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with finite third moments∗
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Abstract

We identify the scaling limit for the sizes of the largest components at criticality for inhomoge-
neous random graphs with weights that have finite third moments. We show that the sizes of
the (rescaled) components converge to the excursion lengths of an inhomogeneous Brownian
motion, which extends results of Aldous [1] for the critical behavior of Erdős-Rényi random
graphs. We rely heavily on martingale convergence techniques, and concentration properties of
(super)martingales. This paper is part of a programme initiated in [16] to study the near-critical
behavior in inhomogeneous random graphs of so-called rank-1.
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1 Introduction

1.1 Model

We start by describing the model considered in this paper. While there are many variants available in
the literature, the most convenient for our purposes is the model often referred to as Poissonian graph
process or Norros-Reittu model [23]. See Section 1.3 below for consequences for related models. To
define the model, we consider the vertex set [n] := {1,2, . . . , n}, and attach an edge with probability
pi j between vertices i and j, where

pi j = 1− exp
�

−
wiw j

`n

�

, (1.1)

and
`n =

∑

i∈[n]

wi . (1.2)

Different edges are independent.

Below, we shall formulate general conditions on the weight sequence w = (wi)i∈[n], and for now
formulate two main examples. The first key example arises when we take w to be an i.i.d. sequence
of random variables with distribution function F satisfying

E[W 3]<∞. (1.3)

The second key example (which is also studied in [16]) arises when we let the weight sequence
w = (wi)i∈[n] be defined by

wi = [1− F]−1(i/n), (1.4)

where F is a distribution function of a random variable satisfying (1.3), with [1− F]−1 the general-
ized inverse function of 1− F defined, for u ∈ (0,1), by

[1− F]−1(u) = inf{s : [1− F](s)≤ u}. (1.5)

By convention, we set [1− F]−1(1) = 0.

Write

ν =
E[W 2]
E[W]

. (1.6)

Then, by [6], the random graphs we consider are subcritical when ν < 1 and supercritical when
ν > 1. Indeed, when ν > 1, there is one giant component of size Θ(n) while all other components
are of smaller size oP(n), while when ν ≤ 1, the largest connected component has size oP(n). Thus,
the critical value of the model is ν = 1. Here, and throughout this paper, we use the following
standard notation. We write f (n) = O(g(n)) for functions f , g ≥ 0 and n → ∞ if there exists a
constant C > 0 such that f (n) ≤ C g(n) in the limit, and f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0.
Furthermore, we write f = Θ(g) if f = O(g) and g = O( f ). We write OP(bn) for a sequence of
random variables Xn for which |Xn|/bn is tight as n → ∞, and oP(bn) for a sequence of random
variables Xn for which |Xn|/bn

P−→ 0 as n→∞. Finally, we write that a sequence of events (En)n≥1
occurs with high probability (whp) when P(En)→ 1.
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We shall write G 0
n (w ) to be the graph constructed via the above procedure, while, for any fixed

t ∈ R, we shall write G t
n(w ) when we use the weight sequence (1 + tn−1/3)w , for which the

probability that i and j are neighbors equals 1− exp
�

−(1+ tn−1/3)wiw j/`n

�

. In this setting we
take n so large that 1+ tn−1/3 > 0.

We now formulate the general conditions on the weight sequence w . In Section 3, we shall verify
that these conditions are satisfied for i.i.d. weights with finite third moment, as well as for the choice
in (1.4). We assume the following three conditions on the weight sequence w :

(a) Maximal weight bound. We assume that the maximal weight is o(n1/3), i.e.,

max
i∈[n]

wi = o(n1/3). (1.7)

(b) Weak convergence of weight distribution. We assume that the weight of a uniformly chosen
vertex converges in distribution to some distribution function F , i.e., let Vn ∈ [n] be a uniformly
chosen vertex. Then we assume that

wVn

d−→W, (1.8)

for some limiting random variable W with distribution function F . Condition (1.8) is equivalent to
the statement that, for every x that is a continuity point of x 7→ F(x), we have

1

n
#{i : wi ≤ x} → F(x). (1.9)

(c) Convergence of first three moments. We assume that

1

n

∑

i∈[n]

wi = E[W] + o(n−1/3), (1.10)

1

n

∑

i∈[n]

w2
i = E[W 2] + o(n−1/3), (1.11)

1

n

∑

i∈[n]

w3
i = E[W 3] + o(1). (1.12)

Note that condition (a) follows from conditions (b) and (c), as we prove around (2.41) below. We
nevertheless choose to introduce the weaker condition (a), for its clear combinatorial interpretation
and the fact that this maximal weight bounds occurs naturally at several places in the proofs. When
w is random, for example in the case where (wi)i∈[n] are i.i.d. random variables with finite third
moment, then we need the estimates in conditions (a), (b) and (c) to hold in probability.

We shall simply refer to the above three conditions as conditions (a), (b) and (c). Note that (1.10)
and (1.11) in condition (c) also imply that

νn =

∑

i∈[n]w
2
i

∑

i∈[n]wi
=

E[W 2]
E[W]

+ o(n−1/3) = ν + o(n−1/3). (1.13)
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Before we write our main result we shall need one more construct. For fixed t ∈ R, consider the
inhomogeneous Brownian motion (W t(s))s≥0 defined as

W t(s) = B(s) + st −
s2

2
, (1.14)

where B is standard Brownian motion, so that W t has drift t − s at time s. We want to consider this
process restricted to be non-negative, and we therefore introduce the reflected process

W̄ t(s) =W t(s)− min
0≤s′≤s

W t(s′). (1.15)

In [1] it is shown that the excursions of W̄ t from 0 can be ranked in increasing order as, say,
γ1(t)> γ2(t)> . . ..

Now let C 1
n (t) ≥ C

2
n (t) ≥ C

3
n (t) . . . denote the sizes of the components in G t

n(w ) arranged in
increasing order. Define l2 to be the set of infinite sequences x = (x i)∞i=1 with x1 ≥ x2 ≥ . . .≥ 0 and
∑∞

i=1 x2
i <∞, and define the l2 metric by

d(x , y) =
�
∞
∑

i=1

(x i − yi)
2
�1/2

. (1.16)

Let
µ= E[W], σ3 = E[W 3]. (1.17)

Then, our main result is as follows:

Theorem 1.1 (The critical behavior). Assume that the weight sequence w satisfies conditions (a), (b)
and (c), and let ν = 1. Then, as n→∞,

�

n−2/3C i
n(t)

�

i≥1
d−→
�

µσ
−1/3
3 γi(tµσ

−2/3
3 )

�

i≥1 =:
�

γ∗i (t)
�

i≥1, (1.18)

in distribution and with respect to the l2 topology.

Theorem 1.1 extends the work of Aldous [1], who identified the scaling limit of the largest con-
nected components in the Erdős-Rényi random graph. Indeed, he proved for the critical Erdős-Rényi
random graph with p = (1+ tn−1/3)/n that the ordered connected components are described by
�

γi(t)
�

i≥1, i.e., the ordered excursions of the reflected process in (1.15). Hence, Aldous’ result
corresponds to Theorem 1.1 with µ = σ3 = 1. The sequence

�

γ∗i (t)
�

i≥1 is in fact the sequence of
ordered excursions of the reflected version of the process

W t
∗ (s) =

r

σ3

µ
B(s) + st −

s2σ3

2µ2 , (1.19)

which reduces to the process in (1.14) again when µ= σ3 = 1.

We next investigate our two key examples, and show that conditions (a), (b) and (c) indeed hold in
this case.

Corollary 1.2 (Theorem 1.1 holds for key examples). Conditions (a), (b) and (c) are satisfied when
w is as in (1.4), where F is a distribution function of a random variable W with E[W 3]<∞, or when
w consists of i.i.d. copies of a random variable W with E[W 3]<∞.

Theorem 1.1 was already conjectured in [16], for the case where w is as in (1.4) and F is a dis-
tribution function of a random variable W with E[W 3+ε] <∞ for some ε > 0. The current result
implies that E[W 3]<∞ is a sufficient condition for this result to hold, and we believe this condition
also to be necessary (as the constant E[W 3] also appears in our results, see (1.18) and (1.19)).
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1.2 Overview of the proof

In this section, we give an overview of the proof of Theorem 1.1. After having set the stage for
the proof, we shall provide a heuristic that indicates how our main result comes about. We start by
describing the cluster exploration:

Cluster exploration. The proof involves two key ingredients:

• The exploration of components via breath-first search; and

• The labeling of vertices in a size-biased order of their weights w .

More precisely, we shall explore components and simultaneously construct the graph G t
n(w ) in the

following manner: First, for all ordered pairs of vertices (i, j), let V (i, j) be exponential random
variables with rate

�

1+ tn−1/3
�

w j/`n. Choose vertex v(1) with probability proportional to w , so
that

P(v(1) = i) = wi/`n. (1.20)

The children of v(1) are all the vertices j such that

V (v(1), j)≤ wv(1). (1.21)

Suppose v(1) has c(1) children. Label these as v(2), v(3), . . . v(c(1) + 1) in increasing order of their
V (v(1), ·) values. Now move on to v(2) and explore all of its children (say c(2) of them) and label
them as before. Note that when we explore the children of v(2), its potential children cannot include
the vertices that we have already identified. More precisely, the children of v(2) consist of the set

{v /∈ {v(1), . . . v(c(1) + 1)} : V (v(2), v)≤ wv(2)}

and so on. Once we finish exploring one component, we move on to the next component by choosing
the starting vertex in a size-biased manner amongst the remaining vertices and start exploring its
component. It is obvious that in this way we find all the components of our graph G t

n(w ).

Write the breadth-first walk associated to this exploration process as

Zn(0) = 0, Zn(i) = Zn(i− 1) + c(i)− 1, (1.22)

for i = 1, . . . , n. Suppose C ∗(i) is the size of the ith component explored in this manner (here we
write C ∗(i) to distinguish this from C i

n(t), the ith largest component). Then these can be easily
recovered from the above walk by the following prescription: For j ≥ 0, write η( j) as the stopping
time

η( j) =min{i : Zn(i) =− j}. (1.23)

Then
C ∗( j) = η( j)−η( j− 1). (1.24)

Further,
Zn(η( j)) =− j, Zn(i)≥− j for all η( j)< i < η( j+ 1). (1.25)

Recall that we started with vertices labeled 1, 2, . . . , n with corresponding weights w = (wi)i∈[n].
The size-biased order v∗(1), v∗(2), . . . , v∗(n) is a random reordering of the above vertex set where
v(1) = i with probability equal to wi/`n. Then, given v∗(1), we have that v∗(2) = j ∈ [n] \ {v∗(1)}
with probability proportional to w j and so on. By construction and the properties of the exponential
random variables, we have the following representation, which lies at the heart of our analysis:
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Lemma 1.3 (Size-biased reordering of vertices). The order v(1), v(2), . . . , v(n) in the above construc-
tion of the breadth-first exploration process is the size-biased ordering v∗(1), v∗(2), . . . , v∗(n) of the
vertex set [n] with weights proportional to w .

Proof. The first vertex v(1) is chosen from [n] via the size-biased distribution. Suppose it has no
neighbors. Then, by construction, the next vertex is chosen via the size-biased distribution amongst
all remaining vertices. If vertex 1 does have neighbors, then we shall use the following construction.

For j ≥ 2, choose V (v(1), j) exponentially distributed with rate (1+ tn−1/3)w j/`n. Rearrange the
vertices in increasing order of their V (v(1), j) values (so that v′(2) is the vertex with the smallest
V (v(1), j) value, v′(3) is the vertex with the second smallest value and so on). Note that by the
properties of the exponential distribution

P(v(2) = i | v(1)) =
wi

∑

j 6=v(1)w j
for j ∈ [n] \ {v(1)}. (1.26)

Similarly, given the value of v(2),

P(v(3) = i | v(1), v(2)) =
wi

∑

j 6=v(1),v(2)w j
, (1.27)

and so on. Thus the above gives us a size-biased ordering of the vertex set [n]\{v(1)}. Suppose c(1)
of the exponential random variables are less than wv(1). Then set v( j) = v′( j) for 2 ≤ j ≤ c(1) + 1
and discard all the other labels. This gives us the first c(1) + 1 values of our size-biased ordering.

Once we are done with v(1), let the potentially unexplored neighbors of v(2) be

U2 = [n] \ {v(1), . . . , v(c(1) + 1)}, (1.28)

and, again, for j inU2, we let V (v(2), j) be exponential with rate (1+ tn−1/3)w j/`n and proceed as
above.

Proceeding this way, it is clear that at the end, the random ordering v(1), v(2), . . . , v(n) that we
obtain is a size-biased random ordering of the vertex set [n]. This proves the lemma.

Heuristic derivation of Theorem 1.1. We next provide a heuristic that explains the limiting pro-
cess in (1.19). Note that by our assumptions on the weight sequence we have for the graph G t

n(w )

pi j =
�

1+ o(n−1/3)
�

p∗i j , (1.29)

where
p∗i j =

�

1+ tn−1/3
� wiw j

`n
. (1.30)

In the remainder of the proof, wherever we need pi j , we shall use p∗i j instead, which shall simplify
the calculations and exposition.

Recall the cluster exploration described above, and, in particular, Lemma 1.3. We explore the cluster
one vertex at a time, in a breadth-first manner. We choose v(1) according to w , i.e., P(v(1) = j) =
w j/`n. We say that a vertex is explored when its neighbors have been investigated, and unexplored
when it has been found to be part of the cluster found so far, but its neighbors have not been
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investigated yet. Finally, we say that a vertex is neutral when it has not been considered at all. Thus,
in our cluster exploration, as long as there are unexplored vertices, we explore the vertices (v(i))i∈[n]
in the order of appearance. When there are no unexplored vertices left, then we draw (size-biased)
from the neutral vertices. Then, Lemma 1.3 states that (v(i))i∈[n] is a size-biased reordering of [n].

Let c(i) denote the number of neutral neighbors of v(i), and recall (1.22). The clusters of our
random graph are found in between successive times in which (Zn(l))l∈[n] reaches a new mini-
mum. Now, Theorem 1.1 follows from the fact that Z̄n(s) = n−1/3Zn(bn2/3sc) weakly converges to
(W t
∗ (s))s≥0 defined as in (1.19). General techniques from [1] show that this also implies that the

ordered excursions between successive minima of (Z̄n(s))s≥0 converge to the ones of (W t
∗ (s))s≥0.

These ordered excursions were denoted by γ∗1(t) > γ
∗
2(t) > . . .. Using Brownian scaling, it can be

seen that
W t
∗ (s)

d
= σ1/3

3 W tµσ−2/3
3 (σ1/3

3 µ−1s) (1.31)

with Wt defined in (1.14). Hence, from the relation (1.31) it immediately follows that

�

γ∗i (t)
�

i≥1
d
=
�

µσ
−1/3
3 γi(tµσ

−2/3
3 )

�

i≥1, (1.32)

which then proves Theorem 1.1.

To see how to derive (1.31), fix a > 0 and note that (B(a2s))s≥0 has the same distribution as
(aB(s))s≥0. Thus, for (W t

σ,κ(s))s≥0 with

W t
σ,κ(s) = σB(s) + st −κs2/2, (1.33)

we obtain the scaling relation

W t
σ,κ(s)

d
=
σ

a
W t/(aσ)

1,a−3κ/σ
(a2s). (1.34)

Using κ= σ2/µ and a = (κ/σ)1/3 = (σ/µ)1/3, we note that

W t
σ,σ2/µ

(s)
d
= σ2/3µ1/3W tσ−4/3µ1/3

(σ2/3µ−2/3s), (1.35)

which, with σ = (σ3/µ)1/2, yields (1.31).

We complete the sketch of proof by giving a heuristic argument that indeed Z̄n(s) = n−1/3Zn(bn2/3sc)
weakly converges to (W t

∗ (s))s≥0. For this, we investigate c(i), the number of neutral neighbors of
v(i). Throughout this paper, we shall denote

w̃ j = w j(1+ tn−1/3), (1.36)

so that the G t
n(w ) has weights w̃ = (w̃ j) j∈[n].

We note that since pi j in (1.1) is quite small, the number of neighbors of a vertex j is close to
Poi(w̃ j), where Poi(λ) denotes a Poisson random variable with mean λ. Thus, the number of neutral
neighbors is close to the total number of neighbors minus the active neighbors, i.e.,

c(i)≈ Poi(w̃v(i))− Poi
�

i−1
∑

j=1

w̃v(i)w̃v( j)

`n

�

, (1.37)
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since
∑i−1

j=1 w̃v(i)w̃v( j)/`n is, conditionally on (v( j))ij=1, the expected number of edges between v(i)
and (v( j)i−1

j=1. We conclude that the increase of the process Zn(l) equals

c(i)− 1≈ Poi(w̃v(i))− 1− Poi
�

i−1
∑

j=1

w̃v(i)w̃v( j)

`n

�

, (1.38)

so that

Zn(l)≈
l
∑

i=1

(Poi(w̃v(i))− 1)− Poi
�

i−1
∑

j=1

w̃v(i)w̃v( j)

`n

�

. (1.39)

The change in Zn(l) is not stationary, and decreases on the average as l increases, due to two
reasons. First of all, the number of neutral vertices decreases (as is apparent from the sum which
is subtracted in (1.39)), and the law of w̃v(l) becomes stochastically smaller as l increases. The
latter can be understood by noting that E[w̃v(1)] = (1+ tn−1/3)νn = 1+ tn−1/3 + o(n−1/3), while
1
n

∑

j∈[n] w̃v( j) = (1+ tn−1/3)`n/n, and, by Cauchy-Schwarz,

`n/n≈ E[W]≤ E[W 2]1/2 = E[W]1/2ν1/2 = E[W]1/2, (1.40)

so that `n/n ≤ 1+ o(1), and the inequality becomes strict when Var(W ) > 0. We now study these
two effects in more detail.

The random variable Poi(w̃v(i))− 1 has asymptotic mean

E[Poi(w̃v(i))− 1]≈
∑

j∈[n]

w̃ jP(v(i) = j)− 1≈
∑

j∈[n]

w̃ j
w j

`n
− 1= νn(1+ tn−1/3)− 1≈ 0. (1.41)

However, since we sum Θ(n2/3) contributions, and we multiply by n−1/3, we need to be rather
precise and compute error terms up to order n−1/3 in the above computation. We shall do this now,
by conditioning on (v( j))i−1

j=1. Indeed, writing 1A for the indicator of the event A,

E[w̃v(i)− 1]≈ νn tn−1/3+E
�

E[wv(i)− 1 | (v( j))i−1
j=1]
�

≈ tn−1/3+E
�

n
∑

l=1

wl1{l 6∈{v( j)}i−1
j=1}

wl

`n−
∑i−1

j=1 wv( j)

�

− 1

≈ tn−1/3+
∑

j∈[n]

w2
j

`n
+E
� 1

`2
n

i−1
∑

j=1

wv( j)

n
∑

l=1

w2
l

�

−E
� 1

`n

i−1
∑

j=1

w2
v( j)

�

− 1

≈ tn−1/3+ i
�ν2

n

`n
−

1

`2
n

∑

j∈[n]

w3
j

�

≈ tn−1/3+
i

`n

�

1−
1

`n

∑

j∈[n]

w3
j

�

. (1.42)

When i = Θ(n2/3), these terms are indeed both of order n−1/3, and shall thus contribute to the
scaling limit of (Zn(l))l≥0.

The variance of Poi(w̃v(i)) is approximately equal to

Var(Poi(w̃v(i))) = E[Var(Poi(w̃v(i))) | v(i)] + Var(E[Poi(w̃v(i)) | v(i)])

= E[w̃v(i)] + Var(w̃v(i))≈ E[w̃2
v(i)]≈ E[w2

v(i)], (1.43)
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since E[wv(i)] = 1+Θ(n−1/3). Summing the above over i = 1, . . . , sn2/3 and multiplying by n−1/3

intuitively explains that

n−1/3
sn2/3
∑

i=1

(Poi(w̃v(i))− 1)
d−→ σB(s) + st +

s2

2E[W]
(1−σ2), (1.44)

where we write σ2 = E[W 3]/E[W] and we let (B(s))s≥0 denote a standard Brownian motion. We
also adopt the convention that when a non-integer, such as sn2/3 appears in summation bounds,
it should be rounded down. Note that when Var(W ) > 0, then E[W] = E[W 2] < 1, so that
E[W 3]/E[W] > 1 and the constant in front of s2 is negative. We shall make the limit in (1.44)
precise by using a martingale functional central limit theorem.

The second term in (1.39) turns out to be well-concentrated around its mean, so that, in this heuris-
tic, we shall replace it by its mean. The concentration shall be proved using concentration techniques
on appropriate supermartingales. This leads us to compute

E
h

l
∑

i=1

Poi
�

i−1
∑

j=1

w̃v(i)w̃v( j)

`n

�i

≈ E
h

l
∑

i=1

i−1
∑

j=1

w̃v(i)w̃v( j)

`n

i

≈ E
h

l
∑

i=1

i−1
∑

j=1

wv(i)wv( j)

`n

i

≈
1

2
E
h 1

`n

�
i
∑

j=1

wv( j)

�2i

≈
1

2`n
E
h

i
∑

j=1

wv( j)

i2
, (1.45)

the last asymptotic equality again following from the fact that the random variable involved is
concentrated.

We conclude that

n−1/3E
h

sn2/3
∑

i=1

Poi
�

i−1
∑

j=1

w̃v(i)w̃v( j)

`n

�i

≈
s2

2E[W]
. (1.46)

Subtracting (1.46) from (1.44), these computations suggest, informally, that

Z̄n(s) = n−1/3Zn(bn2/3sc) d−→ σB(s) + st −
s2E[W 3]
2E[W]2

=

È

E[W 3]
E[W]

B(s) + st −
s2E[W 3]
2E[W]2

, (1.47)

as required. Note the cancelation of the terms s2/(2E[W]) in (1.44) and (1.46), where they appear
with an opposite sign. Our proof will make this analysis precise.

1.3 Discussion

Our results are generalizations of the critical behavior of Erdős-Rényi random graphs, which have
received tremendous attention over the past decades. We refer to [1], [5], [19] and the references
therein. Properties of the limiting distribution of the largest component γ1(t) can be found in [24],
which, together with the recent local limit theorems in [17], give excellent control over the joint tail
behavior of several of the largest connected components.
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Comparison to results of Aldous. We have already discussed the relation between Theorem 1.1
and the results of Aldous on the largest connected components in the Erdős-Rényi random graph.
However, Theorem 1.1 is related to another result of Aldous [1, Proposition 4], which is less well
known, and which investigates a kind of Norros-Reittu model (see [23]) for which the ordered
weights of the clusters are determined. Here, the weight of a set of vertices A ⊆ [n] is defined by
w̄A =

∑

a∈A wa. Indeed, Aldous defines an inhomogeneous random graph where the edge probability
is equal to

pi j = 1− e−qx i x j , (1.48)

and assumes that the pair (q, (x i)i∈[n]) satisfies the following scaling relation:

∑

i∈[n] x3
i

�
∑

i∈[n] x2
i

�3 → 1, q−
�
∑

i∈[n]

x2
i

�−1
→ t, max

j∈[n]
x j = o

�
∑

i∈[n]

x2
i

�

. (1.49)

When we pick

x j = w j

�
∑

i∈[n]w
3
i

�1/3

∑

i∈[n]w
2
i

, q =

�
∑

i∈[n]w
2
i

�2

�
∑

i∈[n]w
3
i

�2/3
`n

(1+ tn−1/3), (1.50)

then these assumptions are very similar to conditions (a)-(c). However, the asymptotics of q in
(1.49) is replaced with

q−
�
∑

i∈[n]

x2
i

�−1
=

1
n

∑

i∈[n]w
2
i

� 1
n

∑

i∈[n]w
3
i

�2/3
(n1/3νn(1+ tn−1/3)− n1/3)

→
E[W 2]

E[W 3]2/3
t =

E[W]
E[W 3]2/3

t, (1.51)

where the last equality follows from the fact that ν = E[W 2]/E[W] = 1. This scaling in t simply
means that the parameter t in the process W t

∗ (s) in (1.19) is rescaled, which is explained in more
detail in the scaling relations in (1.32). Write C i

n(t) for the component with the ith largest weight,
and let w̄C i

n(t)
=
∑

j∈C i
n(t)

w j denote the cluster weight. Then, Aldous [1, Proposition 4] proves that

�

�
∑

i∈[n]w
3
i

�1/3

∑

i∈[n]w
2
i

w̄C i
n(t)

�

i≥1

d−→
�

γi(tE[W]/E[W 3]2/3)
�

i≥1, (1.52)

where we recall that
�

γi(t)
�

i≥1 is the scaling limit of the ordered component sizes in the Erdős-Rényi
random graph with parameter p = (1+ tn−1/3)/n. Now,

�
∑

i∈[n]w
3
i

�1/3

∑

i∈[n]w
2
i

≈ n−2/3E[W 3]1/3/E[W 2] = n−2/3E[W 3]1/3/E[W], (1.53)

and one would expect that w̄C i
n(t)
≈C i

n(t), which is consistent with (1.18) and (1.32). The technique
used by Aldous [1] to deal with the ordered cluster weights does not apply immediately to our setting
of ordered component sizes, as Aldous [1] relies on a continuous-time description of the cluster
weight exploration. As a result, we use slightly adapted (super)martingale techniques.
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Related models. The model studied here is asymptotically equivalent to many related models
appearing in the literature, for example to the random graph with prescribed expected degrees that
has been studied intensively by Chung and Lu (see [8, 9, 10, 11, 12]). This model corresponds to
the rank-1 case of the general inhomogeneous random graphs studied in [6] and satisfies

pi j =min
�wiw j

`n
, 1
�

. (1.54)

Further, for the generalized random graph introduced by Britton, Deijfen and Martin-Löf in [7], the
edge occupation probabilities are given by

pi j =
wiw j

`n+wiw j
. (1.55)

See [16, 18] for more details on the asymptotic equivalence of such inhomogeneous random graphs.
Further, Nachmias and Peres [22] recently proved similar scaling limits for critical percolation on
random regular graphs.

Alternative approach by Turova. Turova [26] recently obtained results for a setting that is similar
to ours. Turova takes the edge probabilities to be pi j = min{x i x j/n, 1}, and assumes that (x i)i∈[n]
are i.i.d. random variables with E[X 3]<∞. This setting follows from ours by taking

wi = x i
�1

n

∑

j∈[n]

x j
�

. (1.56)

Naturally, the critical point changes in Turova’s setting, and becomes E[X 2] = 1.

First versions of the paper [26] and this paper were uploaded almost simultaneously on the ArXiv.
Comparing the two papers gives interesting insights in how to deal with the inherent size-biased
orderings in two rather different ways. Turova applies discrete martingale techniques in the spirit
of Martin-Löf’s [21] work on diffusion approximations for critical epidemics, while our approach
is more along the lines of the original paper of Aldous [1], relying on concentration techniques
and supermartingales (see Lemma 2.2). Further, our result is slightly more general than the one
in [26]. In fact, our discussions with Turova inspired us to extend our setting to one that includes
i.i.d. weights (which is Turova’s original setting).

The necessity of conditions (a)-(c). The conditions (a)-(c) provide conditions under which we
prove convergence. One may wonder whether these conditions are merely sufficient, or also neces-
sary. Condition (b) gives stability of the weight structure, which implies that the local neighborhoods
in our random graphs locally converge to appropriate branching processes. The latter is a strength-
ening of the assumption that our random graphs are sparse, and is a natural condition to start with.
We believe that, given that condition (b) holds, conditions (a) and (c) are necessary. Indeed, Al-
dous and Limic give several examples where the scaling of the largest critical cluster is n2/3 with
a different scaling limit when w1n1/3 → c1 > 0 (see [2, Proof of lemma 8, p. 10]). Therefore, for
Theorem 1.1 to hold (with the prescribed scaling limit in terms of ordered Brownian excursions),
condition (a) seems to be necessary. Since conditions (b) and (c) imply condition (a), it follows that
if we assume condition (b), then we need the other two conditions for our main result to hold. This
answers [1, Open problem 2, p. 851].
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Inhomogeneous random graphs with infinite third moments. In the present setting, when it
is assumed that E[W 3] < ∞, the scaling limit turns out to be a scaled version of the scaling limit
for the Erdős-Rényi random graph as identified in [1]. In [3], we have recently studied the case
where E[W 3] = ∞, for which the critical behavior turns out to be fundamentally different. More
specifically, we choose in [3] the weight sequence w = (wi)i∈[n] as in (1.4) with F such that, as
x →∞, 1− F(x) = cF x−(τ−1)(1+o(1)), for some τ ∈ (3, 4) and 0< cF <∞. Under this assumption,
the clusters have asymptotic size n(τ−2)/(τ−1) (see [16]). The scaling limit itself turns out to be
described in terms of a so-called ‘thinned’ Lévy process, that consists of infinitely many Poisson
processes with varying rates of which only the first event is counted, and which already appeared
in [2] in the context of random graphs having n2/3 critical behavior. Moreover, we prove in [3]
that the vertex i is in the largest connected component with non-vanishing probability as n → ∞,
which implies that the highest weight vertices characterize the largest components (‘power to the
wealthy’). This is in sharp contrast to the present setting, where the probability that the vertex
with the largest weight is in the largest component is negligible, and instead the largest connected
component is an extreme value event arising from many trials with roughly equal probability (‘power
to the masses’).

2 Weak convergence of cluster exploration

In this section, we shall study the scaling limit of the cluster exploration studied in Section 1.2
above. The main result in this paper, in its most general form, is the following theorem:

Theorem 2.1 (Weak convergence of cluster exploration). Assume that the weight sequence w satisfies
conditions (a), (b) and (c), and that ν = 1. Consider the breadth-first walk Zn(·) of (1.25) exploring
the components of the random graph G t

n(w ). Define

Z̄n(s) = n−1/3Zn(bn2/3sc). (2.1)

Then, as n→∞,

Z̄n
d−→W t

∗ , (2.2)

where W t
∗ is the process defined in (1.19), in the sense of convergence in the J1 Skorohod topology on

the space of right-continuous left-limited functions on R+.

To show how Theorem 2.1 immediately proves Theorem 1.1, we compare (1.15) and (1.25). The-
orem 2.1 suggests that also the excursions of Z̄n beyond past minima arranged in increasing order
converge to the corresponding excursions of W t

∗ beyond past minima arranged in increasing order.
See Aldous [1, Section 3.3] for a proof of this fact. Therefore, Theorem 2.1 implies Theorem 1.1.
The remainder of this paper is devoted to the proof of Theorem 2.1.

Proof of Theorem 2.1. We shall make use of a martingale central limit theorem. By (1.29),

pi j ≈
�

1+
t

n1/3

� wiw j

`n
, (2.3)

and we shall use the above as an equality for the rest of the proof as this shall simplify exposition.
It is quite easy to show that the error made is negligible in the limit.
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Recall from (1.22) that

Zn(k) =
k
∑

i=1

(c(i)− 1). (2.4)

Then, we decompose
Zn(k) = Mn(k) + An(k), (2.5)

where

Mn(k) =
k
∑

i=1

(c(i)−E[c(i) | Fi−1]), An(k) =
k
∑

i=1

E[c(i)− 1 | Fi−1], (2.6)

withFi the natural filtration of Zn. Then, clearly, {Mn(k)}nk=0 is a martingale. For a process {Sk}nk=0,
we further write

S̄n(u) = n−1/3Sn(bun2/3c). (2.7)

Furthermore, let

Bn(k) =
k
∑

i=1

�

E[c(i)2 | Fi−1]−E[c(i) | Fi−1]
2
�

. (2.8)

Then, by the martingale central limit theorem ([15, Theorem 7.1.4]), Theorem 2.1 follows when
the following three conditions hold:

sup
s≤u

�

�

�Ān(s) +
s2σ3

2µ2 − st
�

�

�

P−→ 0, (2.9)

n−2/3Bn(n
2/3u)

P−→
σ3u

µ
, (2.10)

E(sup
s≤u
|M̄n(s)− M̄n(s−)|2)−→ 0. (2.11)

Indeed, the last two equations, by [15, Theorem 7.1.4] imply that the process M̄n(s) =
n−1/3Mn(n2/3s) satisfies the asymptotics

M̄n
d−→
r

σ3

µ
B, (2.12)

where, as before, B is a standard Brownian motion, while (2.9) gives the drift term in (1.19) and
this completes the proof.

We shall now start to verify the conditions (2.9), (2.10) and (2.11). Throughout the proof, we
shall assume, without loss of generality, that w1 ≥ w2 ≥ . . . ≥ wn. Recall that we shall work with
weight sequence w̃ = (1+ tn−1/3)w , for which the edge probabilities are approximately equal to
wiw j(1+ tn−1/3)/`n (recall (2.3)).

We note that, since Mn(k) is a discrete martingale,

sup
s≤u
|M̄n(s)− M̄n(s−)|2 = n−2/3 sup

k≤un2/3
(Mn(k)−Mn(k− 1))2 ≤ n−2/3(1+ sup

k≤un2/3
c(k)2)

≤ n−2/3(1+∆2
n), (2.13)

where ∆n is the maximal degree in the graph, so that

E(sup
s≤u
|M̄n(s)− M̄n(s−)|2)≤ n−2/3(1+E[∆2

n]). (2.14)
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By condition (a), w̃i = o(n1/3), so that, by Cauchy-Schwarz,

E[∆2
n]≤ E[∆4

n]
1/2 ≤ n1/2

�1

n

∑

i∈[n]

E[d4
i ]
�1/2

≤ c
p

n
�1

n

∑

i∈[n]

(w4
i +wi)

�1/2
= o(n2/3), (2.15)

where we use the fact that E[Poi(λ)4] = O(λ4+λ) for all λ > 0. This proves that the r.h.s. of (2.14)
is o(1) and thus proves (2.11).

We continue with (2.9) and (2.10), for which we first analyse c(i). In the course of the proof, we
shall make use of the following lemma, which lies at the core of the argument:

Lemma 2.2 (Sums over sized-biased orderings). As n→∞, for all t > 0,

sup
u≤t

�

�

�n−2/3
n2/3u
∑

i=1

w2
v(i)−

σ3u

µ

�

�

�

P−→ 0, (2.16)

n−2/3
n2/3u
∑

i=1

E[w2
v(i) | Fi−1]

P−→
σ3u

µ
. (2.17)

Proof. We start by proving (2.16), for which we write

Hn(u) = n−2/3
bun2/3c
∑

i=1

w2
v(i). (2.18)

We shall use a randomization trick introduced by Aldous [1]. Let T j be a sequence of independent
exponential random variables with rate w j/`n and define

H̃n(v) = n−2/3
∑

i∈[n]

w2
j 11{T j ≤ n2/3v}. (2.19)

Note that by the properties of the exponential random variables, if we rank the vertices according
to the order in which they arrive, then they appear in size-biased order. More precisely, for any v,

H̃n(v) = n−2/3
∑

j∈[n]

w2
j 11{T j ≤ n2/3v}= n−2/3

N(vn2/3)
∑

i=1

w2
v(i) = Hn(N(vn2/3)), (2.20)

where
N(t) := #{ j : T j ≤ t}. (2.21)

As a result, when N(2tn2/3)≥ tn2/3 whp, we have that

sup
u≤t

�

�n−2/3
n2/3u
∑

i=1

w2
v(i)−

σ3

µ
u| ≤ sup

u≤2t

�

�n−2/3
N(un2/3)
∑

i=1

w2
v(i)−

σ3

µ
n−2/3N(un2/3)|+

σ3n−2/3

µ

≤ sup
u≤2t

�

�H̃n(u)−
σ3

µ
u|+

σ3

µ
sup
u≤2t

�

�n−2/3N(un2/3)− u|+
σ3n−2/3

µ
.

(2.22)
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The last term is due to a usual ‘rounding by one error’, and is negligible. We shall prove that the
first two terms both converge to zero in probability. We start with the second, for which we use that
the process

Y0(s) =
1

n1/3

�

N(sn2/3)− sn2/3
�

(2.23)

is a supermartingale, since

E[N(t + s) | Ft] = N(t) +E[N(t + s)− N(t) | Ft]≤ N(t)+E[#{ j : T j ∈ (t, t + s]} | Ft]

≤ N(t)+
∑

j∈[n]

(1− e−w js/`n)≤ N(t)+
∑

j∈[n]

w js

`n
= N(t)+s, (2.24)

as required. Therefore,

|E[Y0(t)]|=−E[Y0(t)] =
1

n1/3

h

tn2/3−
∑

i∈[n]

(1− exp(−tn2/3wi/`n))
i

. (2.25)

Using the fact that 1−e−x ≥ x−x2/2, for x ≥ 0, we obtain that, also using the fact that νn = 1+o(1),

|E[Y0(t)]| ≤
∑

i∈[n]

nw2
i t2

2`2
n
=

nνn

`n

t2

2
=

t2

2µ
+ o(1). (2.26)

Similarly, by the independence of (T j) j∈[n],

Var(Y0(t)) = n−2/3Var(N(sn2/3)) = n−2/3
∑

j∈[n]

P(T j ≤ tn2/3)(1−P(T j ≤ tn2/3))

≤ n−2/3
∑

j∈[n]

w j tn2/3

`n
= t. (2.27)

Now we use the supermartingale inequality [25, Lemma 2.54.5], stating that, for any supermartin-
gale Y = (Y (s))s≥0, with Y (0) = 0,

εP(sup
s≤t
|Y (s)|> 3ε)≤ 3E(|Y (t)|)≤ 3

�

|E(Y (t))|+
p

Var(Y (t))
�

. (2.28)

Equation (2.28) shows that, for any large A,

P(sup
s≤t
|N(sn2/3)− sn2/3|> 3An1/3)≤

3(t2/2µ+ t)
A

+ o(1). (2.29)

This clearly proves that, for every t > 0,

sup
u≤2t

�

�n−2/3N(un2/3)− u| P−→ 0. (2.30)

Observe that (2.30) also immediately proves that, whp, N(2tn2/3)≥ tn2/3.

To deal with H̃n(v), we define
Y1(u) = H̃n(u)−µ3(n)u, (2.31)
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where we write

µ3(n) =
∑

j∈[n]

w3
j

`n
=
σ3

µ
+ o(1), (2.32)

and note that Y1(u) is a supermartingale. Indeed, writingFt to be the natural filtration of the above
process, we have, for s < t and letting Vs =

¦

v : Tv < sn2/3
©

,

E(Y1(t)|Fs) = Y1(s) +
1

n2/3

∑

j /∈Vs

w2
j

�

1− exp
�

−
n2/3(t − s)w j

`n

��

−µ3(n)(t − s). (2.33)

Now using the inequality 1− e−x ≤ x for x ∈ [0, 1] we get that

E(Y1(t)|Fs)≤ Y1(s), (2.34)

as required. Again we can easily compute, using condition (a), that

|E[Y1(t)]|=−E[Y1(t)] = µ3(n)t − n−2/3
∑

i∈[n]

w2
i (1− exp(−tn2/3wi/`n))

= n−2/3
∑

i∈[n]

w2
i

�

exp(−tn2/3wi/`n)− 1+
twin

2/3

`n

�

≤ n−2/3
∑

i∈[n]

w2
i

(tn2/3wi)2

2`2
n

≤ n2/3 t2
∑

i∈[n]

w4
i

2`2
n
= o(n2/3n1/3)

∑

i∈[n]

w3
i

`2
n
= o(1). (2.35)

By independence,

Var(Y1(t)) = n−4/3
∑

j∈[n]

w4
i (1− exp(−tn2/3wi/`n))exp(−tn2/3wi/`n)

≤ n−2/3 t
∑

j∈[n]

w5
i

`n
= o(1)

∑

j∈[n]

w3
i

`n
= o(1). (2.36)

Therefore, (2.28) completes the proof of (2.16).

The proof of (2.17) is a little easier. We denote

Vi = {v( j)}ij=1. (2.37)

Then, we compute explicitly

E[w2
v(i) | Fi−1] =

∑

j∈[n]

w2
j P(v(i) = j | Fi−1) =

∑

j 6∈Vi−1
w3

j
∑

j 6∈Vi−1
w j

. (2.38)

Now, uniformly in i ≤ sn2/3, again using condition (a),
∑

j 6∈Vi−1

w j =
∑

j∈[n]

w j +O((max
j∈[n]

w j)i) = `n+ o(n) (2.39)
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for every i ≤ sn2/3. Similarly, again uniformly in i ≤ sn2/3, and using that j 7→ w j is non-increasing,

�

�

�

∑

j 6∈Vi−1

w3
j − `nσ3(n)

�

�

�≤
sn2/3
∑

j=1

w3
j = o(n). (2.40)

Indeed, by observing that condition (b) is convergence of distribution of wVn
to W , combined with

condition (c), it is a standard fact that (for non-negative random variables, see [4, Theorem 3.6 on
p. 31]) this implies that the third powers w3

Vn
are uniformly integrable, which yields

lim
K→∞

lim
n→∞

1

n

∑

j∈[n]

1{w j>K}w
3
j = 0. (2.41)

Another standard result says that (2.41) is equivalent to E[1An
w3

Vn
] → 0 for any sequence An of

events with P(An)→ 0, see [13, Theorem 10.3.5 on p. 355]. For An = {Vn ≤ sn2/3}, this gives, for
each K ,

1

n

sn2/3
∑

j=1

w3
j ≤

1

n

sn2/3
∑

j=1

1{w j≤K}w
3
j +

1

n

∑

j∈[n]

1{w j>K}w
3
j ≤ K3sn−1/3+

1

n

∑

j∈[n]

1{w j>K}w
3
j = o(1), (2.42)

when we first let n→∞, followed by K →∞.

We conclude that, uniformly for i ≤ sn2/3,

E[w2
v(i) | Fi−1] =

σ3

µ
+ oP(1). (2.43)

This proves (2.17).

To complete the proof of Theorem 2.1, we proceed to investigate c(i). By construction, we have
that, conditionally on Vi ,

c(i)
d
=
∑

j 6∈Vi

Ii j , (2.44)

where Ii j are (conditionally) independent indicators with

P(Ii j = 1 | Vi) =
wv(i)w j(1+ tn−1/3)

`n
, (2.45)

for all j 6∈ Vi . Furthermore, when we condition on Fi−1, we know Vi−1, and we have that, for all
j 6∈ Vi−1,

P(v(i) = j | Fi−1) =
w j

∑

s 6∈Vi−1
ws

. (2.46)

Since Vi = Vi−1 ∪ {v(i)} = Vi−1 ∪ { j} when v(i) = j, this is all we need to know to compute
conditional expectations involving c(i) given Fi−1.

Now we start to prove (2.9), for which we note that

E[c(i) | Fi−1] =
∑

j 6∈Vi−1

P(v(i) = j | Fi−1)E[c(i) | Fi−1, v(i) = j]

=
∑

j 6∈Vi−1

P(v(i) = j | Fi−1)
∑

l 6∈Vi−1∪{ j}

w̃ jwl

`n
. (2.47)
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Then we split

E[c(i)− 1 | Fi−1] =
∑

j 6∈Vi−1

P(v(i) = j | Fi−1)w̃ j − 1−
∑

j 6∈Vi−1

P(v(i) = j | Fi−1)w̃ j

∑

l∈Vi−1∪{ j}

wl

`n

(2.48)

= E[w̃v(i)− 1 | Fi−1]−E[w̃v(i) | Fi−1]
i−1
∑

s=1

wv(s)

`n
−E[

w2
v(i)(1+ tn−1/3)

`n
| Fi−1].

By condition (a), the last term is bounded by O((max j∈[n]w j)2/`n) = o(n−1/3) uniformly in i ∈ [n],
and is therefore an error term. We continue to compute

E[w̃v(i)− 1 | Fi−1] =
∑

j 6∈Vi−1

w2
j (1+ tn−1/3)
∑

s 6∈Vi−1
ws

− 1 (2.49)

=
∑

j 6∈Vi−1

w2
j (1+ tn−1/3)

`n
− 1+

∑

j 6∈Vi−1

w2
j (1+ tn−1/3)

`n
∑

s 6∈Vi−1
ws

�
∑

s∈Vi−1

ws

�

.

The last term equals

E[
w̃v(i)

`n
| Fi−1]

i−1
∑

s=1

wv(s), (2.50)

which equals the second term in (2.48), and thus these two contributions cancel in (2.48). This exact
cancelation is in the spirit of the one discussed below (1.47). Therefore, writing ν̃n = νn(1+ tn−1/3),
uniformly for all i = o(n),

E[c(i)− 1 | Fi−1] =
∑

j 6∈Vi−1

w2
j (1+ tn−1/3)

`n
− 1+ o(n−1/3)

=
∑

j∈[n]

w2
j (1+ tn−1/3)

`n
− 1−

∑

j∈Vi−1

w2
j (1+ tn−1/3)

`n
+ o(n−1/3)

= (ν̃n− 1)−
i−1
∑

s=1

w2
v(s)(1+ tn−1/3)

`n
+ o(n−1/3)

= (ν̃n− 1)−
i−1
∑

s=1

w2
v(s)

`n
+ o(n−1/3). (2.51)

As a result, we obtain that, uniformly for all k = o(n),

An(k) =
k
∑

i=1

E[c(i)− 1 | Fi−1] = k(ν̃n− 1)−
k
∑

i=1

i−1
∑

s=1

w2
v(s)

`n
+ o(kn−1/3), (2.52)

where the sum of the error terms constitutes an error term uniform in i ∈ [n] due to the uniformity
in the bound in (2.51). Thus, again employing the uniformity in our error bounds,

Ān(s) = ts− n−1/3
sn2/3
∑

i=1

i−1
∑

l=1

w2
v(l)

`n
+ o(1). (2.53)
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By (2.16) in Lemma 2.2, we have that

sup
t≤u
|n−2/3

tn2/3
∑

s=1

w2
v(s)−

σ3

µ
t| P−→ 0, (2.54)

so that

sup
t≤u

�

�Ān(s)− ts+
s2σ3

2µ2

�

�

P−→ 0. (2.55)

This proves (2.9).

The proof of (2.10) is similar, and we start by noting that (2.51) gives that, uniformly for all k =
O(n2/3),

Bn(k) =
k
∑

i=1

E[c(i)2 | Fi−1]−E[c(i) | Fi−1]
2 =

k
∑

i=1

E[c(i)2− 1 | Fi−1] +O(kn−1/3). (2.56)

Now, as above, we obtain that

E[c(i)2 | Fi−1] =
∑

j 6∈Vi−1

P(v(i) = j | Fi−1)
∑

s1,s2 6∈Vi−1∪{ j}
s1 6=s2

w̃ jws1

`n

w̃ jws2

`n

+E[c(i) | Fi−1]. (2.57)

From (2.51) we see that E[c(i) | Fi−1] = 1+ o(1) uniformly for all i = o(n), so that

n−2/3Bn(n
2/3u) = n−2/3

n2/3u
∑

i=1

E[w2
v(i) | Fi−1] + o(1) =

σ3

µ
u+ o(1), (2.58)

where the last equality follows from (2.17) in Lemma 2.2. The proofs of (2.9), (2.10) and (2.11)
complete the proof of Theorem 2.1.

3 Verification of conditions (b)–(c): Proof of Corollary 1.2

3.1 Verification of conditions for i.i.d. weights

We now check conditions (b) and (c) for the case that w = (Wi)i∈[n] where (Wi)i∈[n] are i.i.d.
random variables with E[W 3] <∞. Condition (b) follows from the a.s. convergence of the empir-
ical distribution function, while (1.12) in condition (c) holds a.s. by the strong law of large num-
bers. Equation (1.10) in condition (c) holds in probability by the central limit theorem (even with
oP(n−1/3) replaced with OP(n−1/2)). For the bound (1.11) in condition (c) we use the Marcinkiewicz-
Zygmund law of large numbers (see e.g. [20, Theorem 4.23]) that says: If 0 < p < 2 and X i are
i.i.d. with E|X i|

p <∞ and EX i = 0, then n−1/p
∑

i∈[n] X i → 0 a.s. In the case in the present paper,

Wi are i.i.d. with E|Wi|
3 <∞. Taking X i =W 2

i −E[W 2], and applying the Marcinkiewicz-Zygmund
law with p = 3/2, yields

∑

i∈[n]

W 2
i − nE|W 2|= o(n2/3) a.s., (3.1)

which proves (1.11).
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3.2 Verification of conditions for weights as in (1.4)

Here we check conditions (b) and (c) for the case that w = (wi)i∈[n], where wi is chosen as in (1.4).
We make use of the fact that (1.3) implies that 1− F(x) = o(x−3) as x →∞, which, in turn, implies
that (see e.g., [14, (B.9)]), as u ↓ 0,

[1− F]−1(u) = o(u−1/3). (3.2)

To verify condition (b), we note that by [16, (3.2)], wVn
has distribution function

Fn(x) =
1

n
��

nF(x)
�

+ 1
�

∧ 1. (3.3)

This converges to F(x) for every x ≥ 0, which proves that condition (b) holds. To verify condition
(c), we note that since i 7→ [1− F]−1(i/n) is monotonically decreasing, for any s > 0, we have

E[W s]−
∫ 1/n

0

[1− F−1(u)]sdu≤
1

n

∑

i∈[n]

ws
i ≤ E[W s]. (3.4)

Now, by (3.2), we have that, for s = 1,2, 3,

∫ 1/n

0

[1− F−1(u)]sdu= o(ns/3−1), (3.5)

which proves all necessary bounds for condition (c) at once.
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