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Abstract

We treat branching random walks in random environment using the framework of Linear
Stochastic Evolution. In spatial dimensions three or larger, we establish diffusive behaviour
in the entire growth phase. This can be seen through a Central Limit Theorem with respect to
the population density as well as through an invariance principle for a path measure we intro-
duce.
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1 Introduction

1.1 Background

Branching random walks (and their time–continuous counterpart branching Brownian motion) are
treated, with the result of a central limit theorem (CLT), by Watanabe in [Wat67] and [Wat68].
Smith and Wilkinson introduce the notion of random (in time) environment to branching processes
[SW69], and in 1972, the book by Athreya and Ney [AN72] appears and gives an excellent overview
of the knowledge of the time.

A closely related model, the directed polymers in random environment (DPRE), is studied since
the eighties, when the question of diffusivity is treated by Imbrie and Spencer [IS88] as well as
Bolthausen [Bol89]. A review can be found in [CSY04].

It took until the new millenium for the time–space random environment known from DPRE to get
applied to branching random walks by Birkner, Geiger and Kersting [BGK05]. A CLT in probability
is proven in [Yos08a], and improved to an almost sure sense in [Nak11] with the help of Linear
Stochastic Evolutions (LSE), which were introduced in [Yos08b] and [Yos10]. Linear stochastic
evolutions build a frame to a variety of models, including DPRE. For LSE, the CLT was proven in
[Nak09]. Shiozawa treats the time–continuous counterpart, namely branching Brownian motions
in random environment [Shi09a, Shi09b].

The present article uses as a blueprint [CY06], which proves a CLT for DPRE, and the larger angle
of view allowed by the LSE gives the crucial ingredients to conclude our result, which is a CLT on
the event of survival on the entire regular growth phase, but under integrability conditions slightly
more restrictive than those from [Nak11]. Compared to the case of DPRE, the necessary notational
overhead is unfortunately significantly bigger. Speaking of DPRE, it is possible to extend the results
of [CY06] to the case where completely repulsive sites are allowed, using the same conditioning–
techniques as here.

A localization–result in the slow growth phase is proven by two of the authors of the present work
in [HN11].

1.2 Branching random walks in random environment

We denote the natural numbers by N0 = {0,1, 2, . . . } and N = {1,2, . . . }. We will need at various
places sets of probability measures, which we write as P (·); for instance,

P (N0) :=
n

q = (q(k))k∈N0
∈ [0, 1]N0 :

∑

k∈N0

q(k) = 1
o

stands for the set of probability measures on N0.

We consider particles in Zd , d ≥ 1, each performing a simple random walk and branching into
independent copies at each time–step.

i) At time n= 0, there is one particle born at the origin x = 0.

ii) A particle born at site x ∈ Zd at time n ∈ N0 is equipped with k eggs with probability qn,x(k),
k ∈N0, independently from other particles.
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iii) In the next time step, it takes its k eggs to a uniformly chosen nearest–neighbour site and dies.
The eggs then are hatched.

The offspring distributions qn,x = (qn,x(k))k∈N0
are assumed to be i.i.d. in time–space (n, x). This

model is called Branching Random Walks in Random Environment (BRWRE). Let Nn,y be the number
of the particles which occupy the site y ∈ Zd at time n.

For the proofs in this article, a modeling down to the level of individual particles is needed. First,
we define namespaces Vn, n ∈ N0 for the n–th generation particles and VN0

for the particles of all
generations together:

V0 = {1}= {(1)}, Vn+1 = Vn×N, for n≥ 0,

VN0
=
⋃

n∈N0

Vn.

Then, we label all particles as follows:

i) At time n= 0, there is just one particle which we call 1= (1) ∈ V0.

ii) A particle at time n is identified with its genealogical chart y = (1,y1, . . . ,yn) ∈ Vn.
If the particle y gives birth to ky particles at time n, then the children are labeled by
(1,y1, . . . ,yn, 1), . . . , (1,y1, . . . ,yn, ky) ∈ Vn+1.

By using this naming procedure, we define the branching of the particles rigorously. This definition
is based on the one in [Yos08a].

Note that the particle with name x can be located at x anywhere in Zd . As both informations
genealogy and place are usually necessary together, it is convenient to combine them to x = (x ,x);
think of x and x written very closely together.

• Random environment of offspring distibutions: Set Ωq = P (N0)N0×Zd
. The set P (N0) is equipped

with the natural Borel σ–field induced by the one of [0,1]N0 . We denote by Gq the product σ–field
on Ωq.

We fix a product measure Q ∈ P (Ωq,Gq) which describes the i.i.d. offspring distributions assigned
to each time–space location.

Each environment q ∈ Ωq is a function (n, x) 7→ qn,x = (qn,x(k))k∈N0
from N0 ×Zd to P (N0). We

interpret qn,x as the offspring distribution for each particle which occupies the time–space location
(n, x).

• Spatial motion: A particle at time–space location (n, x) jumps to some neighbouring location (n+
1, y) before it is replaced by its children there. Therefore, the spatial motion should be described by
assigning a destination to each particle at each time–space location (n, x). We define the measurable
space (ΩX ,GX ) as the set (Zd)N0×Zd×VN0 with the product σ–field, and ΩX 3 X 7→ Xn,x for each
(n,x) ∈N0× (Zd ×VN0

) as the projection. We define PX ∈ P (ΩX ,GX ) as the product measure such
that

PX (Xn,x = e) =

(

1
2d

if |e|= 1,

0 if |e| 6= 1

for e ∈ Zd and (n,x) ∈ N0 × (Zd × VN0
). Here, we interpret Xn,x as the step at time n+ 1 if the

particle x is located space location x .
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• Offspring realization: We define the measurable space (ΩK ,GK) as the set N0
N0×Zd×VN0 with the

product σ–field, and ΩK 3 K 7→ Kn,x for each (n,x) ∈N0 × (Zd ×VN0
) as the projection. For each

fixed q ∈ Ωq, we define Pq
K ∈ P (ΩK ,GK) as the product measure such that

Pq
K(Kn,x = k) = qn,x(k) for all (n,x) = (n, x ,x) ∈N0×Zd ×VN0

and k ∈N0.

We interpret Kn,x as the number of eggs of the particle x if it is located at time–space location (n, x).
One could directly speak of its children as well.

The first steps of such a BRWRE are shown in Figure 1.

Putting everything together, we arrive at the

• Overall construction: We define (Ω,G ) by

Ω = ΩX ×ΩK ×Ωq, G = GX ⊗GK ⊗Gq,

and with q ∈ Ωq,

Pq = PX ⊗ Pq
K ⊗δq, P =

∫

Q(dq)Pq.

Now that the BRWRE is completely modeled, we can have a look at where the particles are: for
(n,y) ∈N0× (Zd ×VN0

), we define

Nn,y = 1{the particle y is located at time–space location (n,y)}.

This enables the

• Placement of BRWRE into the framework of Linear Stochastic Evolutions: We set the starting con-
dition N0,y = 1y=(0,1). Then, defining the matrices (An)n via their entries in the manner indicated
below, we can describe Nn,y inductively by

Nn,y =
∑

x∈Zd×VN0

Nn−1,x1{y−x=Xn−1,x, 1≤y/x≤Kn−1,x},

=
∑

x∈Zd×VN0

Nn−1,xA y
n,x

= (N0A1 · · ·An)y, y ∈ Zd ×VN0
,

where y/x is given for x,y ∈ VN0
as

y/x=







k if
x= (1,x1, . . . ,xn) ∈ Vn,

y= (1,x1, . . . ,xn, k) ∈ Vn+1
for some n ∈N0,

∞ otherwise,

and where
A y

n,x := 1{y−x=Xn−1,x, 1≤y/x≤Kn−1,x}, x,y ∈ Zd ×VN0
.

One–site- and overall population can be defined respectively as

Nn,y =
∑

y∈VN0

Nn,(y,y), and Nn =
∑

y∈Zd×VN0

Nn,y,
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Figure 1: One realization of the first steps and branchings. In this particular example, there are
only two types of offspring distibutions, one allowing for one or three eggs, the other one for two
or none. This is indicated by the concentrical circles. The curly circles indicate points where the
realization of the environment has no influence on the outcome of the random walk. The arrows
indicate the movement of the particles, the number of strokes indicating the number of eggs carried.
The cones in the lower part of the picture get their full meaning in Remark 2.1.2.
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for n ∈ N0, y ∈ Zd . Other quantities needed later are the moments of the local offspring distribu-
tions for n ∈N0 and x ∈ Zd ,

m(p)n,x =
∑

k∈N0

kpqn,x(k), m(p) =Q(m(p)n,x), p ∈N0, m= m(1),

and the normalized one–site and overall populations

N n,y = Nn,y/m
n and N n = Nn/m

n, n ∈N0, y ∈ Zd .

It is easy to see that the expectation of the matrix entries, which is an important parameter in the
setting of LSE, for x,y ∈ Zd ×VN0

computes as

ay
x

:= P[A y

1,x] =

(

1
2d

∑

j≥k q( j) if |x − y|= 1, y/x= k, k ∈N,

0 otherwise,

with
q( j) :=Q

�

q0,0( j)
�

, j ∈N0.

Taking sums, we obtain
∑

y∈Zd×VN0

ay
x
=m, for x ∈ Zd ×VN0

.

1.3 Preliminaries

In this and the following subsection, we gather properties of BRWRE that are already known. First,
we introduce the Markov chain (S, Px

S
) = ((S,S), P(x ,x)

(S,S) ) on Zd × VN0
for x = (x ,x) ∈ Zd × VN0

,
independent of (An)n≥1, by

PxS (S0 = x) = 1,

PS
�

Sn+1 = y| Sn = x
�

=
ay
x

m
=







∑

j≥k q( j)

2d m
if |x − y|= 1, and y/x= k ∈N

0 otherwise.
(1.1)

where x,y ∈ Zd ×VN0
. The filtration of this random walk will be called Fn = σ(F 1

n ×F
2
n ), with

F 1
n := σ(S1, . . . , Sn), F 2

n := σ(S1, . . . ,Sn), n ∈N0, and the corresponding sample space Ω1×Ω2.

Note that we can regard S and S as independent Markov chains on Zd and VN0
, respectively, with S

the simple random walk on Zd .

Next, we introduce a process which is essential to the proof of our results:

ζ0 = 1 and for n≥ 1, ζn = ζn(S) =
n
∏

m=1

A Sm
m,Sm−1

aSm
Sm−1

. (1.2)
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Lemma 1.3.1. ζn is a martingale with respect to the filtration given by

H0 := σ(S0), Hn := σ(Am,Sm; m≤ n), n≥ 1.

Moreover, we have that

Nn,y =mnP(0,1)
S
(ζn : Sn = y) P–a.s. for n ∈N0, y ∈ Zd ×VN0

.

Remark 1.3.2. Summation over all possible sequences of names yields

Nn,y =mnP(0,1)
S
(ζn : Sn = y).

From this Lemma follows an important result: the next Lemma shows that a phase transition occurs
for the growth rate of the total population.

Lemma 1.3.3. N n is a martingale with respect to Gn := σ(Am : m≤ n). Hence, the limit

N∞ = lim
n→∞

N n, exists P–a.s. (1.3)

and
P(N∞) ∈ {0,1}.

Moreover, P(N∞) = 1 if and only if the limit (1.3) is convergent in L1(P).

The proof of Lemmas 1.3.1 and 1.3.3 can be found in [Nak11].

We refer to the case P(N∞) = 1 as regular growth phase and to the other one, P[N∞] = 0, as slow
growth phase. The regular growth phase means that the growth rate of the total population has the
same order as the growth rate of the expectation of the total population mn; on the other hand, the
slow growth phase means that, almost surely, the growth rate of the population is lower than the
growth rate of its expectation.

One can also introduce the notions of ‘survival’ and ‘extinction’.

Definition 1.3.4. The event of survival is the existence of particles at all times:

{survival} := {∀ n ∈N0, Nn > 0}.

The extinction event is the complement of survival.

1.4 The result

Definition 1.4.1. An important quantity of the model is the population density, which can be seen as
a probability measure with support on Zd ,

ρn,x = ρn(x) :=
Nn,x

Nn
1Nn>0, n ∈N0, x ∈ Zd .

Our main result is the following CLT, proven as Corollary 2.2.4 of the invariance principle Theo-
rem 2.2.2.
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Theorem 1.4.2. Assume d ≥ 3 and regular growth, and the moment conditions m(3) < ∞ and
Q
�

(m(2)n,x)
2� < ∞. Then, for all bounded continuous function F ∈ Cb(Rd), in P( · |survival)–

probability,

lim
n→∞

∑

x∈Zd

ρn(x)F
� x
p

n

�

=

∫

Rd

F(x)ν(d x),

where ν stands for the Gaussian measure with mean 0 and covariance matrix 1
d

I .

Remark 1.4.3. The hypothesis d ≥ 3 is in fact not necessary because in dimensions one and two,
regular growth cannot occur. Instead of a CLT, localized behaviour can be observed, see [HY09,
HN11].

It is the following equivalence, recently proven as [CY, Proposition 2.2.2], that enables us to speak
easily of P( · |survival)–probability:

Lemma 1.4.4. If P(N∞ > 0)> 0 and m<∞, then

{regular growth} := {N∞ > 0}= {survival}, P–a.s..

[CY] handles also the case of slow growth.

2 Proofs

2.1 The path measure

Definition 2.1.1. We set, on F∞,

µn(dS) :=
1

N n
PS(ζndS)1N∞>0, n ∈N0,

where ζ is defined in (1.2).

Additional notations and definitions comprise the shifted processes: for m ∈N0, z ∈ Zd ×VN0
, we

define N m,z
n = (N m,z

n,y )y∈Zd×VN0
and N

m,z
n = (N

m,z
n,y )y∈Zd×VN0

, n ∈N0, respectively by

N m,z
0,y = 1y=z, N m,z

n+1,y =
∑

x∈Zd×VN0

N m,z
n,x A y

m+n+1,x, and

N
m,z
n,y = N m,z

n,y /m
n.

Using this, we can, with m≤ n, express µn on a finite time–horizon as

µn(S[0,m] = x[0,m]) = ζm(x[0,m])
N

m,xm

n−m

N n
PS(S[0,m] = x[0,m])1N∞>0; (2.1)

in particular,
Nn,x

Nn
1N∞>0 =

∑

x[0,n]:xn=x
µn(S[0,n] = x[0,n]).
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Note that for B ∈ F∞, the limit
µ∞(B) = lim

n→∞
µn(B)

exists P–a.s. because of the martingale limit theorem for PS(ζn : B), which is indeed a positive mar-
tingale with respect to the filtration (Gn)n, as can be easily checked, and for N n, see Lemma 1.3.3.

Remark 2.1.2. We can write, for B ∈ F 1
n ,

µ∞(B×Ω2) =
1

N∞

∑

xn

PS(ζn : (B×Ω2)∩ {Sn = xn})N
n,xn

∞ 1N∞>0.

The reader who cares to return to the lower part of Figure 1 will be rewarded with an intuitive
picture of how we can let run our BRW up to time n = 3 and plug in there the shifted processes,
indicated by the dotted cones.

Definition 2.1.3. We define the environmental measure conditional on survival, or under the assump-
tions of Lemma 1.4.4 equivalently, regular growth, by

eP(·) = P
�

·
�

�N∞ > 0
�

=
P(· ∩ N∞ > 0)

P(N∞ > 0)
.

Lemma 2.1.4. Assume regular growth. Then,

ePµ∞( · ×Ω2) is a probability measure on F 1
∞, (2.2)

and
ePµ∞( · ×Ω2)� PS on F 1

∞, (2.3)

where PS denotes the measure of a simple random walk.

In order to prove this Lemma, we need the following observation:

Lemma 2.1.5. Suppose (Bm)m≥1 ⊂F 1
∞ are such that limm→∞ PS(Bm×Ω2) = 0. Then

0= lim
m→∞

sup
n
ePµn(Bm×Ω2) = lim

m→∞
ePµ∞(Bm×Ω2).

Proof. We first prove the first equality. For δ > 0,

P
�

µn(Bm×Ω2)
�

≤ P
�

µn(Bm×Ω2) : N n ≥ δ
�

+ P
�

1N∞>0 : N n ≤ δ
�

.

We can estimate

sup
n

P
�

µn(Bm×Ω2) : N n ≥ δ
�

≤ δ−1 sup
n

P
�

N nµn(Bm×Ω2)
�

= δ−1 sup
n

P
�

N n
PS(ζn : Bm×Ω2)

N n
1N∞>0

�

≤ δ−1 sup
n

PS
�

P(ζn) : Bm×Ω2�

= δ−1PS(Bm×Ω2)−−−→
m→∞

0.
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On the other hand, as N
−1
n converges eP–a.s., their distributions are tight, and

lim
δ→0

sup
n
eP(N n ≤ δ) = 0.

The second equality follows directly by an application of dominated convergence.

Proof of Lemma 2.1.4. The statement (2.2) is in some sense an affirmation of well–definiteness.
The proof consists in verifying that ePµ∞ is finitely additive, that ePµ∞(Ω1 × Ω2) = 1, and that
F∞ 3 Bn ×Ω2↘ ; implies ePµ∞(Bn ×Ω2)→ 0. The first two are quite obvious and the third one is
a trivial application of the preceding Lemma 2.1.5, as is the absolute continuity (2.3).

In the following Proposition, we introduce the variational norm

‖ν − ν ′‖E := sup{ν(B)− ν ′(B), B ∈ E},

where ν and ν ′ are probability measures on E . This norm will be applied to µn+m(· × Ω2) and
µ∞(· ×Ω2), which are indeed, eP–a.s., probability measures on F 1

r because of the finiteness of F 1
r ,

for all r, m, n ∈N0.

Proposition 2.1.6. In the regular growth phase,

lim
m→∞

sup
n
eP
�

‖µm+n(· ×Ω2)−µ∞(· ×Ω2)‖F 1
n

�

= 0.

Proof. From (2.1) and its analogue for µ∞, for n, m≥ 0,

N∞‖µm+n(· ×Ω2)−µ∞(· ×Ω2)‖F 1
n

= N∞ sup
B=B1×Ω2∈F 1

n⊗F
2
n

n

PS
�

ζn
N

n,Sn

m

N n+m
1B − ζn

N
n,Sn

∞

N∞
1B

�

1N∞>0

o

≤ N∞PS






ζn

�

�

�

�

�

�

N
n,Sn

m

N n+m
−

N
n,Sn

∞

N∞

�

�

�

�

�

�






1N∞>0

= 1N∞>0N
−1
n+mPS

�

ζn|N∞N
n,Sn

m − N n+mN
n,Sn

∞ |
�

≤ 1N∞>0N
−1
n+mPS

�

ζn
�

|N∞N
n,Sn

m − N n+mN
n,Sn

m |+ |N n+mN
n,Sn

m − N n+mN
n,Sn

∞ |
�

�

≤
|N∞− N n+m|

N n+m
PS
�

ζnN
n,Sn

m

�

+ PS
�

ζn|N
n,Sn

m − N
n,Sn

∞ |
�

.

Note that in the first of the right–hand terms, the denominator is cancelled out with PS
�

ζnN
n,Sn

m

�

;
so, as N n converges in L1(P), the P–expectation of the first term vanishes as m→∞, and the second
one yields

PPS
�

ζn

�

�N
n,Sn

m − N
n,Sn

∞

�

�

�

= PPS
�

ζnP
�

�

�N
n,Sn

m − N
n,Sn

∞

�

�

�

�

� Gn

��

= PPS
�

ζn





N m− N∞






L1(P)

�

= ‖N m− N∞‖L1(P) −−−→m→∞
0.
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This proves
sup

n
P
�

N∞‖µm+n−µ∞‖F 1
n

�

−−−→
m→∞

0.

Now, we use the same trick with the Chebychev–inequality that gives us a N∞ in front of the norm
as in Lemma 2.1.4:

eP
�

‖µm+n−µ∞‖F 1
n

�

= eP
�

‖µm+n−µ‖F 1
n
(1N∞>δ

+1N∞≤δ)
�

≤ δ−1
eP
�

N∞‖µm+n−µ∞‖F 1
n

�

+ 2eP
�

N∞ ≤ δ
�

tends to 0 with δ→ 0, m→∞ if we control δ and m approprietely, independently of n.

2.2 The main statements

Definition 2.2.1. For n≥ 1, the rescaling of the path S is defined by

S(n)t = Snt/
p

n, 0≤ t ≤ 1,

with (St)t≥0 the linear interpolation of (Sn)n∈N. We write S(n) for (S(n)t )t≥0.

Furthermore, we will denote by W = {w ∈ C ([0, 1] → Rd); w(0) = 0} the d–dimensional
Wiener–space, equipped with the topology induced by the supremum–norm. The probability space
(W,FW, PW) features the Borel–σ–algebra FW and PW the Wiener–measure. We will be using
W = (Wt)t≥0 a Wiener-process on this probability-space.

Theorem 2.2.2. Assume d ≥ 3 and regular growth, and the technical assumptions m(3) < ∞,
P
�

(m(2)0,0)
2�<∞. Then, for all F ∈ Cb(W),

lim
n→∞

µn
�

F(S(n))
�

= PW
�

F(W/
p

d)
�

, (2.4)

lim
n→∞

µ∞
�

F(S(n))
�

= PW
�

F(W/
p

d)
�

, (2.5)

in eP–probability.

Remark 2.2.3. This is equivalent to Lp(eP)–convergence for any finite p.

This Theorem implies the following CLT:

Corollary 2.2.4. Under the same assumptions as in the Theorem, for all F ∈ Cb(Rd),

lim
n→∞

∑

x∈Zd

F
� x
p

n

�N n,x

N n
=

∫

Rd

F(x)dν(x), in eP–probability,

where ν designs the Gaussian measure with mean 0 and covariance matrix 1
d

I .
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2.3 Some easier analogue of the main Theorem

The following Proposition is not needed for the proof of our result. We literally propose it never-
theless to the reader’s attention because the proof is much easier than the one of Theorem 2.2.2,
while the proceeding is the same. Basically, it can be done with the one–dimensional tools we have
at hand from subsection 2.1 and without the technical hassles in Lemmas 2.4.2, 2.4.8, and 2.4.13.
We will try to break it down to small parts as much as we can, and refer to these parts in the proof
of Theorem 2.2.2.

Proposition 2.3.1. Assume regular growth. Then,

lim
n→∞

ePµn(S
(n) ∈ ·) = PW(W/

p

d ∈ ·), weakly, (2.6)

lim
n→∞

ePµ∞(S
(n) ∈ ·) = PW(W/

p

d ∈ ·), weakly. (2.7)

The following notation will prove useful.

Definition 2.3.2. We define, for w ∈W,

F(w) = F(w)− PW
�

F(
W
p

d
)
�

, F ∈ Cb(W)

and
BL(W) = {F :W→R; ‖F‖BL := ‖F‖+ ‖F‖L <∞}

the set of bounded Lipschitz–functionals on W. The two norms are defined respectively by

‖F‖ := sup
w∈W

|F(w)|,

‖F‖L := sup
�

F(w)− F(ew)
‖w− ew‖

: w 6= ew ∈W
�

.

Proof of Proposition 2.3.1. The second statement is easier to prove. We attack it first, and use it later
to manage the first one.

Two ingredients from outside this article will help us to prove (2.7). First, (2.7) is equivalent to

lim
m→∞

ePµ∞(F(S
(m))) = 0 for all F ∈ BL(W), (2.8)

e.g., [Dud89, Theorem 11.3.3].

To prove (2.8), we make use of the following result for the simple random walk (S, PS), see [AW00]:
If (nk)k≥1 ⊂ Z+ is an increasing sequence such that infk≥1 nk+1/nk > 1, then for any F ∈ BL(W),

lim
m→∞

1

m

m
∑

k=1

F(S(nk)) = 0, PS–a.s.. (2.9)

One of the key ideas of the proof is that in the last line, due to (2.3), we can replace ‘PS–a.s.’ by
‘ePµ(· ×Ω2)–a.s.’, and the statement still holds.

This enables us to prove (2.8) by contradiction. Assume that (2.8) does not hold. Then there is some
subsequence aml

= ePµ∞(F(S(ml )))> c > 0 (or< c < 0). It has bounded domain, so has a convergent
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subsequence amlk
which can be chosen such that nk := mlk satisfies the above infk≥1 nk+1/nk > 1.

To this nk, we apply (2.9) and integrate with respect to ePµ∞. By dominated convergence, we can
switch integration and limit and get

lim
m→∞

1

m

m
∑

k=1

ePµ∞
�

F(S(nk))
�

= 0.

But this is a contradition to the assumption that all the ePµ∞(F(S(nk))) = ePµ∞(F(S
(mlk

))) > c (or
< c). So we conclude that (2.8) does hold, indeed.

Now, it remains to prove (2.6) with the help of (2.7). We need to show the analogue of (2.8):

lim
n→∞

ePµn
�

F(S(n))
�

= 0 for all F ∈ BL(W). (2.10)

For 0≤ k ≤ n, we add some telescopic terms:

ePµn
�

F(S(n))
�

= ePµn
�

F(S(n))− F(S(n−k))
�

+ ePµn
�

F(S(n−k))
�

− ePµ∞
�

F(S(n−k))
�

(2.11)

+ ePµ∞
�

F(S(n−k))
�

We apply what we just proved, i.e. (2.8), and conclude that the last line vanishes for fixed k and
n→∞. The middle one does the same due to Proposition 2.1.6. As for the first line, we note that F
is uniformly continuous and that

sup
S∈Ω1

max
0≤t≤1

�

�

�S(n)t − S(n−k)
t

�

�

�= O(k/
p

n).

Hence, (2.10) holds, so that we conclude (2.6) and thus the Proposition.

2.4 The real work

In order to prove the statement of Theorem 2.2.2 ‘in probability’, we take the path via ‘L2’. While the
proceeding is basically the same as in the last section, the notation becomes much more complicated.
As a start, we take a copy of our path S:

Definition 2.4.1. Let (eS, P
eS) be an independent copy of (S, PS) defined on the probability space (eΩ =

eΩ1× eΩ2, eF ) for i = 1, 2,3, 4. Similarily, we write eζ= ζ(eS), PSeS, and PSeS for the simultaneous product
measures and so on.

Lemma 2.4.2. For all B ∈ F 1
∞ ⊗ eF 1

∞, with the notation B = B ×Ω2 × eΩ2, the following limit exists
P–a.s. in the regular growth phase:

µ(2)∞ (B) = lim
n→∞

µ⊗2
n (B), (2.12)

where we define

µ⊗2
n (B) =

1

N
2
n

PSeS
�

ζn
eζn1B

�

1N∞>0,
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Moreover, we have that for all n ∈N, P–a.s. on {N∞ > 0},

µ(2)∞

�

(S, eS)[0,n] = {(xk, exk)}nk=1

�

=
1

N
2
∞

∑

xn,exn∈VN0

N
n,(xn,xn)
∞ N

n,(exn,exn)
∞ · (2.13)

· PSeS
�

ζn
eζn : (S, eS)[0,n] = {(xk, exk)}nk=1, (Sn,eSn) = (xn,exn)

�

.

For the proof, we need a few Definitions and Lemmas.

Definition 2.4.3. For B ∈ F 1
∞ ⊗ eF 1

∞, define the processes (Xn)n∈N0
and (Yn)n∈N0

which depend on B
as

X0 = X1 := 0, Xn = Xn(B) := PSeS
�

ζn
eζn1B∩{Sn−1 6=eSn−1}

�

;

Y0 := PSeS(B), Y1 = Y1(B) := PSeS
�

ζ1
eζ11B

�

, Yn = Yn(B) := PSeS
�

ζn
eζn1B∩{Sn−1=eSn−1}

�

.

Lemma 2.4.4. Yn converges to 0 P–almost surely, independently of B.

Proof. A consequence of the construction of the BRWRE is that ζn
eζn1{Sn−1 6=eSn−1,Sn=eSn}

= 0, P ⊗
PSeS–a.s., so that we have

0≤ P
�

Yn
�

≤ PPSeS
�

ζn
eζn1Sn−1=eSn−1

�

= PPSeS
�

ζn
eζn1S[0,n−1]=eS[0,n−1]

�

(2.14)

= PPSeS

� n−1
∏

k=1

(A Sk
k,Sk−1

)2

(aSk
Sk−1
)2
1S[0,n−1]=eS[0,n−1]

PSeS
�

P(A Sn
n,Sn−1

A
eSn

n,eSn−1
|Gn−1)

aSn
Sn−1

a
eSn
eSn−1

�

�

�Fn−1, eFn−1

�

�

= PSeS
�

n−1
∏

k=1

1

aSk
Sk−1

: S[0,n−1] = eS[0,n−1]

�
∑

x, y

P
�

A x
1,(0,1)A

y

1,(0,1))

ayx

ay
x

m2

=
m(2)

m2

1

mn−1

We made use of the fact that in the third line, because the A Sk
k,Sk−1

’s are indicators, we can erase
the square. Also erasable is the condition in the inner P–expectation. After that, the outmost P–
expectation can be taken into the first fraction, cancelling out one of the aSk

Sk−1
’s. To what remains,

we apply the definition of the expectation, using (1.1). This technique is hinted in the second part
of the fifth line, and applied similarly to the first part.

The assertion now follows from the Borel–Cantelli lemma.

Lemma 2.4.5. Xn is a submartingale with respect to Gn.

Proof. We start calculating

P(Xn|Gn−1) = P
�

PSeS(ζn
eζn1B∩{Sn−1 6=eSn−1}

)
�

�Gn−1
�

= PSeS

�

ζn−1
eζn−11B∩{Sn−1 6=eSn−1}

P
�A Sn

n,Sn−1

aSn
Sn−1

A
eSn

n,eSn−1

a
eSn
eSn−1

�

�

. (2.15)
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We do not use the following definition again, but we should like to point out its similarity to W to
be defined later. The inner P–expectation computes as

w(x, ex,y, ey) :=
P(A y

1,xA ey

1,ex)

ayxaey
ex

=































0 if ay
x

aey
ex
= 0,

1 if x 6= ex , ay
x

aey
ex
6= 0,

P(
∑

i≥k q0,0(i)
∑

j≥l q0,0( j))
∑

i≥k q(i)
∑

j≥l q( j) if x = ex , x 6= ex,
y/x= k, ey/ex= l, ay

x
aey
ex
6= 0,

0 if x= ex, y 6= ey , ay
x

aey
ex
6= 0,

� 1
2d

∑

j≥min{k,l} q( j)
�−1 if

x= ex, y = ey ,
y/x= k, ey/ex= l, ay

x
aey
ex
6= 0.

Using this, we note that, under the condition {Sn−1 6= eSn−1}, w(Sn−1,eSn−1,Sn,eSn) depends only on
Sn−1− eSn−1, Sn/Sn−1 and eSn/eSn−1. Thus, we pursue

(2.15)= PSeS
�

ζn−1
eζn−11B∩{Sn−1 6=eSn−1}

(1Sn−1 6=eSn−1
+α1Sn−1=eSn−1

)
�

, (2.16)

where α = P(m2
0,0)/m

2 > 1. This last equality is obtained by introducing a PSeS( · |Fn−1, eFn−1)–
conditional expectation, and remarking that the event B depends only on the random walk–part
while the corresponding above fraction depends only on the children–part, and the two are thus
independent. The calculus reads as follows:

PSeS

�

ζn−1
eζn−11{Sn−1=eSn−1,Sn−1 6=eSn−1}

PSeS
� P(

∑

i≥Sn/Sn−1
q0,0(i)

∑

j≥eSn/eSn−1
q0,0( j))

∑

i≥Sn/Sn−1
q(i)

∑

j≥eSn/eSn−1
q( j)

: B
�

�

�Fn−1, eFn−1

�

�

= PSeS
�

ζn−1
eζn−11{Sn−1=eSn−1,Sn−1 6=eSn−1}

∑

x,y

P(
∑

i≥x/Sn−1
q0,0(i)

∑

j≥y/eSn−1
q0,0( j))

m2 PSeS(B|Fn−1, eFn−1)
�

= PSeS
�

PSeS(ζn−1
eζn−11{Sn−1=eSn−1,Sn−1 6=eSn−1,B}

P(m2
0,0)

m2 |Fn−1, eFn−1)
�

The BRWRE has, due to the strict construction of the ancestry, the feature that

ζn−1
eζn−11B∩{Sn−1 6=eSn−1}

≥ ζn−1
eζn−11B∩{Sn−2 6=eSn−2}

.

So, we continue (2.16) and finish the proof of the submartingale property by

(2.16)≥ PSeS
�

ζn−1
eζn−11B∩{Sn−2 6=eSn−2}

�

= Xn−1.

Notation 2.4.6. For some sequence (an)n≥0, we set ∆an := an− an−1 for n≥ 1.

This notation is convenient when we treat the Doob–decomposition of the process Xn from Defini-
tion 2.4.3, i.e.
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Definition 2.4.7.
Xn = Xn(B) =: Mn+ bAn, (2.17)

with Mn a martingale, M0 = bA0 = 0, and bAn the increasing process defined by its increments
∆bAn := P(∆Xn|Gn−1). By 〈M〉n, we denote the quadratic variation of (Mn)n, defined by ∆〈M〉n :=
P
�

(∆Mn)2|Gn−1
�

. Passing to the limit, we define

bA∞ := lim
n→∞

bAn, 〈M〉∞ := lim
n→∞
〈M〉n. (2.18)

The next Lemma deals with the two processes bAn and Mn:

Lemma 2.4.8.
bA∞ <∞ and 〈M〉∞ <∞, P–a.s..

Now take a sequence of events (Bm)m∈N0
verifying P⊗2

SeS
(Bm) ↘ 0 with m → ∞. If we replace B by

Bm and define X m
n := Xn(Bm) together with its Doob–decomposition M m

n + bA
m
n , m, n ∈ N0, and the

corresponding limits as in (2.18), we have

bAm
∞ −−−→m→∞

0 and 〈M m〉∞ −−−→m→∞
0, P–a.s.. (2.19)

The proof is lengthy and will be postponed a little bit. But with this Lemma at hand, we can catch
up on the

Proof of Lemma 2.4.2. Applying the ‘B’–version of the last Lemma, we get that Xn converges, and by
the convergence of N

−2
n , µ⊗2

n = N
−2
n (Xn + Yn)1N∞>0 as well, eP–a.s. On the event of extinction, the

statement is trivial, and we conclude (2.12).

The second statement (2.13) follows immediately from the definition.

In order to prove Lemma 2.4.8, we also need the so called replica overlap, which is the probability
of two particles to meet at the same place:

Rn := 1Nn>0

∑

x

Nn,x

Nn
.

This replica overlap can be related to the event of survival via a Corollary of the following general
result for martingales [Yos10, Proposition 2.1.2].

Proposition 2.4.9. Let (Yn)n∈N0
be a mean–zero martingale on a probability space with measure E

and filtration (In)n∈N0
such that −1≤∆Yn, E–a.s. and

Xn :=
n
∏

m=1

(1+∆Ym).

Then,

{X∞ > 0} ⊇ {Xn > 0 for all n≥ 0} ∩
� ∞
∑

N=1

E
�

(∆Yn)
2
�

�In−1
�

<∞
�

, E–a.s., (2.20)
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holds if Yn is square–integrable and E
�

(∆Yn)2
�

�In−1
�

is uniformly bounded.

The opposite inclusion is provided by Yn being cube–integrable and

E
�

(∆Yn)
3
�

�In−1
�

≤ const ·E
�

(∆Yn)
2
�

�In−1
�

.

Corollary 2.4.10. Suppose P(N∞ > 0)> 0 and m(3) <∞. Then

{N∞ > 0}= {survival} ∩
n
∑

n≥0

Rn <∞
o

, P–a.s..

For proving this Corollary, we start with some notation.

Notation 2.4.11. Define

Un+1,x :=
1Nn>0

mNn

∑

x∈VN0
:

Nn,(x ,x)=1

Kn,(x ,x) ≥ 0.

It is imporant to note that the sum in this definition is taken over exactly Nn,x random variables.
Also define

Un+1 :=
∑

x∈Zd

Un+1,x =
Nn+1

mNn
1Nn>0 =

N n+1

N n
1N n>0.

The (Un+1,x)x∈Zd are independent under P(·|Gn). It is not difficult to see that, on the event {Nn > 0},

P(Un+1,x |Gn) = ρn(x), and hence P(Un+1|Gn) = 1.

Also, with eci =
m(i)

mi , i = 2, 3,

αρ(x)2 =
1

m2N2
n

N2
n,xQ

�

m2
n,x

�

≤ P
�

U2
n+1,x

�

�Gn
�

=
1

m2N2
n

P

�

�

∑

x∈VN0
:

Nn,(x ,x)=1

Kn,(x ,x)

�2�
�

�

�

Gn

�

≤
N2

n,x m(2)

m2N2
n
= ec2ρn(x)

2,

P
�

U3
n+1,x

�

�Gn
�

≤
m(3)

m3 ρn(x)
3 = ec3ρn(x)

3, again on the event {Nn > 0}.

Proof of Corollary 2.4.10. We need to verify the prerequisites of Proposition 2.4.9 which we apply
to Xn := N n and

∆Yn :=
N n

N n−1

1N n−1>0−1N n−1>0 =
∑

x
[Un,x −ρn,x]≥ 1.

The second moments compute as

P
�

(∆Yn)
2
�

�Gn
�

= P
�

(
∑

x
[Un,x −ρn−1,x])

2
�

�Gn
�

=
∑

x ,y
P
�

(Un,x −ρn−1,x)(Un,y −ρn−1,y)
�

�Gn−1
�

=
∑

x
P
�

(Un,x −ρn−1,x)
2
�

�Gn−1
�

=
∑

x

�

P
�

U2
n,x

�

�Gn−1
�

−ρ2
n−1,x

�

.
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Using the observations after Notation 2.4.11, we hence get

�Q(m2
n,x)

m2 − 1
�
∑

x
ρ2

n−1,x ≤ P
�

�

∆Yn
�2
�

�

�Gn

�

≤
�m(2)

m2 − 1
�
∑

x
ρ2

n−1,x .

Similar observations lead to estimate for the third moment:

P
�

(∆Yn)
3
�

�Gn−1
�

= P
�

�

∑

x
[Un,x −ρn−1,x]

�3
�

�

�Gn−1

�

=
∑

x
P
�

(Un,x −ρn−1,x)
3
�

�

�Gn−1

�

≤ 3
∑

x
P
�

U3
n,x +ρ

3
n−1,x

�

�

�Gn−1

�

≤
�m(3)

m3 − 1
�
∑

x
ρ3

n−1,x .

This proves that all hypotheses of Proposition 2.4.9 are fulfilled and in fact equality holds for (2.20).

Proof of Lemma 2.4.8. We make a slight abuse of notation writing B(m) as templates for both the
cases B and Bm, and so on for similar cases of notation. We can make use of (2.16) and, splitting
two times 1 into complementary indicators, get

∆bA(m)n = P
�

∆X (m)n

�

�Gn−1
�

= PSeS

�

ζn−1
eζn−11B(m)

h

�

1Sn−1 6=eSn−1
+α1Sn−1=eSn−1

�

1Sn−1 6=eSn−1
1Sn−2 6=eSn−2

+
�

1Sn−1 6=eSn−1
+α1Sn−1=eSn−1

�

1Sn−1 6=eSn−1
1Sn−2=eSn−2

−
�

1Sn−1 6=eSn−1
+1Sn−1=eSn−1

�

1Sn−2 6=eSn−2

i

�

. (2.21)

In the last term, 1Sn−1 6=eSn−1
is implied by the following indicator, while in the second term, 1Sn−1 6=eSn−1

is 0 due to the fact that ζn−1
eζn−11Sn−1 6=eSn−1

1Sn−2=eSn−2
= 0, P ⊗ PSeS–a.s.. Thus, we can continue

(2.21)= PSeS

�

ζn−1
eζn−11B(m)

h

(α− 1)1Sn−1=eSn−1
1Sn−2 6=eSn−2

+α1Sn−1=eSn−1
1Sn−1 6=eSn−1

1Sn−2=eSn−2

i

�

≤ αPSeS
�

ζn−1
eζn−11Sn−1=eSn−1

1B(m)

�

.

The sum
Z bA :=

∑

n
ζn−1

eζn−11Sn−1=eSn−1

is PSeS–integrable, thanks to Corollary 2.4.10 together with Lemma 1.3.1 and Lemma 1.3.3. So,
summation over all n ∈N yields

bA(m)n ↗ bA(m)∞ ≤ PSeS
�

Z bA : B(m)
�

(

<∞ for B(m) = B

−−−→
m→∞

0 for B(m) = Bm,
(2.22)
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P–almost surely.

Now, the same sort of estimates will be carried out for Mn, but involves much more work.

First, we note that ∆M (m)n can be written as

∆M (m)n = X (m)n − P
�

X (m)n

�

�Gn−1
�

= PSeS

�

ζn−1
eζn−11B(m)

hA Sn
n,Sn−1

aSn
Sn−1

A
eSn

n,eSn−1

a
eSn
eSn−1

1Sn−1 6=eSn−1

−1Sn−1 6=eSn−1

�

α1Sn−1=eSn−1
+1Sn−1 6=eSn−1

�

i

�

.

Definition 2.4.12. For convenience, we define

ϕn(S,eS) :=
A Sn

n,Sn−1

aSn
Sn−1

A
eSn

n,eSn−1

a
eSn
eSn−1

−α1Sn−1=eSn−1
−1Sn−1 6=eSn−1

.

This is the point where we cannot maintain our easy notation of S and eS, for we need four inde-
pendent random walks S[1], S[2], S[3], S[4]. The probability spaces and other notations are adjusted
accordingly, refer to Definition 2.4.1. We compute

∆〈M (m)〉n = P
�

(∆M (m)n )2
�

�Gn−1
�

= P⊗4
S

�

ζ
[1]
n−1ζ

[2]
n−1ζ

[3]
n−1ζ

[4]
n−11B(m)×B(m)

1
S
[1]
n−1 6=S

[2]
n−1
1
S
[3]
n−1 6=S

[4]
n−1

P
�

ϕn(S
[1],S[2])ϕn(S

[3],S[4])
�

�

. (2.23)

We note that if S[i]n−1 6= S[ j]n−1 for i = 1,2 and j = 3,4, then ϕn(S[1],S[2]) and ϕn(S[3],S[4]) are

independent, and that under {S[1]n−1 6= S
[2]
n−1}, it holds that PS[1],S[2]

�

P(ϕn(S[1],S[2]))
�

= 0, where
PS[1],S[2] is the probability measure with respect to (S[1],S[2]). From these observations, we get

(2.23)≤
∑

i=1,2; j=3,4

P⊗4
S

�

ζ
[1]
n−1ζ

[2]
n−1ζ

[3]
n−1ζ

[4]
n−11B(m)×B(m)

1
S
[1]
n−1 6=S

[2]
n−1
1
S
[3]
n−1 6=S

[4]
n−1

P
�

ϕn(S
[1],S[2])ϕn(S

[3],S[4])
�

: S i
n−1 = S j

n−1

�

. (2.24)

It is clear that

P
�

ϕn(S
[1],S[2])ϕn(S

[3],S[4])
�

≤ P

�A
S[1]n

n,S[1]n−1

A
S[2]n

n,S[2]n−1

A
S[3]n

n,S[3]n−1

A
S[4]n

n,S[4]n−1

aS
[1]
n

S
[1]
n−1

aS
[2]
n

S
[2]
n−1

aS
[3]
n

S
[3]
n−1

aS
[4]
n

S
[4]
n−1

�

.

We define W (X , Y ) for X =
�

x[1],x[2],x[3],x[4]
�

, Y =
�

y[1],y[2],y[3],y[4]
�

by

W (X , Y ) = P
�

A y[1]

1,x[1]
A y[2]

1,x[2]
A y[3]

1,x[3]
A y[4]

1,x[4]

�

.
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W (X , Y ) is zero whenever {a4} := a
S[1]n

S
[1]
n−1

a
S[2]n

S
[2]
n−1

a
S[3]n

S
[3]
n−1

a
S[4]n

S
[4]
n−1

is zero; we hence care only about cases

where {a4} 6= 0. Also, remember that (2.23) restricts to the event {S[1]n−1 6= S
[2]
n−1, S[3]n−1 6= S

[4]
n−1}.

Such cases can be separated as follows, with the definition k[ j] := y[ j]/x[ j] for j = 1, 2,3, 4:






































































































































































• •

••

• •

••

• •

•• 0 x[1] = x[3], x[1] = x[3], y[1] 6= y[3], {a4} 6= 0
• •

••
??

?
��

�
1 x[ j] 6= x (`) ∀ j,` ∈ {1, 2,3, 4} : j 6= `, {a4} 6= 0

• •

••
??

?
��

� • •

•• 2 x[1] = x[3] 6= x[2] 6= x[4] 6= x[1], x[1] 6= x[3],
{a4} 6= 0

• •

••
??

?
��

� • •

••

• •

•• 3
x[1] = x[3] 6= x[2] 6= x[4] 6= x[1], x[1] = x[3],

y[1] = y[3], {a4} 6= 0
• •

••
??

?
��

� • •

•• 4 x[1] = x[3] 6= x[2] = x[4], x[1] 6= x[3], x[2] 6= x[4],
{a4} 6= 0

• •

••
??

?
��

� • •

••

• •

•• 5
x[1] = x[3] 6= x[2] = x[4], x[1] 6= x[3], x[2] = x[4],

y[2] = y[4], {a4} 6= 0
• •

••
??

?
��

� • •

••

• •

•• 6
x[1] = x[3] 6= x[2] = x[4], x[1] = x[3], x[2] = x[4],

y[1] = y[3], y[2] = y[4], {a4} 6= 0
• •

••
??

?
��

�
��

� • •

••�
�� 7 x[1] = x[3] = x[2] 6= x[4], x[1] 6= x[3] 6= x[2],

{a4} 6= 0
• •

••
??

?
��

�
��

� • •

••�
����
� • •

••�
����
�

8
x[1] = x[3] = x[2] 6= x[4], x[1] 6= x[3] = x[2],

y[3] = y[2], {a4} 6= 0
• •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

�
9

x[1] = x[3] = x[2] = x[4],
x[ j] 6= x(`) ∀ j,` ∈ {1,2, 3,4} : j 6= `, {a4} 6= 0

• •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

� • •

•• 10
x[1] = x[3] = x[2] = x[4],

x[2] 6= x[3] 6= x[1] 6= x[2] = x[4] y[2] = y[4], {a4} 6= 0
• •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

� • •

•• 11
x[1] = x[3] = x[2] = x[4], x[1] = x[3] 6= x[2] = x[4],

y[1] = y[3], y[2] = y[4], {a4} 6= 0

Cases that can be obtained by symmetry are not listed here. Case 0 yields W (X , Y ) = 0 for it is
impossible in the BRWRE–Model: particles with the same name at the same place are blown by the
wind to the same site, so their children cannot be born at different sites.

The notation with the small squares is solely for the ease of understanding; all information is fully
contained in the written part. For how to read it, let us take as an example case number 5:

• •

••
??

?
��

� • •

••

• •

•• 5
x[1] = x[3] 6= x[2] = x[4], x[1] 6= x[3], x[2] = x[4],

y[2] = y[4], {a4} 6= 0

The first square corresponds to the ‘x ’–part, the second one to the ‘x’–part, and the last one to the
‘y ’–part of the restriction. Each • corresponds to an index j = 1, . . . , 4, read left–right, top–down.
The two left bullets of the first square are connected with a double stroke, read: equality sign, just
as the two left ones. Indeed, x[1] = x[3] and x[2] = x[4]. All other connections are single–stroked,
and are supposed to be read as inequalties. The second square conveys hence the information that
x[1] 6= x[3] and x[2] = x[4]. The other dotted connections indicate that both the cases of equality and
inequality are comprised. Lastly, the third square stands for all y[ j], j ∈ {1, . . . , 4} with y[2] = y[4].
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If one changes the mapping of bullet–position and index, one gets all the symmetries immediately.
A missing square has the same meaning as a square with only dotted lines would have.

Now, we can compute W (X , Y ), which equals in the respective cases to:














































































































































































































0
• •

••

• •

••

• •

•• 0

ay
[1]

x[1]
ay
[3]

x[3]
ay
[2]

x[2]
ay
[4]

x[4]

• •

••
??

?
��

�
1

� 1

2d

�2
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

�

ay
[2]

x[2]
ay
[4]

x[4]

• •

••
??

?
��

� • •

•• 2

� 1

2d

�

P
�
∑

i≥max{k[1],k[3]}

q00(i)
�

ay
[2]

x[2]
ay
[4]

x[4]

• •

••
??

?
��

� • •

••

• •

•• 3

� 1

2d

�4
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

�

P
�
∑

i≥k[2]
q00(i)

∑

i≥k[4]
q00(i)

� • •

••
??

?
��

� • •

•• 4

� 1

2d

�3
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

�

P
�
∑

i≥max{k[2],k[4]}

q00(i)
� • •

••
??

?
��

� • •

••

• •

•• 5

� 1

2d

�2
P
�
∑

i≥max{k[1],k[3]}

q00(i)
�

P
�
∑

i≥max{k[2],k[4]}

q00(i)
� • •

••
??

?
��

� • •

••

• •

•• 6

� 1

2d

�3
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

∑

i≥k[2]
q00(i)

�

ay
[4]

x[4]

• •

••
??

?
��

�
��

� • •

••�
�� 7

� 1

2d

�2
P
�
∑

i≥k[1]
q00(i)

∑

i≥max{k[3],k[2]}

q00(i)
�

ay
[4]

x[4]

• •

••
??

?
��

�
��

� • •

••�
����
� • •

••�
����
�

8

� 1

2d

�4
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

∑

i≥k[2]
q00(i)

∑

i≥k[4]
q00(i)

� • •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

�
9

� 1

2d

�3
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

∑

i≥max{k[2],k[4]}

q00(i)
� • •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

� • •

•• 10

� 1

2d

�2
P
�
∑

i≥max{k[1],k[3]}

q00(i)
∑

i≥max{k[2],k[4]}

q00(i)
� • •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

� • •

•• 11

The number of different points in the first square corresponds to the number of separate expectations

(there are expectations hidden in the ay
[ j]

x[ j]
’s). The equalities in the second square that are written

down are important inasmuch as they decide about which sums become united to one sum running
over i ≥max{· · · }. The third square decides if in fact the case is at all possible. The exponent of the
fraction corresponds to the number of summation marks (there are summation marks hidden in the

ay
[ j]

x[ j]
’s, but fractions, as well, so these ay

[ j]

x[ j]
’s do not contribute to the exponent of the fraction).

Now, we can continue with ∆〈M (m)〉n. To get from (2.24) to the following line, one can apply the
same trick with insterted conditional expectations as in the succession of equalities (2.14), and pick
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the worst case, which is case 11. We continue (2.24) and find

∆〈M (m)〉n ≤
∑

i=1,2; j=3,4

C P⊗4
S

�

ζ
[1]
n−1ζ

[2]
n−1ζ

[3]
n−1ζ

[4]
n−11S[i]n−1=S[ j]n−1

: B(m)× B(m)
�

,

where C = c Q
�

(m(2)0,0)
2�/m4 <∞ and c is a constant depending only on d.

Z M
i, j :=

∑

n
ζ
[1]
n−1ζ

[2]
n−1ζ

[3]
n−1ζ

[4]
n−11S[i]n−1=S[ j]n−1

serves the same aim as Z bA in (2.22), and is P⊗4
S

–integrable for the same reasons as for Z bA. So, in
the same manner, we conclude

〈M (m)〉∞ =
∑

n
∆〈M (m)〉n ≤

∑

i=1,2; j=3,4

P⊗4
S
(Z M

i, j : B(m)× B(m))

(

<∞ for B(m) = B

−−−→
m→∞

0 for B(m) = Bm,

P–almost surely. This finishes the proof of Lemma 2.4.8.

Lemma 2.4.13.

ePµ(2)∞ is a probability measure on F 1
∞⊗ eF 1

∞. (2.25)

ePµ(2)∞ � PSeS(· × (Ω
2× eΩ2)) on F 1

∞⊗ eF 1
∞. (2.26)

Proof. As in the proof of (2.2), (2.25) and (2.26) boil down to proving that

lim
m→∞

ePµ(2)∞ (Bm) = 0,

for {Bm} ⊂ (F 1)⊗2 with limm→∞ PSeS(Bm) = 0. We show, in a way similar to the very end of the
proof of Lemma 2.4.2,

lim
m→∞

µ(2)∞ (Bm) = lim
m→∞

lim
n→∞

µ⊗2
n (Bm) = 0 in eP–probability,

by proving that
lim

m→∞
sup

n
X m

n = 0 in eP–probability, (2.27)

where X m
n = Xn(Bm) defined for Bm. Let also

X m
n =: M m

n + bA
m
n

be the submartingale decomposition as in (2.17) and as hinted in Lemma 2.4.8. Now, we can apply
the ‘Bm’–version of Lemma 2.4.8. bAm

n is taken care of by the first statement of (2.19), and for M m
n ,

the second statement and a little calculus will yield

lim
m↗∞

sup
n
|M m

n |= 0 in eP–probability. (2.28)

In fact, for ` ∈R, let τm
`
= inf{n≥ 0 : 〈M m〉n+1 > `}. Then,

P
�

sup
n

�

�M m
n

�

�≥ ε, N∞ > 0
�

≤ P
�

〈M m〉∞ > `, N∞ > 0
�

+ P
�

sup
n

�

�M m
n

�

�≥ ε, τm
` =∞

�

.
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Clearly, the first term on the right–hand–side vanishes as m↗∞ because of (2.19), and so does the
second term as can be seen from the following application of Doob’s inequality (for instance [Dur91,
p.248]):

P
�

sup
n

�

�M m
n

�

�≥ ε, τm
` =∞

�

≤ P
�

sup
n

�

�

�M m
n∧τm

`

�

�

�≥ ε
�

≤ 4ε−2P
�

〈M m〉τm
`

�

≤ 4ε−2P
�

〈M m〉∞ ∧ `
�

.

Since ` is arbitrary, (2.28) follows and hence we conclude (2.27).

Proof of Theorem 2.2.2. We are going to make use of the experience gathered in proving Proposi-
tion 2.3.1. In a manner very similar to the proof of (2.7), for (2.5), we need to show an analogue of
(2.8) with the help of an analogue of (2.9). To be more concrete, we show

lim
n→∞

eP
�

�

µ∞
�

F(S(n))
��2
�

= 0, (2.29)

which implies
eP
�

|µ∞(F(S(n)))|
�

−−−→
n→∞

0, (2.30)

and hence the convergence in probability. Indeed, using the same replacement argument, but with
(2.26) instead of (2.3), we get

lim
n→∞

ePµ(2)∞
�

G
�

S(n), eS(n)
�

�

= (PW)⊗2
�

G
�

· /
p

d, e·/
p

d
�

�

for any G ∈ Cb(W×W). In particular, we can take G(w, ew) = F(w)F(ew), and get (2.29), and hence
(2.5). The proof of (2.4) works with the same telescopic technique seen in (2.11) used in the proof
of (2.6):

eP
�

|µn(F(S
(n)))|

�

= eP
�

|µn(F(S
(n)− F(S(n−k)))

�

+ eP
�

|µn(F(S
(n−k)))−µ∞(F(S(n−k)))|

�

+ eP
�

|µ∞(F(S(n−k)))|
�

.

Note that the L2–techniques in this paragraph that lead to (2.30) are needed only for the treatment
of the last line; the other two can be dealt with with the same arguments than after (2.11).
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