2 , . . . , S0
n}, the number of

sites visited by S0
· until the n-th step. The expectation EZn is equal to e0n+

∑n−1
k=0 Fk where Fk =

∑

j>k f0( j) and e0 = 1− F0 and readily computed (up to O(lg lg n) if d = 2 and O(1) if d ≥ 3) from
the estimates of f0(k) obtained in this paper. In [15]we are interested in the conditional expectation
E[Zn|S0

n = x], i.e. the expectation under the law of the random walk bridge, of which the asymptotic
evaluation, being made by means of Fourier analytic method, depends on several subsidiary results
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from the present paper. For d = 1 the estimate of fx(k) is effectively used to compute the transition
probability of one dimensional walk killed at the origin [16]. One of the results obtained is applied
in a very recent work [1], where from it is deduced a precise asymptotic estimate for the coalescing
probability of a finite number of independent random walks.

1 Statements of Results

Let S x
n , X , ψ(θ) and fx(k) be as in Introduction and suppose the condition (0.1) to hold true with

some 0 ≤ δ ≤ 2 unless otherwise is stated explicitly. Set pn(x) = P[S0
n = x], p(x) = p1(x),

a(x) =
∑∞

n=0[p
n(0)− pn(−x)] (cf. [5], [11] for convergence of the series) and

a∗(x) = 1{0}(x) + a(x) = 1+
∞
∑

n=1

[pn(0)− pn(−x)],

where 1{0}(x) = 1 or 0 according as x = 0 or x 6= 0. Denote by Q the covariance matrix of X and by
Q(θ) its quadratic form: Q(θ) = E(X · θ)2 = θ ·Qθ (θ ∈ Rd). For x ∈ Zd put

x̃ =Q−1/2 x .

If d = 1, let σ2 = E|X |2 so that x̃ = x/σ.

The following notation will be used: sgn t = t/|t| (t 6= 0); a ∧ b = min{a, b}, a ∨ b = max{a, b}
(a, b ∈ R); |θ | denotes the Euclidean length of θ ∈ Rd , θ2 = |θ |2; for functions g and G of a variable
ξ, g(ξ) = O(G(ξ)) means that there exists a constant C such that |g(ξ)| ≤ C |G(ξ)| whenever ξ
ranges over a specified set; lg+ a = lg(a ∨ 1) (a ≥ 0) and

|x |+ = |x | ∨ 1 (x ∈ Zd).

1.1. Here we consider the one dimensional case.

Theorem 1.1. Let d = 1 and 0≤ δ ≤ 2. Then, uniformly in x ∈ Z, as k→∞

fx(k) =
σ
p

2π

a∗(x)

k3/2

�

1+ o
�

1

kδ/2

�

+O
� |x |2+

k

��

. (1.1)

The estimate given in Theorem 1.1 is poor in the case x2 > k, when the second error term (repre-
sented by O symbol) is not smaller than the principal part. The following theorem is complementary
in this respect. If δ ≥ 1 and d = 1, define constants β3 and C∗ by

β3 =
1

6
E[X 3] and C∗ =

1

2π

∫ π

−π

�

σ2

1−ψ(θ)
−

1

1− cosθ

�

dθ . (1.2)

The integral above is understood to be the principal value; the imaginary part vanishes and the real
part is absolutely convergent (see (3.5) in Section 3). For convenience sake we put β3 = C∗ = 0 if
δ < 1.
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Theorem 1.2. Let d = 1 and 0≤ δ < 3. Then, as k ∧ |x | →∞

fx(k) =
| x̃ |e− x̃2/2k

p
2π k3/2

�

1+
P1( x̃2/k) + (sgn x)β3P2( x̃2/k)

| x̃ |
+

J(x , k)
k

�

+ o
�

1

|x |2+δ

�

,

where
P1(z) = σ

−1C∗(1− z), P2(z) =−σ−3(2− 5z+ z2),

and J(x , k) = P3( x̃2/k) + (sgn x)β3P4( x̃2/k) with P3 and P4 being certain polynomials of at most
degree 3. Moreover, in the formula above, the error term can be replaced by o(k−1−δ/2) if 0 ≤ δ < 1
(but not if δ ≥ 1), by o(|x |−1k−1−(δ−1)/2) if 1≤ δ < 2 and by k−3/2|x |−2o(k(1−δ)/2∧|x |(1−δ) lg |x |) if
2≤ δ < 3.

Theorems 1.1 and 1.2 together entails the following result.

Corollary 1.1. Uniformly in x as k→∞

fx(k) =
σa∗(x)
p

2πk3/2
e− x̃2/2k + o

� |x |+
k3/2

∧
1

|x |2+

�

.

REMARK 1. Theorem 1.2 can be extended to the case δ ≥ 3 with a higher order expansion.

REMARK 2. (i) Suppose that 1 ≤ δ < 2. According to [16] (Appendix) σa(x) = | x̃ | + σ−1C∗ −
2σ−3β3sgn x + o(|x |1−δ) if d = 1. (ii) If p(x) = 0 either for all x ≤ −2 (LC) or for all x ≥ 2 (RC),
then C∗ = 2σ−2|β3| (the converse is also true [16]). This is a consequence of the asymptotic form of
a(x) just mentioned together with the fact ([11]:P30.3) that a(x) = |x |/σ2 for all x > 0 in the case
(LC) and for all x < 0 in the case (RC). If both (LC) and (RC) are the case, we have C∗ = β3 = 0
and both P1(z) and P2(z) disappear from the formula of Theorem 1.2 (otherwise C∗ > 0, provided
that E|X |3 <∞).

REMARK 3. The random walk on Zd with P[X = ω] = 1/2d for all ω ∈ Zd with |ω| = 1 is said
simple. The simple random walk is not aperiodic; it is of period ν = 2. (The period is the smallest
integer r such that prn(0) > 0 for all sufficiently large n). In general, if X is irreducible but not
aperiodic, we obtain the correct formula for fx(k) by simply multiplying by the factor

ν1(pk(−x) 6= 0) (1.3)

the leading term of the formulae obtained under aperiodicity assumption, where 1(S ) is 1 or 0
according as the statement S is true or false. (For d = 1 this is, in effect, ascertained in [16]: page
692; for the case d ≥ 2 see Appendix (D) of this paper.)

For the one dimensional simple random walk we have a simple explicit expression of fx(k) (cf. [3]:
III.4), from which, with the help of Stirling’s formula, one deduces that uniformly for x 6= 0 with
k+ x even, as x4/k3→ 0

fx(k) =
2|x |

p
2π k3/2

e−x2/2k

�

1+
1

k
P
�

x2

k

�

+O
�

x2

k3 +
x6

k5

�

�

,

where P(z) = −1
4
+ 1

2
z − 1

12
z2. (The factor 2 is due to (1.3). It is also remarked that f0(2k) =

f1(2k− 1).)
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1.2. Next consider the case d = 2. In order to have a formula more or less parallel to that of
Theorem 1.1 we introduce the function

W (λ) =

∫ ∞

0

e−λudu

[lg u]2+π2 (λ > 0).

We also bring in the constants

c1 =
1

(2π)2

∫

T2

ℜ
�

1

1−ψ(θ)
−

2

Q(θ)

�

dθ (≤∞),

c2 =
lg(s2/2)

2π|Q|1/2
+

1

(2π)2

∫

{Q>s2}∩T2

2

Q(θ)
dθ ,

where T2 is the two dimensional torus (as in Introduction), |Q| = detQ and s is a positive number
chosen so small that {θ : Q(θ)< s2} ⊂ T2, and define

c◦ = 2π|Q|1/2 (c1+ c2) if E[X 2 lg+ |X |]<∞.

The negative part of the integrand of the integral defining c1 is integrable so that c1 is well defined,
whereas c1 itself (possibly+∞) is finite if and only if E[X 2 lg+ |X |]<∞ (see [12]: proof of Theorem
1, p. 227); and c2 does not depend on the choice of s. If Q(θ) is of the form σ2θ2, then, on
examining the proof of Proposition 12.3 of [11],

πσ2c2 = lg(π
p

2)− 2ε(2)/π,

where ε(2) =
∑∞

n=0(−1)n(2n+ 1)2 = 0.9159 . . . (Cataran’s constant) (see also REMARK 6 below).

In the case E[X 2 lg+ |X |] =∞ c◦ may be any number and in what follows we put c◦ = 0 for definite-
ness.

Theorem 1.3. Let d = 2 and 0≤ δ ≤ 2. Then, uniformly in x ∈ Z2, as k→∞

fx(k) = 2π|Q|1/2 a∗(x) ec◦W (ec◦k)
h

1+ o
�

k−δ/2
�i

+O
� |x |2+

k2 lg k

�

.

REMARK 4. λW (λ) admits the following asymptotic expansion in powers of 1/ lgλ:

λW (λ) =
1

(lgλ)2
−

2γ

(lgλ)3
−

1
2
π2− 3γ2

(lgλ)4
+ · · ·

valid in the both limits as λ→∞ and as λ ↓ 0, where γ = −
∫∞

0
(lg u)e−udu (Euler’s constant). The

Fourier representation of W (λ) takes the form

1

2π

∫ ∞

−∞

e−iλu

lg(−iu)
du=

¨

W (λ) (λ > 0),

−eλ (λ < 0),
(1.4)

as is readily derived by Cauchy’s theorem (cf. Appendix of [17]). A class of integrals containing that
defining W (λ) is studied by Ramanujan (cf. [8], sections 11.4 through 11.10 of Chapter XI, where
it is in effect shown that W (λ) =

∫∞
0
[Γ(x)]−1λx−1d x − eλ).

According to the rule (1.3), a remedy for periodic walks, Theorem 1.3 has the following corollary
(note that c◦ is well defined under irreducibility of the walk).
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Corollary 1.2. For simple random walk on Z2, it holds that c◦ = lg8 (see REMARK 6 below) and
uniformly for x = (x1, x2) with x1+ x2− k even,

fx(k) = 16πa∗(x)W (8k) +O
� |x |2+

k2 lg k

�

.

The asymptotic form of fx(k) as |x | becomes large comparably to
p

k is provided not by Theorem
1.3 but by Theorems 1.4 and 1.5 given below. (But it should be kept in mind that for |x |much larger
than

p
k, the trivial upper bound fx(k) ≤ pk(x) may provide fairly nice estimates (see REMARK 10

below).)

Theorem 1.4. Let d = 2. Then as k ∧ |x | →∞, in general

fx(k) =
2 lg | x̃ |
k(lg k)2

e− x̃2/2k +
1

k lg k
· o
�

1∧
p

k

|x |

�

;

and if δ > 0,

fx(k) =
lg(1

2
ec◦ x̃2)

k(lg(ec◦k))2
e− x̃2/2k +















2γ lg(k/ x̃2)
k(lg k)3

+O
�

1

k(lg k)3

�

for x̃2 < k,

O
� | lg( x̃2/k)|2+

x2(lg k)3

�

for x̃2 ≥ k.

(1.5)

REMARK 5. If d = 2, a(x) has the asymptotic form (π|Q|1/2)−1(lg | x̃ |)(1+o(1)) as |x | →∞, ensuring
the consistency between Theorems 1.3 and 1.4. The second term on the right side of (1.5) in its
first case is significant for properly evaluating the probability

∑

j≤k fx( j) = P[τx
0 ≤ k] so as to have

its correct asymptotic form that turns out to be (lg k)−1
∫ k

0
u−1e−x2/2udu(1+ o(1)) as k →∞ valid

uniformly at least for |x | ≤
p

3k lg lg k (see [17] for more details).

In the formula (1.5) the estimate does not depend on δ > 0, although it is best possible for x2 < k.
This is because the bottle neck for the estimate comes from a term that does not depend on ψ(θ)
except via Q and c◦ (see Lemma 4.5). The situation becomes different if fx(k) is compared with the
corresponding Brownian object

qr(t, x) =
1

2π

∫ ∞

−∞

K0(|x |
p
−i2u)

K0(r
p
−i2u)

e−i tudu, (1.6)

where qr(t, x) is the density for Brownian hitting time of D(r) the disc of radius r > 0 centered at
the origin and K0 is the modified Bessel function of order 0 (see (6.7) of Appendix B) . Define the
constant b3 to be 1 if δ ≥ 1 and at least one of the third moments of X does not vanish, and to be 0
otherwise. The result is stated only in the case δ = 2 (see Subsection 4.3 for more details).

Theorem 1.5. Let d = 2, δ = 2 and r◦ =
p

2e−(γ+c◦/2). Then as k ∧ |x | →∞

fx(k) = qr◦(k, x̃) +O
�

1

k lg k

�

b3

|x |
+

1

|x |2

��

.
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REMARK 6. Of the radius r◦ defined in Theorem 1.5 we have another formula

π
p

|Q| a(x) = lg(| x̃ |/r◦) + o(1) as |x | →∞, (1.7)

provided E[|X |2 lg+ |X |] < ∞. (This relation is essentially proved in [11] under the condition
E[|X |2+δ] < ∞, δ > 0; see also [12] and [4]; it also is a result of consistency between Theo-
rems 1.3 and 1.4.) The function lg(| x̃ |/r◦) equals apart from a constant factor the corresponding
potential (Green’s function with pole at infinity) of the process Q1/2Bt killed on the ellipse Q1/2D(r◦)
where Bt is the standard two-dimensional Brownian motion. For the two dimensional simple ran-
dom walk we know that a(x) = 2π−1 lg(

p
8eγ |x |+) + (8(x1 x2)2 − |x |4+)/6π|x |

6 + O(1/|x |4+) (cf.
[4]). Comparing this with (1.7) and, noting Q = 1

2
id and | x̃ | =

p
2|x |, we find that r◦ = e−γ/2 and

c◦ = lg 8.

Asymptotic form of the distribution function P[τx
0 ≤ n] =

∑n
k=1 fx(k) is easily computed from

Theorem 1.3 if x2 is much smaller than n (it is sharper than one given in the next theorem if
n−1 x2 lg |x |+→ 0), while the corresponding computation based on Theorem 1.4 is somewhat com-
plicated. The result becomes as follows.

Theorem 1.6. Let d = 2 and δ > 0 and write ξ= | x̃ |/
p

n. Then as n∧ |x | →∞,

P[τx
0 ≤ n] = D(ec◦n,ξ2/2) +

1

(lg n)3
×

(

O(| lg 1
2
ξ|) for x̃2 < n,

O(| lg 2ξ|2/ξ2) for x̃2 ≥ n,
(1.8)

where

D(t,α) =
1

lg t

�

1−
γ

lg t

�
∫ ∞

α

e−u

u
du−

1

[lg t]2

∫ ∞

1

e−αu

u
lg
�

1−
1

u

�

du, α > 0.

The following upper bounds are obtained as a corollary of Theorems 1.1 through 1.4.

Corollary 1.3. For some constant C,

fx(k)≤











C
� |x |+

k3/2
∧

1

|x |2+

�

(d = 1),

C

k lg k

�

lg(|x | ∨ 2)
lg k

∧
p

k

|x |+

�

(d = 2).

1.3. Suppose d ≥ 3 and let ex be the probability that the random walk starting at x escapes the
origin after time 0:

ex = P[S x
k 6= 0 for all k ≥ 1],

and G(x) =
∑∞

n=0 P[S0
n = x]. It holds that

1− ex =
G(−x)
G(0)

(x 6= 0) and e0 =
1

G(0)
(1.9)

(cf. [11]) and G(x) = O(1/|x |+) for d = 3 (see [12] for d ≥ 4).
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Theorem 1.7. Let d ≥ 3. Then uniformly in x ∈ Zd , as k→∞

fx(k) = e0

h

ex pk(0)− pk(0) + pk(−x)
i

(1.10)

+
1

k1+d/2
×



























O
�

|x |+ ∧
k

|x |+

�

+ o
�

k(1−δ)/2
�

if d = 3,δ ≤ 2,

(lg k)×O
�

1∧
k1/2

|x |+

�

if d = 4,

O
�

1∧
�

k1/2

|x |+

�d−3�

if d ≥ 5.

REMARK 7. If x2 = o(k), the leading term in (1.10) may be written as e0ex pk(0)[1+O(x2/k)]; in
view of (1.9) it is also written as e0pk(−x)[1+O(|x |−d+2)] for 0 < |x | < M

p
k (for each M > 1),

provided that |S0
1 | satisfies a sufficient moment condition so that G(x) = O(|x |−d+2

+ ). It is noted that
a∗(x) = 1{0}(x) + G(0)− G(−x) = ex/e0, so the factor a∗(x) persists to appear in the leading term
(for the case x2 = o(k)) in all dimensions.

For d = 3 our actual estimation yields a better error estimate than that in (1.10): the first one (i.e.
O term) may be explicit and the second one improved, and moreover it leads to the following

Theorem 1.8. Let d = 3, 0≤ δ ≤ 2 and r◦ = 1/2π|Q|1/2G(0). Then uniformly in x ∈ Z3, as k→∞

fx(k) =
r◦e
− x̃2/2k

k
p

2π k

�

ex +
r◦| x̃ |

k
+

b3p
k

P3

�− x̃
p

k

�

+
O(1+ x4/k2)

k

�

+
1

k3/2

�

b3O
�

1

k
∧

1

|x |2+

�

+ o
�

1

kδ/2
∧

k

|x |2+δ+

�

�

, (1.11)

where P3(z) is the odd polynomial of degree 3 (involving the thirds moments of X ) that appears in the
Edgeworth expansion of pk(x); b3 is defined as in Theorem 1.5 (i.e., b3 = 0 if either δ < 1 or all the
third moments of X vanish and b3 = 1 otherwise).

REMARK 8. The asymptotic form of fx(k) given in Corollary 1.1 is in good accordance with
(2π)−1/2|x |t−3/2e−x2/2t , the density of corresponding distribution of the standard one dimensional
Brownian motion started at x ∈ R. In the higher dimensions d ≥ 2 let t(d)r denote the Brownian hit-
ting time of the ball of radius r > 0 centered at the origin. The probability fx(k) is to be compared
with the density of the distribution of t(d)r . For d = 3 it holds (see Appendix B) that for |x |> r,

Px[t
(3)
r ∈ d t]/d t =

re−(|x |−r)2/2t

t
p

2πt

�

1−
r

|x |

�

. (1.12)

Taking r = r◦ exhibits a close similarity between this formula and that of Theorem 1.8. Indeed, if
δ = 2, the latter implies

fx(k) =
r◦e
−(| x̃ |−r◦)2/2k

k
p

2π k

�

ex +
b3p

k
P3

�− x̃
p

k

�

�

+O
�1∧ (k/|x |2+)

2

k5/2

�

;
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we also know ex = 1−| x̃ |−1r◦+O(1/|x |2+) (cf. [12]). In the case b3 = 0 this is because ex+r◦| x̃ |/k =
er◦| x̃ |/kex + O(1/k) uniformly for | x̃ | ≤ k; the case b3 = 1 is dealt with in a similar way. Also note
that 1− r/|x | is the Brownian escape probability from the sphere.

REMARK 9. The proofs of Theorems stated above largely depend on the expansion of the characteris-
tic function: ei tψ(θ) = 1+ i t− 1

2
Q(θ)+o(|θ |2+δ)+O(t2+ |t|θ2) (if 0≤ δ < 1), and can be adapted

for finding the asymptotic form of the hitting distribution to the first coordinate axis x1 = |x |e1 for
the random walks that is biased to the direction e1, the present problem of hitting time being the
extreme case where the first coordinate of the walk deterministically increases by one at each step.
(Cf. [13] for the unbiased case.)

REMARK 10. When x2/k is large the trivial bound fx(k) ≤ pk(x) may be useful as noted previously.
For example, from the theorems above together with the estimate

pk(x) =
e− x̃2/2k

|Q|1/2(2πk)d/2

�

1+O
�

∑

1≤ j≤δ

1+ (x2/k)1+ j/2

k j/2

��

+ o

�

1

kd/2

�

1

kδ/2
∧

k

|x |2+δ

�

�

(1.13)

valid under (0.1) with any δ ≥ 0 (cf. [14]) one can readily deduce that as |x | →∞

max
k≥1

fx(k)∼







[(3/e)3/2/
p

2π ]| x̃ |−2 if d = 1,

8e−2(| x̃ |2 lg |x |)−1 if d = 2, δ > 0,
h

(d/2πe)d/2/|Q|1/2G(0)
i

| x̃ |−d if d ≥ 3, δ = d − 2

(the bound (1.13) is applied for k < x̃2/3 lg lg |x | if d = 2 and for k < x̃2/6 lg |x | if d ≥ 3).

The rest of the paper is organized as follows. In Section 2 we shall provide some preliminary
formulae and lemmas which will be applied throughout Sections 3, 4 and 5, where we shall give
proofs of Theorems above for the cases d = 1, d = 2 and d ≥ 3, respectively. The final section
consists of four appendices: we shall prove a lemma of Fourier analytic nature in the first one and
give a simple comment on the formula (1.12) and a Brownian counterpart of Theorem 1.6 in the
second and third ones, respectively.

2 Preliminary formulae and lemmas

Set

πx(t) =
1

(2π)d

∫

T d

e−i x ·θ

1− ei tψ(θ)
dθ (t 6= 0, x ∈ Zd)

and

f̂x(t) =
∞
∑

k=1

fx(k)e
ikt .

Since pn(x) = (2π)−d
∫

T d [ψ(θ)]ne−i x ·θ dθ , we have

πx(t) = lim
r↑1

∞
∑

n=0

pn(x)ei tnrn.
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Substituting from the identity pn(−x) =
∑n

k=1 fx(k)pn−k(0) and making usual manipulation for the
convolution sum, we infer that for t 6= 0, π−x(t) = δ0x + f̂x(t)π0(t), or on solving for f̂x(t),

f̂x(t) =−
δ0x

π0(t)
+
π−x(t)
π0(t)

; (2.1)

in particular

f̂0(t) = 1−
1

π0(t)
.

Note that π0(t) is smooth in t ∈ T1 \{0} owing to the aperiodicity; also that since fx is a probability
supported on the positive integers we have three expressions of fx(k):

fx(k) =
1

2π

∫ π

−π
f̂x(t)e

−ikt d t =
1

π

∫ π

−π
f̂x(t)

¨

cos kt
−i sin kt

«

d t (2.2)

among which we may choose one that is suitable to each occasion.

Bring in the functions R1(t,θ) and R2(t,θ) by

R1 =
1

1− ei tψ(θ)
−

1

−i t + 1−ψ(θ)
and R2 =

1

−i t + 1−ψ(θ)
−

1

−i t + 1
2
Q(θ)

so that
1

1− ei tψ(θ)
=

1

−i t + 1
2
Q(θ)

+ R1+ R2. (2.3)

Observe that (−i t + 1−ψ)− (1− ei tψ) = (e−i t − 1)(1− ei tψ)− (e−i t − 1+ i t) to have

R1 =
1
2

t2− r3(t)

[1− ei tψ(θ))][−i t + 1−ψ(θ)]
+
−i t + r2(t)
−i t + 1−ψ(θ)

, (2.4)

where r2(t) = e−i t − 1 + i t and r3(t) = r2(t) +
1
2

t2 = O(t3) (the contributions of r2, r3 will be
negligible in our analysis); also

R2 =
ψ(θ)− 1+ 1

2
Q(θ)

(−i t + 1
2
Q(θ))2

+
ψ(θ)− 1+ 1

2
Q(θ)

−i t + 1
2
Q(θ)

R2. (2.5)

The second fraction in (2.5) tends to zero as |θ | → 0 uniformly in t. Hence the first term on the
right side is the principal term, i.e., Rn divided by it approaches 1 as |t|+ |θ | → 0. Substituting into
(2.4) from the defining expression of R2 (to eliminate ψ− 1+ i t) as well as from (2.3) yields

R1 = [2−1 t2− r3(t)]
�

1

−i t + 1
2
Q(θ)

+ R1+ R2

��

1

−i t + 1
2
Q(θ)

− R2

�

+ [−i t + r2(t)]
�

1

−i t + 1
2
Q(θ)

− R1

�

=
1
2

t2

[−i t + 1
2
Q(θ)]2

+
−i t

−i t + 1
2
Q(θ)

+ R3 (sa y). (2.6)

The next lemma (or its variants), stating elementary results, will be repeatedly used throughout the
proofs of Theorems 1.1 to 1.8.
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Lemma 2.1. Let j and k be real constants such that j > 0 and 2k > −d and put α = j − k − d/2.
Then as t → 0±

∫

T d

[1
2
Q(θ)]kdθ

(−i t + 1
2
Q(θ)) j

=







C I
±|t|

−α+O(1) if α > 0
1
2
A lg |t|−1 if α= 0

C I I +η(t) if α < 0

(2.7)

with

A=
2d/2|Sd−1|
|Q|1/2

, C I
± = A

∫ ∞

0

r2k+d−1dr

(∓i+ r2) j
, C I I =

∫

T d

h1

2
Q(θ)

ik− j
dθ

(|Sd−1| is the hyper-area of d − 1 dimensional unit sphere if d ≥ 2 and |S0|= 2) and for α < 0,

η(t) =







O(|t||α|) if α >−1
O(t lg |t|) if α=−1
O(t) if α <−1.

Proof. Denote by V (t) the integral to be estimated. In the case α > 0 the change of variable (scaling
θ by

p

|t|) then shows that

V (t) =
1

|t|α

∫

T d/
p
|t|

[1
2
Q]kdθ

(−i sgn t + 1
2
Q) j
=

1

|t|α

∫

Rd

[1
2
Q]kdθ

(−i sgn t + 1
2
Q) j
+O(1).

In the case α= 0 we have only to replace the right most member above by A lg |t|−1/2.

Now consider the case α < 0. It follows that V (0) = C I I <∞ and η(t) = V (t)−V (0) =
∫ t

0
V ′(u)du.

The required estimates of η are then obtained by the result just proved (with j replaced by j + 1)
since it yields that V ′(t) = O(|t|−α−1) if 0<−α < 1, V ′(t) = O(lg |t|) if −α= 1 and V ′(t) = O(1) if
−α > 1. The proof of the lemma is complete.

In the first case of Lemma 2.1 the integral is unbounded and the order of growth as t → 0 is found
out by scaling the variable of integration by

p

|t|, while in the third case the integral is bounded and
the convergence is trivial. In Lemma 2.1 the results are exhibited only on typical integrals of which
there are many variants we shall encounter in the proofs of the main Theorems. In dealing with
such variants, we shall refer to Lemma 2.1 even if it is not directly applicable but the adaptation is
easy.

When d = 2 we shall need to evaluate integrals such that

I s
j(k) :=

∫ a

0

g(t)

t j| lg t|p
sin kt d t and I c

j (k) :=

∫ a

0

g(t)

t j| lg t|p
cos kt d t ( j = 0,1)

where p is a positive constant, a is a constant from the unit open interval (0,1) and g is twice
differentiable in t > 0. The way of computation involved in the proof of the following lemma will
also be employed throughout the paper. The moral underlying therein will roughly be this: separate
the integral near the origin and for the rest, perform integration by parts repeatedly until the integral
becomes divergent if extended to the origin.
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Lemma 2.2. Let α be a constant such that 0 ≤ α < 1 and suppose that g(a) = 0, g = O(tα)
and g ′(t) = O(tα−1) as t ↓ 0. Then I s

1(k) = O(1/kα(lg k)p) (for k ≥ 2); and if α > 0, then I c
1 =

O(1/kα(lg k)p) (as k→∞) and if p > 1 and α = 0, then I c
1 = O(1/(lg k)p−1). If g ′′(t) = O(tα−2) in

addition, then I s
0(k) = O(1/k1+α(lg k)p) and I c

0(k) = O(1/k1+α(lg k)p).

Proof. Splitting the range of integration and integrating by parts one obtains that

|I s
0(k)| ≤

∫ 1/k

0

|g(t)|
| lg t|p

sin kt d t +
|g(1/k)|
k(lg k)p

+

�

�

�

�

�

∫ a

1/k

�

d

d t

g(t)
(− lg t)p

�

cos kt

k
d t

�

�

�

�

�

.

On using sin kt ≤ 1 the first integral on the right side is evaluated to be O(1/k1+α(lg k)p). Integrating
the second one by parts once more shows that the last integral equals

�

d

d t

g(t)
(− lg t)p

�

sin kt

k2

�

�

�

�

�

a

t=1/k

−
∫ a

1/k

�

d2

d t2

g(t)
(− lg t)p

�

sin kt

k2 d t,

which we evaluate (by using | sin kt| ≤ 1) to be O(k−1−α(lg k)−p), the boundary contribution from
a being O(1/k2), hence negligible since α < 1. Thus the required estimate of I s

0(k) obtains. Estima-
tions of I s

1(k) and I c
0(k) are made in the same way (except that for I s

1(k)we use the bound sin kt ≤ kt
instead of sin kt ≤ 1 in the case α = 0). The evaluation of I c

1 is also made in the same way if α > 0.

If α = 0 and p > 1, one has only to note that
∫ 1/k

0
| lg t|−p t−1d t = (p− 1)−1(lg k)−p+1, the integral

on the interval [ε/k, a) being evaluated, by integrating by parts as above, to be O(1/| lg k|p), hence
negligible.

The following argument or its modifications will also be made throughout the paper. For simplicity
we consider f0(k) of the case d = 2. Let w = w(t) be a function on R that is even, smooth, equal to
1 in a neighborhood of the origin and identically zero for |t| ≥ 1. Employing (2.1) we write the first
equality in (2.2) in the form

2π f0(k) =−
∫ π

−π
w(t)

e−ikt

π0(t)
d t −

∫ π

−π
(1−w(t))

e−ikt

π0(t)
d t (k 6= 0).

Since (1− w(t))/π0(t) may be regarded as a smooth (differentiable arbitrary times) function on
the torus R/2πZ, the second integral gives a rapidly decreasing function of k. On using (2.3) the
principal part of 1/π0(t) takes on the form −C/[lg(−i t)− c◦] (C = 2π|Q|1/2) as we shall see in
Section 4. Writing h(t) for the remainder term and further decomposing the first integral above we
find that

2π f0(k) =

∫ ∞

−∞

Ce−ikt

lg(−i t)− c◦
d t −

∫ ∞

−∞
(1−w(t))

Ce−ikt

lg(−i t)− c◦
d t

−
∫ π

−π
w(t)h(t)e−ikt d t −

∫ π

−π
(1−w(t))

e−ikt

π0(t)
d t. (2.8)

The first integral represents the principal part. The second one as well as the last one is rapidly
decreasing. Thus our task is to evaluate the third integral to reasonable accuracy.
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3 The case d=1

3.1. Let d = 1. We use the letter l (|l| ≤ π) instead of θ for Fourier parameter. Let R1(t, l) and
R2(t, l) be the functions introduced in the preceding section and define λ(t) by

λ(t) =−
1

2π

∫

R\[−π,π)

dl

−i t + 1
2
Q(l)

+
1

2π

∫ π

−π
(R1(t, l) + R2(t, l))dl

so that

π0(t) =
1

2π

∫ ∞

−∞

dl

−i t + 1
2
Q(l)

+λ(t).

From the formula
∫∞

0
(x2 + a2)−1d x = π/2a valid if ℜa > 0 (ℜ designates the real part) we derive

for n= 1, 2, . . .
∫ ∞

−∞

du

(−i t + u2)n
=

πAn

(
p
−i t )2n−1

, (3.1)

where A1 = 1, A2 =
1
2

and in general An = 2−n+1(2n− 3)(2n− 5) · · ·1/(n− 1)!. This with n= 1 and
a simple change of variable of integration give

π0(t) =
1

σ
p
−2i t

+λ(t) (t 6= 0). (3.2)

Moreover
λ(t) = σ−2C∗+ o

�

|t|(δ−1)/2
�

+O
�

|t|1/2
�

(t → 0) if 0≤ δ ≤ 2, (3.3)

as will be verified shortly. Here C∗ is a (real) constant which may be arbitrary if δ < 1 (since then it
may be absorbed in the first error term); in the case δ ≥ 1 it is given by

C∗

σ2 =−
2

σ2π2 +
1

2π

∫ π

−π

ψ(l)− 1+ 1
2
Q(l)

1
2
(1−ψ(l))Q(l)

dl, (3.4)

where the last integral (understood to be the principal value at 0: see (3.5) below) arises as the
limit as t → 0 of

∫ π

−π R2dl (it comes out as a constant in the third case of Lemma 2.1 if δ > 1). This

constant agrees with that defined just before Theorem 1.2 owing to the identity
∫ π

0

h

(1− cos l)−1−

2l−2
i

dl = [− cot y + y−1]π/2y=0+ = 2/π.

Proof of (3.3). In the expression defining λ(t) the first integral defines a smooth function of t which
is of the form a0+ a1 t+ · · · with a0 =−2/(σπ)2, and we have only to examine the second integral,
of which one observes, using (2.4), that the contribution of R1 to λ(t) is O(|t|1/2) (actually of the
form 3π(2

p

2|Q|)−1(1− i sgn t)|t|1/2[1++O(|t|δ∧1)]).

Let δ < 1. Then ψ− 1+ 1
2
Q = o(|l|2+δ) and an application of Lemma 2.1 (the first case) deduces

that
∫ π

−π R2dl = o(|t|(δ−1)/2), which implies (3.3).

In the case δ = 1, we need to verify the convergence of
∫ π

−π R2dl to
∫ π

−π R2(0, l)dl as t → 0. To this
end we have only to deal with the first term of the expression (2.5) of R2, for if δ = 1, R2 = O(1/l)
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so that the second one is bounded. By symmetry E[sin X l] involved in ψ then can be deleted from
the integrand. Now the dominated convergence theorem concludes that the integral thus modified
converges to the constant

∫ π

−π

ψ(l)− 1+ 1
2
Q(l)

(1
2
Q(l))2

dl = E
�

|X |3
∫ |X |π

−|X |π

cos u− 1+ 1
2
u2

(1
2
Q(u))2

du
�

<∞. (3.5)

Combined with the bounds |E[sin X l]| = O(l3) and ψ(l)−ψ(−l) = O(l3) this in particular verifies
the existence of the integral in (3.4).

If 1< δ < 2, thenψ−1+ 1
2
Q =−iβ3l3+o(|l|2+δ), and (3.3) follows from (2.5) and Lemma 2.1 (the

third case). It is readily seen that λ(t) = σ−2C∗+O(
p

|t|) if δ = 2. Thus (3.3) has been proved.

We write down the estimate (3.3) in the following form

1

π0(t)
= σ

p

−2i t + i2C∗ t + o
�

|t|(1+δ)/2
�

+O(|t|3/2) (t → 0). (3.6)

3.2. Here the asymptotic estimate of f0(k) is obtained. Let 0≤ δ ≤ 2. It follows that as t → 0,

(d/d t) jλ(t) = o(|t|(δ−1)/2|t|− j) +O(|t|− j+1/2) for j = 1, 2,3. (3.7)

For the proof we have only to consider the second integral of the defining expression of λ for
the same reason as noted in the proof of (3.3). By applying Lemma 2.1 (the first case only) it is
readily obtained that

∫

∂
j

t R2dl = O(|t|− j+1/2). Also we evaluate
∫

∂
j

t R1dl to be o(|t|(δ−1)/2|t|− j)
if 0 ≤ δ < 2 and O(|t|− j+1/2) if δ = 2; here one needs to note that if δ = 1, the even part of
ψ(l)− 1+ 1

2
Q(l) is o(l3) and the odd part makes no contribution.

From (3.2) and (3.7) we especially obtain that

π′0(t) =
i

σ(
p
−2i t )3

�

1+ o(|t|δ/2) +O(t)
�

. (3.8)

By (2.1) f̂0(t) = 1− 1/π0(t) and if η(t) is defined by

f̂ ′0(t) =
π′0(t)

[π0(t)]2
=

iσ
p
−2i t

+ i2C∗+η(t),

we infer from (3.6), (3.7) and (3.8) that for j = 0,1, 2.,

(d/d t) jη(t) = o(|t|(δ−1)/2)|t|− j +O(|t|− j+1/2).

Let w(t) be a smooth cutoff function introduced at the end of Section 2. Then by Fourier inversion
and integration by parts

f0(k) =
1

π

∫ π

−π
f̂0(t) cos kt d t

= −
1

π

∫ π

−π
f̂ ′0(t)

sin kt

k
d t =−

1

π

∫ π

−π
w(t) f̂ ′0(t)

sin kt

k
d t + ε(k)

= −
σ

πk

∫ π

−π

iw(t)
p
−2i t

sin kt d t −
1

πk

∫ π

−π
w(t)η(t) sin kt d t + ε(k)

= K1+ K2+ ε(k) (say).
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Here, as well as in what follows, ε(k) denotes any function approaching zero faster than k−N as
k→∞ for all N that needs not be the same at each occurrence. On using

∫∞
0

t−1/2sin t d t =
p

π/2

and 1/
p
−2i t = (1+ i sgn t)/2

p

|t|,

K1 =
σ

πk

∫ π

−π

−i sin kt
p
−2i t

w(t)d t =
σ
p

2π
·

1

k
p

k
+ ε(k). (3.9)

For 0 ≤ δ < 1, the estimation of K2 is carried out as in the proof of Lemma 2.2 and it is found that
K2 = o((1/

p
k)3+δ). In the case 1 ≤ δ < 2 we perform integration by parts once more and use

η′′(t) = o(|t|(−5+δ)/2) to have the desired estimate. Similarly, K2 is easily evaluated to be O(k−5/2)
if δ = 2. Thus we have shown

Proposition 3.1. For 0≤ δ ≤ 2, as k→∞

f0(k) =
σ
p

2π
·

1

k
p

k

�

1+ o
�

1

kδ/2

�

+O
�

1

k

�

�

.

3.3. In this subsection Theorem 1.1 is proved when 0≤ δ < 1. (The case 1≤ δ ≤ 2 will be treated
in the next subsection.) Recalling f̂x(t) = π−x(t)/π0(t) (x 6= 0) we introduce

ex(t) := π−x(t)−π0(t) + a(x)

so that

f̂x(t) =
ex(t)
π0(t)

+ 1−
a∗(x)
π0(t)

.

The integral representation a(x) = (2π)−1
∫ π

−π(1−ψ)
−1(1− ei x l)dl yields

ex(t) =
1

2π

∫ π

−π

�

1

1− ei tψ(l)
−

1

1−ψ(l)

�

(ei x l − 1) dl.

We make the decomposition (2π)ex(t) = cx(t) + i sx(t), where

cx(t) =

∫ π

−π

�

1

1− ei tψ(l)
−

1

1−ψ(l)

�

(cos x l − 1)dl

sx(t) =

∫ π

−π

�

1

1− ei tψ(l)
−

1

1−ψ(l)

�

sin x l dl.

Lemma 3.1. There exists a constant C such that |c( j)x (t)| ≤ C x2|t|− j+1/2 for j = 0,1, 2. (Here c( j)

denotes the j-th derivative w.r.t. t.)

Proof. Writing

cx(t) =

∫ π

−π

(ei t − 1)ψ(l)

1− ei tψ(l)
·

cos x l − 1

(1−ψ(l))
dl (3.10)
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one applies Lemma 2.1 together with |1− ei tψ| ≥ C−1(|t|+ l2) to see that |cx(t)| is dominated by
C x2|t|

∫ π

−π(|t|+ l2)−1 dl ≤ C ′x2
p

|t|, hence the asserted bound of cx . Differentiating the defining
expression of cx we have

c′x(t) = iei t

∫ π

−π

ψ(l)(cos x l − 1)

[1− ei tψ(l)]2
dl,

which yields the second bound of the lemma similarly to the above. The third one is similar.

Lemma 3.2. Let 0≤ δ < 1. Then s( j)x (t)/x = o(|t|− j+δ/2) as t → 0 uniformly in x 6= 0 for j = 0, 1,2.

Proof. Write

Ix(t) :=
1

x

∫ π

−π

sin x l dl

1− ei tψ(l)
=

1

2

∫ π

−π

�

1

1− ei tψ(l)
−

1

1− ei tψ(−l)

�

sin x l

x
dl

= iei t

∫ π

−π

l E[sin X l]

(1− ei tψ(l))(1− ei tψ(−l))
·

sin x l

x l
dl. (3.11)

Putting Λ(l) = E[sin X l]/l3 so that l E[sin X l] = l4Λ(l) one observes that Λ(l) is integrable and
then applies the dominated convergence theorem to see that sx(t)/x = Ix(t)− Ix(0)→ 0 as t → 0
uniformly in x . We also have Λ(l) = o(|l|δ−1) and |1 − ei tψ(l)| ≥ C−1(|t| + l2) and, employing
Lemma 2.1 (the first case), obtain sx(t)/x = o(|t|δ/2). Thus the first estimate of the lemma has been
verified. The other two are readily shown by differentiating the last expression of Ix(t) and applying
the estimates just obtained together with the inequality |1− ei tψ(l)| ≥ C−1|t|.

In the case 0 ≤ δ < 1 Theorem 1.1 is proved by the same argument as made in the proof of
Proposition 3.1 with the help of it as well as of Lemmas 3.1 and 3.2. The details are omitted.

3.4. We prove Theorem 1.1 in the case 1≤ δ ≤ 2. We need to make more detailed estimation of cx
and sx than we have made above. We continue to suppose x 6= 0.

Lemma 3.3. Let δ = 1. Then uniformly in x 6= 0, as k→∞
∫ π

−π

cx(t)
π0(t)

e−ikt d t = O
�

x3

k2
p

k

�

.

Proof. Rewrite the expression of cx in (3.10) in the form

cx(t)/x2 =−i2πtπ0(t)/σ
2+ r1(t) + r2(t),

where

r1 =

∫ π

−π

(ei t − 1)ψ(l)− i t

1− ei tψ(l)
·

cos x l − 1

x2(1−ψ(l))
dl

and

r2 =

∫ π

−π

i t

1− ei tψ(l)

�

cos x l − 1

x2(1−ψ(l))
+

1

σ2

�

dl.
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Write (ei t − 1)ψ− i t = (ei t − 1− i t)ψ− i t(1−ψ). Then, using 1− ei tψ = (−i t + 1
2
Q)(1+ o(1)),

we deduce that |r1| ≤ C(|t|/|x |)
∫∞

0
(1− cos u)u−2du for some constant C; similarly, by using

|1− ei tψ(l)|−1− j = O(|l|−2|t|− j ∧ |t|− j−1), (3.12)

we obtain bounds for the j-th derivatives, yielding

r1 = O(t/x), r ′1 = O(1/x), r ′′1 = O(1/x t), r ′′′1 = O(1/x t2).

Also observe that

r2 = i t

∫ π

−π

cos x l − 1+ 1
2
(x l)2

x2(1− ei tψ)(1−ψ)
dl − i t

∫ π

−π

ψ− 1+ 1
2
Q

(1− ei tψ)(1−ψ)σ2 dl

= O(x t) +O(t), (3.13)

where the first and second terms in the last line represent the corresponding ones in the preceding
line and we have used the integrability

∫∞
0
| cos l−1+ 1

2
l2|l−4dl <∞ for the first integral and (3.5)

for the second (due to the condition δ = 1), and similarly that

|r ′2| ≤ C |x |, |r ′′2 | ≤ C |x/t|, |r ′′′2 | ≤ C |x/t2|.

(Use (3.12) for the first integral; apply Lemma 2.2 along with δ = 1 for the second .) Now it is easy
to see

∫

cx

π0
e−ikt d t =

1

ik

∫
�

cx

π0

�′
e−ikt d t =

x2

ik

∫
�

r1+ r2

π0

�′
e−ikt d t

= −
x2

k2

∫
�

r1+ r2

π0

�′′
e−ikt d t.

The integrand of the last integral is O(x/
p

|t|) and in the same way as in the proof of Lemma 2.2
the integral itself is shown to be O(x/

p
k). Thus we conclude the assertion of the lemma.

Lemma 3.4. Let 1≤ δ ≤ 2. Then uniformly in x 6= 0, as k→∞
∫ π

−π

sx(t)
π0(t)

e−ikt d t = o
�

x

k(3+δ)/2

�

+O
�

x2

k2
p

k

�

.

Proof. Recalling (3.11) and sx/x = Ix(t)− Ix(0) we write sx/x in the form

sx(t)
x
= iei t

∫ π

−π

F(t, l)l4Λ(l)

(1− ei tψ(l))(1− ei tψ(−l))(1−ψ(l))(1−ψ(−l))
·

sin x l

x l
dl, (3.14)

where Λ(l) = E[sin X l]/l3 (as before) and

F(t, l) = (1−ψ(l))(1−ψ(−l))− e−i t(1− ei tψ(l))(1− ei tψ(−l)).

Observing F = 1− e−i t + (1− ei t)ψ(l)ψ(−l) as well as ψ(l)ψ(−l) = 1− 2E[1− cos X l] + O(l6),
one obtains the expansion

F = t2+ i tQ(l) +O(t2l2+ |t||l|2+δ) (3.15)
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and those of the derivatives ∂ j
t F ; the contribution of the error terms of F in (3.15) to the integral

above is readily seen to be O(|t|(1+δ)/2). In the denominator of the integrand in (3.14) the first
two factors 1− ei tψ(±l) and the remaining two 1−ψ(±l) may then be replaced by −i t +Q(l)/2
and Q(l)/2, respectively, the error caused by the replacement being negligible. We wish further
replace sin x l/x l by 1. The error by this replacement is shown to be O(x t) in the same way as r2
is estimated in the preceding proof but this time using

∫∞
0
| sin u− u|u−3du <∞. Finally note that

Λ(l) = β3+ o(|l|δ−1). These considerations then lead to

sx(t)
x
=

i4β3

σ4

∫ π

−π

t2+ i tQ(l)

(−i t + 1
2
Q(l))2

dl +O(|x t|) + o(|t|δ/2), (3.16)

provided that 1 ≤ δ < 2. Here the last error term comes from the replacement of Λ(l) by β3. If
δ = 2, it may be replaced by O(t) (hence superfluous), as assured by the inequality

∫

E| sin X l −
X l + 1

6
(X l)3||l|−5dl ≤ C E|X |4. Also the factor ei t that exists in (3.14) is replaced by 1 in (3.16),

causing only the error of the magnitude O(|t|3/2).
Differentiating the last expression of Ix in (3.11), we derive in the same way as above that for t 6= 0,

s′x(t)

x
=−2β3

∫ π

−π

l4

(−i t + 1
2
Q(l))3

dl +O(|x |) + o(|t|(δ−2)/2). (3.17)

From the formula (3.1) (with n= 1, 2,3) it follows that for any complex numbers α,β ,
∫ ∞

−∞

αt2+ β tu2

(−i t + u2)2
du= Aα,β

p

−i2t and

∫ ∞

−∞

αtu2+ βu4

(−i t + u2)3
du= Bα,β

1
p
−i2t

where Aα,β and Bα,β are certain complex numbers whose values are not important for our present
purpose. A simple computation then deduces from (3.16), (3.17), (3.2) and (3.8) that

�

sx

xπ0

�′
(t) = α◦+ r(t)

with some complex number α◦ and the remainder term r(t) = O
�

x
p

|t|
�

+ o(|t|(δ−1)/2), so that
∫ π

−π

sx(t)
π0(t)

e−ikt d t =
x

ik

∫ π

−π
r(t)e−ikt d t = O

�

x2

k5/2

�

+ o
�

x

k(δ+3)/2

�

,

where the estimation of the last integral is carried out by estimating the derivatives r ′ and r ′′ as
those of the corresponding ones in the preceding proof. The proof of the lemma is complete.

Theorem 1.1 is now immediate from Lemmas 3.3 and 3.4 and Proposition 3.1.

3.5. Here we give a proof of Theorem 1.2. We apply the Fourier inversion formula (2.2) as before,
but, unlike the proof of Theorem 1.1, here we make no use of the decomposition of f̂x given in 3.3
and rather directly evaluate the Fourier integral in (2.2). We suppose 0≤ δ < 3.

We truncate the Fourier integral by a smooth cutoff function w(t) as in 3.2, with the remainder term
(the contribution of 1− w) being plainly negligible. Here we also truncate the l-integral (i.e., the
integral w.r.t. the variable l) by w(l) and define

λx(t) =
1

2π

∫ π

−π

(1−w)ei x l dl

1− ei tψ(l)
−

1

2π

∫ ∞

−∞

(1−w)ei x l dl

−i t + 1
2
Q(l)

+
1

2π

∫ π

−π
(R1+ R2)wei x l dl, (3.18)
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so that

πx(t) =
1

2π

∫ ∞

−∞

cos x l dl

−i t + 1
2
Q(l)

+λx(t). (3.19)

The last integral can be explicitly computed (see (3.28)). The first and second terms on the right
side of (3.18) make only a negligible contribution to fx(k) (for the first one we use Lemma 6.1 in
Appendix A; see the discussion around (3.26)), so that

fx(k) =
1

(2π)2

∫ π

−π

w(t)e−ikt

π0(t)
d t

�
∫ ∞

−∞

cos x l dl

−i t + 1
2
Q(l)

+

∫ π

−π
(R1+ R2)w(l)e

i x l dl

�

+ ngl, (3.20)

where the ngl designates the remainder term that is smaller or the same order of magnitude com-
pared to the required error estimate. From (2.6) one sees that the integral

∫ π

−π R1wei x l dl would be

much easier to evaluate than
∫ π

−π R2wei x l dl (see the remark at the end of the next paragraph), and
we shall concentrate on the latter in what follows.

Let b4 =
1
24

E[X 4] if δ = 2 and b4 = 0 otherwise. Decompose

R2 =
ψ− 1+ 1

2
Q

(−i t + 1
2
Q(l))2

+
(ψ− 1+ 1

2
Q)2

(−i t + 1
2
Q(l))3

+
�

ψ− 1+ 1
2
Q

−i t + 1
2
Q(l)

�2

R2,

and write R2 = T + U + V , where T = T (t, l), U = U(t, l) are defined by

T =
(−iβ3l3+ b4l4)w(l)

(−i t + 1
2
Q(l))2

+
−β2

3 l6w(l)

(−i t + 1
2
Q(l))3

, (3.21)

U =
ψ(l)− 1+ 1

2
Q(l) + iβ3l3− b4l4

(−i t + 1
2
Q(l))2

w(l)

and V is the rest. Put T∧x (t) =
∫ π

−π T (t, l)ei x l dl etc., so that

∫ π

−π
R2wei x l dl = T∧x (t) + U∧x (t) + V∧x (t).

Changing the variable of integration, writing w̃(l) = w(l/σ) and appropriately arranging the terms
we have

T∧x (t) =

∫ σπ

−σπ

−4iβ3l3w̃(l)ei x̃ l dl

(−2i t + l2)2σ4 +

∫ σπ

−σπ

4σ2 b4l4(−2i t + l2)− 8β2
3 l6

(−2i t + l2)3σ6 w̃(l)ei x̃ l dl

σ
. (3.22)

The evaluation of the contribution to fx(k) of the two integrals on the right side will be made by
rather explicit computations as given shortly. For the evaluation of the error term we need some
estimates of U∧x (t) and V∧x (t). To this end we shall consider only U∧x (t), V∧x (t) being much easier
to deal with. It is incidentally remarked that the contribution of the leading two terms appearing in
the expression (2.6) of R1 is comparable to the second integral in (3.22); that of R3 defined there is
evaluated to be negligible similarly to V∧(t).
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Computation of the error term corresponding to U . We begin with easy estimates of U∧x (t) that lead
to the second assertion of Theorem 1.2. Put

r(l) =ψ(l)− 1+ 2−1Q(l) + iβ3l3− b4l4.

Then the j-th derivative r( j)(l) is o(|l|2+δ− j) if j ≤ 2+δ and it follows from it that

U∧x (t) =

∫ π

−π

r(l)

(−i t + 1
2
Q(l))2

w(l)ei x l dl =
o(|t|(δ−1− j)/2)

|x | j+
if j ≤ δ < j+ 1. (3.23)

(Perform integration by parts j times and apply Lemma 2.1.) We can differentiate w.r.t. t without
any cost, so that

(d/d t)mU∧x (t) =
o(|t|−m+(δ−1− j)/2)

|x | j+
if j ≤ δ < j+ 1+ 2m. (3.24)

Recalling the estimates of the derivatives of 1/π0 = 1 − f̂0 obtained in 3.2 as well as 1/π0(t) =
σ
p
−2i t + · · · , we apply the method used for Lemma 2.1 to conclude that for j = 0, 1,2,

∫

U∧x (t)

π0(t)
w(t)eikt d t =

o(k−1−(δ− j)/2)

|x | j+
( j ≤ δ < j+ 1). (3.25)

Note that the formula (3.24) may become false if δ ≥ j + 1; in particular if 1 ≤ δ < 2, we must not
to take j = 0 on the right side of (3.25).

In the case 2 ≤ δ < 3, the estimate (3.25) is not satisfactory, being not sharp when x2 = o(k). It
may be natural that the integration by parts is made just once w.r,t. each variables l and t, which
yields
∫

U∧x (t)

π0(t)
w(t)eikt d t =

1

kx

∫

iσw(t)
p
−2i t

e−ikt d t

∫ π

−π

�

d

dl

r(l)w(l)

(−i t + 1
2
Q(l))2

�

ei x l dl + o
�

1

k3/2|x |δ−1

�

.

Here we have repeated the same argument made right above by using (3.24) with j = 1, m = 1 for
obtaining the error term. The double integral on the right side is evaluated by using Lemma 6.2 (see
Remark in Appendix A)) to yield the error term asserted at the end of Theorem 1.2.

As for the error estimate o(|x |−2−δ) of Theorem 1.2 we are to employ Lemma 6.1 in Appendix A.
Remember that we have the three expressions of fx(k) given in (2.2). Here we use the last one of
them because of the better estimate of the second formula in Lemma 6.1. The estimate that we need
to verify may accordingly be written as

I(x , k) :=

∫ π

−π

U∧x (t)

π0(t)
w(t) sin kt d t = o(|x |−2−δ). (3.26)

(Synchronously we must replace e−ikt by −2i sin kt in (3.20), which causes no problem: see a
remark after (3.29).) For the proof of (3.26) suppose δ > 0 and let m be the non-negative integer
such that m< δ ≤ m+1 so that r(l) is differentiable m+2 times but may not be m+3 times. Then
performing integration by parts m+ 2 times for the integral that defines U∧x (see (3.23)) results in

I(x , k) =
1

xm+2

m+2
∑

j=0

∫ π

−π

1

π0(t)
sin kt d t

∫ π

−π

v j(l)

(−i t + 1
2
Q(l))2+ j

ei x l dl + ngl,
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where v j = c j l
j r(m+2− j)(l) ( j = 0, . . . , m + 2, c j are certain real constants) and the ngl arises by

differentiation of w(l). If v j ’s satisfy the condition of Lemma 6.1 with ν = δ−m+ 2 (and β = 2 j ),
then applications of Lemma 6.1 then will lead to the desired estimate. That this premise holds true
follows from r(m+2)(l + h)− r(m+2)(l) = E[(iX )m+2eilX (eihX − 1)] = o(|h|ν) (h→ 0) (see Remark in
Appendix A). The case δ = 0 remains to be considered, but this case is directly treated by integrating
by parts twice for the l-integral and then proceeding as in the proof of Lemma 2.1 for the t-integral
(here also we need to work not with cos kt but with sin kt).

Derivation of the principal part. In order to include the case δ ≥ 2 we need to know a precise
function form corresponding to O(|t|3/2) in the expansion of 1/π0 given in (3.6). This turns out
to be of the form B4(−i2t)3/2 (if δ ≥ 2), where B4 is some constant. We shall present this fact as
Lemma 3.5 at the end of this section. For simplicity we suppose δ ≥ 2 and in the expression (3.20)
we substitute the expansion of 1/π0 given in Lemma 3.5. That the contribution of the error term
in (3.6) is negligible is shown in the same way as before. Also we may replace R1 by T defined in
(3.21) and R2 by the sum of the two leading terms on the right side of (2.6) as discussed above.
Now in the double integral that then comes out we replace two w’s by 1 and extend the range of
integration to the whole real line for both the inner and outer integrals, which results in

fx(k) =
1

(2π)2

∫ ∞

−∞

h

σ
p

−2i t + i2C∗ t + B4(−2i t)3/2
i

e−ikt d t

×
∫ ∞

−∞

�

2cos x̃ l

−i2t + l2 +
−4iβ3l3

(−i2t + l2)2σ3 + K + L

�

ei x̃ l dl

σ
+ ngl, (3.27)

where K denotes the second fraction appearing in (3.22) and L the sum of the two terms from (2.6)
but with Q(l) replaced by l2.

The evaluation of the double integral above is performed by elementary calculus based on the
following formulae: for α > 0 and y > 0,

∫ ∞

−∞

cos yl

−i2αt + l2 dl =
π

p
−i2αt

e−y
p
−i2αt (3.28)

and

∫ ∞

−∞

1
p
−i2αt

e−y
p
−i2αt e−ikt d t =







p
2π
p
αk

e−αy2/2k (k > 0),

0 (k ≤ 0).
(3.29)

The latter formula is the Laplace inversion of the well known formula for the resolvent kernel of
the one-dimensional Brownian motion ([2], p.146 (27)). Since the real and the imaginary parts of
the function in (3.28) are even and odd, respectively, we can replace e−ikt by −2i sin kt in all the
formulae given above (and also in below as is easily checked), so that the choice of sin transform
made at (3.26) causes no problem.

Now, applying (3.28) and (3.29) successively, we find that for α > 0, k > 0 and y ∈ R \ {0},

S = Sk(y,α) :=

∫ ∞

−∞
e−ikt d t

∫ ∞

−∞

ei y l dl

−i2αt + l2 =

∫ ∞

−∞

π
p
−i2αt

e−|y|
p
−i2αt e−ikt d t

=
π
p

2π
p
αk

e−αy2/2k,
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and then on differentiating the two sides of the last equality

∫ ∞

−∞

p

−i2αt e−ikt d t

∫ ∞

−∞

ei y l dl

−i2αt + l2 =−sgn y ∂yS =
π
p

2απ |y|
k
p

k
e−αy2/2k, (3.30)

∫ ∞

−∞
i te−ikt d t

∫ ∞

−∞

ei y l dl

−i2αt + l2 =−
1

2α
∂ 2

y S =
�

1−
αy2

k

�

π
p

2π

2k
p
αk

e−αy2/2k,

of which the first and second formulae give the principal term and the polynomial P1, respectively,
in the expansion of fx(k) in Theorem 1.2, in view of (3.27).

Keeping (3.28) in mind we derive from (3.30) first

∫ ∞

−∞

p

−i2t e−ikt d t

∫ ∞

−∞

ilei y l dl

−i2αt + l2 = −α−1/2∂y

�

sgn y ∂yS
�

=−α−1/2sgn y ∂ 2
y S

= sgn y
�

1−
y2

k
α

�

π
p

2π

k
p

k
e−αy2/2k,

and then
∫ ∞

−∞

p

−i2t e−ikt d t

∫ ∞

−∞

il3ei y l dl

(−i2αt + l2)2
= sgn y

h

−α∂α(α−1/2∂ 2
y S)−α−1/2∂ 2

y S
i

= sgn y
�

1−
5y2

2k
α+

y4

2k2α
2
�

π
p

2π

k
p

k
e−αy2/2k,

and you see that in (3.27) this last formula evaluates the contribution of
p
−2i t multiplied by the

second fraction in the square brackets, giving the polynomial P2 in the expansion of Theorem 1.2.
Those of the remaining terms together yield the term involving J(x , k) apart from some higher order
terms. Computation is made as above by differentiation of the formulae obtained above w.r.t. α, y
(in the last formula the double integral does not allow differentiation by y under the (inner) integral
symbol, so we truncate the integrand by w(l); note that the remainder is a nice smooth function of
α and y that together with derivatives rapidly approaches zero as k, |y| → ∞). The further details
are omitted.

The proof of Theorem 1.2 is finished by proving

Lemma 3.5. For some constant B4, 1/π0(t) = σ
p
−2i t + i2C∗ t + B4(−2i t)3/2+ o(|t|δ+1)/2).

Proof. We can suppose 2 ≤ δ < 3. Remembering the procedure by which (3.6) is derived we have
only to show

∫ π

−π
R1(t, l)dl =

3
p
−2i t

8σ
+ o(|t|3/2)

and
∫ π

−π

h

R2(t, l)− R2(0, l)
i

dl = b4C
p

−2i t + o(|t|δ−1)/2),
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where C is a constant. For the first formula use (3.1) and note that −i t/
p
−2i t = 1

2

p
−2i t and

1
2

t2/(−2i t)3/2 =−1
8

p
−2i t; estimation of the error term is made as before. By observing that

R2(t, l)− R2(0, l) =
16b4l4(i tQ− t2)
(−2i t +Q)2Q2 (1+ o(|l|δ−2))

=
16b4

σ4

i t((−2i t +Q)− 3t2

(−2i t +Q)2
(1+ o(|l|δ−2)),

the second one is obtained by the same argument as for the first formula.

4 The case d = 2

This section consists of three subsections. In the first subsection we evaluate π0(t) and derive an
asymptotic estimate of f0(k). The second one is devoted to the proof of Theorem 1.3. The proofs of
Theorems 1.4, 1.5 and 1.6 are given in the third one.

4.1. Since (−i t + 1
2
Q(θ))−1 is not integrable on {θ ∈ R2} we proceed somewhat differently from

the case d = 1.

Suppose E[|X |2 lg+ |X |]<∞. From (2.3) we deduce as in the case d = 1 that

π0(t) =
1

(2π)2

∫

T2

1

−i t + 1
2
Q(θ)

dθ + c1+λ(t), (4.1)

where

c1 =
1

(2π)2

∫

T2

R2(0,θ)dθ =
1

(2π)2

∫

T2

ψ(θ)− 1+ 1
2
Q(θ)

(1−ψ(θ))1
2
Q(θ)

dθ >−∞

and λ(t) = (2π)−2
∫

T2[(R1+ R2)(t,θ)− R2(0,θ)]dθ . We write

λ(t) =
1

(2π)2

∫

T2

� [t2+ i t(1−ψ+ 1
2
Q)](ψ− 1+ 1

2
Q)

1
2
(−i t + 1−ψ)(−i t + 1

2
Q)(1−ψ)Q

+ R1

�

dθ . (4.2)

The present moment condition guarantees that c1 <∞ as is verified in the same way as in (3.5). It
follows that

λ(t) = o(|t|δ/2) +O(t lg |t|). (4.3)

Here the first (second) error term is superfluous if δ = 2 (respectively if δ < 2); if δ = 1 there
appear the third order monomials of θ as leading terms in the numerator, but they do not cause
the magnitude of O(|t|1/2) because they are odd; the contribution of R1 is O(t lg |t|), which the first
integrand in (4.2) also contributes if δ = 2. For the derivatives we have

λ′(t) = o(|t|δ/2−1) +O(lg |t|);

(d/d t) jλ(t) = o(|t|δ/2− j) +O(|t|−( j−1)) ( j = 2, 3) (4.4)

as being shown below. The situation that if δ ≥ 2, the contribution from R1 is dominant (which are
mostly estimated independently of δ) remains true for the derivatives. The contributions from the
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other term or its derivatives are evaluated by the first case of Lemma 2.1, giving the o(·) terms in
(4.4). As for R1 the first fraction in (2.4) is evaluated in the same way. The other fraction causes
the terms involving logarithm but only for the first derivative; indeed its second derivative is of the
form

r ′′2 (t)
−i t + 1−ψ

+
1+ ir ′2(t)

(−i t + 1−ψ)2
+

2(−i t + r2(t))
(−i t + 1−ψ)3

,

of which the first term is plainly negligible and the other two terms only contribute the estimate
O(1/t), and similarly for the higher order derivatives.

Splitting T2, the range of integration, into two parts by the curve {Q(·) = a} with a constant a > 0
chosen arbitrarily so far as {Q(·)≤ a} ⊂ T2, we obtain

∫

T2

1

−i t + 1
2
Q(θ)

dθ =
2π

|Q|1/2

∫ a/2

0

du

−i t + u
+

∫

{Q>a}∩T2

1

−i t + 1
2
Q(θ)

dθ ,

of which the first integral on the right side equals lg(−i t+a/2)−lg(−i t) =− lg(−i t)+lg(a/2)+O(t)
so that (2π)−2 times the integral on the left side above may be written as − lg(−i t)/2π|Q|1/2+ c2+
η(t) with the constant c2 introduced in Section 1 and a smooth function η(t) which vanishes at
t = 0. Thus, with c◦ = 2π

p

|Q| (c1+ c2) (also introduced in Section 1) and λ̃(t) = λ(t) +η(t),

π0(t) =
− lg(−i t) + c◦

2π|Q|1/2
+ λ̃(t). (4.5)

Define h(t) via
1

π0(t)
=
−2π|Q|1/2

lg(−i t)− c◦

�

1−
λ̃(t)
π0(t)

�

=
−2π|Q|1/2

lg(−i t)− c◦
+ h(t). (4.6)

Employing (4.3) and (4.4), which are satisfied by λ̃ in place of λ, we then see that for j = 0,1, 2,

d j

d t j h(t) = o
� |t|δ/2− j

(lg |t|)2

�

+O
�

t1− j

lg |t|

�

(4.7)

and, proceeding as in the subsection 3.2 (or rather by (2.8)), that

f0(k) =
1

π

∫ ∞

−∞

2π|Q|1/2

lg(−i t)− c◦
cos kt d t −

1

π

∫ π

−π
h(t)w(t) cos kt d t + ε(k).

On changing the variable of integration the first term on the right side may be written as

|Q|1/2 ec◦

∫ ∞

−∞

1

lg(−i t)
cos(ec◦kt) d t,

which equals 2π|Q|1/2 ec◦
h

W (ec◦k)− e−ec◦ k
i

as is easily deduced from the identity (1.4) (cf. [17]
Appendix). The second term is easily evaluated by integrating by parts (cf. Lemma 2.2) and we can
conclude that if E[X 2 lg+ |X |]<∞,

f0(k) = 2π|Q|1/2 ec◦W (ec◦k) +
o(k−δ/2)
k(lg k)2

+O
�

1

k2 lg k

�

. (4.8)
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Without assuming the condition E[X 2 lg+ |X |]<∞ it holds that if

g(t) =

∫

T2

R2(t,θ)dθ =

∫

T2

�

1

−i t + 1−ψ(θ)
−

1

−i t + 1
2
Q(θ)

�

dθ ,

then
ge(t) = o(lg |t|) and go(t) = o(1), (4.9)

as t → 0, where ge and go denote the even and odd parts of g, respectively. In fact the odd part of
the integrand takes on the form

i t
�

[1
2
Q(θ)]2− [1−ψ(θ)]2

�

| − i t + 1−ψ(θ)|2| − i t + 1
2
Q(θ)|2

and an application of Lemma 2.1 shows the second relation of (4.9); the first one is shown in
the same way. Similarly we obtain g ′(t) = o(1/t) and g ′′(t) = o(1/t2). The integral

∫

T2 R1dθ is

negligible in comparison with g. With the term c1+λ(t) in (4.1) replaced by (2π)−1
∫

T2(R1+R2)dθ
and with c◦ by 2π|Q|1/2c2 the functions h(t) and λ̃(t) defined via (4.6) and (4.5), respectively, satisfy
(4.7) (with δ = 0) for j = 1,2 and λ̃( j)(t) = o(1/t j) ( j > 0); on the other hand, for the even and
odd parts of h(t) we have

he(t) = o
�

1

lg |t|

�

and ho(t) = O
�

1

(lg |t|)2

�

. (4.10)

On using Lemma 2.2 the same argument as above shows (4.8) with the new c◦.

Thus the asymptotic formula of Theorem 1.3 have been verified for x = 0.

REMARK. The proof of (4.8) for the case δ = 0 given above is essentially the same as that in [10]
given to the one dimensional result mentioned in Introduction (the case α= 1). The imbedded walk
that consists of traces on the horizontal axis of our walk on Z2 is a one dimensional walk whose
characteristic function is |Q|1/2|t|(1+ o(1)) as t → 0 ([13]), so that for its hitting time distribution,
f0(k) = π|Q|1/2[k(lg k)2]−1(1+ o(1)) according to Kesten’s result. It may be worth noticing that
this asymptotic form differs from the one for the two dimensional walk itself only by the factor 1/2
and this factor is the same as we might compute as if the successive time intervals spent outside the
horizontal axis were independent not only one another but also of the imbedded walk.

4.2. Define ex(t) as in the case d = 1, namely

ex(t) = π−x(t)−π0(t) + a(x)

=
1

(2π)2

∫

T2

�

1

1− ei tψ(θ)
−

1

1−ψ(θ)

�

(ei x ·θ − 1) dθ ,

so that f̂x(t) = ex(t)/π0(t) + 1− a∗(x)/π0(t), and cx(t) and sx(t) analogously to those given in
the subsection 3.3 so that ex = (2π)−2[cx + isx].

Lemma 4.1. There exists a constant C such that for 0< |t|< 1/2,

(i) |cx(t)| ≤ C x2|t| lg |t|−1 and |c′x(t)| ≤ C x2 lg |t|−1,
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(ii) |c′′x (t)| ≤ C |x |2/|t| and |c′′′x (t)| ≤ C |x |2/|t|2,

(iii) c′x(t)/i = a(t, x) lg |t|−1+ i b(t, x) sgn t

with the functions a and b both even in t and dominated by C x2 (in absolute value).

Proof. From the expression of cx corresponding to (3.10) we have

|cx(t)| ≤ C1

∫

T2

|t|(1− cos x · θ)dθ
| − i t + 1

2
Q(θ)|Q(θ)

≤ C2 x2|t| lg |t|−1. (4.11)

where for the last inequality we have dominated 1− cos x · θ by x2θ2 and applied Lemma 2.1 (the
second case). Thus the first bound of (i) is verified.

Differentiate the defining expression of cx we see that

c′x(t) =

∫

T2

i(cos x · θ − 1)dθ
[−i t + 1−ψ(θ)]2

+

∫

T2

∂tR1(t,θ)(cos x · θ − 1)dθ

On employing (2.4) and the inequality 1− cos x · θ ≤ |x ||θ | the second integral is evaluated to be
O(|x |). The first one being evaluated as above, this verifies not only the second bound of (i) but also
(iii). For the proof of (ii) we have only to observe the bound

|c′′x (t)| ≤ C1

∫

T2

1− cos x · θ
(|t|+ θ2)3

dθ ≤
C2 x2

|t|
,

and a similar one for c′′′x (t). The proof of Lemma 4.1 is complete.

Lemma 4.2. Let 0≤ δ < 1. Then, as t → 0, uniformly in x 6= 0

|sx(t)|= o(|t|δ/2), |s′x(t)|= o(|x ||t|(δ−1)/2), |s′′x (t)|= o(|x ||t|(δ−3)/2 ).

Proof. The proof of the first bound is the same as that of Lemma 3.2 except that we have | sin x ·θ |
dominated by 1 (instead of |x · θ |). For estimation of s′x we differentiate the analogue for sx of the
expression of Ix given in (3.11) to see that for any ε > 0,

|s′x(t)| ≤ C1

∫

T2

|E[sin X · θ] sin x · θ |
(|t|+ θ2)3

dθ + C2

≤ ε|x ||t|(δ−1)/2

∫

R2

|θ |3+δdθ

(1+ |θ |)6
+ C(ε)

for some positive constant C(ε) depending on ε but not on x nor on t, showing the second bound.
The third one is proved in the same way. The proof of the lemma is complete.

In the second half of the subsection 4.1 it is noticed that the bounds for the derivatives of h( j) and
λ̃( j)(t) ( j > 0) derived in its first half are valid without assuming E[X 2 lg |X |] <∞. Taking this as
well as (4.10) into account we infer from Lemmas 4.1 and 4.2 the following
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Corollary 4.1. Uniformly in x ∈ Z, as t → 0

π′x(t) =−(2π|Q|
1/2 t)−1+ o

�

|t|δ/2−1(1+ |x ||t|1/2)
�

+O
�

|x |2+ lg |t|
�

.

In what follows of this section any estimates are insignificant unless k→∞, so k is understood large
unless the contrary is explicitly stated.

Lemma 4.3.
∫ π

−π

cx(t)
π0(t)

e−ikt d t = O
�

x2

k2 lg k

�

.

Proof. Write g(t) for cx(t)/π0(t). First we verify that

g ′(t) = ã(t, x) + b̃(t, x) (sgn t)/ lg |t|−1 (0< |t|< 1/2), (4.12)

where both ã and b̃ are even in t and bounded by C x2. To this end we employ the estimate of h(t) in
(4.10) together with Lemma 4.1 (iii) to see that c′x(t)/π0(t) may be written in the same form as the
right side of (4.12). On the other hand, using the estimates π0(t) = C lg |t|+O(1) and π′0 = O(1/t)
as well as the bound of cx(t) in Lemma 4.1 (i), one infers that |cx(t)π′0(t)/π

2
0(t)| ≤ C x2/ lg |t|−1.

Thus (4.12) holds true.

Integrating by parts (once / twice), splitting the range of integration at t = ±1/k,±ε and letting
ε ↓ 0 with the help of limε↓0[g ′(ε)− g ′(−ε)] = 0, which follows from (4.12), one obtains

∫ π

−π
g(t)e−ikt d t =

1

(ik)2

�

lim
ε↓0

∫

ε<|t|≤1/k

e−ikt d g ′(t) +

∫

1/k<|t|≤π
g ′′(t)e−ikt d t

�

. (4.13)

The last integral is easily evaluated to be O(x2/lg k) by applying the bounds

|g ′′(t)| ≤ C x2/|t| lg |t|−1, |g ′′′(t)| ≤ C x2/t2 lg |t|−1 (0< |t|< 1/2),

which follow from Lemma 4.1 and the bounds π( j)0 (t) = O(t− j), ( j ≥ 1). The limit on the right side
of (4.13) is bounded by

|g ′(1/k)− g ′(−1/k)|+
∫

|t|<1/k

|1− e−ikt ||g ′′(t)|d t ≤
2C‖b̃‖∞x2

lg k
+ C x2k

∫ 1/k

0

2d t

lg |t|−1 .

The integral in the right-most member being O(1/k lg k), this concludes the assertion of the lemma.

Lemma 4.4. If 1≤ δ ≤ 2,
∫ π

−π

sx(t)
π0(t)

e−ikt d t = O
� |x |

k2 lg k

�

.

Proof. We proceed as in the proof of Lemma 4.1 starting with a two dimensional analogue of (3.14)
(instead of (3.10)) or with (3.11) (for derivatives) to see that

|sx(t)| ≤ C1|t|
∫

T2

| sin x · θ |
(|t|+ θ2)|θ |

dθ
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and similar bounds for the derivatives, which reduce to

sx(t) = O(|x |t lg |t|−1), s′′x (t) = O(|x |/t) and s′′′x (t) = O(|x |/t2)

(for 0 < |t| < 1/2). Further employing (3.16) (of which only the term involving i tQ is relevant
here) we also deduce (as in the proof of Lemma 4.1 (iii)) that

s′x(t) =

∫

T2

−i2E[sin X · θ]
(1− ei tψ(θ))(1− ei tψ(−θ))Q(θ)

sin x · θ dθ +O(|x |)

= ia(t, x) lg |t|−1+ b(t, x) sgn t,

where a and b are even in t and bounded by C |x | (see the proof of (iii) of Lemma 4.1). By these
bounds we derive that of the lemma as in the proof of Lemma 4.3.

Proof of Theorem 1.3. The case 1 ≤ δ < 2 is immediate from the last two lemmas (together with
the result on f0(k) in 4.1). For 0 ≤ δ < 1, the same argument as made in the proof of Lemma 4.3
deduces from Lemma 4.2 that

∫ π

−π

sx(t)
π0(t)

e−ikt d t = o
� |x |

k(3+δ)/2 lg k

�

, (4.14)

which in turn shows the asserted estimate of Theorem 1.3 in view of Lemma 4.3 and the inequality
|x |/
p

k ≤ lg |x |/ lg k (3 ≤ x2 ≤ k). The case δ = 2 is similarly dealt with. The proof of Theorem 1.3
is complete.

4.3. Here we prove Theorems 1.4, 1.5 and 1.6. Recalling (2.1) we have

fx(k) =
1

2π

∫ π

−π

� −2π|Q|1/2

lg(−i t)− c◦
+ h(t)

�

π−x(t)e
−ikt d t,

where h = h(t) is defined via (4.6) (see the second half of 4.1 in the case E[X 2 lg+ |X |] = ∞).We
truncate this integral by w(t) (as in (3.18) but with t in place of θ). The (1− w) part is plainly
negligible, so that we may multiply the integrand by w(t). We further truncate the integral defining
πx(θ) by means w(|θ |). The (1−w(|θ |) part that accordingly arises equals

1

(2π)3

∫ π

−π

w(t)
π0(t)

e−ikt d t

∫

T2

1−w(|θ |)
1− ei tψ(θ)

ei x ·θ dθ = o
�

1

x2+δk(lg k)2

�

. (4.15)

For the proof of this estimate we may replace 1− ei tψ by 1−ψ in the second integrand, the error
being of smaller order. This results in the product of two independent integral, of which the first is
already evaluated in 4.1 and the second is o(|x |−2−δ) (use a two dimensional analogue of Lemma
6.1 (cf.[14]:Appendix) if δ is not integral, otherwise Riemann-Lebesgue lemma disposes).

Let x 6= 0 and define

qx(k) =−
2π|Q|1/2

(2π)3

∫ ∞

−∞

e−ikt d t

lg(−i t)− c◦

∫

R2

ei x ·θ dθ

−i t + 1
2
Q(θ)

and

rx(t) =
1

(2π)2

∫

T2

[R1(t,θ) + R2(t,θ)]w(|θ |)ei x ·θ dθ .
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Then, employing (2.3) and (4.15) together with what is discussed preceding the latter, one deduces
that as |x | ∧ k→∞,

fx(k) = qx(k) +
1

2π

∫ π

−π
h(t)π−x(t)w(t)e

−ikt d t

−|Q|1/2
∫ π

−π

rx(t)w(t)e−ikt d t

lg(−i t)− c◦
+ o
�

1

x2+δk(lg k)2

�

. (4.16)

One can write qx(k) in the form

qx(k) =−
1

(2π)2

∫ ∞

−∞

e−ikt d t

lg(−i t)− c◦

∫

R2

ei x̃ ·θ dθ

−i t + 1
2
θ2
=

1

2π

∫ ∞

−∞

K0(| x̃ |
p
−i2t)

− lg
p

−ie−c◦ t
e−ikt d t

(K0 is the usual modified Bessel function of order 0). The following lemma is proved in [17].

Lemma 4.5. As k ∧ |x | →∞

qx(k) =















lg(1
2
ec◦ x̃2)

k(lg(ec◦k))2
e− x̃2/2k +

2γ lg(k/x2)
k(lg k)3

+O
�

1

k(lg k)3

�

for x̃2 < k,

lg(1
2
ec◦ x̃2)

k(lg(ec◦k))2
e− x̃2/2k +O

�

1+ [lg( x̃2/k)]2

x2(lg k)3

�

for x̃2 ≥ k.

(4.17)

For the proof of Theorems 1.4 and 1.5 the two integrals in (4.16) need to be evaluated and we prove
the following estimates (i) through (iii) valid whenever k ∧ |x | →∞.

(i) If E[ |X |2 lg+ |X | ]<∞, then

H :=

∫ π

−π
h(t)π−x(t)w(t)e

−ikt d t = o
�

1

|x |k(δ+1)/2(lg k)2

�

for 0≤ δ < 2.

In general, H = o
�

1

|x |k1/2 lg k

�

.

(ii)

R :=

∫ π

−π

rx(t)w(t)e−ikt d t

lg(−i t)− c◦
=

1

|x |k lg k

�

o(k(1−δ)/2) + b3O(1)

�

for 0≤ δ < 2.

(iii)

H = O
�

1

|x |k3/2 lg k

�

and R= O
�

1

k lg k

�

b3

|x |
+

1

|x |2

��

if δ = 2.

Proof of (i) through (iii). Regarding (1 − ei tψ)−1ei x ·θ as the inner product of the vector func-
tion (i|x |(1− ei tψ))−1|x |−1 x and the gradient of ei x ·θ and noting that ψ is periodic we apply the
divergence theorem to find

π−x(t) =
−ei t

i|x |(2π)2

∫

T2

|x |−1 x · ∇ψ
(1− ei tψ)2

ei x ·θ dθ (4.18)
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and using this we deduce that π−x(t) = O(1/|x ||t|1/2) and π′−x(t) = O(1/|x ||t|3/2). Combined with
the estimate of h given in (4.7) and (4.10) these yield the bounds of H in (i), in view of Lemma 2.2.

For the proof of (ii) first we see, by using Lemma 2.1, that for δ < 1,

rx(t) = o(|t|(δ−1)/2/|x |) and r ′x(t) = o(|t|(δ−3)/2/|x |). (4.19)

Next let δ ≥ 1. Then

∫

ψ(θ)− 1+ 1
2
Q(θ)

(−i2t +Q(θ))2
w(|θ |)ei x ·θ dθ =

b3O(1) + o(1)
|x |

, (4.20)

giving the estimate of the essential part of rx(t), so that

rx(t) = b3O(1/|x |) + o(1/|x |). (4.21)

The proof of (4.20) may proceed analogously to that of Lemma 2.2: split the range T2 by means
of the circle |θ | = 1/|x | and apply the divergence theorem twice for the integral on |θ | > 1/|x |, in
which the quantity arising in the last step is dominated by a positive multiple of

1

x2

∫

1/|x |<|θ |<π

b3+ o(1)

| − i2t +Q(θ)|3/2
dθ ≤

C

x2

∫

1/|x |<|θ |<π

b3+ o(1)
|θ |3

dθ = C
b3+ o(1)
|x |

plus the two boundary integrals that admit the same bound as above. The first formula of (4.19)
does not hold for δ > 1 (we have the third case of Lemma 2.1), but we still have

r ′x(t) = o(|t|(δ−3)/2/|x |) + b3O(1/|x |
p

|t|) (4.22)

as is readily seen. Now, (ii) follows from (4.19), (4.21) and (4.22) on using Lemma 2.2.

For (iii), i.e. in case δ = 2, first integrate by parts relative to θ , and then proceed as above.

Proof of Theorem 1.4. In view of (4.16) the assertion is readily deduced from (i), (ii) and Lemma
4.5 if one also employs Theorem 1.3 and the trivial bound fx(k) ≤ pk(x) (in disposing of the case
x2 < k/ lg k and of the case x2 > k(lg k), respectively).

Proof of Theorem 1.5. This follows from (iii) given above and the following lemma.

Lemma 4.6. If r◦ =
p

2 e−γ−c◦/2, then uniformly for |x |> r◦, as k→∞

qr◦(k, x̃)− qx(k) = O
�

1

k2(lg k)
∧

1

|x |4 lg(|x |+ 1)

�

.

Proof. This is Lemma 4 of [17].

Proof of Theorem 1.6. Let ξ2 = x2/n. We derive the formula (1.8) from Theorem 1.3 if ξ2 <

1/(lg n)2 and from Theorem 1.4 if ξ2 ≥ 1/(lg n)2. First let ξ2 < 1/(lg n)2. Then an elementary
computation shows that 1− D(ec◦n,ξ2/2) agrees with 2 lg(|x |/r◦)

∫∞
ec◦ W (u)du within the error of
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magnitude O((lgξ)/(lg n)3), where r◦ is given in Lemma 4.6 (see Remark 4 of [17]). Now (1.8)
readily follows from Theorem 1.3. Next let ξ2 ≥ 1 and integrate the error term in (1.5):

∫ n

2

| lg(x2/t)|2+ 1

x2(lg t)3
d t = O

� | lgξ|2+
(lg n)3ξ2

�

.

In view of the results of [17] (as presented in Appendix (C) of this paper) this combined with
Theorem 1.5 shows (1.8). A similar argument applies in the case 1/(lg n)2 ≤ ξ2 < 1. The proof of
Theorem 1.6 is finished.

5 The case d ≥ 3

This section is divided into three subsections. In the first one we provide some preliminary formulae.
Theorems 1.7 and 1.8 will be proved in the second and third, respectively. Details of the proofs are
quite similar to that for the case d = 1 and only main steps of the proof will be indicated. Here,
however, we use the fact that

(2π)−1

∫ π

−π
πx(t)e

−ikt d t =

¨

pk(x) (k ≥ 0),
0 (k < 0).

(5.1)

(This holds true in all dimensions d ≥ 1.)

5.1. Let d ≥ 3. Since (1−ψ)−1 is integrable over T d , it is appropriate to subtract the term (1−ψ)−1

from (1− ei tψ)−1 and is accordingly convenient to bring in

R4 = R4(t,θ) := R2(t,θ)−
1

1−ψ(θ)
+

1
1
2
Q(θ)

so that
1

1− ei tψ(θ)
−

1

1−ψ(θ)
=

i t

(−i t + 1
2
Q(θ))1

2
Q(θ)

+ R1+ R4; (5.2)

also

R4 =
�

1
1
2
Q
+

1

−i t + 1−ψ

� i t(ψ− 1+ 1
2
Q)

(1−ψ)(−i t + 1
2
Q)

. (5.3)

For computation of fx(k) we decompose

π−x(t)
π0(t)

=
G(−x)
π0(t)

+
π−x(t)−π−x(0)

G(0)
+
�

1

π0(t)
−

1

π0(0)

�

(π−x(t)−π−x(0)),

where the identity G(−x) = π−x(0) is used. The contribution of the first term on the right side to
fx(k) with x 6= 0 is −G(−x) f0(k) and that of the second term equals pk(−x)/G(0) (k > 0) owing
to (5.1). Hence putting

mx(k) =
1

2π

∫ π

−π

�

1

π0(t)
−

1

π0(0)

�

(π−x(t)−π−x(0))w(t)e
−ikt d t,
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we have

fx(k) = e0pk(−x)− G(−x) f0(k) +mx(k) + |x |−1
+ ε(k) (x 6= 0), (5.4)

where the error term is caused by truncation by means of w(t) (ε(k) denotes a rapidly decreasing
term as in 3.2). Decomposing −π0(0)/π0(t) in a similar way we also have

f0(k) = e2
0 pk(0) + e0m0(k) + ε(k). (5.5)

5.2. Here we prove Theorem 1.7. First consider the case d = 3 and suppose 0 ≤ δ ≤ 2. Put C◦ = 0
if δ < 1 and

C◦ =
1

(2π)3

∫

T3

(ψ− 1+ 1
2
Q)(1−ψ+ 1

2
Q)

[1
2
(1−ψ)Q]2

dθ (5.6)

if δ ≥ 1. Then (2π)−3
∫

T3 R4dθ = iC◦ t+o(|t|(1+δ)/2)+O(|t|3/2). For verification we apply the third
case of Lemmas 2.1 (with α = (1− δ)/2) if δ 6= 1 and an obvious analogue of (3.5) if δ = 1; the
last O-term needs to be given if δ = 2 and is superfluous if δ < 2. Likewise, (2π)−3

∫

T3 R1dθ =
−i tG(0) +O(|t|3/2), as required.

For simplicity let 0≤ δ < 2; if δ = 2 we have only to replace o-terms by the corresponding O-terms.
Then, taking what is obtained right above into account, we make the same manipulation with a
cutoff function w(θ) as before and then apply the formula (3.1) with n= 1 to find

π0(t) = G(0)−
p
−i2t

2π|Q|1/2
− iC0 t + o(|t|(1+δ)/2) (C0 :=−C◦+ G(0)). (5.7)

A little inspection assures that the derivative of the error term is o(|t|(δ−1)/2), hence

π′0(t) =
1

2π|Q|1/2
·

i
p
−i2t

− iC0+ o(|t|(δ−1)/2); (5.8)

and similarly for π′′0 (t), π
′′′
0 (t). Using e0 = 1/G(0) as well as (5.7) one infers that

1

π0(t)
−

1

π0(0)
=− f̂0(t) + 1− e0 =

e2
0

2π|Q|1/2
p

−i2t − i2C1 t + o(|t|(1+δ)/2) (5.9)

with C1 =−
1
2
C0e2

0 + [(2π)
2|Q|]−1e3

0.

Using (5.7) together with estimates of the derivatives of π0(t) one can obtain (also using Lemma
5.1 in 5.3) mx(k) = O(k−5/2(|x |+ ∧ (k/|x |+)) + o(k−2−δ/2). (This will be refined in Lemma 5.2
below, so details are omitted.) From (5.5) it in particular follows that

f0(k) = e2
0 pk(0) + o(k−2−δ/2) +O(k−5/2). (5.10)

Substitution of these estimates of mx(k) and f0(k) into (5.4) yields the formula (1.10) of Theorem
1.7 for d = 3 since in view of (1.9) the leading term of (1.10) may be written as

e2
0 pk(0)1{0}(x) + e0 pk(−x)− e2

0G(−x)pk(0).

1991



In the same way the formula (1.10) for d ≥ 4 follows if we prove that for some constant C ,

|mx(k)| ≤















C lg k

k3

�

1∧
p

k

|x |+

�

if d = 4

C

k3

�

1∧
�

p
k

|x |+

�d−3�

if d ≥ 5.

(5.11)

For the proof one has only to look at the main part of πx(t)−π0(0) which is a constant times

∫

Q1/2T d

tei x̃ ·θ w̃

(−i2t + θ2)θ2 dθ = cd t

∫ π

0

sinα dα

∫ 1

0

rd−3 cos(| x̃ |r cosα)
−2i t + r2 w(r)dr + tη(t),

where η(t) is smooth and the cut-off is made with w(Q1/2θ). It is easy to see that if d = 4,

�

�

�∂
j

t [πx(t)−π0(0)]
�

�

�≤

(

[(|t| lg |t|)∧ (
p

|t|/|x |+)]|t|− j for j = 0,1

[|t| ∧ (
p

|t|/|x |+)]|t|− j for j = 2,3,

from which one evaluates the integrand of the integral defining mx(k) and its derivatives to obtain
the estimate (5.11) for d = 4; that for d ≥ 5 is obtained similarly.

5.3. For the proof of Theorem 1.8 we need to find a finer evaluation of mx(k). To this end we make
an exact computation based on the formula

∫ ∞

−∞
e−y

p
−2i t e−ikt d t =

p
2π ·

y

k
p

k
e−y2/2k (y > 0), (5.12)

which follows from (3.29). The result is formulated in the next lemma. Set

H(t, x) =
1

(2π)3

∫

R3

i tei x ·θ dθ

(−i t + 1
2
Q(θ))1

2
Q(θ)

. (5.13)

Lemma 5.1. For x ∈ R3 and k > 0,

1

2π

∫ π

−π

p

−i2t H(t, x)w(t)e−ikt d t =
1

|Q|1/2|x |+
·

1

(2πk)3/2

�

1− e− x̃2/2k
�

1−
x̃2

k

�

�

+
ε(k)
|x |+

,

where the first term on the right side is understood to be zero if x = 0.

Proof. First we compute (2π)3H(t, x), which may be written as

2π

|Q|1/2

∫ π

0

sinα dα

∫ ∞

0

i4t

−i2t + r2 cos[| x̃ |r cosα] dr.

Applying (3.28) to the inner integral above and then performing the outer integration we find

H(t, x) =
1

2π|Q|1/2| x̃ |

�

e−
p
−2i t | x̃ |− 1

�

(x 6= 0) (5.14)
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and by continuity H(t, 0) = −(2π|Q|1/2)−1p−2i t. The formula (5.12) as well as (3.9) (and its
cosine companion) is now used to verify that for x 6= 0,

∫ π

−π
(e−
p
−i2t | x̃ |− 1)

p

−i2t w(t)e−ikt d t =

p
2π

k
p

k

�

1− e− x̃2/2k
�

1−
x̃2

k

�

�

+ ε(k),

showing the formula of the lemma. For the verification it suffices to see that for y > 0, the integral
∫∞
−∞(1−w(t))

p
−i2t e−y

p
−2i t e−ikt d t is O(k−N ) for any N , but its absolute value is indeed at most

CN k−N
h

1+ yN
∫∞

0
e−y

p
t(1−w(t/2))d t

i

, which is O(k−N ). The proof of Lemma 5.1 is complete.

The next lemma provides an asymptotic form of mx(k). It follows from (5.2) and (5.13) that

π−x(t)−π−x(0) = H(t, x) +
1

(2π)3

∫

T3

�

R1+ R4
�

w̃ei x ·θ dθ +ηx(t) (5.15)

where w̃ = w̃(θ) := w(|θ |) and

ηx(t) =
1

(2π)3

∫

T3

(1− w̃)(ei t − 1)ψ

(1− ei tψ)(1−ψ)
ei x ·θ dθ +

i t

(2π)3

∫

R3

(1− w̃)ei x ·θ dθ

(−i t + 1
2
Q)1

2
Q

.

It is readily seen that the contribution of ηx(t) to mx is O(k−5/2|x |−2−δ
+ ).

Lemma 5.2. Uniformly in x ∈ R3, as k→∞

mx(k) =
e2

0

2π|Q|(2πk)3/2| x̃ |+

�

1− e− x̃2/2k

�

1−
x̃2

k

�

�

+
C1(3− k−1 x̃2)

|Q|1/2(2π)3/2k5/2
e− x̃2/2k +

ε(k)
|x |+

+















o
�

p
k ∧ |x |+

k2+δ/2|x |+

�

if δ < 1;

p
k ∧ |x |+
k5/2

× o
�

|x |−δ+ lg(|x |δ−1 ∨ e)
�

+ b3O
�

k ∧ x2

k5/2|x |2+

�

if 1≤ δ < 2,

where b3 is the same as in Theorem 1.8; o
�

|x |−δ+ lg(|x |δ−1∨ e)
�

is bounded and approaches zero faster

than |x |−δ lg |x |δ−1 as |x | →∞ (uniformly in k).

Proof. Recall (5.9) as well as (5.15) and observe that the preceding lemma gives the leading term.
The contribution to mx(k) of −i2C1 t involved in (5.9) equals

C1

2π

∫ π

−π
(−i2t)H(t, x)w(t)e−ikt d t =

C1

|Q|1/2(2πk)3/2

�

3

k
−
| x̃ |2

k2

�

e− x̃2/2k +
ε(k)
|x |+

(5.16)

as is readily proved in a similar way to Lemma 5.1. That of the error term in (5.9) is small enough
to be absorbed into the estimate of the one coming from R4.

It remains to appraise the contribution of the integral in (5.15) that involves R1+R4. The contribu-
tion of R1 turns out to be negligible. This is easily seen if δ < 1. We verify that if δ ≥ 1,

∫ π

−π

�

1

π0(t)
−

1

π0(0)

�

w(t)e−ikt d t

∫

T3

R1w̃ei x ·θ dθ = O
� k ∧ |x |2+

k5/2|x |3+

�

,
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which is also negligible. Performing the same computation as before with the help of (5.9) and (2.4)
we observe that the case x2 > k is plain and the verification is reduced to verifying

1

k2

∫ π

−π

w(t)
p
−i2t

e−ikt d t

∫

T3

w̃(θ)
−i t + 1−ψ(θ)

ei x ·θ dθ = O
�

1

k5/2|x |+

�

. (5.17)

(This one is distinct from other similar integrals: the manner having been practiced above gives rise
to a term involving logarithm.) We can replace the denominator in the inner integral by 1− ei tψ(θ)
and express the resulting double integral in the form

(2π)3
∞
∑

n=0

pn(x)

∫ π

−π

1
p
−i2t

w(t)ei(n−k)t d t.

Write the integral above as 2
p

2π/
p

k− n+ε(k−n) if k−n> 0 and ε(n− k) if k−n< 0. Then the
bound (5.17) is deduced by using the estimate of pn(x) as given in (1.13) (with δ = 0) (cf. [11]:
Proof of P26.1).

We have to prove that the same double integral as above but with R4 replacing R1 is appraised with
the error term given in the formula of the lemma. Denote by Ix(k) this double integral. Then on
integrating by parts

Ix(k) =
1

ik

∫ π

−π
w(t)e−ikt d t

∫

T3

∂t

��

1

π0(t)
−

1

π0(0)

�

R4

�

w̃ei x ·θ dθ . (5.18)

Note that R4−R2 is independent of t and integrable on T3. At first suppose that b3 = 0 if δ ≥ 1. Then
with the help of ∂ j

t R2 = (ψ−1+ 1
2
Q)×O(|t|+|θ |2)−2− j for j = 0, 1,2, . . . andψ−1+ 1

2
Q = o(|θ |2+δ)

we apply Lemma 2.1 (the first case) to deduce that
∫

T3

∂
j

t R4w̃ei x ·θ dθ = o(t(1+δ)/2− j)

�

for j = 1, 2,3 if δ < 1
for j = 2, 3 if 1≤ δ < 2 and b3 = 0

�

and
∫

T3

R4w̃ei x ·θ dθ =

¨

o(|t|(1+δ)/2), |x |−1
+ × o(|t|δ/2) if δ < 1

t × o(|x |1−δ+ lg(|x |δ−1 ∨ e)), |x |−2
+ × o(|t|(δ−1)/2) if 1≤ δ < 2

(for the latter (with x 6= 0) the integration by parts in θ has been applied once if δ < 1 and twice if
δ ≥ 1 but further application is not allowed in each case; in the cases δ = 0,1 split the range of the
integral with the spherical surface |θ |= 1/|x | for integrating by parts as in the proof of Lemma 2.2;
also, in the case δ ≥ 1, we have used an analogue of Lemma 6.1 of Appendix A (cf. [14]: Appendix)
as well as the fact that the integral defining C◦ in (5.6) is absolutely convergent). From these it is

inferred that for δ < 1, Ix(k) = o
�

(
p

k ∧ |x |+)
.

k2+δ/2|x |+
�

and that for 1≤ δ < 2 with b3 = 0,

Ix(k) =
1∨ lg |x |δ−1

+

k5/2
× o(|x |1−δ+ ) (x2 ≤ k) and = o

�

1

k(2+δ)/2 x2

�

(x2 ≥ k),

which together imply the required estimates.
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In order to complete the proof we must deal with the part of the right side of (5.18) that involves
E[(X · θ)3] in the case δ ≥ 1 with b3 = 1. Its essential term is

Jx(k) :=
1

k

∫ π

−π

p

−i2t w(t)e−ikt d t

∫

T3

E[(X · θ)3] w̃(θ)ei x ·θ

(−i t + 1
2
Q(θ))Q(θ)(1−ψ(θ))

dθ ;

the variants of this integral that we must actually compute are treated similarly to it. On further
integrating by parts in θ (twice) as well as in t this term is evaluated to be O(1/k3/2|x |2); on ob-
serving that the inner integral is bounded uniformly for x and t it is also evaluated to be O(1/k5/2).
Hence

Jx(k) = b3O

�

k ∧ |x |2+
k5/2|x |2+

�

,

and this completes the proof of Lemma 5.2.

Proof of Theorem 1.8. From (5.10) and the expansion of pk(0) it follows that

f0(k) = e2
0|Q|

−1/2(2πk)−3/2
h

1+ o(k−δ/2) +O(1/k)
i

. (5.19)

First consider the case δ < 2. We have

pk(−x) =
e− x̃2/2k

|Q|1/2(2π k)3/2

�

1+
b3p

k
P3

�− x̃
p

k

�

�

+ o

�

1

k(3+δ)/2
∧

1
p

k |x |2+δ+

�

, (5.20)

(π|Q|1/2 | x̃ |)−1− G(−x) = O(1/|x |1+δ) + b3O(1/|x |2) (5.21)

(cf. [14]). Substitute from (5.19) into the right side of the decomposition (5.4), Lemma 5.2 and
(5.20), and you find that for x 6= 0,

fx(k) =
e0

|Q|1/2(2π k)3/2

��

1−
G(−x)
G(0)

+
e0| x̃ |

2π|Q|1/2 k
+

b3p
k

P3

�− x̃
p

k

�

�

e− x̃2/2k

+
�

e0

2π|Q|1/2 | x̃ |
−

G(−x)
G(0)

�

(1− e− x̃2/2k)

�

+o

�

1

k(3+δ)/2
∧

1
p

k |x |2+δ

�

+ o

� p
k ∧ |x |+

k2+δ/2|x |+

�

(5.22)

(the bottle neck here is the error term in (5.20) for x2 < k and that involved in G(−x) f0(k) for
x2 ≥ k). In view of (5.21) the second term inside the big square brackets is at most

[1∧ (x2/k)]× o
�

|x |−1−δ
�

+ b3O
�

(k ∧ x2)/k|x |2
�

. (5.23)

In the region | x̃ | ≤ 4
p

k lg k the error terms to fx(k) resulting from (5.23) as well as the one
exhibited as the last term in (5.22) are all dominated by the first error term in (5.22) (i.e. the one
in (5.20)), hence superfluous and may be deleted: note that for | x̃ |> 4

p

k lg k, the latter error term
is dominant on the right side of (5.20), hence in (5.22) since fx(k) < pk(−x), so that every other
term is superfluous. Consequently we have the formula of Theorem 1.8 if δ < 2.
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Finally consider the case δ = 2. Then both (5.19) and (5.21) hold true. The expansion of pk(−x)
is also true if we add the third term of the Edgeworth expansion, which together with the quantities
evaluated in (5.16) and (5.21) constitute the term involving O(1+x4/k2) in the formula of Theorem
1.8. Terms of order at most O(k−5/2|x |−1) are absorbed in this one for the same reason as mentioned
at the end of the last paragraph.

The proof of Theorem 1.8 is complete.

6 Appendices

(A) Let α,β , j and ν be real constants and v(l) a continuous function of l ≥ 0.

Lemma 6.1. Suppose that −β < 1+ ν < 2 j− β ≤ 2α+ 3< 1+ 2 j, or what is the same thing,

2α− 2 j+ β ≥−3, 2 j− β − ν > 1, ν + β >−1, α− j <−1 (6.1)

and that 0< ν ≤ 1, v(l) = O(lβ+ν) and for some constant C

|v(l + h)− v(l)| ≤ Clβhν whenever l ≥ h> 0. (6.2)

Let a(t) be a differentiable function of t ≥ 0 such that a(t) = O(tα) and a′(t) = O(tα−1). Then there
exists a constant C ′ such that for k > 0, x ∈ R

�

�

�

�

∫ 1

0

a(t)

¨

cos kt
sin kt

«

d t

∫ 1

0

v(l)

(−i t + l2) j
ei x l dl

�

�

�

�

≤
C ′

|x |ν + 1
×
¨

lg[(x2/k)∨ e]
1;

if 2α− 2 j+ β >−3, then the logarithmic term above may be replaced by 1.

REMARK. (i) In our application we take α= 1/2, 2 j− β = 4, j = 2, 3,4, 5,6.

(ii) If β is a positive integer, v has continuous derivatives of order up to and including β whose
values at 0 all vanish, and the last derivative v(β) satisfies v(β)(l) = O(|l|ν), then |v(l + h)− v(l)| ≤
Clβ+ν−1h (l ≥ h > 0), which is stronger than (6.2). It is warned that if β = 0, the condition
v(l) = O(|l|ν) is not sufficient for (6.2).

Proof. Let g(t, l) = v(l)/(−i t + l2) j . Suppose that x ≥ 1, which gives rise to no loss of
generality. We consider the critical case 2α − 2 j + β = −3 only; the other case is easy. Then
∫ 1/x2

0
|a(t)|d t

∫ 1

0
|g(t, l)|dl ≤ C

∫ 1/x2

0
tν/2−1d t = O(x−ν) (since ν > 0) and

∫ 1

1/x2

|a(t)|d t

∫ π/x

0

|g(t, l)|dl ≤ C

∫ 1

1/x2

tα t− jd t

∫ π/x

0

lν+βdl = O(x−ν). (6.3)

From the first two inequalities it follows that α > −1, so that sup1/2<l<1 |g(t, l)| is integrable on

(0,1). Since
∫ 1

π/x
g(t, l)ei x l dl = −

∫ 1−π/x

0
g(t, l +π/x)ei x l dl and since the upper limit of the inner

integrals in (6.3) may be 2π/x instead of π/x , we have

2

∫ 1

1/x2

a(t)e−ikt d t

∫ 1

π/x

g(t, l)ei x l dl =

∫ 1

1/x2

a(t)e−ikt d t

∫ 1−π/x

π/x

[g(t, l)− g(t, l +π/x)]ei x l dl

+O(x−ν).
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By the hypothesis of the lemma we also have

g(t, l)− g(t, l +π/x) =
lβA(x , l)

(−i t + l2) j
× x−ν for l >

π

x
(6.4)

where A is uniformly bounded. Up to now e−ikt may be replaced by either of cos kt or sin kt. We
now evaluate the last double integral with eikt replaced by cos kt and sin kt. To this end suppose
x2 > k in below; the case x2 < k is easy to deal with. We make decomposition

�
∫ 1/k

1/x2

+

∫ 1

1/k

�

¨

cos kt
sin kt

«

d t

∫ 1

π/x

a(t)lβA(x , l)

(−i t + l2) j
ei x l dl = I + I I (say).

From the hypothesis 2α − 2 j + β = −3 it follows that the inner integral and its derivative are
O(1/t) and O(1/t2), respectively. Then an integration by parts shows that I I is bounded, while I is
dominated by a constant multiple of

�

�

�

�

∫ 1/k

1/x2

1

t

¨

cos kt
sin kt

«

d t

�

�

�

�

≤
¨

lg[(x2/k)∨ e]
1.

This completes the proof of the lemma.

Lemma 6.1 concerns the situation that the inner integral in its formula diverges for t = 0. The next
lemma deals with the case when it converges.

Lemma 6.2. Let a be as in Lemma 6.1 and v satisfy v(l) = O(lβ+ν) as well as the condition (6.1) as
in Lemma 6.1 but with 0 ≤ ν ≤ 1. Suppose that −1 < α < 0 and κ := β − 2 j + 1 ≥ 0. Then there
exists a constant C ′ such that

�

�

�

�

∫ 1

0

a(t) eikt d t

∫ 1

0

v(l)

(−i t + l2) j
ei x l dl

�

�

�

�

≤
C ′

k1+α(|x |ν+κ+ 1)
×
¨

lg[|x | ∨ e] i f κ= 0,
1 i f κ > 0.

Proof. Let g(t, l) = v(l)/(−i t + l2) j and k ≥ 1, x ≥ 1 as in the preceding proof. Then

∫ π/x

0

|g|dl ≤ C

∫ 1/x

0

lν+β−2 j ≤ C1 x−ν−κ×
¨

lg x (κ= ν = 0),
1 (ν +κ > 0). (6.5)

and from (6.4), which is available here also,
�

�

�

�

∫ 1

π/x

g(t, l)ei x l dl

�

�

�

�

≤ C2 x−ν−κ×
¨

lg x (κ= 0),
1 (κ > 0). (6.6)

These together gives the bound of the lemma for
∫ 1/k

0

�

�

�a(t)
∫ 1

0
g(t, l)ei x l dl

�

�

�d t. We must still exam-

ine the integral
∫ 1

1/k
aeikt d t

∫ 1

0
gei x l dl. To this end we integrate by parts w.r.t t. The boundary term

is easily disposed of by (6.5) and (6.6) . It suffices to show that each of

I =
1

k

∫ 1

1/k

|a′(t)|
�

�

�

�

∫ 1

0

g(t, l)ei x l dl

�

�

�

�

d t, I I =
1

k

∫ 1

1/k

|a(t)|
�

�

�

�

∫ 1

0

v(l)

(−i t + l2) j+1 ei x l dl

�

�

�

�

d t
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admits the required bound. The first one is immediate from (6.5) and (6.6) . For the second one
we see that its inner integral multiplied by |t| admits the bounds in (6.5) and (6.6), which gives the
required bound of I I .

(B) Let d ≥ 2 and t(d)r be as in REMARK 8. Then for |x |> r > 0,

Ex[exp{−λt(d)r }] =
Gλ(|x |, r)
Gλ(r, r)

=
Kd/2−1(|x |

p
2λ)|x |1−d/2

Kd/2−1(r
p

2λ)r1−d/2
(λ > 0), (6.7)

where Gλ denotes the resolvent kernel for the d-dimensional Bessel process and Kν is the usual
modified Bessel function. For d = 3 the Laplace transform is easily inverted to yield the formula
(1.12) (see (5.12)), which also follows from the one dimensional result since the three dimensional
Bessel process conditioned on its eventually arriving at r is a one-dimensional Brownian motion.

(C) Here we give an asymptotic estimate of Px[t(2)r◦
≤ t] =

∫ t

0
qr◦(s, x)ds for large t. Put

ϕ(α) =−
∫ ∞

1

e−αy

y
lg
�

1−
1

y

�

d y (α > 0),

and

Ax(t) =
1

lg(ec◦ t)

�

1−
γ

lg(ec◦ t)

�
∫ ∞

x2/2t

e−u

u
du+

ϕ(x2/2t)
[lg(ec◦ t)]2

so that D(ec◦n, x2/2n) = Ax(t). (The function D(t,α) is defined in Theorem 1.6.) The following
result belongs to [17], but not explicitly stated there.

Theorem 6.1. Let ξ= |x |/
p

t. Then, uniformly for |x |> r◦, as t →∞

Px[t
(2)
r◦
≤ t] = Ax(t) +

1

(lg t)3
×
¨

O(lg 1
2
ξ) for x2 < t

O((lg2ξ)2/ξ2) for x2 ≥ t.
(6.8)

Proof. Immediate from Lemma 6 and Eq (26) of [17].

REMARK. (i) It holds that ϕ(α) = O(α−1e−α logα) as α→∞ and ϕ(α) = 1
6
π2 + α lgα+O(α) as

α ↓ 0.

(ii) On using the identities
∫∞

1
e−uu−1du+

∫ 1

0
(e−u− 1)u−1du=−γ and 2γ= lg[2/ec◦ r2

◦ ]

∫ ∞

ξ2/2

e−u

u
du=−γ− lg(ξ2/2)−

∫ ξ2/2

0

e−u− 1

u
du= γ− lg

x2

r2
◦
+ lg(ec◦ t) +

ξ2

2
+O(ξ4).

With the help of this we deduce that for x2/t ≤ 1,

Ax(t) = 1−
2 lg(|x |/r◦)

lg(ec◦ t)

�

1−
γ

lg(ec◦ t)

�

+
1
6
π2− γ2

[lg(ec◦ t)]2
+
ξ2 lg |x |+O(ξ2)
(lg(ec◦ t))2

.
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(iii) Integrating the formula of Theorem 1 of [17] leads to

Px[t
(2)
r◦
> t] =

2 lg(|x |/r◦)
lg(ec◦ t)

�

1−
γ

lg(ec◦ t)
−

1
6
π2− γ2

[lg(ec◦ t)]2
+ · · ·

�

+O
�

ξ2 lg |x |
(lg t)2

�

(r◦ < |x | <
p

t ), which can be squared with the expression of 1 − Ax(t) obtained from (ii). On
equating the error terms O(|lg 1

2
ξ|/(lg t)3) and O(ξ2 lg |x |)/(lg t)2) the latter formula is sharper

than the former if t−1 x2 lg |x | → 0.

(D) Suppose that the period ν of the walk Sn is greater than 1. Let d = 2 for simplicity. Then,
because of the irreducibility of the walk, there exists a proper subgroup H ⊂ Z2 and ξ ∈ Z2 such
that H + jξ = H if and only if j = 0 (mod ν) and that P[S0

j ∈ H + jξ] = 1. Let H be spanned

by h1, h2 ∈ Z2 and determine λ1,λ2 ∈ R2 by the condition λ j · h j = 2πδl j . Then one may write
ξ = (α1h1 +α2h2)/ν with some integers α1,α2, so that ξ ·λl = 2παl/ν (l = 1,2) and it holds that
for each j ∈ {1, . . . ,ν − 1}, either jα1 6= 0 (mod ν) or jα2 6= 0 (mod ν). This condition implies that
three integers α1,α2,ν have no common devisor except 1, so that there exists two integers k1, k2
such that k1α1 + k2α2 = 1 (mod ν). Putting λ = k1λ1 + k2λ2, we have ξ · λ = 2π/ν (mod 2π),
hence x ·λ= j2π/ν (mod 2π) if x ∈ H + jξ and it follows that ψ(θ +λ) =ψ(θ)ei2π/ν . The rest is
the same as in [16].
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