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Abstract

Self-stabilizing diffusions are stochastic processes, solutions of nonlinear stochastic differential

equation, which are attracted by their own law. This specific self-interaction leads to singular

phenomenons like non uniqueness of associated stationary measures when the diffusion moves

in some non convex environment (see [5]). The aim of this paper is to describe these invariant

measures and especially their asymptotic behavior as the noise intensity in the nonlinear SDE

becomes small. We prove in particular that the limit measures are discrete measures and point

out some properties of their support which permit in several situations to describe explicitly

the whole set of limit measures. This study requires essentially generalized Laplace’s method

approximations.

Key words: self-interacting diffusion; stationary measures; double well potential; perturbed

dynamical system; Laplace’s method.

AMS 2000 Subject Classification: Primary 60H10; Secondary: 60J60, 60G10, 41A60.

Submitted to EJP on June 22, 2009, final version accepted July 6, 2010.

2087

DOI: 10.1214/EJP.v15-842

1

http://dx.doi.org/10.1214/EJP.v15-842


1 Introduction

Historically self-stabilizing processes were obtained as McKean-Vlasov limit in particle systems and

were associated with nonlinear partial differential equations [6, 7]. The description of the huge

system is classical: it suffices to consider N particles which form the solution of the stochastic

differential system:

dX i,N
t =
p
ǫdW i

t − V ′(X i,N
t )d t −

1

N

N
∑

j=1

F ′(X i,N
t − X j,N

t )d t, (1.1)

X i,N
0 = x0 ∈ R, 1≤ i ≤ N ,

where (W i
t )i is a family of independent one-dimensional Brownian motions, ǫ some positive param-

eter. In (1.1), the function V represents roughly the environment the Brownian particles move in

and the interaction function F describes the attraction between one particle and the whole ensem-

ble. As N becomes large, the law of each particle converges and the limit is the distribution uǫt (d x)
of the so-called self-stabilizing diffusion (X ǫt , t ≥ 0). This particular phenomenon is well-described

in a survey written by A.S. Sznitman [8]. The process (X ǫt , t ≥ 0) is given by

dX ǫt =
p
ǫdWt − V ′(X ǫt )d t −

∫

R

F ′(X ǫt − x)duǫt (x)d t. (1.2)

This process is of course nonlinear since solving the preceding SDE (1.2) consists in pointing out

the couple (X ǫt ,uǫt ). By the way, let us note in order to emphasize the nonlinearity of the study that

uǫt (x) satisfies:

∂ uǫ

∂ t
=
ǫ

2

∂ 2uǫ

∂ x2
+
∂

∂ x

�

uǫ(V ′+ F ′ ∗ uǫ)
�

. (1.3)

Here ∗ stands for the convolution product. There is a relative extensive literature dealing with the

questions of existence and uniqueness of solutions for (1.2) and (1.3), the existence and uniqueness

of stationary measures, the propagation of chaos (convergence in the large system of particles)...

The results depend of course on the assumptions concerning both the environment function V and

the interaction function F . Let us just cite some key works: [4], [6], [7], [10], [9], [1] and [2],

[3].

The aim of this paper is to describe the ǫ-dependence of the stationary measures for self-stabilizing

diffusions. S. Benachour, B. Roynette, D. Talay and P. Vallois [1] proved the existence and uniqueness

of the invariant measure for self-stabilizing diffusions without the environment function V . Their

study increased our motivation to analyze the general equation (1.2), which is why our assumptions

concerning the interaction function F are close to theirs.

In our previous paper [5], we considered some symmetric double-well potential function V and

emphasized a particular phenomenon which is directly related to the nonlinearity of the dynamical

system: under suitable conditions, there exist at least three invariant measures for the self-stabilizing

diffusion (1.2). In particular, there exists a symmetric invariant measure and several so-called outly-
ing measures which are concentrated around one bottom of the double-well potential V . Moreover,

if V ′′ is some convex function and if the interaction is linear, that is F ′(x) = αx with α > 0, then

there exist exactly three stationary measures as ǫ is small enough, one of them being symmetric.

What about the ǫ-dependence of these measures ? In the classical diffusion case, i.e. without in-

teraction, the invariant measure converges in the small noise limit (ǫ → 0) to 1

2
δ−a +

1

2
δa where
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δ represents the Dirac measure and, both a and −a stand for the localization of the double-well V
bottoms. The aim of this work is to point out how strong the interaction function F shall influence

the asymptotic behavior of the stationary measures. In [5], under some moment condition: the

8q2-th moment has to be bounded, the analysis of the stationary measures permits to prove that

their density satisfies the following exponential expression:

uε(x) =
exp
�

−2

ε

�

V (x) +
�

F ∗ uε
�

(x)
�
�

∫

R
exp
�

−2

ε

�

V (y) +
�

F ∗ uε
�

(y)
�
�

d y
. (1.4)

To prove the hypothetical convergence of uε towards some u0, the natural framework is Laplace’s

method, already used in [5]. Nevertheless, the nonlinearity of our situation does not allow us to use

these classical results directly.

Main results: We shall describe all possible limit measures for the stationary laws. Under a weak

moment condition satisfied for instance by symmetric invariant measures (Lemma 5.2) or in the

particular situation when V is a polynomial function satisfying deg(V )> deg(F) (Proposition 3.1), a

precise description of each limit measure u0 is pointed out: u0 is a discrete measure u0 =
∑r

i=1 piδAi

(Theorem 3.6). The support of the measure is directly related to the global minima of some potential

W0 which enables us to obtain the following properties (Proposition 3.7): for any 1 ≤ i, j ≤ r, we

get

V ′(Ai) +

r
∑

l=1

pl F
′ �Ai − Al

�

= 0,

V (Ai)− V (A j) +

r
∑

l=1

pl

�

F(Ai − Al)− F(A j − Al)
�

= 0

and V ′′(Ai) +

r
∑

l=1

pl F
′′ �Ai − Al

�

≥ 0.

We shall especially construct families of invariant measures which converge to δa and δ−a where a
and −a represents the bottom locations of the potential V (Proposition 4.1). For suitable functions

F and V , these measures are the only possible asymmetric limit measures (Proposition 4.4 and

4.5). Concerning families of symmetric invariant measures, we prove the convergence, as ǫ → 0,

under weak convexity conditions, towards the unique symmetric limit measure 1

2
δ−x0

+ 1

2
δx0

where

0 ≤ x0 < a (Theorem 5.4). A natural bifurcation appears then for F ′′(0) = supz∈R−V ′′(z) =: θ .

If F ′′(0) < θ , then x0 > 0 and the support of the limiting measure contains two different points.

If F ′′(0) ≥ θ , then x0 = 0 so the support contains only one point : 0. It states some competitive

behavior between both functions V and F . We shall finally point out two examples of functions

V and F which lead to the convergence of any sequence of symmetric self-stabilizing invariant

measures towards a limit measure whose support contains at least three points (Proposition 5.6 and

5.7): the initial system is obviously deeply perturbed by the interaction function F .

The convexity of V ′′ and the linearity of F ′ imply the existence of exactly three limit measures:

one is symmetric and concentrated on either one or two points and the two others u±0 are outlying.

Furthermore if V ′′ and F ′′ are convex, any symmetric stationary measures converge to 1

2
δx0
+ 1

2
δ−x0

with x0 ∈ [0; a[.

The material is organized as follows. After presenting the essential assumptions concerning the
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environment function V and the interaction function F , we start the asymptotic study by the simple

linear case F ′(x) = αx with α > 0 (Section 2) which permits explicit computation for both the

symmetric measure (Section 2.1) and the outlying ones (Section 2.2). In Section 3 the authors

handle the general interaction case proving the convergence of invariant measures subsequences

towards finite combination of Dirac measures. The attention shall be focused on these limit measures

(Section 3.2). To end the study, it suffices to consider assumptions which permit to deduce that there

exist exactly three limit measures: one symmetric, δ−a and δa. This essential result implies the

convergence of both any asymmetric invariant measure (Section 4) and any symmetric one (Section

5). Some examples are presented.

Main assumptions

Let us first describe different assumptions concerning the environment function V and the interac-

tion function F . The context is similar to our previous study [5] and is also weakly related to the

work [1].

We assume the following properties for the function V :

(V-1) Regularity: V ∈ C∞(R,R). C∞ denotes the Banach space of infinitely bounded continuously

differentiable function.

(V-2) Symmetry: V is an even function.

(V-3) V is a double-well potential. The equa-

tion V ′(x) = 0 admits exactly three solu-

tions : a, −a and 0 with a > 0; V ′′(a) >
0 and V ′′(0) < 0. The bottoms of the

wells are reached for x = a and x =−a.

(V-4) There exist two constants C4, C2 > 0

such that ∀x ∈ R, V (x)≥ C4 x4− C2 x2.

V

−a a

Figure 1: Potential V

(V-5) lim
x→±∞

V ′′(x) = +∞ and ∀x ≥ a, V ′′(x)> 0.

(V-6) Analyticity: There exists an analytic function V such that V (x) = V (x) for all x ∈ [−a; a].

(V-7) The growth of the potential V is at most polynomial: there exist q ∈ N∗ and Cq > 0 such that
�

�V ′(x)
�

�≤ Cq

�

1+ x2q
�

.

(V-8) Initialization: V (0) = 0.

Typically, V is a double-well polynomial function. We introduce the parameter θ which plays some

important role in the following:

θ = sup
x∈R
−V ′′(x). (1.5)

Let us note that the simplest example (most famous in the literature) is V (x) = x4

4
− x2

2
whose

bottoms are localized in −1 and 1 and with parameter θ = 1.

Let us now present the assumptions concerning the attraction function F .
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(F-1) F is an even polynomial function of degree 2n with F(0) = 0. Indeed we consider some

classical situation: the attraction between two points x and y only depends on the distance

F(x − y) = F(y − x).

(F-2) F is a convex function.

(F-3) F ′ is a convex function on R+ therefore for any x ≥ 0 and y ≥ 0 such that x ≥ y we get

F ′(x)− F ′(y)≥ F ′′(0)(x − y).

(F-4) The polynomial growth of the attraction function F is related to the growth condition (V-7):

|F ′(x)− F ′(y)| ≤ Cq|x − y |(1+ |x |2q−2+ |y |2q−2).

Let us define the parameter α≥ 0:

F ′(x) = αx + F ′0(x) with α= F ′′(0)≥ 0. (1.6)

2 The linear interaction case

First, we shall analyze the convergence of different invariant measures when the interaction function

F ′ is linear: F(x) = α

2
x2 with α > 0. In [5], we proved that any invariant density satisfies some

exponential expression given by (1.4) provided that its 8q2-th moment is finite. This expression can

be easily simplified, the convolution product is determined in relation to the mean of the stationary

law. The symmetric invariant measure denoted by u0
ε becomes

u0
ε(x) =

exp
�

−2

ε
W0(x)

�

∫

R
exp
�

−2

ε
W0(y)

�

d y
with W0(x) = V (x) +

α

2
x2, ∀x ∈ R. (2.1)

The asymptotic behavior of the preceding expression is directly related to classical Laplace’s method

for estimating integrals and is presented in Section 2.1. If ǫ is small, Proposition 3.1 in [5] empha-

sizes the existence of at least two asymmetric invariant densities u±ε defined by

u±ε (x) =
exp
h

−2

ε

�

V (x) +α x2

2
−αm±ε x

�i

∫

R
exp
h

−2

ε

�

V (y) +α y2

2
−αm±ε y

�i

d y
. (2.2)

Here m±ε represents the average of the measure u±ε (d x) which satisfies: for any δ ∈]0,1[ there

exists ǫ0 > 0 such that

�

�

�

�

�

m±ε − (±a) +
V (3)(±a)

4V ′′(a) (α+ V ′′(a))
ε

�

�

�

�

�

≤ δ ε, ∀ǫ ≤ ǫ0. (2.3)

Equation (2.3) enable us to develop, in Section 2.2, the asymptotic analysis of the invariant law in

the asymmetric case.
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2.1 Convergence of the symmetric invariant measure.

First of all, let us determine the asymptotic behavior of the measure u0
ǫ(d x) as ǫ → 0. By (2.1),

the density is directly related to the function W0 which admits a finite number of global minima.

Indeed due to conditions (V-5) and (V-6), we know that W ′′0 ≥ 0 on [−a; a]c and V is equal to an

analytic function V on [−a; a]. Hence W ′0 admits a finite number of zeros on R€ or W ′0 = 0 on the

whole interval [−a, a] which implies immediately W ′′0 = 0. In the second case in particular we get

W ′′0 (a) = 0 which contradicts W ′′0 (a) = V ′′(a) + α > 0. We deduce that W ′0 admits a finite number

of zeros on R€.

The measure u0
ǫ can therefore be developed with respect to the minima of W0.

Theorem 2.1. Let A1 < . . . < Ar the r global minima of W0 and ω0 = minz∈RW0(z). For any i,
we introduce k0(i) = min{k ∈ IN | W (2k)

0 (Ai) > 0}. Let us define k0 = max
�

k0(i), i ∈ [1; r]
	

and
I =

�

i ∈ [1; r] | k0(i) = k0

	

. As ǫ → 0, the measure u0
ε defined by (2.1) converges weakly to the

following discrete measure

u0
0 =

∑

i∈I

�

W (2k0)

0 (Ai)
�− 1

2k0 δAi

∑

j∈I

�

W (2k0)

0 (A j)
�− 1

2k0

(2.4)

Proof. Let f be a continuous and bounded function on R. We define A0 = −∞ and Ar+1 = +∞.

Then, for i ∈]1; r[, we apply Lemma A.1 to the function U = W0 and to each integration support

Ji = [
Ai−1+Ai

2
;

Ai+Ai+1

2
]. We obtain the asymptotic equivalence as ǫ→ 0:

e
2

ε
ω0

∫

Ji

f (t)e−
2W0(t)
ε d t =

f (Ai)

k0(i)
Γ

�

1

2k0(i)

�

 

ε(2k0(i))!

2W (2k0(i))
0 (Ai)

!
1

2k0(i)

(1+ o(1)).

This equivalence is also true for the supports J1 and Jr . Indeed, we can restrict the semi-

infinite support of the integral to a compact one since f is bounded and since the function W0

admits some particular growth property: W0(x) ≥ x2 for |x | large enough. Hence denoting

I = e
2

ε
ω0
∫

R
f (t) e−

2W0(t)
ε d t, we get

I =

r
∑

i=1

f (Ai)

k0(i)
Γ

�

1

2k0(i)

�

 

ε(2k0(i))!

2W (2k0(i))
0 (Ai)

!
1

2k0(i)

(1+ o(1))

=
∑

i∈I

f (Ai)

k0

Γ

�

1

2k0

�

 

ε(2k0)!

2W (2k0)

0 (Ai)

!
1

2k0

(1+ o(1))

= C(k0)ε
1

2k0

∑

i∈I

f (Ai)
�

W (2k0)

0 (Ai)
�

1

2k0

(1+ o(1)) (2.5)

with C(k0) =
1

k0
Γ
�

1

2k0

��

(2k0)!

2

�
1

2k0 . Applying the preceding asymptotic result (2.5) on one hand to
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the function f and on the other hand to the constant function 1, we estimate the ratio

∫

R
f (t)exp

h

−2W0(t)
ε

i

d t
∫

R
exp
h

−2W0(t)
ε

i

d t
=

∑

i∈I

�

W (2k0)

0 (Ai)
�− 1

2k0 f (Ai)

∑

j∈I

�

W (2k0)

0 (A j)
�− 1

2k0

(1+ o(1)). (2.6)

We deduce the announced weak convergence of u0
ε towards u0

0.

By definition, V is a symmetric double-well potential: it admits exactly two global minima. We now

focus our attention on W0 and particularly on the number of global minima which represents the

support cardinal (denoted by r in the preceding statement) of the limiting measure.

Proposition 2.2. If V ′′ is a convex function, then u0
0 is concentrated on either one or two points, that

is r = 1 or r = 2.

Proof. We shall proceed using reductio ad absurdum. We assume that the support of u0
0 contains at

least three elements. According to the Theorem 2.1, they correspond to minima of W0. Therefore

there exist at least two local maxima: W ′0 admits then at least five zeros. Applying Rolle’s Theorem,

we deduce that W ′′0 (x) is vanishing at four distinct locations. This leads to a contradiction since V ′′

is a convex function so is W ′′0 .

Let us note that the condition of convexity for the function V ′′ has already appeared in [5] (Theorem

3.2). In that paper, we proved the existence of exactly three invariant measures for (1.2) as the

interaction function F ′ is linear. What happens if V ′′ is not convex ? In particular, we can wonder if

there exists some potential V whose associated measure u0
0 is supported by three points or more.

Proposition 2.3. Let p0 ∈ [0,1[ and r ≥ 1. We introduce

• a mass partition (pi)1≤i≤r ∈]0,1[r satisfying p1+ · · ·+ pr = 1− p0,

• some family (Ai)1≤i≤r with 0< A1 < · · ·< Ar .

There exists a potential function V which verifies all assumptions (V-1)–(V-8) and a positive constant α
such that the measure u0

0, associated to V and the linear interaction F ′(x) = αx, is given by

u0
0 = p0δ0+

r
∑

i=1

pi

2

�

δAi
+δ−Ai

�

.

Proof. Step 1. Let us define a function denoted by W as follows:

W (x) =
�

C + ξ(x2)2
�2

r
∏

i=1

�

x2− A2
i

�2
if p0 = 0, (2.7)

W (x) = x2
�

C + ξ(x2)2
�2

r
∏

i=1

�

x2− A2
i

�2
if p0 6= 0, (2.8)

where C is a positive constant and ξ is a polynomial function. C and ξ will be specified in the

following. Using (2.1), we introduce V (x) = W (x)−W (0)− α
2

x2. According to Theorem 2.1, the
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symmetric invariant measure associated to the functions V and F converges to a discrete measure

whose support is either the set {±Ai , 1 ≤ i ≤ r}, if p0 = 0, either the set {0} ∪ {±Ai , 1 ≤ i ≤ r} if

p0 6= 0.

Theorem 2.1 also enables us to evaluate the weights (pi)i. An obvious analysis leads to k0 = 1.

Moreover, the second derivative of W satisfies

W ′′(Ai) = 8A2
i

�

C + ξ(A2
i )

2
�2

r
∏

j=1, j 6=i

�

A2
i − A2

j

�2

if p0 = 0, (2.9)

W ′′(Ai) = 8A4
i

�

C + ξ(A2
i )

2
�2

r
∏

j=1, j 6=i

�

A2
i − A2

j

�2

if p0 6= 0, (2.10)

and W ′′(0) = 2
�

C + ξ(0)2
�2

r
∏

j=1

A4
j if p0 6= 0. (2.11)

By (2.4), we know that

q

W ′′(Ak)

W ′′(Ai)
=

pi

pk
if i 6= 0 and

2p0

pi
=

q

W ′′(Ai)

W ′′(0)
if p0 6= 0. Hence, if p0 = 0,

pi

pk
=

È

W ′′(Ak)

W ′′(Ai)
=

Ak

�

C + ξ(A2
k)

2
�

∏r
j=1, j 6=k

�

�

�A2
k − A2

j

�

�

�

Ai

�

C + ξ(A2
i )

2
�

∏r
j=1, j 6=i

�

�

�A2
i − A2

j

�

�

�

, (2.12)

and
2p0

pi
=

È

W ′′(Ai)

W ′′(0)
= 2

C + ξ(A2
i )

2

C + ξ(0)2

r
∏

j=1, j 6=i

�

�

�

�

�

1−
A2

i

A2
j

�

�

�

�

�

if p0 6= 0. (2.13)

Step 2. Let us determine the polynomial function ξ.

Step 2.1. First case: p0 = 0. We choose ξ such that ξ(A2
r) = 1. Then (2.12) leads to the equation

C + ξ(A2
k)

2

C + 1
= ηk =

Ar pr

Akpk

r−1
∏

j=1, j 6=k

�

�

�

�

�

A2
r − A2

j

A2
k − A2

j

�

�

�

�

�

(2.14)

Let us fix C = inf{ηk, k ∈ [1; r]} > 0 so that ηk(C + 1)− C ≥ C2 > 0. Therefore the preceding

equality becomes

ξ(A2
k) =

p

(C + 1)ηk − C , for all 1≤ k ≤ r.

Finally, it suffices to choose the following polynomial function which solves in particular (2.14):

ξ(x) =
r
∑

k=1

r
∏

j=1, j 6=k

x − A2
j

A2
k − A2

j

p

(C + 1)ηk − C .

Step 2.2. Second case: p0 6= 0. Using similar arguments as those presented in Step 2.1, we construct

some polynomial function ξ satisfying (2.13). First we set ξ(0) = 1 and define

ηi =
p0

pi

r
∏

j=1, j 6=i

�

�

�

�

�

A2
j

A2
j − A2

i

�

�

�

�

�

.
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For C = inf{ηi , i ∈ [1; r]}, we get ηi(C + 1)− C ≥ C2 > 0. We choose the following function

ξ(x) =
r
∏

j=1

 

1−
x

A2
j

!

+

r
∑

i=1

x

A2
i

r
∏

j=1, j 6=i

x − A2
j

A2
i − A2

j

p

(C + 1)ηi − C .

In Step 2.1 and 2.2, the stationary symmetric measures associated to ξ converge to p0δ0 +
∑r

i=1

pi

2

�

δAi
+δ−Ai

�

.

Step 3. It remains to prove that all conditions (V-1)–(V-8) are satisfied by the function V defined in

Step 1. The only one which really needs to be carefully analyzed is the existence of three solutions

to the equation V ′(x) = 0. Since W defined by (2.7) and (2.8) is an even function, ρ(x) = W ′(x)
x

is well defined and represents some even polynomial function which tends to +∞ as |x | becomes

large. Hence, there exists some R> 0 large enough such that ρ is strictly decreasing on the interval

]−∞;−R] and strictly increasing on [R;+∞[. Let us now define α′ = supz∈[−R;R]ρ(z). Then, for

any α > α′, the equation ρ(z) = α admits exactly two solutions. This implies the existence of exactly

three solutions to V ′(x) = 0 i.e. condition (V-3).

2.2 Convergence of the outlying measures

In the preceding section, we analyzed the convergence of the unique symmetric invariant measure

u0
ǫ as ǫ → 0. In [5], we proved that the set of invariant measures does not only contain u0

ǫ . In

particular, for ǫ small enough, there exist asymmetric ones. We suppose therefore that ε is less than

the critical threshold below which the measures u+ε and u−ε defined by (2.2) and (2.3) exist. We

shall focus our attention on their asymptotic behavior.

Let us recall the main property concerning the mean m±(ǫ) of these measures: for all δ > 0, there

exists ε0 > 0 small enough such that

�

�

�

�

�

m±(ε)− (±a) +
V (3)(±a)

4V ′′(a) (α+ V ′′(a))
ε

�

�

�

�

�

≤ δε, ǫ ≤ ǫ0. (2.15)

Here a and −a are defined by (V-3). Let us note that we do not assume V ′′ to be a convex function

nor u+ε (resp. u−ε ) to be unique.

Theorem 2.4. The invariant measure u+ε (resp. u−ε ) defined by (2.2) and (2.3) converges weakly to δa

(resp. δ−a) as ε tends to 0.

Proof. We just present the proof for u+ε since the arguments used for u−ε are similar. Let us define

W+
ε (x) = V (x) + α

2
x2−αm+(ε)x .

Let f a continuous non-negative bounded function on R whose maximum is denoted by M =

supz∈R f (z). According to (2.2), we have

∫

R

f (x)u+ε (x)d x =

∫

R
f (x)exp

�

−2

ε
W+
ε (x)

�

d x
∫

R
exp
�

−2

ε
W+
ε (x)

�

d x
. (2.16)
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We introduce U(y) = V (y) + α
2

y2−αa y . By (2.15), for ǫ small enough, we obtain

∫

R

exp

�

−
2

ε
W+
ε (y)

�

d y ≤
∫

R

ξ+(y)exp

�

−
2

ε
U(y)

�

d y

where ξ+(y) = exp

¨

−
αV (3)(a)

2V ′′(a) (α+ V ′′(a))
y + 2αδ

�

�y
�

�

«

.

By Lemma A.4 in [5] (in fact a slight modification of the result: the function fm appearing in the

statement needs just to be C (3)-continuous in a small neighborhood of the particular point xµ), the

following asymptotic result (as ǫ→ 0) yields:

∫

R

ξ+(y)exp

�

−
2

ε
U(y)

�

d y =

Ç

πε

α+ V ′′(a)
exp

�

−
2

ε
U(a)

�

ξ+(a)(1+ o(1)).

We can obtain the lower-bound by similar arguments, just replacing ξ+(y) by ξ−(y) where

ξ−(y) = exp

¨

−
αV (3)(a)

2V ′′(a) (α+ V ′′(a))
y − 2αδ

�

�y
�

�

«

.

Therefore, for any η > 1, there exists some ǫ1 > 0, such that

1

η
ξ−(a)≤

r

U ′′(a)

πε
e

2U(a)
ε

∫

R

e−
2

ε
W+
ε (x)d x ≤ ηξ+(a), (2.17)

for ǫ ≤ ǫ1. In the same way, we obtain some ǫ2 > 0, such that

1

η
f (a)ξ−(a)≤

r

U ′′(a)

πε
e

2U(a)
ε

∫

R

f (x)e−
2

ε
W+
ε (x)d x ≤ η f (a)ξ+(a), (2.18)

for ǫ ≤ ǫ2. Taking the ratio of (2.18) and (2.17), we immediately obtain:

1

η2
f (a)exp [−4αaδ]≤

∫

R

f (x)u+ε (x)d x ≤ η2 f (a)exp [4αaδ] ,

for ǫ ≤min(ǫ1,ǫ2). δ is arbitrarily small and η is arbitrary close to 1, so we deduce the convergence

of
∫

R
f (x)u+ε (x)d x towards f (a).

2.3 The set of limit measures

In the particular case where V ′′ is a convex function and ǫ is fixed, we can describe exactly the set of

invariant measures associated with (1.2). The statement of Theorem 3.2 in [5]makes clear that this

set contains exactly three elements. What happens as ǫ → 0 ? We shall describe in this section the

set of all measures defined as a limit of stationary measures as ǫ → 0. We start with a preliminary

result:

Lemma 2.5. If V ′′ is a convex function then there exists a unique x0 ≥ 0 such that V ′(x0) = −αx0

and α+ V ′′(x0)≥ 0. Moreover, if α+ V ′′(0)≥ 0 then x0 = 0 otherwise x0 > 0.
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Proof. Since V ′′ is a symmetric convex function, we get θ = −V ′′(0) where θ is defined by (1.5).

Let χ the function defined by χ(x) = V ′(x) +αx . We distinguish two different cases:

1) If α ≥ −V ′′(0), then the convexity of V ′′ implies α+ V ′′(x) > 0 for all x 6= 0. Therefore 0 is the

unique non negative solution to the equation V ′(x) +αx = 0. Moreover we get α+ V ′′(0)≥ 0.

2) If α < −V ′′(0), then χ admits at most three zeros due to the convexity of its derivative. Since

χ(0) = 0 and since χ is an odd function, there exists at most one positive zero. The inequal-

ity α + V ′′(0) < 0 implies that χ is strictly decreasing at the right side of the origin. Moreover

limx→+∞χ(x) = +∞ which permits to conclude the announced existence of one positive zero x0.

We easily verify that α+ V ′′(x0)≥ 0.

Proposition 2.6. If V ′′ is a convex function then the family of invariant measures admits exactly three
limit points, as ǫ → 0. Two of them are asymmetric: δa and δ−a and the third one is symmetric
1

2
δx0
+ 1

2
δ−x0

; x0 has been introduced in Lemma 2.5.

Proof. Since V ′′ a is convex function, there exist exactly three invariant measures for (1.2) provided

that ǫ is small enough (see Proposition 3.2 in [5]). These measures correspond to u0
ε, u+ε and u−ε

defined by (2.1) and (2.2).

1) Theorem 2.1 emphasizes the convergence of u0
ε towards the discrete probability measure u0

0

defined by (2.4). Due to the convexity of V ′′, the support of this limit measure contains one or

two real numbers (Proposition 2.2) which correspond to the global minima of U(x) = V (x) + α
2

x2.

According to the Lemma 2.5, we know that U admits a unique global minimum on R+ denoted by

x0. If α≥ −V ′′(0) then x0 = 0 and consequently r = 1 i.e. u0
0 = δ0. If α <−V ′′(0) then x0 > 0 and

r = 2 i.e. u0
0 =

1

2
δx0
+ 1

2
δ−x0

since u0
0 is symmetric.

2) According to the Theorem 2.4, u±ε converges to δ±a.

3 The general interaction case

In this section we shall analyze the asymptotic behavior of invariant measures for the self-stabilizing

diffusion as ǫ→ 0. Let us consider some stationary measure uε. According to Lemma 2.2 of [5], the

following exponential expression holds:

uε(x) =
exp
�

−2

ε
Wε(x)

�

∫

R
exp
�

−2

ε
Wε(y)

�

d y
with Wε := V + F ∗ uε− F ∗ uε(0). (3.1)

Since F is a polynomial function of degree 2n, the function Wǫ just introduced can be developed as

follows

Wε(x) = V (x) +
∞
∑

k=1

xk

k!
ωk(ε) with ωk(ε) =

∞
∑

l=0

(−1)l

l!
F (l+k)(0)µl(ε), (3.2)

µl(ε) being the l-order moment of the measure uε.
Wε is called the pseudo-potential. Since F is a polynomial function of degree 2n, the preceding sums

in (3.2) are just composed with a finite number of terms. In order to study the behavior of uǫ for

small ε, we need to estimate precisely the pseudo-potential Wε.
Let us note that, for some specific p ∈ N, the Lp-convergence of uε towards some measure u0 implies

the convergence of the associated pseudo-potential Wε towards a limit pseudo-potential W0.

The study of the asymptotic behavior of uǫ shall be organized as follows:
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• Step 1. First we will prove that, under the boundedness of the family {µ2n−1(ε), ǫ > 0} with

2n= deg(F), we can find a sequence (εk)k≥0 satisfying limk→∞ ǫk = 0 such that Wεk
converges

to a limit function W0 associated to some measure u0.

• Step 2. We shall describe the measure u0: it is a discrete measure and its support and the

corresponding weights satisfy particular conditions.

• Step 3. We analyze the behavior of the outlying measures concentrated around a and −a
and prove that these measures converge towards δa and δ−a respectively. We show secondly

that these Dirac measures are the only asymmetric limit measures. We present some example

associated with the potential function V (x) = x4

4
− x2

2
.

• Step 4. Finally we focus our attention on symmetric measures. After proving the boundedness

of the moments, we discuss non trivial examples (i.e. nonlinear interaction function F ′) where

there exist at least three limit points.

3.1 Weak convergence for a subsequence of invariant measures

Let
�

uε
�

ε>0 be a family of stationary measures. The main assumption in the subsequent develop-

ments is:

(H)
We assume that the family

�

µ2n−1(ε),ε > 0
	

is bounded for 2n =
deg(F).

This assumption is for instance satisfied if the degree of the environment potential V is larger than

the degree of the interaction potential:

Proposition 3.1. Let (uε)ε>0 a family of invariant measures for the diffusion (1.2). We assume that
V is a polynomial function whose degree satisfies 2m0 := deg(V ) > deg(F) = 2n. Then the family
�∫

R€
x2m0uε(x)d x

�

ε>0
is bounded.

Proof. Let us assume the existence of some decreasing sequence (εk)k∈N which tends to 0 and such

that the sequence of moments µ2m0
(k) :=

∫

R€
x2m0uεk

(x)d x tends to +∞. By (3.1) and (3.2) we

obtain:

µ2m0
(k) =

∫

R€
x2m0 exp

h

− 2

εk

�

∑2m0−1

r=1 Mr(k)x
r + C2m0

x2m0

�i

d x
∫

R€
exp
h

− 2

εk

�

∑2m0−1

r=1 Mr(k)x
r + C2m0

x2m0

�i

d x
,

where Mr(k) is a combination of the moments µ j(k), with 0 ≤ j ≤ max(0,2n − r), and C2m0
=

V (2m0)(0)/(2m0)!. Let us note that the coefficient of degree 0 in the polynomial expression disap-

pears since the numerator and the denominator of the ratio contain the same expression: that leads

to cancellation. MoreoverMr(k) does not depend on ǫk for all r s.t. 2n ≤ r ≤ 2m0 and that there

exists some r such thatMr(k) tends to +∞ or −∞ since µ2m0
(k) is unbounded.

Let us define

φk := sup
1≤r≤2m0−1

�

�Mr(k)
�

�

1

2m0−r .

Then the sequences ηr(k) :=
Mr (k)

φ
2m0−r
k

, for 1 ≤ r ≤ 2m0 − 1, are bounded. Hence we extract a

subsequence (εΨ(k))k∈N such that ηr(Ψ(k)) converges towards some ηr as k→∞, for any 1 ≤ r ≤
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2m0−1. For simplicity, we shall conserve all notations: µ2m0
(k), ηr(k), φk... even for sub-sequences.

The change of variable x := φk y provides

µ2m0
(k)

φ
2m0

k

=

∫

R€
y2m0 exp

�

−2φ
2m0
k

εk

�

∑2n−1

r=1 ηr(k)y
r + C2m0

y2m0

�

�

d y

∫

R€
exp

�

−2φ
2m0
k

εk

�

∑2n−1

r=1 ηr(k)y
r + C2m0

y2m0

�

�

d y
. (3.3)

The highest moment appearing in the expression Mk is the moment of order 2n− k. By Jensen’s

inequality, there exists a constant C > 0 such that |Mr | ≤ Cµ2m0
(k)

2n−r
2m0 for all 1 ≤ r ≤ 2n− 1. The

following upper-bound holds:

φ
2m0

k ≤ sup
1≤r≤2m0−1

�

C
2m0

2m0−r µ2m0
(k)

2n−r
2m0−r

�

= o
¦

µ2m0
(k)
©

We deduce from the previous estimate that the left hand side of (3.3) tends to +∞. Let us focus

our attention on the right term. In order to estimate the ratio of integrals, we use asymptotic results

developed in the annex of [5], typically generalizations of Laplace’s method. An adaptation of

Lemma A.4 enables us to prove that the right hand side of (3.3) is bounded: in fact it suffices to

adapt the asymptotic result to the particular function U(y) :=
∑2n−1

r=1 ηr y r + C2m0
y2m0 which does

not satisfy a priori U ′′(y0) > 0. This generalization is obvious since the result we need is just the

boundedness of the limit, so we do not need precise developments for the asymptotic estimation. In

the lemma the small parameter ǫ will be the ratio ξk := εk/φ
2m0

k and f (y) := y2m0 .

Since the right hand side of (3.3) is bounded and the left hand side tends to infinity, we obtain some

contradiction. Finally we get that {µ2m0
(ǫ), ǫ > 0} is a bounded family.

From now on, we assume that (H) is satisfied. Therefore applying Bolzano-Weierstrass’s theorem

we obtain the following result:

Lemma 3.2. Under the assumption (H), there exists a sequence (εk)k≥0 satisfying limk→∞ ǫk = 0 such
that, for any 1 ≤ l ≤ deg(F)− 1, µl

�

εk
�

converges towards some limit value denoted by µl(0) with
|µl(0)|<∞.

As presented in (3.2), the moments µl(ǫ) characterize the pseudo-potential Wε. We obtained a

sequence of measures whose moments are convergent so we can extract a subsequence such that

the pseudo-potential converges. For r ∈ N∗, we write :

ωk(0) =

∞
∑

l=0

(−1)l

l!
F (l+k)(0)µl(0) and W0(x) = V (x) +

∞
∑

k=0

xk

k!
ωk(0). (3.4)

Like in (3.2), there is a finite number of terms non equal to 0 in the two sums so W0(x) is defined

for all x ∈ R€.

Proposition 3.3. Under condition (H), there exists a sequence (εk)k≥0 satisfying limk→∞ ǫk = 0 such

that, for all j ∈ N, (W ( j)
εk
)k≥1 converges towards W ( j)

0 , uniformly on each compact subset of R, where the

limit pseudo-potential W0 is defined by (3.4), and
�

uεk

�

k≥1
converges weakly towards some probability

measure u0.
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Proof. By (3.4), we obtain, for any p ≥ 1,

�

�ωp(ε)−ωp(0)
�

�≤
∞
∑

l=1

�

�F (l+p)(0)
�

�

l!

�

�µl (ε)−µl (0)
�

� .

Let us note that the sum in the right hand side of the previous inequality is finite. Using Lemma 3.2,

we obtain the existence of some subsequence which enables us the convergence towards 0 of each

term. Therefore, for all p ∈ N, ωp(εk) tends to ωp(0) when k tends to infinity. Let x ∈ R, since V is

C∞-continuous, both derivatives W ( j)
εk
(x) and W ( j)

0 (x) are well defined. Moreover we get

�

�

�W ( j)
εk
(x)−W ( j)

0 (x)
�

�

� =

�

�

�

�

�

�

∞
∑

p= j

x p− j

(p− j)!
ωp(εk)−

∞
∑

p= j

x p− j

(p− j)!
ωp(0)

�

�

�

�

�

�

≤
∞
∑

p= j

|x |p− j

(p− j)!

�

�ωp(εk)−ωp(0)
�

� .

Since there is just a finite number of terms, and since each term tends to 0, we obtain the pointwise

convergence of W ( j)
εk

towards W ( j)
0 . In order to get the uniform convergence, we introduce some

compact K: it suffices then to prove that, for j ≥ 1, supy∈K , k≥0

�

�

�W
( j)
ǫk
(y)
�

�

� is bounded. This is just an

obvious consequence of the regularity of V and of the following bound:

|W ( j)
ǫk
(y)| ≤ |V ( j)(y)|+

∞
∑

p= j

|y |p− j

(p− j)!
|wp(ǫk)|.

Let us prove now the existence of a subsequence of (ǫk)k≥0 for which we can prove the weak

convergence of the corresponding sequence of invariant measures. According to condition (H),
�

µ2

�

εk
�

; k ≥ 1
	

is bounded; we denote m2 the upper-bound. Using the Bienayme-Tchebychev’s

inequality, the following bound holds for all R > 0 and k ≥ 1: uεk
([−R; R]) ≥ 1− m2

R2 . Consequently

the family of probability measures
¦

uεk
; k ∈ N∗

©

is tight. Prohorov’s Theorem allows us to conclude

that
¦

uεk
; k ∈ N∗

©

is relatively compact with respect to the weak convergence.

Lemma 3.4. Each limit function W0 admits a finite number r ≥ 1 of global minima.

Proof. According to (3.4), W ′0(x) = V ′(x) + P ′(x) where P is a polynomial function. Since V is

equal to an analytic function V on [−a; a] (see Condition (V-6)), we deduce that W ′0 has a finite

number of zeros on this interval. Indeed, if this assertion is false, then W ′′0 (a) = 0 which contradicts

the following limit W ′′0 (a) = V ′′(a) + limk→∞ F ′′ ∗ uǫk(a) > 0 due to the convexity property of F
(F-2). By (3.1) and condition (V-4) and since F is even and F ′ is convex on R+, we deduce that

Wε(x) ≥ V (x) ≥ C4 x4 − C2 x2 for any ǫ > 0. Taking the limit with respect to the parameter ǫ,

we get W0(x) ≥ C4 x4 − C2 x2 for all x ∈ R. This lower-bound allows us to conclude that there

exists some large interval [−R; R] which contains all the global minima of W0. It remains then to

study the minima of W0 on the compact K := [−R;−a]
⋃

[a; R]. According to the property (V-5),

V ′′(x) > 0 for all a ∈ K . Moreover F is a convex function (condition (F-2)) therefore the definition

(3.1) implies: W ′′ε (x) ≥ minz∈[−R;−a] V ′′(z) > 0 for all x ∈ K . By Proposition 3.3, there exists some

sequence (ǫk)k≥0 such that W ′′εk
converges towards W ′′0 uniformly on K . Consequently W ′′0 (x) > 0

for all x ∈ K and so W ′0 admits a finite number of zeros on K .
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Since W0 admits r global minima, we define A1 < · · ·< Ar their location:

W0(A1) = · · ·=W0(Ar) = inf
x∈R

W0(x) =: w0. (3.5)

We introduce a covering Uδ of these points:

Uδ =
r
⋃

i=1

�

Ai −δ; Ai +δ
�

with δ ∈
�

0;
1

2
min
i 6= j

�

�Ai − A j

�

�

�

. (3.6)

The set {A1, . . . ,Ar} plays a central role in the asymptotic analysis of the measures (uǫ)ǫ. In particular

we can prove that u0 defined in Proposition 3.3 is concentrated around these points.

Proposition 3.5. Let W0 and (ǫk)k≥0 be defined by Proposition 3.3. Then the following convergence
results hold:
1) For all x /∈ Uδ, lim

k→∞
uεk
(x) = 0.

2) For δ > 0 small enough, lim
k→∞

∫

(Uδ)c
uεk
(x)d x = 0.

Proof. 1) The limit pseudo-potential W0 is C∞ and its r global minima are in Uδ. Since

limx→±∞W0(x) = +∞, there exists η > 0 such that W0(x)≥ w0+η for all x /∈ Uδ.
Let us now point out a lower bound for Wǫk . Using (V-5), (F-3), (1.6) and the definition (3.1), we

prove that

W ′′εk
(x)≥ V ′′(x) +α > α for all |x | ≥ a and k ≥ 0. (3.7)

Moreover, due to the boundedness of the moments (condition (H)), W ′ǫk(0) and W ′′ǫk(0) are bounded

uniformly with respect to k ≥ 0. This property combined with (3.7) leads to the existence of some

R > 0 (independent of k) such that Wεk
(x) ≥ w0 + η for |x | ≥ R. What happens on the compact

set [−R,R] ∩ (Uδ)c? Proposition 3.3 emphasizes the uniform convergence of Wεk
on this compact

set. As a consequence, there exists some k0 ∈ N such that Wεk
(x) ≥ w0 +

η

2
for k ≥ k0 and

x ∈ [−R,R]∩(Uδ)c . To sum up, the lower bound Wεk
(x)≥ w0+

η

2
holds for any x ∈ (Uδ)c provided

that k ≥ k0. Finally we obtain:

exp

�

−
2

εk
Wεk
(x)

�

≤ exp

�

−
2

εk
w0

�

exp

�

−
η

εk

�

, ∀x /∈ Uδ, k ≥ k0. (3.8)

In order to estimate uǫk(x), we need a lower bound for the denominator in the ratio (3.1). We

denote this denominator Dǫ. Since the continuous function W0 admits a finite number of minima,

there exists γ with δ > γ > 0 such that, for all x ∈ Uγ, we have W0(x)≤ w0+
η

8
. By Proposition 3.3,

Wεk
converges uniformly on each compact subset of R to W0. Therefore there exists k1 such that for

all k ≥ k1, for all x ∈ Uγ, we have Wεk
(x) ≤ w0 +

η

4
. Finally the denominator in (3.1) can be lower

bounded:

Dǫk ≥
∫

Uγ
exp

�

−
2

εk
Wεk
(x)

�

d x ≥ 2rγexp

�

−
2

εk

�

w0+
η

4

�
�

, k ≥ k1. (3.9)

For k ≥ k0 ∨ k1, according to (3.8) and (3.9), the following bound holds

uεk
(x)≤

1

2rγ
exp

�

−
η

2εk

�

. (3.10)
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The right hand side in (3.10) tends to 0 as k→∞ which proves the first part of the statement.

2) Let δ > 0 and K > 0. We split the integral support into two parts: Uδ = I1 ∪ I2 with I1 =

[−K; K]c respectively I2 = [−K; K]
⋂

(Uδ)c. Bienayme-Tchebychev’s inequality enables us to bound

the integral of uǫk on I1 by
m2

K2 , where m2 satisfies supk≥0µ2(εk) ≤ m2. By (3.10), the integral on

the second support I2 is bounded by K
rγ

exp
h

− η

2εk

i

. It suffices then to choose K and k large enough

in order to prove the convergence of
∫

(Uδ)c
uεk
(x)d x .

The sequence of measures
�

uεk

�

k∈N∗ converges to a measure u0. Furthermore the open set
�

Uδ
�c

is

less and less weighted by uεk
as k becomes large. Intuitively u0 should be a discrete measure whose

support corresponds to the set {A1, . . . ,Ar}.

Theorem 3.6. Let (ǫk)k≥1, W0, u0 and A1, . . . ,Ar be defined in the statement of Proposition 3.3 and
by (3.5). Then the sequence of measures

�

uεk

�

k≥1
converges weakly, as k becomes large, to the discrete

probability measure u0 =
∑r

i=1 piδAi
where

pi = lim
k→+∞

∫ Ai+δ

Ai−δ
uεk
(x)d x , 1≤ i ≤ r, δ > 0 small enough.

Moreover pi is independent of the parameter δ.

Proof. 1) First we shall prove that the coefficients pi are well defined. Let us fix some small positive

constant δ. We define pi(δ) the limit of
∫ Ai+δ

Ai−δ
uεk
(x)d x as k→∞. Of course this limit exists since,

by Proposition 3.3, (uǫk)k≥1 converges weakly. Furthermore this limit is independent of δ. Indeed

let us choose δ′ < δ. By definition, we obtain

pi(δ)− pi(δ
′) = lim

k→∞

(

∫ Ai−δ′

Ai−δ
uεk
(x)d x +

∫ Ai+δ

Ai+δ
′

uεk
(x)d x

)

.

An obvious application of the statement 2) in Proposition 3.5 allows us to obtain pi(δ
′) = pi(δ) =:

pi .

2) Let us prove now that u0 is a discrete probability measure. Let f be a continuous and bounded

function on R. Let δ > 0 be small enough such that the intervals Ui(δ) := [Ai − δ; Ai + δ] are

disjointed. The weak convergence is based on the following difference:

∫

R

f (x)uεk
(x)d x −

r
∑

i=1

pi f (Ai) = R+
r
∑

i=1

∆i( f ),

with ∆i( f ) =
∫ Ai+δ

Ai−δ
f (x)uεk

(x)d x − pi f (Ai) and R=
∫

(Uδ)
c f (x)uεk

(x)d x . The boundedness of the

function f and the statement 2) of Proposition 3.5 imply that R tends to 0 as k → ∞. Let us now

estimate each term ∆i( f ):

�

�∆i( f )
�

� ≤
∫ Ai+δ

Ai−δ

�

�

� f (x)− f (Ai)

�

�

�duεk
(x) + | f (Ai)|

�

�

�uεk

�

Ui(δ)
�

− pi

�

�

�

≤ sup
z∈Ui(δ)

�

� f (z)− f (Ai)
�

�uεk

�

Ui(δ)
�

+
�

� f (Ai)
�

�

�

�

�uεk

�

Ui(δ)
�

− pi

�

�

� .
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Due to the continuity of f , supx∈Ui(δ)

�

� f (x)− f (Ai)
�

� is small as soon as δ is small enough. Moreover

for some fixed δ, the definition of pi leads to the convergence of uεk
(Ui(δ)) − pi towards 0 as

k→∞. Combining these two arguments allows us to obtain the weak convergence of uǫk towards

the discrete measure
∑r

i=1 piδAi
which can finally be identified with u0.

It is important to note that we did not prove the convergence of any sequence of stationary measures

uε as ε → 0 because we did not prove the convergence of the moments. However, we know in

advance that each limit value is a discrete probability measure.

3.2 Description of the limit measures

We have just pointed out in the previous section that all limit measures are discrete probability

measures. Each limit measure shall be denoted in a generic way u0 and is associated with some

limit function W0 defined by (3.4). Therefore we have the following expression u0 =
∑r

i=1 piδAi

where the Ai are the global minima of W0, rearranged in increasing order, and
∑r

i=1 pi = 1, pi > 0.

We will now refine this result by exhibiting properties of the points Ai and the weights pi .

Proposition 3.7. 1) For all 1≤ i ≤ r and 1≤ j ≤ r, we have :

V ′(Ai) +

r
∑

l=1

pl F
′ �Ai − Al

�

= 0, (3.11)

V (Ai)− V (A j) +

r
∑

l=1

pl

�

F(Ai − Al)− F(A j − Al)
�

= 0 (3.12)

and V ′′(Ai) +

r
∑

l=1

pl F
′′ �Ai − Al

�

≥ 0 (3.13)

2) Ai ∈ [−a; a] for any 1 ≤ i ≤ r. Besides, if r ≥ 2, A1 ∈]− a; 0[ and Ar ∈]0; a[. In particular, if
r = 2 then A1A2 < 0.
3) If α ≥ θ , where α (resp. θ) has been defined by (1.6) (resp. by (1.5)), the support of any limit
measure contains some unique point.
4) If V ′′ and F ′′ are convex, the support of any limit measure contains at most two points.

Proof. 1) In the proof of Proposition 3.3, the tightness of the family (uǫ)ǫ was presented. This

argument combined with the convergence of the moments (µl(ǫk))k≥0 stated in Lemma 3.2 and

equation (3.1), enables us to express W ′0 as follows:

W ′0(x) = V ′(x) + F ′ ∗ u0(x), x ∈ R.

It suffices then to make it clear that u0 is a discrete measure (Theorem 3.6). By definition, Ai is

a local minimum of W0 therefore it vanishes W ′0 and in addition, verifies W ′′0 (Ai) ≥ 0: we directly

deduce (3.11) and (3.13). Furthermore, by definition (3.5) of Ai , W0(Ai) = W0(A j) for all i and j
which implies (3.12).

2) By definition, Ar is the largest location of the global minimum of W0 and A1 is the smallest one.

According to (3.11), they verify

V ′(Ar) =−
∑

j 6=r

p j F
′(Ar − A j) and V ′(A1) =−

∑

j 6=1

p j F
′(A1− A j).
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Since Ar − A j > 0 for j < r and A1− A j < 0 for j > 1 and since F ′ is non decreasing, we deduce the

inequalities V ′(A1)≥ 0 and V ′(Ar)≤ 0. Consequently we get A1 ≥ −a and Ar ≤ a.

Besides, if r ≥ 2 then V ′(A1) > 0 and V ′(Ar) < 0. However, V ′ is positive on ]− a; 0[ and negative

on ]0; a[, therefore −a < A1 < 0< Ar < a.

3) We assume that Ar > A1. By (V-6) the equation V ′′(x) = −θ admits just a finite number of

solutions, therefore we get −
�

V ′(Ar)− V ′(A1)
�

< θ
�

Ar − A1

�

. According to (3.11) applied to A1

and to Ar , we obtain:

−
�

V ′(Ar)− V ′(A1)
�

=

r
∑

i=1

pi

�

F ′(Ar − Ai)− F ′(A1− Ai)
�

.

Using the following properties: F is an even function, see (F-1), and moreover F ′ is a convex function

on R+, see (F-3), we get F ′(Ar − Ai) ≥ α(Ar − Ai) and −F ′(A1 − Ai) = F ′(Ai − A1) ≥ α(Ai − A1).

Finally the following lower bound holds −
�

V ′(Ar)− V ′(A1)
�

≥ α
�

Ar − A1

�

. We conclude that

θ
�

Ar − A1

�

> α
�

Ar − A1

�

. This inequality contradicts the hypothesis Ar > A1 since α≥ θ .

4) We can compute the second derivative of the limit potential W ′′0 = V ′′ +
∑r

j=1 p j F
′′(. − A j).

Moreover V ′′ and F ′′ are convex functions so is W ′′0 . Let us assume that W0 admits at least three

global minima then it also admits two local maxima: at least five critical points in all. The application

of Rolle’s theorem implies at least four zeros for the function W ′′0 which is in fact nonsense since W ′′0
is a convex function.

Proposition 3.7 allows us in a suitable situation to describe precisely the set of limit measures.

Remark 3.8. 1) In the particular case when F(x) = 0, for all x ∈ R, that is without self-stabilization,
the equations (3.11), (3.12) and (3.13) are satisfied if and only if the locations Ai are the minima of
V . Hence the limit stationary measure weighs the points −a and a.
2) Let us assume α ≥ θ . If (uǫk)k≥1 represents some family of symmetric stationary measures with
bounded moments of order 1, . . . , deg(F)− 1 then the sequence converges weakly to the Dirac measure
u0 = δ0. Indeed, according to (3.12) and Proposition 3.7, the single point corresponding to the support
of u0 is a zero of V ′ that is −a, 0 or a (see hypothese (V-3)). Besides u0 is symmetric, so we get u0 = δ0.
3) Let us assume that α≥ θ . If we consider a sequence of outlying stationary measures which moments
of order 1, . . . , deg(F) − 1 are bounded, Proposition 3.7 implies that there exist at most two limit
measures δa and δ−a.

4 Convergence of the outlying measures

In this section we shall make the convergence results obtained for subsequences of invariant mea-

sures precise. We shall in particular study the case of asymmetric invariant measures. First let us

recall that F is a polynomial function of degree 2n.

Proposition 4.1. Under the condition:

2n−2
∑

p=0

�

�F p+2(a)
�

�

p!
ap < α+ V ′′(a), (2n= deg(F)) (4.1)

there exists a family of invariant measures (u+ǫ )ǫ>0 (respectively (u−ǫ )ǫ>0) which converges weakly as
ǫ→ 0 towards the Dirac measure δa (resp. δ−a). We recall that a is defined by (V-3).
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Proof. Let us choose some sequence (ηε)ε satisfying lim
ε→0
ηε = 0 and lim

ε→0
ε/ηε = 0. Using Theorem

4.6 in [5], we know that (4.1) implies the existence of some family of outlying invariant measures

(u±ǫ )ǫ>0 which verifies the following asymptotic estimate

�

�

�

�

�

∫

R

x lu±ε (d x)− (±a)l

�

�

�

�

�

≤ ηε, 1≤ l ≤ 2n− 1, for ǫ small enough. (4.2)

Using the binomial coefficients and equation (4.2), it is straightforward to prove that u±ǫ converges

in L2n−2 towards δ±a, and by the way converges weakly.

Remark 4.2. The statement 3) in Proposition 3.7 and Remark 3.8 emphasize that, under the assump-
tion α ≥ θ , δa and δ−a are the only possible asymmetric limit measures for families of invariant
self-stabilizing measures whose (2n− 1)-th moments are uniformly bounded.

Let us observe now the situation where δa and δ−a are not the only asymmetric limit measures.

Proposition 4.3. Let us assume that V ′′ and F ′′ are convex functions. If there exists some sequence of
stationary measures (uǫk)k∈N∗ , whose (2n− 1)-th moments are bounded uniformly w.r.t. k, and which
converges weakly to an asymmetric non-extremal measure u0 (i.e. u0 is different from δ±a), then the

limit measure satisfies u0 = pδA1
+ (1 − p)δA2

with p(1 − p)
�

�

�p− 1

2

�

�

� > 0 and A1A2

�

�A2
2− A2

1

�

� < 0.

Besides, the following properties hold:

V (A2)− V (A1)−
V ′(A1) + V ′(A2)

F ′(A2− A1)
F(A2− A1) = 0 (4.3)

V ′(A1)− V ′(A2) = F ′(A2− A1) and p =
−V ′(A2)

V ′(A1)− V ′(A2)
. (4.4)

Proof. Since (uǫk)k∈N∗ admits uniformly bounded (2n−1)-th moments and since this sequence con-

verges weakly, we obtain the convergence of the moments. Therefore, we can apply the statement

of Proposition 3.7: the convexity of F ′′ and V ′′ implies that the support of u0 contains at most two

elements.

1) Let us first consider the case when u0 = δA1
. Equation (3.11) implies that V ′(A1) = 0. Therefore

A1 = −a, a, or 0. Since we assume that u0 is asymmetric and non extremal, no solution of the

preceding equation leads to the construction of some u0.

2) If u0 = pδA1
+ (1− p)δA2

with p(1− p) > 0, then Proposition 3.7 gives some information on the

parameters. First of all A1A2 < 0. Moreover (3.11), (3.12) and (3.13) immediately lead to (4.3)

and (4.4). If p = 1/2 then (4.3) and (4.4) imply that V (A1) = V (A2). Due to the symmetry of V
and since A1 ∈]− a; 0[ and A2 ∈]0; a[, we obtain A1 = −A2 and therefore u0 is symmetric which

contradicts the hypothesis of the proposition. Finally

�

�

�p− 1

2

�

�

�> 0.

Furthermore, if A1 = −A2, then we observe that p = 1/2. This case was just studied: we obtain

finally that A1A2

�

�A2
2− A2

1

�

�< 0

Let us now study particular potential functions V and F which allows us to obtain that the only

asymmetric limit measures are the Dirac measures δa and δ−a.
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Proposition 4.4. Let us consider some sequence (uǫk)k≥0 of invariant measures, which admits uni-
formly bounded (2n− 1)-th moments and which is associated to both the potential function V (x) =
x4

4
− x2

2
and the interaction F(x) = β x2n

2n
, with n ≥ 1 and β > 0. Then the only possible asymmetric

limit measures are δ1 and δ−1.

Proof. Since V (4)(x) = 6> 0, V ′′ is a convex function so is F ′′.
Step 1. If n= 1, Theorem 3.2 in [5] states that the system admits exactly three invariant measures:

one is symmetric and the others are the outlying measures u+ε and u−ε which tend respectively to δa

and δ−a according to Theorem 2.4. Let us just note that a = 1 in this particular case.

>From now on we assume: n≥ 2.

Step 2. Let us consider an asymmetric limit measure of the sequence (uǫk)k≥1 denoted by u0.

Due to the convexity of both F ′′ and V ′′, we can apply Proposition 4.3. We deduce that u0 =

pδA1
+ (1− p)δA2

with p(1− p)
�

�

�p− 1

2

�

�

� > 0 and A1A2

�

�A2
2− A2

1

�

� < 0 so that |A1| < 1 and |A2| < 1.

Besides, the equations (4.3) and (4.4) are satisfied.

Step 3. Let us prove that we cannot solve both equations (4.3) and (4.4). Considering the particular

form of the functions V and F , (4.3) becomes, after dividing by A2
2− A2

1:

A2
2+ A2

1

4
−

1

2
−

1

2n

�

A2
2− A1A2+ A2

1− 1
�

= 0.

This expression is equivalent to (n− 2)A2
1+ (n− 2)A2

2+ 2A1A2 = 2n− 2.

For n = 2, we get A1A2 = 1 which contradicts the property developed in the statement 2) of Propo-

sition 3.7: A1A2 < 0. Hence the support of u0 can not contains two elements if n= 2.

For n > 2 the arguments are similar. Using the bounds |Ai | ≤ 1, for i = 1 and 2, we obtain the

inequality:

2n− 2= (n− 2)A2
1+ (n− 2)A2

2+ 2A1A2 ≤ 2n− 4+ 2A1A2.

We deduce that A1A2 ≥ 1 which also contradicts the property just mentioned A1A2 < 0.

Let us just note that the previous proof is relatively simple since the function F ′ is a divisor of F .

We shall present some other particular case where the coefficient α defined by (1.6) is between 0

and −V ′′(0) = θ (this previous equality is related to the convexity of V ′′). Under these conditions,

Remark 4.2 can not be applied.

Proposition 4.5. Let us consider some sequence (uǫk)k≥0 of invariant measures, which admits uni-

formly bounded third moments and which is associated to the potential function V (x) = x4

4
− x2

2
and

the interaction F(x) = β x4

4
+α x2

2
, with α ∈ [0,1[ and β > 0. Then the only possible asymmetric limit

measures are δ1 and δ−1.

Proof. The arguments developed for the proof of Proposition 4.5 are similar to those presented in

Proposition 4.4: the second step can directly be applied. Therefore the equations (4.3) and (4.4)

are satisfied. Let us develop equation (4.3) for the particular functions V and F . Hence (4.3) is

equivalent to

A4
2− A4

1− 2A2
2+ 2A2

1−
(A3

1+ A3
2− A1− A2)(β(A2− A1)

4+ 2α(A2− A1)
2)

β(A2− A1)
3+α(A2− A1)

= 0.
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Reducing to the same denominator, we obtain:

β(A2− A1)
4(A1+ A2)(A1A2− 1)−α(A2− A1)

4(A1+ A2) = 0.

This equation is equivalent to A1A2 − 1 = α/β since A1 6= −A2. We effectively consider only asym-

metric limit measures and A1 = −A2 implies that p = 1/2. In order to conclude it suffices to note

that A1A2 = 1 + α/β contradicts the property A1A2 < 0 which comes from the statement 2) of

Proposition 3.7. We deduce that the support of any limit measure contains some unique point which

corresponds to some zero of V ′. The only possible value are 1 and −1 since the value 0 corresponds

to some symmetric measure.

5 Convergence for sequences of symmetric invariant measures

In this last section, we consider the limit measures for families of symmetric invariant measures

associated to the self-stabilizing process and denoted by (u0
ε)ε>0. Let us introduce the notation:

µ0
l (ǫ) represents the l-th order moments of u0

ǫ . Since the functions V and F are even, the function

W 0
ǫ defined by (3.1) and (3.2) satisfies

W 0
ε (x) = V (x) +

∞
∑

k=1

x2k

(2k)!
ω0

2k(ε) with ω0
2k(ε) =

∞
∑

l=0

F (2l+2k)(0)

(2l)!
µ0

2l(ε). (5.1)

Let us note that the series appearing in the previous equality just contain a finite number of terms.

Introducing the following normalization coefficient λ0
ε =
∫

R
exp
�

−2

ε
W 0
ε (x)

�

d x , we obtain

µ0
2l(ε) =

∫∞
0

x2l exp
�

−2

ε
W 0
ε (x)

�

d x
∫∞

0
exp
�

−2

ε
W 0
ε (y)

�

d y
=

2

λ0
ε

∫ ∞

0

x2l exp

�

−
2

ε
W 0
ε (x)

�

d x . (5.2)

First of all we shall prove that the family of moments (µ0
2l(ǫ), ǫ > 0) is bounded. The starting step

consists in the estimation of the normalization coefficient λ0
ε. This result is a refinement of several

arguments introduced in the proof of Lemma 4.3 in [5] and is also linked to Lemma 4.10 in [1].

Lemma 5.1. There exists C > 0 such that for ε small enough, we have 1

λ0
ε

≤ C
ε

.

Proof. Step 1. Using the symmetry of the functions V and F0 (defined in (1.6)) and the measure

u0
ε, we get

�

�(F ′0 ∗ u0
ε)(y)

�

� =

�

�

�

�

�

∫

R+

�

F ′0(z + y)− F ′0(z − y)
�

u0
ε(z)dz

�

�

�

�

�

≤
∫

R+

�

�F ′0(z + y)− F ′0(z − y)
�

�u0
ε(z)dz.
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Then, by using the hypotheses (F − 4) and the definition of F0, the following upper-bounds hold:

�

�(F ′0 ∗ u0
ε)(y)

�

� ≤ 2Cq|y |
∫

R+

�

1+ |z + y |2q−2+ |z − y |2q−2
�

u0
ε(z)dz

≤ 22qCq|y |
�

1+ |y |2q−2
�

�

1+

∫

R+

z2q−2u0
ε(z)dz

�

≤ C |y |
�

1+ |y |2q
�

�

1+

∫

R+

z2qu0
ε(z)dz

�

, (5.3)

due to the boundedness of the function y → 1+|y|2q−2

1+|y|2q .

Step 2. Let K > 0. We split the 2q-th moment into two integral terms:

∫ ∞

0

z2qu0
ε(z)dz =

∫ K

0

z2qu0
ε(z)dz+

∫ ∞

K

z2qu0
ε(z)dz

By construction, u0
ǫ is directly related to F ∗ u0

ǫ : see (3.1). According to Lemma 4.2 in [5], we have

the following inequality :

�

F ∗ u0
ε

�

(x)−
�

F ∗ u0
ε

�

(0) =

∫ x

0

�

F ′ ∗ u0
ε

�

(y)d y ≥ 0, x ≥ 0.

Therefore, using (V-4) and the previous inequality, we get, for all x:

u0
ε(x)≤

1

λ0
ε

exp

�

−
2

ε
V (x)

�

≤
1

λ0
ε

exp

�

−
2

ε

�

C4 x4− C2 x2
�

�

.

Hence, if K ≥
q

2C2

C4
then C4z4− C2z2 ≥ C4

2
z4 for z ≥ K , and so

∫ ∞

K

z2qu0
ε(z)dz ≤

1

λ0
ε

∫ ∞

K

z2q exp

�

−
C4

ε
z4

�

dz =
C(q)ε

q
2

λ0
ǫ

,

where C(q) is a positive constant. Finally there exists some ǫ0 > 0 such that ε≤ ε0 implies:
∫ ∞

0

z2qu0
ε(z)dz ≤ K2q +

1

λ0
ε

. (5.4)

By hypotheses (V-7) and (V-8), we get
�

�V ′(x)
�

�≤ Cq(1+ x2q) and |V (x)| ≤ Cq|x |(1+ x2q). Hence, for

all |x | ≥ a, we have |V (x)| ≤ Cq

a
|x |2(1+ x2q). Moreover the property (V-6) allows us to obtain, on

the interval [−a, a]: V (x)
x2 = V ′′(0)+

∑∞
k=2

V (2k)(0)

(2k)!
x2k which is bounded by some constant M . Taking

C ′q =max
n

M ,
Cq

a

o

, the following bound holds: |V (x)| ≤ C ′q|x |2(1+ x2q).

The upper-bounds (5.3) and (5.4) and the symmetry property of the density u0
ǫ immediately imply

the existence of constants C ′ and C ′′ such that
∫ x

0

�

F ′0 ∗ u0
ε

�

(y)d y + V (x) ≤ C ′q x2
�

1+ x2q
�

+ C ′x2(1+ x2q)

�

1+
1

λ0
ε

�

≤ C ′′x2(1+ x2q)

�

1+
1

λ0
ε

�

. (5.5)
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Step 3. We deduce, by (5.5) and the definition of the normalization factor λ0
ε :

λ0
ε ≥ 2

∫ ∞

0

exp

¨

−
2

ε

�

α

2
x2+ C ′′x2(1+ x2q)

�

1+
1

λ0
ε

��«

d x .

Defining µ =
p

λ0
ε and introducing the change of variable x := µ

p

ε

2
ξ allows to point out the

inequality µ≥ h(µ) with

h(z) =
p

2ε

∫ ∞

0

exp

§

−
α

2
z2ξ2− C ′′ξ2(1+ z2)

�

1+

�ε

2

�q
z2qξ2q

�ª

dξ.

Let us study the equation µ ≥ h(µ). Obviously h′(z) ≤ 0. Now, we provide an upper bound for the

function −h′(z).

−h′(z) =
p

2ε

∫ ∞

0

�

αzξ2+ C ′′ξ2A(z,ξ)
�

exp [−B(z,ξ)] dξ,

with A(z,ξ) = 2q
�ε

2

�q
ξ2qz2q−1(1+ z2) + 2z

�

1+

�ε

2

�q
z2qξ2q

�

and B(z,ξ) =
α

2
z2ξ2+ C ′′ξ2(1+ z2)

�

1+

�ε

2

�q
z2qξ2q

�

.

For ε small and z ≥ 0,

A(z,ξ)≤ 2z + 2qξ2qz2q−1+ 2ξ2qz2q+1 and B(z,ξ)≥ C ′′ξ2+
α

2
z2ξ2.

Let us note that µ≥ 1 implies directly 1

λ0
ε(u)
≤ 1. This observation leads to study essentially the case:

z ≤ 1. After some computation, we obtain

−h′(z)≤
p

2ǫ

∫ ∞

0

αzξ2 exp

¨

−
�

C ′′+
αz2

2

�

ξ2

«

dξ+ C1

p
ǫ

≤ C1

p
ε− C2

p
ε

d

dz

¨

�

C ′′+
α

2
z2
�− 1

2

«

.

For 0 ≤ z ≤ 1, the previous estimation of the derivative leads to the existence of some constant

C ′2 > 0 such that

h(0)− h(z)≤ C1

p
εz + C2

p
ε







1
p

C ′′
−

1
Æ

C ′′+ α
2

z2






≤ C1

p
εz + C ′2

p
εαz2.

Moreover h(0) =
p

2ε
∫

R+
e−C ′′ξ2

dξ. Hence h(0)/
p
ǫ is independent of ǫ and shall be denoted by C3.

We get h(z) ≥ C3

p
ε− C1

p
εz − C ′2

p
εαz2. The inequality µ ≥ h(µ) implies a1µ

2 + a2µ−
p
εa3 ≥ 0

with a1 = C ′2
p
εα≥ 0, a2 = 1+ C1

p
ε and a3 = C3 > 0. So, for α > 0, there exists C > 0 satisfying

p

λ0
ε = µ≥

p

a2
2 + 4a3C ′2αε− (1+ C1

p
ε)

2C ′2
p
εα

= C
p
ε+ o

�p
ε
�

.

For α = 0, we obtain directly the bound µ ≥ a3

p
ε

1+a2

p
ε
. Finally we obtain the existence of C > 0 s.t.

p

λ0
ε ≥

C
2

p
ε for ǫ small enough.
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Using the upper bound of the normalization term λ0
ǫ , we analyze the moments of symmetric invari-

ant measures. We recall that µ0
l represents the l-th moment.

Lemma 5.2. For any l ≥ 1, the family
¦

µ0
2l(ε),ε > 0

©

is upper-bounded.

Let us note that this result is a generalization of Proposition 3.1 in the symmetric context. We do

not need any condition on the degree of F and V and we do not even assume that V is polynomial.

Proof. Let K :=

q

C2+1

C4
. We split the moment into two different terms:

µ0
2l(ε) =

∫ K

−K

x2lu0
ε(x)d x +

2

λ0
ε

∫ ∞

K

x2l exp

�

−
2

ε
W 0
ε (x)

�

d x .

According to Lemma 4.2 2) in [5], F ∗ u0
ε(x)− F ∗ u0

ε(0) ≥ 0. Moreover V (x) ≥ C4 x4 − C2 x2 (see

(V-4)). Hence, for any |x |> K , V (x)≥ x2. We have therefore:

µ0
2l(ε)≤ K2l +

2

λ0
ε

∫ ∞

K

x2l e−
2x2

ε d x ≤ K2l +
2

λ0
ε

εl+ 1

2

∫ ∞

Kp
ε

y2l e−2y2

d y.

Lemma 5.1 implies µ0
2l(ε)≤ K2l + Cεl− 1

2 where C is some constant.

Let us now present the main global result concerning sequences of symmectric invariant measures

for self-stabilizing processes.

Proposition 5.3. Let (u0
ǫ)ǫ>0 be a family of symmetric invariant measures. Then there exist some se-

quence (ǫk)k≥0 satisfying limk→∞ ǫk = 0 and a discrete limit measure u0
0 such that

�

u0
εk

�

k≥0
converges

weakly towards u0
0. Moreover u0

0 takes the following form:

u0
0 =

r
∑

i=1

pi

�

1

2
δAi
+

1

2
δ−Ai

�

(5.6)

with r ≥ 1, pi > 0 for all 1≤ i ≤ r, 0≤ A1 < · · ·< Ar ≤ a and

V ′(Ai) +

r
∑

j=1

p jS (F ′)(Ai,A j) = 0 (5.7)

V (Ai)− V (A j) +

r
∑

l=1

pl

�

S (F)(Ai,Al)−S (F)(A j,Al)
�

= 0 (5.8)

V ′′(Ai) +

r
∑

j=1

p jS (F ′′)(Ai,A j) ≥ 0 (5.9)

for all 1≤ i ≤ r, 1≤ j ≤ r. Here S (G)(x , y) = 1

2
(G(x + y) + G(x − y)) for any function G.

Proof. By Lemma 5.2, the moments are bounded. Therefore Theorem 3.6 and Proposition 3.7 can

be directly applied. In order to conclude it suffices to note that u0
0 is symmetric and both functions

V and F are even.
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This convergence result shall be made clear in the following particular case:

Theorem 5.4. If the functions V ′′ and F ′′ are convex, then any sequence of symmetric invariant mea-
sures converges weakly towards the discrete measure 1

2
δx0
+ 1

2
δ−x0

where x0 is the unique non-negative
solution of the system:

(

V ′(x0) +
1

2
F ′(2x0) = 0

V ′′(x0) +
α

2
+ 1

2
F ′′(2x0)≥ 0

(5.10)

Besides, if α≥ −V ′′(0) then x0 = 0, otherwise x0 > 0. We recall that α is defined by (1.6).

Proof. Step 1. According to Proposition 5.3, any limit measure of the family {u0
ǫ , ǫ > 0} denoted by

u0
0 is a discrete measure. Moreover since V ′′ and F ′′ are convex functions the support of the limit

measure contains at most two elements, see Proposition 3.7. We deduce immediately that r = 1 in

(5.6) moreover if A1 = 0 then the support is reduced to one point.

Step 2. Furthermore the point A1 which characterizes the limit measure satisfies (5.7) and (5.9)

that is (5.10). Since V ′′ is a convex even function, the coefficient θ defined by (1.5) takes the

following value θ = −V ′′(0). Let χ(x) = V ′(x) + 1

2
F ′(2x). We shall solve χ(x) = 0 on R+.

Obviously 0 is a solution. Moreover χ ′(x) = V ′′(x) + F ′′(2x) which implies that χ ′ is a convex and

symmetric function which tends to infinity as x becomes large. Therefore the minimum of χ ′ on R+
is χ ′(0) = V ′′(0) + F ′′(0) = α− θ . We distinguish two different cases:

• If α < θ , we get the following description of χ on R+: the function is first decreasing and then

increasing. Since limx→∞χ(x) = +∞, there exists a unique x0 > 0 such that χ(x0) = 0. We

have therefore two nonnegative zeros of χ : 0 and x0. Since V ′′(0)+ α
2
+ 1

2
F ′′(0) = α−θ < 0,

the unique solution of (5.10) is x0 > 0.

• If α≥−V ′′(0), the function χ ′ reaches its minimum for x = 0 and χ ′(0)≥ 0. Hence χ ′(x) = 0

implies x = 0. We can also verify that V ′′(0) + α
2
+ 1

2
F ′′(0) = α− θ ≥ 0.

Since any limit measure is characterized by the unique solution of (5.10), there exists some unique

limit measure which leads to the weak convergence of any family of symmetric invariant measures

{u0
ǫ , ǫ > 0} due essentially to the relative compactness of this family.

Remark 5.5. The particular case α = −V ′′(0) corresponds to a bifurcation point: the support of the
limit measure changes from some two elements set to a singleton.

We can wonder what happens if we do not consider that V ′′ and F ′′ are convex functions. We can

observe limit measures whose support contains three limit points or more as proved in Proposition

2.3 for deg(F) = 2. We will now study two examples with deg(F)> 2.

Proposition 5.6. Let V (x) = x4

4
− x2

2
(V ′′ being some convex function). There exists some polynomial

function F of degree 8, satisfying the properties (F-1)–(F-4), such that the support of any limit measures
for symmetric invariant measure families {u0

ǫ , ǫ > 0} contains at least three points.

Proof. As we have already seen in the previous proof, if the support of the limit measure is reduced

to one or two points then these points are associated to the solutions of (5.10). It suffices then to

prove that this system cannot be solved for some well chosen interaction function F .
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First of all, let us note that it is sufficient to choose some function F satisfying F ′′(0) < −V ′′(0) = 1

in order to ensure δ0 is not a limit measure: let us fix F ′′(0) = 0.

Let us assume that F is an even polynomial function of degree 8.

Since limx→∞ F(x) = +∞, we obtain F (8)(0) ≥ 0. Moreover F has to satisfy (F-3), that is F ′ is a

convex function on R+ which implies F (4)(0) ≥ 0. Finally since V ′′ is a convex function, F ′′ is not

convex that is to say that F (6)(0) is necessarily negative. We can therefore choose F of the following

kind:

F(x) = α4

x4

4
−α6

x6

6
+α8

x8

8
with α4, α6 and α8 > 0. (5.11)

F ′ has to be convex on R+ (F-3) that is to say F (3)(x)/x =: Q2(x
2) ≥ 0, for any x ∈ R, where Q2 is

a polynomial function of degree 2. Moreover F ′′ is not convex on R i.e. F (4)(x) =: R2(x
2) < 0 for

some x ∈ R where R2 is another polynomial function of degree 2. In other words we choose some

function F such that the discriminant of Q2 is negative and the discriminant of R2 is positive. We

deduce the following bounds:

r

35

25
α4α8 < α6 <

r

63

25
α4α8. (5.12)

Let us now prove that there exists such a function F which does not satisfy the system (5.10). It

suffices to prove the following implication

P3(x
2) := 64α8 x6− 16α6 x4+ (4α4+ 1)x2− 1= 0 (5.13)

=⇒ 224α8 x6− 40α6 x4+ (6α4+ 3)x2− 1< 0. (5.14)

We replace (5.14) by 2×(5.14)−7×(5.13). So (5.13) and (5.14) are equivalent to P3(x) = 0 ⇒
P2(x) < 0 for x ≥ 0 and P2(x) = 32α6 x2 − (16α4 + 1)x + 5. Using (5.12) we can prove that the

discriminant of P ′3 is negative. We deduce that there exists some unique x0 satisfying P3(x0) = 0.

We observe moreover that x0 > 0.

To conclude the proof, it suffices to point out some coefficients α4, α6 and α8 satisfying (5.12)

and such that x0 ∈]x−, x+[ where x± are the possible roots of P2. In other words, we prove that

P3(x−)P3(x+) < 0. Let us introduce a parameter η ∈]35/25,63/25[ such that α6 =
p
ηα4α8.

Therefore we can express x±, P3(x−) and P3(x+) with respect to η, α4 and α8. More precisely, if

the discriminant of P2 satisfies

∆ := (16α4+ 1)2− 640
p

ηα4α8 > 0 (5.15)

we get

x± =
16α4+ 1±

p

(16α4+ 1)2− 640
p
ηα4α8

64
p
ηα4α8

.

We shall verify at the end of the proof that ∆ > 0 is effectively satisfied. After some tedious com-

putation we obtain that P3(x−)P3(x+) < 0 is equivalent to Ψpη,
p
α4
(
p
α8) < 0 where Ψu,s(t) is the

following polynomial function:

Ψu,s(t) = 2000t2− 4us
¦

320s2+ 95− 72u2s2
©

t + s6(256− 64u2) + Ru(s
2),
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where Ru is a polynomial function of order 2 whose coefficients depend on the u-variable. By (5.12),

the variable u satisfies u2 = η < 320

72
which implies the inequality 320s2 + 95− 72u2s2 > 0 for all

s ∈ R. Let us then choose α8 in order to minimize Ψpη,
p
α4
(
p
α8). Hence

α8 = ηα4

�

320α4+ 95− 72ηα4

�2

106
and α6 = ηα4

320α4+ 95− 72ηα4

103
. (5.16)

It remains to prove that Ψpη,
p
α4
(
p
α8)< 0. We obtain the following estimation of this minimum:

Ψpη,
p
α4
(
p

α8) =−
16α3

4

125

¦

81η3− 720η2+ 2100η− 2000
©

+ Rη(α4),

where Rη is a polynomial function of degree 2. Noting that f (η) = 81η3−720η2+2100η−2000 is a

non-decreasing function with f (63/25)> 0, we emphasize the existence of some η0 ∈]7/5,63/25[

such that f (η) > 0 for any η ∈]η0, 63/25[=: I . To conclude it suffices to first choose η in I and

secondly α4 large enough (P3(x−)P3(x+) is then negative) in order to determine the parameter α4,

α6 and α8 which leads to (5.13) and (5.14). This procedure is successful provided that (5.15) is

true. In fact, using the particular choice of α8, (5.15) is equivalent to

(16α4+ 1)4 > 6402η3/2α
3/2
4

320α4+ 95− 72ηα4

1000
,

which is satisfied when α4 is large.

We have studied the case when V ′′ is a convex function and pointed out the existence of some

polynomial interaction function F with non convex second derivative such that the support of any

limit measure contains at least three elements. Let us observe now what happens if the interaction

function F ′′ is convex. Is it possible to find some environment function V in order to obtain the

same conclusion ?

Proposition 5.7. Let F(x) = β
4

x4+α
2

x2 with α≥ 0 and β > 0. There exists some function V , satisfying
the properties (V-1)–(V-8), such that the support of any limit measures for symmetric invariant measure
families {u0

ǫ , ǫ > 0} contains at least three points.

Proof. The arguments developed for the proof of Proposition 5.7 are similar to those presented in

Proposition 5.6. Let us first choose V such that δ0 cannot be a limit measure of {u0
ǫ , ǫ > 0}. By

(5.9), applied to r = 1 and A1 = 0, it suffices to assume that −V ′′(0)> α.

Let us now focus our attention to limit measures whose support contains two elements A1 and −A1.

Due to Proposition 5.3, A1 satisfies (5.7) and (5.9). Let us choose V some polynomial function of

degree 6. In order to get the limit limx→∞ V (x) = +∞ which is part of the condition (V-5), we

choose the coefficient of degree 6 positive. Moreover the coefficient of degree 4 is negative since we

need that V ′′ is not convex. We deduce that V has the following form

V (x) =
α6

6
x6−

α4

4
x4−

α2

2
x2 with α4, α6 > 0 andα2 > α. (5.17)

The equations (5.7) and (5.9) become

A1

�

α6A4
1+ (4β −α4)A

2
1+ (α−α2)

�

= 0 (5.18)

5α6A4
1+ (6β − 3α4)A

2
1+ (α−α2) ≥ 0 (5.19)
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Dividing the first equality by A1, replacing (5.19) by 1

2
((5.19)−5×(5.18)) and introducing X := A2

1,

we get :

α6X 2+ (4β −α4)X + (α−α2) = 0 (5.20)
�

α4− 7β
�

X − 2
�

α−α2

�

≥ 0 (5.21)

Since α < α2, there is a unique positive solution to (5.20) X0:

X0 =
α4− 4β +

p

(α4− 4β)2+ 4α6(α2−α)
2α6

.

The aim of the proof is to find some parameters α2, α4 and α6 such that (5.18) and (5.19) are

incompatible that is
�

α4− 7β
�

X0− 2
�

α−α2

�

< 0. In other words

�

α4− 7β
� α4− 4β +

p

(α4− 4β)2+ 4α6(α2−α)
2α6

− 2
�

α−α2

�

< 0.

We set α4 = 6β and α2 = α+
u2−1

α6
β2 with u > 1 (we need that α2 > α), the previous inequality

becomes 2u2−u−3< 0. Therefore for any parameter u such that 1< u< 3

2
and α6 > 0 we compute

by the procedure just described α2 and α4 which allows us to define the polynomial function V with

the following properties:

• there is no solution to the system of equations (5.7) and (5.9) with r = 1

• the function V satisfies the properties (V-1)–(V-8).

We conclude that the support of any limit measure corresponding to some sequence of invariant

symmetric self-stabilizing measures contains at least three points.

In order to conclude this study, we shall present some particular example of self-stabilizing diffusion

which presents the following property: any invariant symmetric measure converges as ǫ → 0 to a

limit measure whose support contains exactly three elements.

Example. Let V (x) = x6

6
− 3

2
x4 − 17

32
x2 and F(x) = x4

4
+ x2

2
the functions defining the self-stabilizing

diffusion (1.2). Then any family of symmetric invariant measures {u0
ǫ , ǫ > 0} satisfies

lim
ε→0

u0
ε =

26

45
δ0+

19

90

�

δp15

2

+ δ−
p

15

2

�

. (5.22)

Proof. Using the proof of Proposition 5.7 with the following parameters α= β = 1, α2 = α+
1

16α6
β2,

α4 = 6β and α6 = 1, we obtain immediately that the support of any limit measure of the family

{u0
ǫ , ǫ > 0} contains at least three points. Let us prove now that it cannot contain more than three

points. As presented in the proof of Proposition 3.7, the support of any symmetric limit measure u0
0

is contained in the set of points which minimize the function W0 = V + F ∗ u0
0. Since the particular

functions V (4) and F (4) are convex functions. W (4)
0 is convex too. Moreover, if W0 has at least four

local minima, W ′0 vanishes at least seven times. Applying Rolle’s theorem three times, W (4)
0 vanishes
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at least four times which contradicts the main property of convexity just mentioned. Hence the

symmetric limit measure u0
0 is a sum of exactly three Dirac measures: u0

0 = p0δ0+
1−p0

2

�

δx1
+δ−x1

�

with p0(1− p0)> 0 and x1 > 0. Let us estimate the variables p0 and x1. Proposition 5.3 implies

V ′(x1) + p0F ′(x1) +
1− p0

2
F ′(2x1) = 0

V (x1) + (2p0− 1)F(x1) +
1− p0

2
F(2x1) = 0

which admits the unique solution p0 =
26

45
and x1 =

p
15

2
.

A Annex

We shall present here a useful asymptotic result which is close to the classical Laplace’s method and

which contributes to the proof of Theorem 2.1. This result and its proof are slight modifications of

those appearing in the annex of [5] which is why we shall omit the proof.

Lemma A.1. Set ε > 0. Let U a C∞(R)-continuous functions. Let us introduce some interval
[a, b] satisfying: U ′(a) 6= 0, U ′(b) 6= 0 and U(x) admits some unique global minimum on the
interval [a, b] reached at x0 ∈]a, b[. We assume that there exists some exponent k0 such that
2k0 =minr∈N∗

¦

U (r)(x0) 6= 0
©

. Let f be a C 4(R)-continuous function. Then taking the limit ε→ 0 we
get

∫ b

a

f (t)e−
U(t)
ε d t =

f (x0)

k0

�

ε(2k0)!

U2k0(x0)

�
1

2k0

Γ

�

1

2k0

�

e−
U(x0)

ε (1+ o(1)), (A.1)

where Γ represents the Euler function.
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