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Abstract

In this paper, we are interested in the moments of the characteristic polynomial Zn(x) of the n×n
permutation matrices with respect to the uniform measure. We use a combinatorial argument
to write down the generating function of E

�
∏p

k=1 Z sk
n (xk)

�

for sk ∈ N. We show with this

generating function that limn→∞E
�
∏p

k=1 Z sk
n (xk)

�

exists for maxk |xk| < 1 and calculate the
growth rate for p = 2, |x1|= |x2|= 1, x1 = x2 and n→∞.
We also look at the case sk ∈ C. We use the Feller coupling to show that for each |x | < 1 and

s ∈ C there exists a random variable Z s
∞(x) such that Z s

n(x)
d−→ Z s

∞(x) and E
�
∏p

k=1 Z sk
n (xk)

�

→
E
�
∏p

k=1 Z sk
∞(xk)

�

for maxk |xk|< 1 and n→∞.
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1 Introduction

The characteristic polynomials of random matrices has been an object of intense interest in recent
years. One of the reasons is the paper of Keating and Snaith [11]. They conjectured that the
Riemann zeta function on the critical line could be modeled by the characteristic polynomial of a
random unitary matrix considered on the unit circle. One of the results in [11] is

Theorem 1.1. Let x be a fixed complex number with |x | = 1 and gn be a unitary matrix chosen at
random with respect to the Haar measure. Then

Log
�

det(In− x gn)
�

Æ

1
2

log(n)

d−→N1+ iN2 for n→∞

and N1,N2 independent, normal distributed random variables.

A probabilistic proof of this result can be found in [2].

A surprising fact, proven in [9], is that a similar result holds for permutation matrices. A permuta-
tion matrix is a unitary matrix of the form (δi,σ( j))1≤i, j≤n with σ ∈ Sn and Sn the symmetric group.
It is easy to see that the permutation matrices form a group isomorphic to Sn. We call for simplicity
both groups Sn and use this identification without mentioning it explicitly. We will, however, use the
notation g ∈ Sn for matrices and σ ∈ Sn for permutations. We define the characteristic polynomial
as

Zn(x) = Zn(x)(g) := det(I − x g) with x ∈ C, g ∈ Sn. (1.1)

We can now state the result in [9]:

Theorem 1.2. Let x be a fixed complex number with |x |= 1, not a root of unity and of finite type. Let
g be a n× n permutation matrix chosen uniformly at random. Then both the real and imaginary parts
of

Log
�

Zn(x)
�

p

π
12

log(n)

converge in distribution to a standard normal-random variable.

The goal of this paper is to study the moments E
�

Z s
n(x)

�

of Zn(x) with respect to the uniform
measure on Sn in the three cases

(i) |x |< 1, s ∈ N (section 2),

(ii) |x |< 1, s ∈ C (section 3),

(iii) |x |= 1, s ∈ N (section 4).
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Keating and Snaith have studied in [11] also the moments of the characteristic polynomial of a
random unitary matrix. A particular result is

EU(n)

��

�det(I − eiθU)
�

�

s�
=

n
∏

j=1

Γ( j)Γ( j+ s)
(Γ( j+ s/2))2

. (1.2)

Their proof base on Weyl’s integration formula and Selberg’s integral. An alternative proof of (1.2)
with representation theory can be found in [4]. This proof bases on the Cauchy identity (see [3,
chapter 43]). Unfortunately both arguments does not work for permutation matrices. We will see
that we cannot give a (non trivial) expression for E

�

Z s
n(x)

�

, but we can calculate the behavior for
n→∞ and x , s fixed.
We use here two types of arguments: a combinatorial one and a probabilistic one.
The combinatorial argument (lemma 2.10) allows us to write down the generating function of
�

E
�

Z s
n(x)

�

�

n∈N
(see theorem 2.12). We can use this generating function to calculate the behavior

of E
�

Z s
n(x)

�

for n → ∞ in the cases (i) and (iii). Both calculations rely on the fact that the
generating function is a finite product. This is not true anymore for s ∈ C \N. We therefore cannot
handle case (ii) in the same way. Here comes in into play the probabilistic argument, namely the
Feller coupling (section 3.4). The advantage of the Feller coupling is that it allows us to directly
compare Zn(x) to Zn+1(x). Of course case (ii) includes case (i), but the calculations in section 3 are
not as beautiful as in section 2. Another disadvantage of the Feller coupling is that we cannot use it
to calculate the behavior in case (iii).
The results in section 2 and 3 are in fact true for more than one variable. We introduce in section 2.1
a short notation for this and state the theorems in full generality. We do the proofs only for one or
two variables, since they are basically the same as in the general case.

2 Expectation of Z s
n(x)

We give in this section some definitions, write down the generating function for E
�

Z s
n(x)

�

and

calculate the behavior of E
�

Z s
n(x)

�

for n→∞.

2.1 Definitions and notation

Let us first introduce a short notation for certain functions on defined Cp.

Definition 2.1. Let x1, · · · , xp be complex numbers. We write x := (x1, · · · , xp) (similarly for s,k,n).
Write ‖x‖ :=maxk(|xk|) for the norm of x.
Let f : C2→ C and s,k ∈ Cp be given. Then f (s,k) :=

∏p
j=1 f (s j , k j).

The multivariate version of Zn(x) is

Definition 2.2. We set for x ∈ Cp, s ∈ Np

Zs
n(x) = Zs

n(x)(g) :=
p
∏

k=1

det(I − xk g)sk for g ∈ Sn (2.1)

where g is chosen randomly from Sn with respect to the uniform measure.

1094



2.2 An representation for E
�

Z s
n(x)

�

We give now a "good" representation for Zs
n(x) and E

�

Zs
n(x)

�

. We use here well known definitions
and results on the symmetric group. We therefore restrict ourselves to stating results. More details
can be found in [12, chapter I.2 and I.7] or in [3, chapter 39].

We begin with Zs
n(x)(g) for g a cycle.

Example 2.3. Let σ = (123 · · ·n). Then

g = (δi,σ( j))1≤i, j≤n =

















0 0 · · · 0 1
1 0 · · · 0 0

0 1 0
...

...
...

. . . . . . . . .
...

0 · · · 0 1 0

















. (2.2)

Let α(m) := exp(m2πi
n
). Then

g

















α(m)
α(m)2

...
α(m)n−1

1

















=

















1
α(m)

...
α(m)n−2

α(m)n−1

















= α(m)

















α(m)
α(m)2

...
α(m)n−1

1

















. (2.3)

Therefore the eigenvalues of g are
n

α(m)
o

= {α(m)} and det(I − x g) = 1− xn.

The arbitrary case now follows easily from example 2.3. Fix an element σ = σ1σ2 · · ·σl ∈ Sn with
σi disjoint cycles of length λi . Then

g = g(σ) =













P1
P2

. . .
Pl













(2.4)

where Pi is a block matrix of a cycle as in example 2.3 (after a possible renumbering of the basis).
Then

Zs
n(x)(g) =

p
∏

k=1

l
∏

i=1

(1− xλi
k )

sk . (2.5)

Next, we look at E
�

Zs
n(x)

�

. It is easy to see that Zs
n(x)(g) only depends on the conjugacy class of g.

We parameterize the conjugation classes of Sn with partitions of n.

1095



Definition 2.4. A partition λ is a sequence of nonnegative integers (λ1,λ2, · · · ) with

λ1 ≥ λ2 ≥ · · · and
∞
∑

i=1

λi <∞.

The length l(λ) and the size |λ| of λ are defined as

l(λ) :=max
�

i ∈ N;λi 6= 0
	

and |λ| :=
∞
∑

i=1

λi .

We set λ ` n :=
�

λ partition ; |λ|= n
	

for n ∈ N. An element of λ ` n is called a partition of n.

Remark: we only write the non zero components of a partition.
Choose any σ ∈ Sn and write it as σ1σ2 · · ·σl with σi disjoint cycles of length λi . Since disjoint
cycles commute, we can assume that λ1 ≥ λ2 · · · ≥ λl . Therefore λ := (λ1, · · · ,λl) is a partition of
n.

Definition 2.5. We call the partition λ the cycle-type of σ ∈ Sn.

Definition 2.6. Let λ be a partition of n. We define Cλ ⊂ Sn to be the set of all elements with cycle
type λ.

It follows immediately from (2.5) that Zn(x)(σ) only depends on the cycle type of σ. If σ,θ ∈ Sn
have different cycle type then Zn(x)(σ) 6= Zn(x)(θ).
Therefore two elements in Sn can only be conjugated if they have the same cycle type (since Zn(x)
is a class function). One can find in [3, chapter 39] or in [12, chapter I.7, p.60)] that this condition
is sufficient. The cardinality of each Cλ can be found also in [3, chapter 39].

Lemma 2.7. We have |Cλ|=
n!
zλ

with

zλ :=
n
∏

r=1

r cr cr ! and cr = cr(λ) := #
�

i|λi = r
	

. (2.6)

We put lemma 2.7 and (2.5) together and get

Lemma 2.8. Let x ∈ Cp and s ∈ Np be given. Then

E
�

Zs
n(x)

�

=
∑

λ`n

1

zλ

p
∏

k=1

l(λ)
∏

m=1

(1− xλm
k )

sk . (2.7)

Obviously, it is very difficult to calculate E
�

Zs
n(x)

�

explicitly. It is much easier to write down the
generating function.

2.3 Generating function of E
�

Z s
n(x)

�

We now give the definition of a generating function, some lemmas and apply them to the sequence
�

E
�

Zs
n(x)

��

n∈N.
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Definition 2.9. Let ( fn)n∈N be given. The formal power series f (t) :=
∑∞

n=0 fn tn is called the gen-
erating function of the sequence ( fn)n∈N. If a formal power series f (t) =

∑

n∈N fn tn is given then
�

f
�

n := fn.

We will only look at the case fn ∈ C and f convergent.

Lemma 2.10. Let (am)m∈N be a sequence of complex numbers. Then

∑

λ

1

zλ
aλ t |λ| = exp

 

∑

m=1

1

m
am tm

!

with aλ :=
l(λ)
∏

i=1

aλi
. (2.8)

If RHS or LHS of (2.8) is absolutely convergent then so is the other.

Proof. The proof can be found in [12, chapter I.2, p.16-17] or can be directly verified using the
definitions of zλ and the exponential function.

In view of (2.7) is natural to use lemma 2.10 with am =
∏p

j=1(1−xm
j )

s j to write down the generating

function of the sequence
�

E
�

Zs
n(x)

��

n∈N. We formulate this a lemma, but with am = P(xm) for P a
polynomial. We do this since the calculations are the same as for am =

∏p
j=1(1− xm

j )
s j .

Lemma 2.11. Let P(x) =
∑

k∈Np bkxk be a polynomial with bk ∈ C and xk :=
∏p

j=1 x
k j

j . We set for a
partition λ

Pλ(x) :=
l(λ)
∏

m=1

P(xλm) with xλm = (xλm
1 , · · · , xλm

p ) and Ω :=
¦

(t,x)⊂ Cp+1; |t|< 1,‖x‖ ≤ 1
©

.

We then have
∑

λ

1

zλ
Pλ(x)t

|λ| =
∏

k∈Np

(1− xk t)−bk (2.9)

and both sides of (2.9) are holomorphic on Ω.
We use the principal branch of the logarithm to define zs for z ∈ C \R−.

Proof. We only prove the case p = 2. The other cases are similar. We use (2.8) with am = P(xm
1 , xm

2 )
and get

∑

λ

1

zλ

l(λ)
∏

m=1

P(xλm
1 , xλm

2 )t
|λ| = exp

 

∑

m=1

1

m
P(xm

1 , xm
2 )t

m

!

= exp







∞
∑

k1,k2=0

bk1,k2

∞
∑

m=1

tm

m
(xk1

1 xk2
2 )

m







= exp







∞
∑

k1,k2=0

bk1,k2
(−1)Log(1− xk1

1 xk2
2 t)







=
∞
∏

k1,k2=0

(1− xk1
1 xk2

2 t)−bk1,k2 .

The exchange of the sums is allowed since there are only finitely many non zero bk1,k2
. Since we

have used the Taylor-expansion of Log(1 + z) near 0, we have to assume that |t xk1
1 xk2

2 | < 1 if
bk1,k2

6= 0.

1097



We now write down the generating function of E
�

Zs
n(x)

�

.

Theorem 2.12. Let s ∈ Np and x ∈ Cp. We set

f (s)(x, t) :=
∏

k∈Np

�

1− xk t
�−(sk)(−1)k

with
�

s

k

�

(−1)k :=
p
∏

j=1

�

s j

k j

�

(−1)k j . (2.10)

Then
E
�

Zs
n(x)

�

=
�

f (s)(x, t)
�

n
.

Proof. This is (2.7) and lemma 2.11 with P(x) =
∏p

j=1(1− x j)
s j .

Remark: we use the convention E
�

Zs
0(x)

�

:= 1.
Remark: In an earlier draft version, the above proof was based on representation theory. It was at
least twice as long and much more difficult. We wish to acknowledge Paul-Olivier Dehaye, who has
suggested the above proof and allowed us to us it.

Corollary 2.12.1. For n≥ 1, p = s = 1, we have that

E
�

Zn(x)
�

= 1− x . (2.11)

Proof.
1− x t

1− t
=
∞
∑

n=0

tn− x t
∞
∑

n=0

tn = 1+ (1− x)
∞
∑

n=1

tn

2.4 Asymptotics for ‖x‖< 1

Theorem 2.13. Let s ∈ Np and x ∈ Cp with ‖x‖< 1 be fixed. Then

lim
n→∞
E
�

Zs
n(x)

�

=
∏

k∈Np\{0}

�

1− xk
�−(sk)(−1)k

. (2.12)

There is no problem of convergence in the RHS of (2.12) since by definition
�s

k

�

(−1)k 6= 0 only for
finitely many k ∈ Np \ {0}.
There exists several ways to prove this theorem. The proof in this section is a simple, direct compu-
tation. In section 3, we extend theorem 2.13 to complex s and prove it with probability theory. The
third way to prove this theorem is to use the theorems IV.1 and IV.3 in [5] which base on function
theory. We now prove theorem 2.13 with theorem 2.12 and

Lemma 2.14. Let a, b ∈ N and y1, · · · , ya, z1, · · · , zb be complex numbers with max
�

|yi|, |zi|
	

< 1.
Then

lim
n→∞





1

1− t

∏a
i=1(1− yi t)

∏b
i=1(1− zi t)





n

=

∏a
i=1(1− yi)

∏b
i=1(1− zi)

.
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Proof. We show this by induction on the number of factors.

For a = b = 0 there is nothing to do, since
h

1
1−t

i

n
= 1.

Induction (a, b)→ (a+ 1, b).
We set

g(t) :=
1

1− t

∏a
i=1(1− yi t)

∏b
i=1(1− zi t)

, γ :=

∏a
i=1(1− yi)

∏b
i=1(1− zi)

.

We know by induction that limn→∞[g(t)]n = γ. We get

lim
n→∞





1

1− t

∏a+1
i=1 (1− yi t)

∏b
i=1(1− zi t)





n

= lim
n→∞

�

g(t)(1− ya+1 t)
�

n = lim
n→∞

�

g(t)
�

n− lim
n→∞

ya+1
�

g(t)
�

n−1

= (1− ya+1)γ=

∏a+1
i=1 (1− yi)

∏b
i=1(1− zi)

.

Induction (a, b)→ (a, b+ 1).
This case is slightly more difficult. We define g(t) and γ as above and write for shortness z = zb+1.
We have





1

1− t

∏a
i=1(1− yi t)

∏b+1
i=1 (1− zi t)





n

=
�

g(t)
(1− zt)

�

n
=



g(t)
∞
∑

k=0

(zt)k




n

=
n
∑

k=0

zk �g(t)
�

n−k .

Let ε > 0 be arbitrary. Since
�

g(t)
�

n→ γ, we know that there exists an n0 ∈ N with
�

�

�

g(t)
�

n− γ
�

�<

ε for all n≥ n0. We have

n
∑

k=0

zk �g(t)
�

n−k =
n−n0
∑

k=0

zk �g(t)
�

n−k +
n0−1
∑

k=0

zn−k �g(t)
�

k .

Since |z|< 1, the second sum converges to 0 as n→∞. But
�

�

�

�

�

n−n0
∑

k=0

γzk −
n−n0
∑

k=0

�

g(t)
�

n−k zk

�

�

�

�

�

≤ |ε|
n−n0
∑

k=0

�

�zn−k
�

�≤
ε

1− |z|
.

Since ε was arbitrary, we are done.

Corollary 2.14.1. For each s ∈ N and x ∈ C with |x |< 1, we have

lim
n→∞
E
�

|Zn(x)|2s
�

=
s
∏

k=1

(1− |x |2k)−(
s
k)

2

�

�

�

�

�

�

∏

0≤k1<k2≤s

(1− xk1 xk2)(
s

k1
)( s

k2
)(−1)k1+k2+1

�

�

�

�

�

�

2

.

Proof. It follows immediately from (2.5), that Zn(x) = Zn(x). We put p = 2, s1 = s2 = s, x1 = x and
x2 = x .

Remark: the corollary is in fact true for all s ∈ R. One simply has to replace theorem 2.13 by
theorem 3.1 (see section 3) in the proof.
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3 Holomorphicity in s

This section is devoted to extend theorem 2.13 to s ∈ Cp. We do this by showing that all functions
appearing in theorem 2.13 are holomorphic functions in (x, s) for ‖x‖< 1 and then prove point-wise
convergence of these functions. We do this since we need the holomorphicity in the direct proof
of theorem 3.1 (see section 3.6.2) and since there are only minor changes between s fix and s as
variables.

We do not introduce here holomorphic functions in more than one variable since we do not need it
in the calculations (except in section 3.6.2). A good introduction to holomorphic functions in more
than one variable is the book “From holomorphic functions to complex manifolds” [7].

We now state the main theorem of this section

Theorem 3.1. We have

E
�

Zs
n(x)

�

→
∏

k∈Np\{0}

�

1− xk
�

�

−(sk)(−1)k
�

for n→∞ and all x, s ∈ Cp with ‖x‖< 1. (3.1)

We use the principal branch of logarithm to define ab for a /∈ R≤0.

3.1 Corollaries of theorem 3.1

Before we prove theorem 3.1, we give some corollaries

Corollary 3.1.1. We have for s1, s2,x1,x2 ∈ Cp with ‖x1‖< 1, ‖x2‖< 1

E
�

Zs1
n (x1)

Zs2
n (x2)

�

→
∏

k1,k2∈Np

k1+k2 6=0

�

1− xk1
1 xk2

2

�−
�

(s1
k1
)(s2+k2−1

k2
)(−1)k1

�

(n→∞).

Proof. We use the definition of
�s

k

�

in (3.2) for s ∈ C, k ∈ N (see later).

We apply theorem 3.1 for p′ := 2p and the identity
�−s

k

�

= (−1)k
�s+k−1

k

�

.

Corollary 3.1.2. We have for x1, x2, x3, x4, s1, s2, s3, s4 ∈ C with max
�

|x i|
	

< 1

E
�

Z s1
n (x1)Z

s2
n (x2)

Z s3
n (x3)Z

s4
n (x4)

�

→
∏

k1,k2,k3,k4∈N
k1+k2+k3+k4 6=0

�

1− xk1
1 xk2

2 xk3
3 xk4

4

�(s1
k1
)(s2

k2
)(s3+k3−1

k3
)(s4+k3−1

k4
)(−1)k1+k2+1

We can also calculate the limit of the Mellin-Fourier-transformation of Zn(x), as Keating and Snaith
did in their paper [11] for the unitary group.

Corollary 3.1.3. We have for s1, s2 ∈ R, x ∈ C with |x |< 1

E
�

|Zn(x)|s1 eis2arg(Zn(x))
�

→
∞
∏

k1,k2∈N
k1+k2 6=0

�

1− xk1 xk2
�

�

(
s1−s2

2
k1
)(

s1+s2
2

k2
)(−1)k1+1

�

.

Proof. We have |z|s1 = zs1/2zs1/2 and eis2ar g(z) = zs2

|z|s2 .
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3.2 Easy facts and definitions

We simplify the proof of theorem 3.1 by assuming p = 1. We first rewrite (1− xm) as rmeiϕm with
rm > 0 and ϕm ∈]−π,π] for all m ∈ N.

Convention: we choose 0< r < 1 fixed and prove theorem 3.1 for |x |< r.
We restrict x to {|x |< r} because some inequalities in the next lemma are only true for r < 1.

Lemma 3.2. The following hold:

1. 1− rm ≤ rm ≤ 1+ rm and |ϕm| ≤ αm, where αm is defined in figure 1.

Figure 1: Definition of αm

2. One can find a β1 > 1 such that 0≤ αm ≤ β1rm.

3. For −r < y < r one can find a β2 = β2(r)> 1 with | log(1+ y)| ≤ β2|y|.

4. There exists a β3 = β3(r), such that for all m and 0≤ y ≤ r

1+ ym ≤
1

1− ym ≤ 1+ β3 ym.

5. We have for all s ∈ C
Log ((1− xm)s)≡ sLog (1− xm) mod 2πi

with Log(.) the principal branch of logarithm.

Proof. The proof is straight forward. We therefore give only an overview

1. We have |xm|< rm and thus 1− xm lies inside the circle in figure 1. This proves point (1)

2. We have that sin(αm) = rm by definition and sin(z)∼ z for z→ 0. This proves point (2).

3. We have log(1+ y) = log |1+ y|+ iarg(1+ y). This point now follows by takeing a look at
log |1+ y| and arg(1+ y) separately.

4. Obvious.
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5. Obvious.

Lemma 3.3. Let Ym be a Poisson distributed random variable with E
�

Ym
�

= 1
m

. Then

E
�

y(dYm)
�

= exp

�

yd − 1

m

�

for y, d ≥ 0.

3.3 Extension of the definitions

The first thing we have to do is to extend the definitions of Z s
n(x) and f (s)(x) =

∏s
k=1

�

1− xk
�(s

k)(−1)k+1

to holomorphic functions in (x , s).

3.3.1 Extension of f (s)(x)

We first look at
�s

k

�

. We set

�

s

k

�

:=
s(s− 1) · · · (s− k+ 1)

k!
=

k
∏

m=1

s−m+ 1

m
. (3.2)

Obviously,
�s

k

�

can be extended to a holomorphic function in s.
We set

f (s)(x) :=
∞
∏

k=1

�

1− xk
�

�

(s
k)(−1)k+1

�

.

The factor (1− xk)(..) is well defined, because Re(1− xk)> 0.
This definition agrees with the old one, since

�s
k

�

= 0 for k > s and s, k ∈ N. Of course we have to
show that the infinite product is convergent.

Lemma 3.4. The function f (s)(x) is a holomorphic function in (x , s).

Proof. Choose s ∈ K ⊂ C with K compact. We have

sup
s∈K

�

�

�

�

s−m+ 1

m

�

�

�

�

→ 1 for m→∞.

We obtain that for each a > 1 there exists a C = C(a, K) with |
�s

k

�

| ≤ Cak for all k ∈ N, s ∈ K .
We choose an a > 1 such that ra < 1 and set Log(−y) := log(y) + iπ for y ∈ R>0. Then

∞
∑

k=1

�

�

�Log
�

(1− xk)
�

(−1)k+1(s
k)
��
�

�

�≤
∞
∑

k=1

�

�

�

�

�

s

k

�

Log(1− xk)

�

�

�

�

=
∞
∑

k=1

�

�

�

�

�

s

k

�

Log(rkeiϕk)

�

�

�

�

≤
∞
∑

k=1

�

�

�

�

�

s

k

�
�

�

�

�

(|Log(1− rk)|+ |αk|)≤
∞
∑

k=1

C(β1+ β2)(ar)k <∞.
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Since this upper bound is independent of x , we can find a k0 such that

arg
�

(1− xk)
�

(−1)k+1(s
k)
��

∈ [−π/2,π/2] ∀k ≥ k0 and |x |< r.

Therefore
∑∞

k=k0
Log
�

(1− xk)
�

(−1)k+1(s
k)
��

is a holomorphic function. This proves the holomorphic-

ity of f (s)(x).

3.3.2 Extension of Z s
n(x)

We have found in (2.5) that

Zn(x)(g) = Z1
n (x)(g) =

l(λ)
∏

i=1

(1− xλi ) for g ∈ Cλ.

We slightly reformulate this formula.

Definition 3.5. Let σ ∈ Sn be given. We define Cm = C (n)m = C (n)m (σ) to be the number of cycles of
length m of σ.

The relationship between partitions and Cm is as follows: if σ ∈ Cλ is given then C (n)m (σ) =
#
�

i;λi = m
	

. The function C (n)m only depends on the cycle-type and is therefore as class function
on Sn. We get

Zn(x) = Z1
n (x)(g) =

n
∏

m=1

(1− xm)C
(n)
m . (3.3)

Since Re(1− xm)> 0, we can use this equation to extend the definition of Z s
n(x).

Definition 3.6. We set for s ∈ C and |x |< 1

Z s
n(x) :=

n
∏

m=1

(1− xm)(sC (n)m ).

It is clear that Z s
n(x) agrees with the old function for s ∈ N and is a holomorphic function in (x , s)

for all values of C (n)m .

3.4 The Feller-coupling

In this subsection we follow the book of Arratia, Barbour and Tavaré [1]. The first thing we mention
is

Lemma 3.7. The random variables C (n)m converge for each m ∈ N in distribution to a Poisson-distributed
random variable Ym with E

�

Ym
�

= 1
m

. In fact, we have for all b ∈ N

(C (n)1 , C (n)1 , · · · , C (n)b )
d−→ (Y1, Y2, · · · , Yb) (n→∞)

and the random variables Ym are all independent.
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Proof. See [1, theorem 1.3].

Since Zn(x) and Zn+1(x) are defined on different spaces, it is difficult to compare them. This is
where the Feller-coupling comes into play. The Feller-coupling constructs a probability space and
new random variables C (n)m and Ym, which have the same distributions as the C (n)m and Ym above
and can be compared very well.
We give here only a short overview. The details of the Feller-coupling can be found in [1, p.8].

The construction is as follows: let



ξt
�n

t=1 be a sequence of independent Bernoulli-random variables
with E

�

ξm
�

= 1
m

. We use the following notation for the sequence

ξ= (ξ1ξ2ξ3ξ4ξ5 · · · ).

An m−spacing is a finite sequence of the form

1 0 · · ·0
︸ ︷︷ ︸

m−1 times

1

Definition 3.8. Let C (n)m = C (n)m (ξ) be the number of m-spacings in 1ξ2 · · ·ξn1.
We define Ym = Ym(ξ) to be the number of m-spacings in the whole sequence.

Theorem 3.9. We have

1. The above-constructed C (n)m (ξ) have the same distribution as the C (n)m in definition 3.5.

2. Ym(ξ) is a.s. finite and Poisson-distributed with E
�

Ym
�

= 1
m

.

3. All Ym(ξ) are independent.

4. For fixed b ∈ N we have

P
h

�

C (n)1 (ξ), · · · , C (n)b (ξ)
�

6=
�

Y1(ξ), · · · , Yb(ξ)
�

i

→ 0 (n→∞).

Proof. See [1, p.8-10].

We use in the rest of this section only the random variables C (n)m (ξ) and Ym(ξ). We therefore just
write C (n)m and Ym for them.
One might guess that C (n)m ≤ Ym, but this is not true. It is possible that C (n)m = Ym + 1. However, this
can only happen if ξn−m · · ·ξn+1 = 10 · · ·0. If n is fixed, we have at most one m with C (n)m = Ym+ 1.
We set

B(n)m =
�

ξn−m · · ·ξn+1 = 10 · · ·0
	

. (3.4)

Lemma 3.10. We have

1. C (n)m ≤ Ym+ 1B(n)m
,

2. P
�

B(n)m

�

= 1
n+1

,
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3. E
��

�C (n)m − Ym

�

�

�

≤ 2
n+1

,

4. C (n)m does not converges a.s. to Ym.

Proof. The first point follows immediately from the above considerations.
The second point is a simple calculation.
The proof of the third point can be found in [1, p.10]. The proof is based on the idea that Ym− C (n)m
is (more or less) the number of m-spacings appearing after the n’th position.
We now look at the last point. Let ξvξv+1 · · ·ξv+m+1 = 10 · · ·01. We then have for 1 ≤ m0 ≤ m− 1
and v ≤ n≤ v+m+ 1

C (n)m0
=

¨

C (v)m0
+ 1, if n= v+m0,

C (v)m0
, if n 6= v+m0.

Since all Ym <∞ a.s. and
∑∞

m=1 Ym =∞ a.s. we are done.

3.5 The limit

We have Z s
n(x) =

∏n
m=1(1− xm)(sC (n)m ) and we know C (n)m

d−→ Ym. Does Z s
n(x) converge in distribution

to a random variable? If yes, then a possible limit is

Z s
∞(x) :=

∞
∏

m=1

(1− xm)(sYm) . (3.5)

We show indeed in lemma 3.14 that for s ∈ C fixed

Z s
n(x)

d−→ Z s
∞(x) (n→∞). (3.6)

We first show that Z s
∞(x) is a good candidate for the limit. We prove that Z s

∞(x) and E
�

Z s
∞(x)

�

are holomorphic functions in (x , s).
Since Z s

∞(x) is defined via an infinite product, we have to prove convergence. The following lemma
supplies us with the needed tools.

Lemma 3.11. We have:

1.
∑∞

m=1 Ymrm is a.s. absolute convergent for |r|< 1.

2. E
�
∏∞

m=1(1± rm)(σYm)
�

is finite for all σ ∈ R.

3. E
�
∏∞

m=1 exp(tαmYm)
�

is finite for all t ∈ R.

Proof. First part:

we prove the absolute convergence of the sum
∑∞

m=1 Ymrm by showing

limsup
m→∞

m
p

|Ymrm|< 1 a.s.
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We fix an a with r < a < 1 and set Am :=
�

Ymrm > am	=
n

m
p

|Ymrm|> a
o

. Then

P
�

lim sup
m→∞

m
p

|Ymrm|< 1
�

≥ 1− P
�

limsup
m→∞

m
p

|Ymrm|> a
�

= 1− P
�

∩∞n=1 ∪
∞
m=n Am

�

= 1− P
�

lim sup(Am)
�

.

We get with Markov’s inequality

P
�

Ym >

�a

r

�m�

≤
E
�

Ym
�

�

a
r

�m =
1

m

� r

a

�m
.

Therefore
∑

m P
h

Ym >
�

a
r

�m
i

<∞. It follows from the Borel-Cantelli-lemma that

P
�

limsup(Am)
�

= 0.

Second part:
Case σ > 0.
We only have to look at the terms with a plus, since the (1− rm)(σYm) ≤ 1.
We get with monotone convergence

E





∞
∏

m=1

(1+ rm)(σYm)



= lim
m0→∞
E





m0
∏

m=1

(1+ rm)(σYm)





= lim
m0→∞

m0
∏

m=1

exp
�

(1+ rm)σ − 1

m

�

≤ lim
m0→∞

m0
∏

m=1

exp

�

(1+ rm)dσe− 1

m

�

.

We have for dσe fixed and m big enough

�

(1+ rm)dσe− 1
�

= rm



dσe+
dσe
∑

k=2

�dσe
k

�

(rm)k−1



≤ 2dσerm

It follows

lim
m0→∞

m0
∏

m=1

exp
�

(1+ rm)σ − 1

m

�

≤ C
∞
∏

m=1

exp(2dσerm)<∞.

The constant C only depends on r and dσe.
Case σ < 0
We only have to look at the terms with a minus sign. We have

(1− rm)(σYm) =
1

(1− rm)(|σ|Ym)
≤ (1+ β3rm)(|σ|Ym)

We can now argue as in the case σ > 0.
Third part:

the product
∏∞

m=1 exp(tαmYm) is a.s. well defined, since

Log

 

∞
∏

m=1

exp(tαmYm)

!

=
∞
∑

m=1

tαmYm ≤ t
∞
∑

m=1

Ymβ1rm <∞ a.s..
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We get

E





∞
∏

m=1

exp(tαmYm)



≤ E





∞
∏

m=1

exp(tβ1rmYm)



=
∞
∏

m=1

exp

�

etβ1rm
− 1

m

�

.

Since tβ1rm is bounded, we can find a constant C = C(r, t) with etβ1rm
− 1≤ C tβ1rm. We get

E





∞
∏

m=1

exp(tαmYm)



≤
∞
∏

m=1

exp
�

C(tβ1rm)
m

�

≤ exp

 

∞
∑

m=1

C tβ1rm

!

<∞.

Now, we can prove:

Lemma 3.12. Z s
∞(x) is a.s. a holomorphic function in (x , s).

Proof. We have

∞
∑

m=1

�

�

�Log
�

(1− xm)(sYm)
�

�

�

�≤
∞
∑

m=1

|sYm||Log(1− xm)| ≤ |s|
∞
∑

m=1

Ym(| log(rm)|+ |iϕm|)

≤ |s|
∞
∑

m=1

Ym(β1+ β2)r
m <∞ a.s. by Lemma 3.11.

Since the sum is a.s. finite, we can find a.s. an m0, such that arg
�

(1− xm)(sYm)
�

∈ [−π/2,π/2] for

all m≥ m0. Then
∑∞

m=m0
Log
�

(1− xm)(sYm)
�

is a holomorphic function and so is Z s
∞(x).

Lemma 3.13. All moments of Z s
∞(x) exist. E

�

Z s
∞(x)

�

is holomorphic in (x , s) with E
�

Z s
∞(x)

�

=
f (s)(x).

Proof. Let s ∈ K ⊂ C with K compact.
Step 1: existence of E

�

Z s
∞(x)

�

.
Let s = σ+ i t. Then

|Z s
∞(x)|=

∞
∏

m=1

�

�

�(1− xm)(sYm)
�

�

�=
∞
∏

m=1

r(σYm)
m e−tYmϕm ≤

 

∞
∏

m=1

(1+ β3rm)(|σ|Ym)

! 

∞
∏

m=1

etYmαm

!

.

We set σ0 := sups∈K |σ| and t0 := sups∈K |t|. We define

F(r) = F(r, K) :=

 

∞
∏

m=1

(1+ β3rm)(σ0Ym)

! 

∞
∏

m=1

et0Ymαm

!

. (3.7)

It follows from the Cauchy Schwarz inequality (for L2) and lemma 3.11, that E [F(r)] is finite.
Therefore E

�

Z s
∞(x)

�

exists.
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Step 2: the value and the holomorphicity of E
�

Z s
∞(x)

�

.
We have

E
�

Z s
∞(x)

�

= E





∞
∏

m=1

(1− xm)sYm



=
∞
∏

m=1

E
�

(1− xm)sYm
�

=
∞
∏

m=1

exp
�

(1− xm)s − 1

m

�

= exp

 

∞
∑

m=1

(1− xm)s − 1

m

!

. (3.8)

The exchange of the product and E [..] is justified by step 1. The exchange of exp and the product
is justified by the following calculation.
We need Newton’s binomial series to calculate the last expression. We have

(1+ x)s =
∞
∑

k=0

�

s

k

�

xk for |x |< 1, s ∈ C (3.9)

where the sum on the right side is absolutely convergent (See [6, p.26]).
We get

∞
∑

m=1

(1− xm)s − 1

m
=
∞
∑

m=1

1

m

∞
∑

k=1

�

s

k

�

(−xm)k =
∞
∑

k=1

(−1)k
�

s

k

� ∞
∑

m=1

(xk)m

m

=
∞
∑

k=1

(−1)k+1
�

s

k

�

Log(1− xk).

We have to justify the exchange of the two sums in the first line.
We have seen in the proof of lemma 3.4 that for each a > 1 there exists a constant C = C(a, K) with
�

�

�

�s
k

�

�

�

�< Cak for k ∈ N, s ∈ K . Now choose a > 1 with ar < 1. We get

∞
∑

m=1

∞
∑

k=1

�

�

�

�

1

m

�

s

k

�

(−xm)k
�

�

�

�

≤
∞
∑

m=1

∞
∑

k=1

1

m
Cak(rm)k = C

∞
∑

m=1

1

m

arm

1− arm <∞.

Step 3: holomorphicity of E
�

Z s
∞(x)

�

.

We know from step 2 and the definition of f (s)(x) that

E
�

Z s
∞(x)

�

= f (s)(x).

Since we have shown in lemma 3.4 the holomorphicity of f (s)(x), we are done.
Step 4: existence of the moments.

We have
�

Z s
n(x)

�m
= Z (ms)

n (x) for each m ∈ N and Z s
n(x) = Z s

n(x) (use ez = ez).
The existence of the moments now follows from step 1.

3.6 Convergence to the limit

We have so far extended the definitions and found a possible limit. We complete the proof of
theorem 3.1 by showing that

E
�

Z s
n(x)

�

→ E
�

Z s
∞(x)

�

= f (s)(x) (n→∞)
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for |x |< r and s ∈ C.

We give here two different proofs. The idea of the first is to prove Zn(x)
d−→ Z∞(x) and then use

uniform integrability (see lemma 3.16). The idea of the second is to prove theorem 3.1 for x , s ∈ R
and then apply the theorem of Montel.

Note that the second proof does not imply Zn(x)
d−→ Z∞(x). One would need that Z∞(x) is uniquely

defined by its moments. Unfortunately we have not been able to prove or disprove this.

3.6.1 First proof of theorem 3.1

Lemma 3.14. We have for all fixed x and s

s
n
∑

m=1

C (n)m Log(1− xm)
d−→ s

∞
∑

m=1

YmLog(1− xm) (n→∞), (3.10)

Z s
n(x)

d−→ Z s
∞(x) (n→∞). (3.11)

Proof. Since the exponential map is continuous, the second part follows immediately from the first
part.
We know from lemma 3.10 that

E
��

�

�C (n)m − Ym

�

�

�

�

≤
2

n+ 1
. (3.12)

We get

E





�

�

�

�

�

s
n
∑

m=1

(Ym− C (n)m )Log(1− xm)

�

�

�

�

�



≤ |s|
n
∑

m=1

E
�

|Ym− C (n)m |
�

|Log(1− xm)|

≤
2|s|

n+ 1

n
∑

m=1

(β1+ β2)r
m =

2|s|r
n+ 1

β1+ β2

1− r
−→ 0 (n→∞).

Weak convergence does not imply automatically convergence of the moments. One needs some
additional properties. We introduce therefore

Definition 3.15. A sequence of (complex valued) random variables (Xm)m∈N is called uniformly inte-
grable if

sup
n∈N
E
�

|Xn|1|Xn|>c

�

−→ 0 for c→∞.

Lemma 3.16. Let (Xm)m∈N be uniformly integrable and assume that Xn
d−→ X . Then

E
�

Xn
�

−→ E [X ] .

Proof. See [8, chapter 6.10, p. 309].
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We finish the proof of theorem 3.1. Let s ∈ K ⊂ C with K compact. We have found in the proof of
lemma 3.13

|Z s
∞(x)| ≤ F(r) =

 

∞
∏

m=1

(1+ β3rm)(|σ0|Ym)

! 

∞
∏

m=1

et0Ymαm

!

(3.13)

with E [F(r)] <∞. It is possible that C (n)m = Ym + 1 and so the inequality |Z s
n(x)| < F(r) does not

have to be true. We replace therefore Ym by Ym + 1 in the definition of F(r). This new F(r) fulfills
E [F(r)]<∞ and

|Z s
n(x)|< F(r) , |Z s

∞(x)|< F(r) ∀n ∈ N.

We get

sup
n∈N
E
h

|Z s
n(x)|1|Z s

n(x)|>c

i

≤ E
�

F(r)1F(r)>c

�

−→ 0 (c→∞).

The sequence (Z s
n(x))n∈N is therefore uniformly integrable and theorem 3.1 follows immediately

from lemma 3.14 and 3.16.

3.6.2 Second proof of theorem 3.1

We first prove the convergence in the special case x ∈ [0, r[, s ∈ [1,2].

Lemma 3.17. For all x ∈ [0, r[ and s ∈ [1,2], we have

E
�

Z s
n(x)

�

→ E
�

Z s
∞(x)

�

(n→∞).

Proof. Let x and s be fixed.
”≤” Let m0 be arbitrary and fixed. For n≥ m0 we have

E
�

Z s
n(x)

�

= E





n
∏

m=1

(1− xm)sC (n)m



≤ E





m0
∏

m=1

(1− xm)sC (n)m





We know from lemma 3.7 that

(C (n)1 , C (n)1 , · · · , C (n)m0
)

d−→ (Y1, Y2, · · · , Ym0
) (n→∞).

The function
∏m0

m=1(1− xm)(s·cm) is clearly continuous in (c1, · · · , cm0
) and bounded by 1. We there-

fore get

E





m0
∏

m=1

(1− xm)sC (n)m



→ E





m0
∏

m=1

(1− xm)sYm



 (n→∞).

Since m0 was arbitrary and (1− xm)sYm ≤ 1, it follows with dominated convergence that

limsup
n→∞
E
�

Z s
n(x)

�

≤ inf
m0
E





m0
∏

m=1

(1− xm)sYm



= E





∞
∏

m=1

(1− xm)sYm



= E
�

Z s
∞(x)

�

.

”≥” The second part is more difficult. Here we need the Feller coupling.
Remember: B(n)m =

�

ξn−m · · ·ξn+1 = 10 · · ·0
	

.
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If C (n)m ≤ Ym a.s. we would not have any problems. But it may happen that C (n)m = Ym + 1. If
ξn+1 = 1, then C (n)m ≤ Ym. For this reason we have

Zn(x) =
n
∑

m=0

Zn(x)1B(n)m
= Zn(x)1B(n)0

+
n
∑

m=1

(1− xm)Zn−m(x)1B(n)m
. (3.14)

We choose 1> ε > 0 fixed and m0 large enough, such that (1− xm)s > 1− ε for m≥ m0. Then

E
�

Z s
n(x)

�

≥ E





n
∑

m=1

(1− xm)sZ s
n−m(x)1Bm



≥ E





n
∑

m=1

(1− xm)sZ s
∞(x)1Bm





≥ E





∞
∑

m=m0+1

(1− ε)Z∞(x)1Bm



+E





m0
∑

m=1

(1− x)Z s
∞(x)1Bm



 .

The last summand goes to 0 by the Cauchy Schwarz inequality, since P
�

B(n)m

�

= 1
n+1

and Z s
∞(x)

has finite expectation for all s. We can replace m0 by 0 in the other Summand with the same
argument.

We have proven theorem 3.1 for some special values of x and s. This proof is based on the fact that
0 < (1− xm) ≤ 1 for x ∈ [0,1[. Therefore we cannot use this proof directly for arbitrary (x , s). We
could try to modify the proof, but this turns out to be rather complicated. An easier way is to use
the theorem of Montel (See [6, p.230] or [7, p.23]).
Suppose that there exists a (x0, s0) and a subsequence Λ such that
|E
�

Z s0
n (x0)

�

−E
�

Z s0
∞(x0)

�

|> ε for some ε and all n ∈ Λ. We have found in the first proof in (3.13)

(and in the proof of lemma 3.13) an upper bound F(r) for the sequence
�

E
�

Z s
n(x)

��

n∈Λ for |x |< r.

The sequence
�

E
�

Z s
n(x)

��

n∈Λ is thus locally bounded and we can use the theorem of Montel.

We therefore can find a subsequence Λ′ of Λ and a holomorphic function g with E
�

Z s
n(x)

�

→ g

on Br(0) × K (for n ∈ Λ′). But g(x) has to agree with E
�

Z s
∞(x)

�

on [0, r[×[1,2]. Therefore

g(x) = E
�

Z s
∞(x)

�

. But this is impossible since g(x0, s0) 6= E
�

Z s0
∞(x0)

�

. This completes the proof
of theorem 3.1.

4 Growth Rates for |x |= 1

We consider in this section only the case p = 2 and x = x1 = x2. We assume s1, s2 ∈ N, |x | = 1 and
x not a root of unity, i.e xk 6= 1 for all k ∈ Z \ {0}.
We first calculate the growth rate of E

�

Z s1
n (x)Z

s2
n (x)

�

for s2 = 0 (see lemma 4.2 and 4.3) and then
for s2 arbitrary (see theorem 4.5).
The main results in this section can be obtained by using the theorems VI.3 and VI.5 in [5]. This
theorems base on Cauchy’s integral formula and are very general. To apply them, one just has to
take a look at the singularities of the generating function. We do not use this theorems since we
can reach our target with a much simpler tool: a partial fraction decomposition. The advantage is
that we get the asymptotic behavior with a simple calculation (see (4.1), (4.2) and (4.3)) and the
calculations after (4.3) are unchanged.
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4.1 Case s2 = 0

We use the generating function of theorem 2.12. We have to calculate the growth rate of
�

f (s)(x , t)
�

n
. But f (s)(x , t) is a quite complicated expression and we therefore express it in a dif-

ferent way. Since f (s)(x , t) is a rational function, we can do a partial fractional decomposition with
respect to t (and x fixed).

f (s)(x , t) =
s
∏

k=0

�

1− xk t
�(−1)k+1(s

k) = P(t) +
∑

k even

(s
k)
∑

l=1

ak,l

(1− xk t)l
(4.1)

where P is a polynomial and ak,l ∈ C. This formulation can be found in [10, chapter 69.4, p.401].
Note that at this point we need the condition that x is not a root of unity. If x is a root of unity,
some factors can be equal and cancel or increase the power. For example, we have f (s)(1, t) = 1 for
all s ∈ C.

What is the growth rate of
h

1
(1−xk t)l

i

n
? We have for l ∈ N and |t|< 1

1

(1− t)l
=

1

(l − 1)!

∞
∑

n=0

�
l−1
∏

k=1

(n+ k)
�

tn. (4.2)

This equation can be shown by differentiating the geometric series. We get

�

1

(1− xk t)l

�

n
∼

nl−1(xk)n

(l − 1)!
.

Recall that A(n)∼ B(n) if limn→∞
A(n)
B(n) = 1. Since |x |= 1, we have

�

�

�

�

�

1

(1− xk t)l

�

n

�

�

�

�

∼
nl−1

(l − 1)!
. (4.3)

We know from (4.3) the growth rate of each summand in (4.1). Since we have only finitely many
summands, only these

ak,l

(1−xk t)l are relevant with l maximal and ak,l 6= 0. The LHS of (4.1) has for

t = xk a pole of order
�s

k

�

(for 0 ≤ k ≤ s and k even). We therefore have ak,(s
k)
6= 0 since there is

only one summand on the RHS of (4.1) with a pole at t = xk of order at least
�s

k

�

. Before we can

write down the growth rate of E
�

Z s
n(x)

�

, we have to define

Definition 4.1. Let s, k0 ∈ N with 0≤ k0 ≤ s and k0 even. We set

C(k0) :=
1

�� s
k0

�

− 1
�

!

∏

k 6=k0

�

1− xk xk0
�(−1)k+1(s

k) . (4.4)

We put everything together and get

Lemma 4.2. We have for s 6= 4m+ 2

E
�

Z s
n(x)

�

∼ n(
s

k0
)−1

C(k0)(x
k0)n (4.5)
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with

k0 :=







2m, for s = 4m,
2m, for s = 4m+ 1,
2m+ 2, for s = 4m+ 3.

Proof. We have to calculate M :=maxk even
�s

k

�

. A straight forward verification shows that M =
� s

k0

�

and that there is only one summand with exponent M in the case s 6= 4m+ 2. We apply (4.3) and
get

E
�

Z s
n(x)

�

∼ n(
s

k0
)−1

ak0,( s
k0
)

�� s
k0

�

− 1
�

!
(xk0)n.

By the residue theorem ak0,( s
k0
) =
∏

k 6=k0

�

1− xk xk0
�(−1)k+1(s

k) . This proves (4.5).

We see in the next lemma that there can appear more than one constant. This is the reason why we
write C(k0) for the constant and not C or C(s, x).
The case s = 4m+ 2 is a little bit more difficult, since there are two maximal terms, i.e.

�4m+2
2m

�

=
�4m+2

2m+2

�

.

Lemma 4.3. If s = 4m+ 2 then

E
�

Z s
n(x)

�

∼ n(
4m+2

2m )−1
�

C(2m)(x2m)n+ C(2m+ 2)(x2m+2)n
�

(4.6)

with C(2m)(x2m)n+ C(2m+ 2)(x2m+2)n = 0 for at most one n.

Proof. A straight forward verification as in lemma 4.2 shows that M =
�4m+2

2m

�

=
�4m+2

2m+2

�

. Now we
have two summands with a maximal l.
To prove (4.6), we have to show C(2m)(x2m)n + C(2m+ 2)(x2m+2)n = 0 for only finitely many n.
But C(2m)(x2m)n + C(2m+ 2)(x2m+2)n = 0 implies x2n = − C(2m)

C(2m+2) . Since x is not a root of unity,

all xk are different.

4.2 Case with s2 arbitrary

We argue as before.
Some factors appearing in f (s,s)(x , x , t) (see (2.10)) are equal, so we have to collect them before
we can write down the partial fraction decomposition.

f (s1,s2)(x , x , t) =
s1
∏

k1=0

s2
∏

k2=0

�

1− xk1 xk2 t
�(−1)k1+k2+1(s1

k1
)(s2

k2
) =

s1
∏

k=−s2

(1− xk t)S(k) (4.7)

with

S(k) =
∞
∑

j=0

�

s1

k+ j

��

s2

j

�

(−1)k+2 j+1.
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To calculate S(k) explicit, we need Vandermonde’s identity for binomial coefficients:

�

m1+m2

q

�

=
∞
∑

j=0

�

m1

q− j

��

m2

j

�

. (4.8)

We get with m1 = s1, m2 = s2, q = s1− k and
�m

k

�

=
� m

m−k

�

that

S(k) = (−1)k+1
�

s1+ s2

s1− k

�

(4.9)

and therefore

f (s1,s2)(x , x , t) =
s1
∏

k=−s2

(1− xk t)(−1)k+1(s1+s2
s1−k ) =

s1
∏

k=−s2

(1− xk t)(−1)k+1(s1+s2
s2+k ).

Before we look at the growth rate of E
�

Z s1
n (x)Z

s2
n (x)

�

, we define

Definition 4.4. We set for s1, s2 ∈ N, k0 ∈ Z with −s2 ≤ k0 ≤ s1 and k0 even

C(k0) = C(s1, s2, k0, x) =
1

�

�s1+s2
s2+k0

�

− 1
�

!

∏

k 6=k0

(1− xk xk0)(−1)k+1(s1+s2
s2+k ). (4.10)

Remark: definition 4.1 is a special case of definition 4.4. Therefore there is no danger of confusion
and we can write C(k0) for both of them.

We get

Theorem 4.5.

• If s1− s2 6= 4m+ 2 then

E
�

Z s1
n (x)Z

s2
n (x)

�

∼ n(
s1+s2

b(s1+s2)/2c
)−1

C(k0)(x
k0)n (4.11)

with k0 :=







s1−s2

2
, for s1− s2 = 4m,

s1−s2−1
2

, for s1− s2 = 4m+ 1,
s1−s2+1

2
, for s1− s2 = 4m+ 3.

• If s1− s2 = 4m+ 2 we set k0 := s1−s2

2
. Then

E
�

Z s1
n (x)Z

s2
n (x)

�

∼ n(
s1+s2
k0−1)

�

C(k0− 1)(xk0−1)n+ C(k0+ 1)(xk0+1)n
�

. (4.12)

Additionally, for every even k0 with −s2 ≤ k0 ≤ s1

C(s1, s2,−k0) = C(s2, s1, k0).
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Proof. We prove here only the case s1+ s2 = 4p+ 1 and s2 even or odd. The other cases are similar.
We have to calculate

M := max
k even

�

s1+ s2

s2+ k

�

.

We know that max
�4p+1

k

�

=
�4p+1

2p

�

=
�4p+1

2p+1

�

. If s2 is even then k+s2 runs through all even numbers

between 0 and s1 + s2. Therefore M =
�4p+1

2p

�

and the maximum is attained for k0 = 2p − s2 =
s1+s2−1

2
− s2 =

s1−s2−1
2

. We have in this case s1 − s2 = 4p + 1− 2s2 = 4m+ 1 and formula (4.11)
follows from (4.3). The argument for s2 odd is similar.
It remains to show that

C(s1, s2,−k0) = C(s2, s1, k0).

This follows from

C(s1, s2,−k0, x) =
1

�

�s1+s2
s2−k0

�

− 1
�

!

s1
∏

k=−s2
k 6=−k0

(1− xk x−k0)(−1)k+1(s1+s2
s2+k )

=
1

�

�s1+s2
s1+k0

�

− 1
�

!

s2
∏

k=−s1
k 6=k0

(1− x−k xk0)(−1)k+1(s1+s2
s1+k )

= C(s2, s1, k0, x).

Corollary 4.5.1.

E
�

|Zn(x)|2s
�

∼ n(
2s
s )−1

∏s
k=1 |1− x |2(

2s
s+k)

�

�2s
s

�

− 1
�

!
.

Proof. Put s1 = s2 = s in theorem 4.5.

Corollary 4.5.2.

Var
�

Zn(x)
�

∼ n |1− x |2.

Proof. We have E
�

|Zn(x)|2
�

∼ C(1, 1,0, x)n and E
�

Zn(x)
�

= 1− x (see (2.11)).

4.3 The real and the imaginary part

We mentioned in the introduction the results in [9]. Do we have the same results for Zn(x)?
We first look at the expectation and the variance of the real and the imaginary of Zn(x). We set

Rn(x) := Re
�

Zn(x)
�

and In(x) := Im
�

Zn(x)
�

. We have

Lemma 4.6. We write x = eiϕ. Then

1. E
�

Rn(x)
�

= 1− cos(ϕ),

2. E
�

In(x)
�

=− sin(ϕ),
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3. Var
�

Rn(x)
�

∼ n |1−x |2

2
,

4. Var
�

In(x)
�

∼ n |1−x |2

2
,

5. Corr(Rn, In)→ 0 for n→∞.

Proof. (1) and (2) follows from (2.11).
As next we prove (3) and (4). We use the growth rates for s1 = s2 = 1 and s1 = 2, s2 = 0. We only
give the important constants explicitly.

E
�

Zn(x)Zn(x)
�

=E
�

R2
n+ I2

n

�

∼ |1− x |2n, (4.13a)

E
�

Z2
n (x)

�

=E
�

R2
n+ 2iRn In− I2

n

�

∼ C1+ C2(x
2)n. (4.13b)

We calculate (4.13a)±Re(4.13b) and get

E
�

2R2
n

�

∼ |1− x |2n

E
�

2I2
n

�

∼ |1− x |2n

We now prove the last point. We know from (4.13b) that

Cov(Rn, In) = E
�

Rn In
�

+ sin(ϕ)(1− cos(ϕ))∼ C4+ C5 sin(2nϕ) + C6 cos
�

2nϕ
�

.

The point (5) now follows from (3) and (4).

What are the growth rates or E
�

Rs
n

�

and E
�

I s
n

�

? We need the following lemma to answer this
question.

Lemma 4.7. Let s ∈ N and z = x + i y be given with x , y ∈ R. Then

x s =
1

2s

s
∑

k=0

�

s

k

�

zkzs−k; y s =
1

(2i)s

s
∑

k=0

(−1)s+k
�

s

k

�

zkzs−k (4.14)

Proof. We argue with induction. If s = 1 then x = 1
2
(z+ z).

s→ s+ 1: We have

x s+1 = x x s =
1

2
(z+ z)

1

2s

s
∑

k=0

�

s

k

�

zkzs−k =
1

2s+1

s+1
∑

k=0

�

s+ 1

k

�

zkz(s+1)−k.

The proof for y s is similar.

We then have

Theorem 4.8. Choose any s ∈ N and write x = eiϕ with ϕ ∈ [0, 2π] \ 2πQ. Then there exists (real)
constants a2k = a2k(ϕ, s) and b2k = b2k(ϕ, s) for 0≤ k ≤ b(s+ 1)/4c with

E
�

Rs
n

�

∼ n(
s
bs/2c)





b(s+1)/4c
∑

k=0

a2k cos
�

(2k)nϕ
�



 , (4.15)

E
�

I s
n

�

∼ n(
s
bs/2c)





b(s+1)/4c
∑

k=0

b2k sin
�

(2k)nϕ
�



 . (4.16)

At least one a2k and one b2k is not equal to zero.
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Proof. We only prove the behavior for E
�

Rs
n

�

and s = 4m. The other cases are similar.
We have

E
�

Rs
n

�

=
1

2s

s
∑

k=0

�

s

k

�

E
�

Zk
n (x)Z

s−k
n (x)

�

=
1

2s









s
∑

k=0
k even

�

s

k

�

E
�

Zk
n (x)Z

s−k
n (x)

�

+
s
∑

k=0
k odd

�

s

k

�

E
�

Zk
n (x)Z

s−k
n (x)

�









.

We now apply theorem 4.5. If k is odd then k− (4m− k) = 4p+ 2 for a p ∈ Z and the growth rate
of E

�

Zk
n (x)Z

s−k
n (x)

�

is
� 4m

2m+1

�

(. . . ). If k is even then k− (4m− k) = 4p for a p ∈ Z and the growth

rate of E
�

Zk
n (x)Z

s−k
n (x)

�

is
�4m

2m

�

(. . . ). It is therefore sufficient to look at even k. We get

E
�

Rs
n

�

∼ n(
4m
2m)−1









1

2s

s
∑

k=0
k even

�

s

k

�

�

x
k−(s−k)

2

�n
C
�

k− (s− k)
2

�









∼ n(
4m
2m)−1

 

1

2s

m
∑

k=−m

�

s

2m+ 2k

�

(x2k)nC (2k)

!

∼ n(
4m
2m)−1 1

2s

 

�

s

2m

�

C(0) + 2
m
∑

k=1

�

s

2m+ 2k

�

�

Re(C(2k)) cos
�

(2k)nϕ
�

− Im(C(2k)) sin
�

(2k)nϕ
�

�

!

.

We have used in the last inequality that C(s1, s2,−k0) = C(s2, s1, k0).

This proves (4.15) if we can show that the last bracket is equal zero only for finitely many n (and x
fixed).
We define

g(t) :=
�

s

2m

�

C(0) + 2
m
∑

k=1

�

s

2m+ 2k

�

�

Re(C(2k)) cos
�

(2k)t
�

− Im(C(2k)) sin
�

(2k)t
�

�

.

Suppose there are infinitely many (different) n ∈ N with g(nϕ) = 0. All numbers nϕ are different
modulo 2π, since ϕ /∈ 2πQ. Therefore there are infinite many t ∈ [0,2π] with g(t) = 0. But g(t) is
a non trivial linear combination of cos(·) and sin(·) and is therefore a holomorphic function in t. It
follows immediately from the identity theorem (see [6]) that g(t)≡ 0. This is a contradiction since
the functions cos(m1 t) and sin(m2 t) are linearly independent for m1 ≥ 0, m2 > 0.

5 Concluding Remarks

The behavior of E
h

�

d
d x

Zn(x)
�s
i

for s ∈ N, |x | < 1 is not included in this paper. We have been able
to prove a result similar to theorem 2.4. Our proof uses the techniques of section 3 and Hartog’s
theorem. Unfortunately we could not give an explicit expression for the limit and the prove is more
difficult than the proof for E

�

Z s
n(x)

�

. We therefore decided to omit this result.
We have proven in this paper several result, but there are still open questions:
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1. Is Z∞(x) uniquely defined by its moments?

2. Are there random variables R∞ and I∞ such that Rn
d−→ R∞ and In

d−→ I∞?

3. What are the growth rates of E
�

Z s
n(x)

�

for s ∈ C, |x |= 1 and x not a root of unity?

Acknowledgement I would like to thank Ashkan Nikeghbali and Paul-Olivier Dehaye for their help
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