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Abstract

We study a one dimensional two-type contact process with equal rate of propagation (and death)
of the two types. We show that the progeny of a finite number of mutants has a positive prob-
ability of survival if and only at time 0 there is at most a finite number of residents on at least
one side of the mutant’s “colony”.
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1 Introduction

The aim of this paper is to study the probability that the progeny of a single mutant in an infi-
nite population of residents will survive. We consider this problem in the framework of the one
dimensional two–type contact process.

We will prove that if the mutant has no selective advantage nor disadvantage, compared with the
individuals of the resident population, then, provided we are in the supercritical case (which means
that a single individual’s progeny may survive for ever), a single mutant with an empty half–line in
front of him, and all sites behind him occupied by resident individuals, has a progeny which survives
forever with positive probability, while any finite number of mutants, with infinitely many residents
on both sides, have a progeny which goes extinct a. s. Note that we define the progeny at time t of
a given ancestor at time 0 as the set of individuals alive at time t, who are the descendants of that
ancestor at time 0.

Let us now explain what we mean by the contact process. Note that this process is often presented in
the language of infection. We shall rather consider it here as a model of the spread of a population.
Consider first the usual one–type contact process with birth parameter λ > 0. This process {ξt , t ≥
0} is a {0, 1}Z–valued Markov process, hence ξt is a random mapping which to each x ∈ Z associates
ξt(x) ∈ {0, 1}. The statement ξt(x) = 1 means that the site x is occupied at time t, while ξt(x) = 0
means that site x is empty at time t. The process evolves as follows. Let x be such that ξ0(x) = 1.
We wait a random exponential time with parameter 1+2λ. At that time, with probability 1/(1+2λ),
the individual at site x dies; with probability λ/(1+ 2λ), the individual, while continuing its own
life at site x , gives birth to another individual; the newborn occupies site x + 1 if it is empty, and
dies instataneously otherwise; and with probability λ/(1 + 2λ), it gives birth to a newborn who
occupies site x−1 if it is empty, and dies instataneously otherwise. Then the same operation repeats
itself until site x becomes empty, independently of what happened so far. The same happens at any
occupied site, and the exponential clocks at various sites are mutually independent. We will use the
same notation ξt to denote the random element of {0, 1}Z defined above, and the random subset of
Z consisting of all sites x ∈ Z where ξt(x) = 1.

The two–type contact process {ηt , t ≥ 0} is a {0,1, 2}Z–valued Markov process which starts from
an initial condition (A, B), where A and B are two nonintersecting subsets of Z, A denoting the set
of sites which are occupied by type 1 individuals and B the set of sites which are occupied by type 2
individuals at time t = 0. In other words,

η0(x) =







0, if x 6∈ A∪ B;

1, if x ∈ A;

2, if x ∈ B.

The two–type contact process with equal birth rates λ evolves exactly like the one–type process, with
each individual possibly giving birth to individuals of the same type. We shall consider in section
4 the case where the birth rate of the mutants (i. e. type 2 individuals) differs from that of the
residents (i. e. type 1 individuals).

The (one-type) contact process has been extensively studied and plays a central role in the theory
of interacting particle systems (see [6], [7] and references therein) but there are very few papers
on the two-type contact process (see [3] and [8]). For another closely related probabilistic model
of competition between species, see durneu.
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Let us now present a useful construction of the contact process, called the graphical representation,
which is valid in both the one–type and the two–type cases (at least in the case of equal birth
rates). The important feature of this construction is that processes corresponding to different initial
conditions are coupled through it. Indeed, {ξt , t ≥ 0} (resp. {ηt , t ≥ 0}) is a fixed function of both
the initial condition, and the set of Poisson point processes, which code all the randomness, which
we now introduce.

Consider a collection {P x
t , P x ,+

t , P x ,−
t , t ≥ 0; x ∈ Z} of mutually independent Poisson point pro-

cesses, such that the P x ’s have intensity 1 while both the P x ,+’s and the P x ,−’s have intensity λ, all
defined on a probability space (Ω,F ,P). On the set Z × [0,∞) we place a δ on the point (x , t)
whenever t belongs to the Poisson process P x . On that set we also place an arrow from (x , t) to
(x + 1, t) whenever t belongs to the Poisson process P x ,+ and an arrow from (x , t) to (x − 1, t)
whenever t belongs to the Poisson process P x ,−.

The process {ξA
t , : t ≥ 0} is defined as follows. An open path in Z× [0,+∞) is a connected oriented

path which moves along the time lines in the increasing t direction without passing through a δ
symbol, and along birth arrows, in the direction of the arrow. Now

{y; ξA
t (y) = 1}= {y ∈ Z; ∃x ∈ A with an open path from (x , 0) to (y, t)}.

To construct the two–type contact process, we call line of descendance an open path starting from
an occupied site at time 0, and such that any arrow belonging to this path points to an unoccupied
site. Note that unlike open paths, lines of descendance depend on the initial configuration of the
process. For A, B two disjoint subsets of Z, we define {ηA,B

t , t ≥ 0} as the {0,1, 2}Z–valued process
whose value at time t is given by

{y; ηA,B
t (y) = 1}= {y ∈ Z; ∃x ∈ A and a line of descendance from (x , 0) to (y, t)}

{y; ηA,B
t (y) = 2}= {y ∈ Z; ∃x ∈ B and a line of descendance from (x , 0) to (y, t)}

In biological terms, we think of the type 1 population as the resident population, and of the type
two population as a mutant population.

We shall also need in this paper to define both the one–type and the two–type contact processes on
subsets of Z of the form (−∞, a] (resp. [a,+∞)). These are defined as above, with the restriction
that the Poisson processes (Pa,+, P y , P y,+, P y,−, y > a) (resp. (Pa,−, P y , P y,+, P y,−, y < a)) are
ignored.

Let {ξA
t , t ≥ 0} denote the one–type contact process starting from the configuration whose set of

occupied sites is A. We will write ξx
t for ξ{x}t . We shall use the notation

ρ = P(ξ0
t 6= ;, ∀t > 0) = lim

s→∞
P(ξ0

s 6= ;). (1.1)

It follows from well–known results on the contact process, see e. g. Liggett [6], that there exists
λc <∞ such that ρ > 0 whenever λ > λc .

Given a finite subset B ⊂ Z, write B+ = {x ∈ Z, x > y,∀y ∈ B} and B− = {x ∈ Z, x < y,∀y ∈ B}.
The aim of this paper is to prove

Theorem 1.1. Suppose that λ > λc and 0 < |B| <∞. Then if A (resp. B) is the set of points occupied
by the resident (resp. mutant) population at the initial time t = 0, the mutant population has a positive
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probability of survival if and only there are at most finitely many residents at least on one side of B. In
other words,

P
�

{x , ηA,B
t (x) = 2} 6= ;,∀t > 0

�

> 0

if and only if at least one of the two sets A∩ B+ and A∩ B− is finite.

This result has an interesting consequence concerning the one–type contact process {ξA
t , t ≥ 0},

which says that in the case where both sup(A) = +∞ and inf(A) =−∞, the progeny of any ancestor
alive at time 0 dies out a. s., while in the case where |A| = ∞ but sup(A) < ∞, one and only one
ancestor alive at time 0 has a progeny which survives for ever, see Corollary 3.12 below.

From the results needed to prove Theorem 1.1 we can also deduce:

Theorem 1.2. Suppose that λ > λc , 0< |A|<∞ and 0< |B|<∞. Then

P
�

{x , ηA,B
t (x) = 1} 6= ; and {x , ηA,B

t (x) = 2} 6= ;,∀t > 0
�

> 0.

We conjecture that Theorem 1.2 holds for the two-type contact process on Zd for all d ≥ 1. In
[8] it is proved that for d ≤ 2 and all initial configurations limt→∞ P(ηt(x) = 1,ηt(y) = 2) = 0
for all x , y , while for d ≥ 3 the process admits invariant measures µ such that for all x 6= y ,
µ({η : η(x) = 1,η(y) = 2}) > 0. Although this last result may be seen as evidence favoring our
conjecture (when d ≥ 3) it does not imply it nor is it implied by it.

The paper is organized as follows. In section 2, we recall and prove several results on the one–type
contact process which are needed in further sections. In section 3, we study the case of a single or a
finite number of mutants confronted with an infinite number of residents, in the case of equal birth
rates. Theorems 1.1 and 1.2 are proved in subsections 3.3 and 3.4 respectively. Finally, in section
4, we conclude with some remarks on the case of unequal birth rates (i. e. when one of the two
species has a selective advantage). We formulate one result and two conjectures.

In all of this paper, we assume that λ > λc .

2 Some results on the one–type contact process

Let Z− be the set of integers smaller than or equal to 0 and let Z+ be the set of integers greater than
or equal to 0.

Let rt = sup
¦

x : ξZ
−

t (x) = 1
©

and let `t = inf
¦

x : ξZ
+

t (x) = 1
©

.

It is known that since λ > λc , there exits v = v(λ)> 0 such that

lim
t→∞

rt

t
=− lim

t→∞

`t

t
= v a.s. and in L1(Ω,F ,P).

For a proof of these results the reader is referred to Theorems VI.2.19 and VI.2.24 in [6].

Let Rt = sups≤t rs.

Lemma 2.1. P(rt ≥ a)≥ ρ

2
P(Rt ≥ a), ∀t, a.
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PROOF: Let τa = inf
�

s : rs ≥ a
	

. Then

P(rt ≥ a|Rt ≥ a) = P(rt ≥ a|τa ≤ t).

By the strong Markov property this is bounded below by

inf
s≥0
P(ξ0

s ∩ [0,∞) 6= ;),

which by symmetry is at least

inf
s≥0

1

2
P(ξ0

s 6= ;) =
ρ

2
.

�

Lemma 2.2. limt→∞
Rt

t
= v a.s. and in L1.

PROOF: The a. s. convergence follows from the a.s convergence of rt

t
and the fact that v > 0. For the

L1 convergence note first that since Rt

t
≥ rt

t
and rt

t
converges to v in L1, it suffices to show that

lim
t→∞
E
�

Rt

t
− v
�+

= 0.

To do so fix ε > 0 and let c = 2
ρ

. Then write

lim
t→∞

∞
∑

n=1

P
�

Rt

t
− v ≥ εn

�

≤ lim
t→∞

c
∞
∑

n=1

P
� rt

t
− v ≥ εn

�

≤ lim
t→∞

c

ε
E
� rt

t
− v
�+

= 0,

where we have used Lemma 2.1 for the first inequality, and the L1 convergence of rt/t for the
equality. Hence

lim sup
t→∞
E
�

Rt

t
− v
�+

≤ limsup
t→∞

ε

∞
∑

n=0

P
�

Rt

t
− v ≥ εn

�

≤ ε.

Since ε is arbitrary the lemma is proved. �

Although the following lemma is well known, we did not find it in previous publications and we
include it here for the sake of completness.

Lemma 2.3. Suppose λ > λc , let

r ′t = sup{x ∈ Z : x ∈ ξ0
t and there is an infinite open path starting from (x , t)}

and let τ0 = inf{s : ξ0
s = ;} Then

P
�

lim
t

r ′t
t
= v(λ)|τ0 =∞

�

= 1.

390



PROOF: Let 0< ε < v . Then write:

P
�

|ξ0
n ∩ [(v(λ)− 2ε)n, (v(λ)− ε)n]| ≤

ερn

2
, |τ0 =∞

�

≤ P
�

|ξ0
n ∩ [(v(λ)− 2ε)n, (v(λ)− ε)n]| ≤

ερn

2
, [(v(λ)− 2ε)n, (v(λ)− ε)n]⊂ [`n, rn]|τ0 =∞

�

+ P
�

`n > (v(λ)− 2ε)n|τ0 =∞)
�

+ P
�

rn < (v(λ)− ε)n|τ0 =∞)
�

≤ P
�

|ξZn ∩ [(v(λ)− 2ε)n, (v(λ)− ε)n]| ≤
ερn

2
, |τ0 =∞

�

+ P
�

`n > (v(λ)− 2ε)n|τ0 =∞)
�

+ P
�

rn < (v(λ)− ε)n|τ0 =∞)
�

,

where the last inequality is due to the fact that ξ0
n(x) = ξ

Z
n(x) for any x ∈ [`n, rn].

We now show that the sum on n of each of the three terms of the right hand side above converges:
For the first of these terms, the convegence is a consequece of the fact that for any n the distribution
of ξZn is stochastically above the upper invariant measure of the contact process and of Theorem 1
of [5] .For the third term the convergence follows from Corollary 3.22 in Chapter VI of [6]. For the
second term it follows by that same corollary applied to `n and our choice of ε. We have thus proved
that

∑

n
P
�

|ξ0
n ∩ [(v(λ)− 2ε)n, (v(λ)− ε)n]| ≤

ερn

2
, |τ0 =∞

�

<∞.

This, the Markov property and Theorem 3.29 in Chapter VI of [6] imply that
∑

n
P(r ′n < (v(λ)− 2ε)n|τ0 =∞)<∞.

Since ε is arbitrary and r ′n ≤ rn we get: P(limn
r ′n
n
= v(λ)|τ0 =∞) = 1 and the lemma follows from

the fact that sup0≤s≤t≤1 r ′n+t − r ′n+s is bounded above by a Poisson r.v. of parameter λ. �

It now follows:

Corollary 2.4. Suppose λ > λc and let A be an infinite subset of Z+. Then for any v′ < v, there exists
an infinite open path starting from A× {0}, which lies on the right of the line {(v′ t, t), t ≥ 0}.

PROOF: There exists a strictly increasing sequence {xk, k ≥ 1} ⊂ A such that there is an infinite open
path starting from each xk. Now for each n≥ 0 and some R ∈ N define

r ′t,n = sup{x ∈ Z : x ∈ ξn
t and there is an infinite open path starting from (x , t)}

and An = {r ′t,n > v′ t − R+ n,∀t ≥ 0}

It follows from the last Lemma that for R large enough, P(An) = P(A0)> 0. From now on such an R
is fixed. From the ergodic theorem,

1

n

n−1
∑

j=0

1A j
→ P(A0)> 0,

hence a. s. infinitely many An occur. So almost surely, one An with n ≥ R occurs. Now choose k
large enough such that xk ≥ n. Clearly there exists an infinite open path starting from (xk, 0) which
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lies on the right of the line {(v′ t, t), t ≥ 0}. �

Although our next result is well–known, we could not find it explicitly stated in the litterature. It
follows immediately from our previous Corollary and the fact that v(λ)> 0 whenever λ > λc .

Corollary 2.5. The critical values of λ for the contact processes on N and Z are equal.

Let µ+ denote the upper invariant measure for the contact process on N. This is defined as follows.
Denote by {χt , t ≥ 0} the one–type contact process on N. This process takes its values in {0,1}N. In
accordance with the above conventions, for A⊂ N, we write χA

t for the contact process on N starting
with the initial condition χA

0 (x) = 1 iff x ∈ A. Then µ+ is the weak limit, as t →∞, of the law of
χNt .

For η ∈ {0, 1}N, let Y (η) = inf
�

x > 0 : η(x) = 1
	

.

Lemma 2.6. a) There exist constants K , c > 0 such that µ+(Y > n)≤ Ke−cn for all n≥ 0.

b) α := Eµ+(Y )<∞.

For the proof of this result, we will need the following

Lemma 2.7. Denoting again rt = sup{x , ξZ
−

t (x) = 1}, we have

µ+(Y > n) = P(inf
t>0

rt ≤−n).

PROOF: We first exploit the well–known self–duality of the contact process. Since there is a one to
one correspondance between the open paths from some (y, 0), y ∈ N, to some (x , t), x ∈ (0, n]
and the open paths from some (x , 0), x ∈ (0, n] to some (y, t), y ∈ N obtained by reversing the
directions of the arrows,

P(∃x ∈ (0, n] : χNt (x) = 1) = P(∃x ∈ (0, n] : χ x
t 6= ;).

Letting t →∞ in the above identity yields

µ+(Y ≤ n) = P(∃x ∈ (0, n], χ x
t 6= ;, ∀t > 0).

The last right hand side is the probability that there is an infinite open path starting from some
(x , 0), x ∈ (0, n], which visits only points located at the right of the vertical line {1} × R+. This
has the same probability as the event that there is in (−n,∞)×R+ an infinite open path starting in
(−n, 0]× {0}, i. e. it equals P(inft>0 rt >−n). The result follows. �

PROOF OF LEMMA 2.6

Part b) follows from part a) and in view of Lemma 2.7, to prove part a) it suffices to show that for
the contact process on Z there exist constants K , c > 0 such that

P(inf
t>0

rt ≤−n)≤ Ke−cn ∀ n≥ 1.
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It follows from Corollary VI.3.22 in [6] that for some K1, c > 0 we have:

P
�

rt ≤
v

2
t
�

≤ K1e−c t ∀ t ≥ 1. (2.1)

From now on let [t] be the integer part of t. From (2.1) we get:

P
�

inf
n≥[t], n∈N

rn ≤
v

2
t
�

≤ P







⋃

n≥[t], n∈N

§

rn ≤
v

2
n
ª







≤
∑

n≥[t]

P
�

rn ≤
v

2
n
�

≤ K2e−c t ,

for some K2 > 0. Next define τn = inf{n< s ≤ n+ 1, rs ≤
v
2

t} (with the convention that τn = n+ 1
on the set {infn<s≤n+1 rs >

v
2

t}). Now note that

�

inf
n<s≤n+1

rs ≤
v

2
t
�

∩
¦

rn+1− rτn
≤ 0
©

⊂
§

rn+1 ≤
v

2
t
ª

and that

P
�

rn+1− rτn
≤ 0

�

�

�

�

inf
n<s≤n+1

rs ≤
v

2
t

�

≥ P(X = 0),

where a X is Poisson r.v. of parameter λ. Hence,

P
�

inf
n<s≤n+1

rs ≤
v

2
t
�

≤ [P(X = 0)]−1P
�

rn+1 ≤
v

2
t
�

= eλP
�

rn+1 ≤
v

2
t
�

.

Therefore, using (2.1) we get

P
�

inf
s≥t

rs ≤
v

2
t
�

≤
∑

n≥[t]

P
�

inf
n<s≤n+1

rs ≤
v

2
t
�

≤ eλ
∑

n≥[t]

P
�

rn+1 ≤
v

2
t
�

≤ K3e−c t ,

for some constant K3. We have shown in particular that

P
�

inf
s≥t

rs ≤ 0
�

≤ Ke−c t . (2.2)

Fix β > 0 such that 2λβ < 1+ vβ . Now, write

P
�

inf
t≥0

rt ≤−n
�

≤ P
�

inf
0≤t≤βn

rt ≤−n
�

+ P
�

inf
t≥βn

rt ≤ 0
�

.

It follows from (2.2) that the second term of the right hand side decays exponentially in n. Hence,
the lemma will be proved if we show that the first term also decays exponentially in n. To do so, let
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σ = inf{t : rt ≤ −n} and let Yn be a Poisson random variable of parameter 2λβn. It now follows
from the Strong Markov property applied at the stopping time σ that:

P(r2βn ≤ vβn)≥ P(σ ≤ βn)P(Yn ≤ (1+ vβ)n).

Since, given our choice of β , limn→∞ P(Yn ≤ (1+ vβ)n) = 1 and by (2.1),
P(r2βn ≤ vβn) decays exponentially in n, the same happens to
P(σ ≤ βn) = P(inf0≤t≤βn rt ≤−n). �

Let T−1 be the operator on the set of probability measures on {0, 1}N defined by

T−1(ν)
�

η(x1) = γ1, ...,η(xn) = γn
�

= ν
�

η(x1+ 1) = γ1, ...,η(xn+ 1) = γn
�

,

for any n≥ 1, γ1, . . . ,γn ∈ {0, 1}.
The natural partial order on {0, 1}N induces a partial order on the set of probability measures on
{0,1}N which we denote by ≤. Recalling that µ+ is the upper invariant measure for the contact
process on N, we have

Lemma 2.8. T−1(µ+)≥ µ+.

PROOF: Consider the contact process {χt , t ≥ 0} this time on N∪{0}, starting again from χ0 ≡ 1. Let
now {χ t , t ≥ 0} denote the same process, with the same initial condition and the same realization
of the graphical representation, except that we delete all arrows between states 0 and 1. The
restriction to N of the asymptotic (as t → ∞) law of χ t coincides with µ+, while the same law
associated with χt coincides with T−1(µ+).The result follows from the fact that for all t > 0, x ≥ 1,
P(χt(x)≥ χ t(x)) = 1. �

Our next proposition is taken from [1] (See Theorem 2 in that reference). Although there the result
is stated and proved for the contact process on Z, their proof also holds for the contact process on
N.

Proposition 2.9. Let {ξt(x), x ∈ N, t ≥ 0} denote the one–type contact process starting at time t = 0
from a deterministic configuration.Then, for each t > 0, conditioned on the event {ξt(x) = 1}, the
collections of random variables {1− ξt(y), 0< y < x} and {ξt(y), y > x} are positively associated.

Lemma 2.10. Let f be a continuous increasing real valued function on {0, 1}N which depends only
upon coordinates which are greater than or equal to x + 1 (for some x ∈ N). Then

∫

f dµ+(·|η(1) = 0, . . . ,η(x − 1) = 0,η(x) = 1)≥
∫

f dµ+.

PROOF: Consider the contact process {χt , t ≥ 0} on N, starting from χ0 ≡ 1. We deduce from
Proposition 2.9:

E( f (χt) | χt(1) = 0, . . . ,χt(x − 1) = 0,χt(x) = 1)≥ E( f (χt) | χt(x) = 1).

It then follows from Lemma 2.11 below that

E( f (χt) | χt(1) = 0, . . . ,χt(x − 1) = 0,χt(x) = 1)≥ E( f (χt)).

It remains to let t →∞. �
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Lemma 2.11. Let {χt , t ≥ 0} denote the contact process on N, starting from any deterministic initial
condition. For any t > 0, the law of χt has positive correlations.

PROOF: For the contact process on [1, · · · , n], the result follows from Theorem 2.14 on page 80 of
Liggett [6]. Our result then follows by letting n→∞. �

Note that Lemma 2.11 applies as well to the contact process {ξt , t ≥ 0} on Z.
Let S x ,y = {ξx

t 6= ;, ∀t > 0; ξy
t 6= ;, ∀t > 0}. Recall that both processes {ξx

t , t ≥ 0} and {ξy
t , t ≥ 0}

are constructed with the same set of Poisson processes {P x
t , P x ,+

t , P x ,−
t , x ∈ Z} as explained above.

Note that on the event S x ,y the process starting from {x} survives but this does not mean that if we
start from {x , y} the progeny of (say) x lives forever. We now show that (recall the definition of ρ
in (1.1))

Lemma 2.12. For all x , y ∈ Z
P(S x ,y)≥ ρ2.

PROOF: Denoting by µ the upper invariant measure of the contact process {ξt , t ≥ 0} on Z, i. e. µ
is the limit as t →∞ of the law of ξZt , we have by the same duality argument already used in the
proof of Lemma 2.7 the identities

P(ξx
t 6= ;,∀t > 0) = µ(η(x) = 1),

P(ξy
t 6= ;,∀t > 0) = µ(η(y) = 1),

P(S x ,y) = µ(η(x) = 1,η(y) = 1).

Letting t →∞ in the result of Lemma 2.11 applied to the contact process on Z implies that µ has
positive correlations. Hence

µ(η(x) = 1,η(y) = 1)≥ µ(η(x) = 1)×µ(η(y) = 1).

The result follows from this inequality and the three above identities. �

We now fix some λ > λc and let v = v(λ). We pick

0< ε <
v

2
∧
ρ2

4
.

From now on t0 will be a large enough multiple of 2
v

so that the following holds :

P
�

B(t0,ε)
�

≥ 1− ε, (2.3)

where

B(t0,ε) =

¨

v − ε ≤
rt0

t0
≤ v + ε, v− ε ≤−

`t0

t0
≤ v+ ε

«

.
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Let us define new processes. For any z ∈ Z, we write

rz
t = sup

¦

x : ξz
t(x) = 1

©

− z,

`z
t = inf

¦

x : ξz
t(x) = 1

©

− z,

where as usual the sup (resp. the inf) over an empty set is −∞ (resp. +∞).

Now we define the event

C(t0,ε) =

(

v− ε ≤−
`0

t0

t0
≤ v+ ε, v− ε ≤

r0
t0

t0
≤ v+ ε

)

⋂

(

v− ε ≤−
`

vt0
t0

t0
≤ v + ε, v− ε ≤

r vt0
t0

t0
≤ v+ ε

)

.

The event C(t0,ε) depends only upon the Poisson processes used in the graphical construction. It
says that the leftmost open path starting at (0, 0) lies at time t0 between −(v+ε)t0 and −(v−ε)t0,
while the rightmost open path starting from (0,0) lies at time t0 between (v − ε)t0 and (v + ε)t0,
together with a similar statement concerning the open paths starting from (vt0, 0).

We prove:

Lemma 2.13. Let ε be as above. Then, for any large enough t0, we have:

P
�

C(t0,ε
�

)≥ ρ2− 2ε.

PROOF: First note that on the event {ξ0
t 6= ;,∀t > 0} we have: r0

t = rt and `0
t = `t and a similar

result holds for r vt0 and `vt0 . Hence the result follows from translation invariance, Lemma 2.12 and
(2.3). �

From now on, t0 will be a large enough multiple of 2
v

such that both the inequality (2.3) and the
conclusion of Lemma 2.13 hold.

3 The two–type contact process with equal birth rates

Let ηt denote the contact process with two types. For A, B ⊂ Z with A∩ B = ;, {ηA,B
t , t ≥ 0} now

denotes the contact process where at time zero A is the set of sites occupied by individuals of type 1,
and B is the set of sites occupied by individuals of type 2. The dynamics is the same as before, using
the same construction with the same collection of Poisson processes, except that now an individual
of type α ∈ {1,2} located at site z gives birth at time t to an individual of the same type at site z+1
(resp. at site z − 1), if t is a point of the Poisson process P x ,+ (resp. P x ,−) and the site z + 1 (resp.
z− 1) is not occupied at time t.

In other words, the 1’s and 2’s together evolve like a one–type contact process, and all descendants
of a 1 (resp. of a 2) are 1’s (resp. 2’s).
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3.1 A single mutant in front of an infinite number of residents may survive

In this subsection, we consider the process {ηA,B
t , t ≥ 0} only in the case where A< B, meaning that

all points in A are located on the left of each point of B. In other words, the initial configurations
belong to the set:

L := {η : η(x) = 1,η(y) = 2 ⇒ x < y}.

Given the nearest neighbor character of our process, whenever it starts in L , it remains in L with
probability 1.

For a configuration η ∈ L , we define

br(η) = sup
�

x : η(x) = 1
	

and

b`(η) = inf
�

x : η(x) = 2
	

.

We now have the following consequence of Lemma 2.13 (here PA,B denotes the law of {ηA,B
t , t ≥

0}) :

Corollary 3.1. For t0 large enough, we have

P(−∞,0],{vt0}
�§

br(ηt0
)≤

vt0

2

ª

∩ C(t0,ε)
�

≥
ρ2

2
− ε.

PROOF:

By Lemma 2.13 and symmetry arguments we have:

P{0}{vt0}
�§

br(ηt0
)≤

vt0

2

ª

∩ C(t0,ε)
�

≥
ρ2

2
− ε

On C(t0,ε) there is an open path from (0, 0) to some point in [−(v + ε)t0,−(v − ε)t0]× {t0}. Any
open path starting from (vt0, 0) remains strictly to the right of the previous path, since otherwise
there would be an open path from (vt0, 0) to [−(v + ε)t0,−(v − ε)t0]× {t0}, which cannot occur
on the event C(t0,ε). Consequently for the initial configuration {0}{vt0} the first of these paths
is always occupied by a type 1 particle. Therefore, adding to the initial configuration extra 1-type
particles to the left of the origin does not alter the process to the right of that open path. Hence

P(−∞,0],{vt0}
�§

br(ηt0
)≤

vt0

2

ª

∩ C(t0,ε)
�

= P{0}{vt0}
�§

br(ηt0
)≤

vt0

2

ª

∩ C(t0,ε)
�

≥
ρ2

2
− ε.

�

We will also need the following Lemma:
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Lemma 3.2. As t0→∞,

P{0}{vt0}
�§

br(ηt0
)≤

vt0

2

ª

∩ C(t0,ε)
�

−

P{0}{vt0}
��

∃ x ∈
�

vt0

2
,
3vt0

4

�

; ηt0
(x) = 2

�

∩
§

br(ηt0
)≤

vt0

2

ª

∩ C(t0,ε)
�

converges to 0.

PROOF: It suffices to show that

P{0}{vt0}
��

∀ x ∈
�

vt0

2
,
3vt0

4

�

; ηt0
(x) 6= 2

�

∩
§

br(ηt0
)≤

vt0

2

ª

∩ C(t0,ε)
�

,

converges to 0 as t0 goes to infinity. But on the event {br(ηt0
) ≤ vt0

2
} there are no 1’s at time t0 on

the interval [ vt0

2
+ 1, 3vt0

4
], hence we only need to prove that for the one type contact process

P{vt0}
��

∀ x ∈
�

vt0

2
,
3vt0

4

�

; ηt0
(x) = 0

�

∩ C(t0,ε)
�

converges to 0 as t0 goes to infinity. But on the event C(t0,ε) the set of occupied points in the

interval
�

vt0

2
, 3vt0

4

i

is the same whether the initial condition of the process is Z or {vt0} . Since
starting from Z we have more occupied points than under the upper invariant measure the result
follows from the fact that under the upper invariant measure the probability of having an empty
interval of length n tends to 0 as n tends to infinity. �

From now on we shall use {aζt , t ≥ 0} to denote the two–type contact process on (−∞, a]. Now
we can prove:

Corollary 3.3. Provided t0 is large enough, we have

P(−∞,0],{vt0}
�

§

br( 3vt0
2
ζt0
)≤

vt0

2

ª

∩
�

∃x :
vt0

2
< x <

3vt0

2
, 3vt0

2
ζt0
(x) = 2

��

≥
ρ2

2
− 2ε.

PROOF: In this proof we will consider the two type contact process on both Z and (−∞, 3
2

vt0]. These
two processes are constructed on the same probability space with the same Poisson processes. For
the second of these pocesses {P x

t ; x > 3
2

vt0}, {P
x ,−
t ; x > 3

2
vt0]} and {P x ,+

t ; x ≥ 3
2

vt0} play no role.

These processes ηt and 3vt0
2
ζt are assumed to start both from the configuration

�

(−∞, 0],
¦ vt0

2

©�

.

On the set
�

∃x ∈
�

vt0

2
,
3vt0

4

�

; ηt0
(x) = 2

�

,

there is an open path from (vt0, 0) to ( vt0

2
, 3vt0

4
] × {t0}. We now show that the probability that

this path ever reaches the vertical line {x = 3vt0

2
} between time 0 and time t0 converges to 0 as

t0 goes to infinity. Indeed, if that happened, there would be either an open path from (vt0, 0) to
{3

2
vt0} × [0, 3

8
t0] or an open path from {3

2
vt0} × [

3
8

t0, t0] to [1
2

vt0, 3
4

vt0]× {t0}. The existence of
the first of these paths has a probability which converges to 0 as t0 goes to infinity by Lemma 2.2.
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By reversing the arrows and using symmetry and again Lemma 2.2, we see that the same happens
to the second path.

Hence, if we define

G =
�

∃ an open path from (vt0, 0) to
�

vt0

2
,
3vt0

4

�

× {t0}
�

∩
�

6 ∃ an open path from (vt0, 0) to
�

vt0

2
,
3vt0

4

�

× {t0} which touches the line x =
3vt0

2

�

,

we deduce from Lemma 3.2 that

P{0}{vt0}
�

C(t0,ε)∩
§

br(ηt0
)≤

vt0

2

ª�

− P{0}{vt0}
�

G ∩ C(t0,ε)∩
§

br(ηt0
)≤

vt0

2

ª�

converges to 0 as t0 goes to infinity . The result follows from Corollary 3.1 and the following claim:
starting both ηt and 3vt0

2
ζt from ({0}{vt0}) we have:

G ∩ C(t0,ε)∩ {br(ηt0
)≤

vt0

2
}

⊂
§

br( 3vt0
2
ζt0
)≤

vt0

2

ª

∩
�

∃
vt0

2
< x <

3vt0

2
, 3vt0

2
ζt0
(x) = 2

�

.

To justify this claim note first that on the event G there exists a rightmost open path from (vt0, 0)
to
�

vt0

2
, 3vt0

4

i

, which remains to the left of the line x = 3vt0

2
. Now on the event G, the processes ηt

and 3vt0
2
ζt must coincide up to time t0 on any point to the left of or on that open path. �

We now introduce the following partial order on {0,1, 2}Z :

η1 � η2 whenever both

�

x : η1(x) = 2
	

⊂
�

x : η2(x) = 2
	

and
�

x : η2(x) = 1
	

⊂
�

x : η1(x) = 1
	

. (3.1)

Intuitively � means “more 1’s” and “fewer 2’s”.

This partial order extends to probability measures on the set of configurations: µ1 � µ2 means that
there exists a probability measure ν on ({0,1, 2}Z)2 with marginals µ1 and µ2 such that ν({(η,ζ) :
η � ζ}) = 1. The same notation will be used below for measures on {0, 1,2}A, for some A⊂ Z. We
now state the

Definition 3.4. Let η1, η2 be two random configurations, µ1 and µ2 their respective probability distri-
butions. We shall say that η1 � η2 a. s. whenever (3.1) holds a. s., and that η1 � η2 in distribution
whenever µ1 � µ2.

Remark 3.5. The reader might think that a more natural definition of the inequality in distribution
would be to say that µ1 � µ2 whenever µ1( f ) ≥ µ2( f ) for all f : {0,1, 2}Z → R which are increasing
in the sense that η1 � η2 implies f (η1) ≥ f (η2). Theorem II.2.4 in [6] says that for the standard
partial order on {0,1}Z the two definitions are equivalent. It is clear that this theorem can be extended
to our partial order, but we shall not need this result here.
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Note that η1 � η2 implies br(η1)≥ br(η2) and that if γ� ζ, the coupling between the contact pro-
cesses starting form different initial conditions deduced from the graphical representation produces
the property

P(ηγt � η
ζ
t ∀t ≥ 0) = 1. (3.2)

In the sequel for any probability measure µ on {0,1, 2}Z and any i ∈ N, T i(µ) will denote the
measure µ translated by i. That is the measure such that for all n ∈ N, all x1 < x2 < · · ·< xn and all
possible values of a1, . . . , an we have:

T i(µ)({η : η(x1) = a1, . . . ,η(xn) = an}) =

µ({η : η(x1− i) = a1, . . . ,η(xn− i) = an}) (∗).

Moreover, if µ is a measure on A[n,∞) where A is any non-empty subset of {0, 1,2}, then T i(µ) will
be the measure on A[n+i,∞) satisfying (*).

As before µ+ denotes the upper invariant mesure for the contact process on N and µ+2 will be the
measure obtained from µ+ by means of the map: F : {0, 1}N → {0,2}N given by F(η)(x) = 2η(x).
With a slight abuse of notation the measures µ+ and µ+2 will also be seen as measures on {0, 1,2}N

and a similar abuse of notation will be applied to the translates of these measures.

We start the process {ηt , t ≥ 0} from the initial distribution µ determined by

• (i) The projection of µ on {0,1, 2}(−∞,vt0] is the point mass on the configuration

η(x) =







1, if x ≤ 0,

0, if 0< x < vt0,

2, if x = vt0,

• (ii) the projection of µ on {0,1, 2}[vt0+1,∞) is T vt0(µ+2 ).

In the sequel η0 will denote a random initial configuration distributed according to µ. In other
words, we assume that η0 = η0.

We now proceed as follows. We partition the probability space into a countable number of events:
H, J0, J1, . . . and let the process run on a time interval of length t0. Then we show that the distribu-
tion of ηt0

conditioned on any event of the partition is � than a convex combination of translations
of µ̄. Hence the unconditioned distribution of ηt0

is also � such a convex combination. Then we
replace ηt0

by a random configuration η1 whose distribution is this convex combination and let the
process run on another time interval of length t0 and so on.

For each n ∈ {3vt0

2
} ∪ {2vt0, 2vt0 + 1, . . .} we define two new processes: nζs on {0,1, 2}(−∞,n] and

nξs on {0,2}[n+1,∞). These evolve like the process ηt and are constructed with the same Pois-
son processes P x ,−

t , P x ,+
t and P x

t . For the first of these processes the Poisson processes {P x
t : x > n},

{P x ,+
t : x ≥ n} and {P x ,−

t : x > n} play no role. A similar statement holds for the second process. The
initial distribution of these processes are the projections of µ on {0, 1,2}(−∞,n] and {0,1, 2}[n+1,∞)
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respectively. Since we only consider cases where n ≥ 3vt0

2
, the second of these projections concen-

trates on {0,2}[n+1,∞).

Our partition of the probability space is given by :

H =
�

br( 3vt0
2
ζt0
)≤

vt0

2
, ∃

vt0

2
< x <

3vt0

2
: 3vt0

2
ζt0
(x) = 2

�

,

Jm = {Q t0
= vt0+m} ∩H c for m= 0,1, . . . ,

where Q t0
=max{Rt0

, vt0} (recall that Rt = sups≤t rs).

Since the initial distribution considered here is � than the initial distribution of Corollary 3.3, we
have

P(H)≥
ρ2

2
− 2ε > 0. (3.3)

Note that on H

1. The set {x : ηt0
(x) = 1} is contained in (−∞, vt0

2
] (indeed since {x , 3vt0

2
ζt0
(x) = 2} 6= ;,

{x , ηt0
(x) = 1}= {x , 3vt0

2
ζt0
(x) = 1}).

2. The set {x : ηt0
(x) = 2} contains {x : 3vt0

2
ξt0
(x) = 2}.

We also claim that conditioned on H, the distribution of 3vt0
2
ξt0

is ≥ T
3vt0

2 µ+2 (this follows from

Lemma 2.8 and the fact that the process 3vt0
2
ξt is independent of H).

Therefore, the distribution of ηt0
conditioned on H is � ν where ν is determined by:

1. The projection of ν on {0,1, 2}(−∞,
3vt0

2 ] is the point mass on the configuration

η(x) =

(

1, if x ≤ vt0

2
,

0, if vt0

2
< x ≤ 3vt0

2

and

2. the projection of ν on {0, 1,2}[
3vt0

2
+1,∞) is T

3vt0
2 (µ+2 ).

It follows from Lemma 2.10 (applied to µ+2 instead of µ+) that if Y is a N–valued random variable
such that

P(Y = n) = µ+2 ({η : η(x) = 0, x = 1, . . . , n− 1,η(n) = 2}),

then

ν �
∞
∑

n=1

P(Y = n)T
vt0
2
+nµ.

Hence the distribution of ηt0
given H is �

∑∞
n=1 P(Y = n)T

vt0
2
+nµ.

A similar argument shows that the conditional distribution of ηt0
given Jm is �

∞
∑

n=1

P(Y = n)T vt0+n+mµ ,
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where Y is distributed as above.

It follows from the above arguments that ηt0
� µ1 in distribution, where

µ1 := P(H)
∞
∑

n=1

P(Y = n)T
vt0
2
+nµ+

∞
∑

m=0

P(Jm)
∞
∑

n=1

P(Y = n)T vt0+m+nµ (3.4)

We can now state:

Proposition 3.6. If t0 is large enough, there exists a positive integer valued random variable Z(t0)
such that

a) µ1 =
∑∞

n=1 P(Z(t0) = n)T
vt0
2
+nµ.

b) Z(t0) has an exponentially decaying tail.

c) w := E( Z(t0)
t0
)< v.

PROOF:

Part a) follows from (3.4) and part b) follows from part a) of Lemma 2.6 and the fact that Rt0
is

bounded by a Poisson random variable of parameter λt0. To prove part c) write

E(Z(t0)) =
∞
∑

n=1

P(H)P(Y = n)
� vt0

2
+ n
�

+
∞
∑

m=0

∞
∑

n=1

P(H c ,Q t0
= vt0+m)P(Y = n)(vt0+ n+m)

≤ P(H)
� vt0

2
+E(Y )

�

+ P(H c)E(Y )

+
∞
∑

m=0

P(H c ,Q t0
= vt0+m)(vt0+m)

= P(H)
vt0

2
+E(Y ) +E(Q t0

)−E(Q t0
; H)

≤ P(H)
vt0

2
+E(Y ) +E(Q t0

)− P(H)vt0

= E(Q t0
) +E(Y )− P(H)

vt0

2
.

Hence it follows from Lemma 2.2 that

lim sup
t0→∞

E(Z(t0)
t0

≤ v
�

1−
P(H)

2

�

,

and the result follows from (3.3). �

We can now prove:

Proposition 3.7. Let µ be the initial distribution of the process. Then

limsup
t→∞

br(ηt)
t

< v a.s.
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PROOF: Choose t0 large enough, such that the conclusion of Proposition 3.6 holds true. It follows
from that same Proposition, the Markov property and (3.2) that for all k ∈ N the distribution of ηkt0

is �
∑

n P(U1 + · · ·+ Uk = n)T nµ where the Ui ’s are i.i.d. random variables distributed as Z(t0). It
then follows that

P
�

br(ηkt0
)

kt0
≥ z

�

≤ P
�

U1+ · · ·+ Uk

kt0
≥ z
�

for any real z. Using part c) of Proposition 3.6 and standard large deviation estimates we get that
for for any z > E(Z(t0))

t0
we have:

∑

k

P
�

br(ηkt0
)

kt0
≥ z

�

<∞.

Hence, by the Borel-Cantelli lemma we get:

lim sup
k

br(ηkt0
)

kt0
≤ w a.s.

where w is as in Proposition 3.6. Hence the result holds along the sequence kt0. Finally the gaps
are easy to control since for any initial configuration, the process br(ηt) makes jumps to the right
which are bounded above by a Poisson process of parameter λ. �

It follows readily from this result that

Corollary 3.8.
γ := PZ−,{1}(the type 2 population survives for ever)> 0.

PROOF: First suppose that the initial distribution of the process is µ and call η0 the initial random
configuration. It then follows from Proposition 3.7 and Corollary 2.4 that for some x > 0 there
is an infinite open path starting at (x , 0) such that for any (y, t) in this path we have ηt(y) = 2.
This conclusion remains true if we suppress all the initial "2’s" to the right of x . The corollary then
follows from the Markov property and (3.2). �

3.2 A finite number of mutants do not survive in between a double infinity of resi-
dents

The aim of this subsection is to prove

Theorem 3.9. Consider the two type contact process {ηA,B
t , t ≥ 0}, where |B| < ∞, and the set A

contains an infinite number of points located both to the left and to the right of B,

Then a. s. there exists t <∞ such that

{x; ηA,B
s (x) = 2}= ;, ∀s ≥ t.

Let us first prove the following weaker statement. We shall then verify that the Theorem follows
from it.
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Proposition 3.10. For any n, m ∈ N let An,m = {x ∈ Z : x ≤ −m or x ≥ n} and B = {0}, then a. s.
there exists t <∞ such that

{x; η
An,m,B
s (x) = 2}= ;, ∀s ≥ t.

PROOF: By the Markov property and (3.2) it suffices to prove the result for n = m = 1. Indeed
starting from that configuration, for any n, m > 1, with positive probability we find ourselves at
time one with the same unique type 2 individual located at x = 0, sites −m+ 1, . . . ,−1 empty, sites
1, . . . , n− 1 empty, and some of the other sites occupied by type 1 individuals.

Let αt denote the number of descendants at time t of the unique initial type 2 individual (hence αt
denotes also the number of type 2 individuals at time t). On the event that the lineage of the unique
type 2 individual survives for ever we have αt →∞ as t →∞ a. s. Hence if that event has positive
probability, E(αt)→∞ as t →∞. Consequently for any δ > 0,

Tδ = inf{t > 0, E(αt)≥ 1+δ}<∞.

Denote by r ′t(x) the supremum of the set of sites occupied by the descendants of the individual
(x , 0). Clearly, whatever the initial configuration is E[r ′t(x)− x]≤ E[rt], where as above

rt = sup
n

x : ξZ
−

t (x) = 1
o

.

From the result recalled at the beginning of section 2, there exists T ′ such that

E
� rt

t

�

≤ v+ 1, ∀t ≥ T ′.

Recall that in our initial configuration all sites are occupied (who occupies each site is irrelevant to
contradict the fact that Tδ <∞, which we now do).

For n odd, let Zt(n) be the number of sites which at time t are in a line of descendance starting at
time 0 in the interval [−(n− 1)/2, . . . , (n− 1)/2]. Now by stationarity whenever t ≥ Tδ,

E(Zt(n))≥ n(1+δ).

On the other hand, if t ≥ T ′, by symmetry,

E(Zt(n))≤ n+ 2t(v+ 1).

Choosing n> 2t(v+ 1)/δ, the last two inequalities yield a contradiction. �

In order to deduce Theorem 3.9 from Proposition 3.10, we shall need the following Lemma where,
as above, the ηt ’s for various initial conditions are defined with the same unique graphical repre-
sentation.

Lemma 3.11. Let (xn)n≥0 be a strictly increasing sequence of strictly positive integers and let (ym)m≥0
be a strictly decreasing sequence of strictly negative integers. Then,

P(∃ n : ∀ t > 0,∃ x : η{xn},{xn−1,xn−2,... }
t (x) = 1) = 1,

and
P(∃ m : ∀ t > 0,∃ x : η{ym},{ym+1,ym+2,... }

t (x) = 1) = 1.
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PROOF: Define for n, m≥ 0 the events

Cn = {∀ t > 0,∃ x : η{xn},{xn−1,xn−2,... }
t (x) = 1},

Dm = {∀ t > 0,∃ x : η{ym},{ym+1,ym+2,... }
t (x) = 1}.

From Corollary 3.8, symmetry and translation invariance,

P(Cn) = P(Dm) = γ ∀n, m≥ 0.

On the set {(x , t) : x ∈ Z, t ≥ 0} the Poisson processes used in the construction are n-fold mixing
with respect to translations on Z for any n ∈ N. Since xn+1 ≥ xn+ 1, this implies that for all k ≥ 1

lim
N→∞
P
�

∩k
j=0C c

N j

�

= (1− γ)k.

Consequently
P
�

∩n≥0C c
n

�

≤ (1− γ)k

for all k ≥ 1. This shows that
P
�

∪n≥0Cn
�

= 1.

The result for the Dm’s is proved similarly. �

PROOF OF THEOREM 3.9 By the Markov property, it suffices to consider the case where A= {yn : n ∈
N} ∪ {xn : n ∈ N}, B = {0} and the sequences (xn) and (yn) are as in the previous lemma.

For all n, m≥ 1, we define

En,m =
n

∀t > 0, ∃x : η{xn},{xn−1,xn−2,... }
t (x) = 1

o
⋂

n

∀t > 0, ∃x : η{ym},{ym+1,ym+2,... }
t (x) = 1

o

.

From the last Lemma we know that P(∪n,mEn,m) = 1. Hence, it suffices to show that for all n, m ∈ N,
we have:

P(∀ t > 0 ∃x : ηA,{0}
t (x) = 2, En,m) = 0.

But on the event En,m the evolution of "2"’s is not altered by adding "1"’s to the left of ym or to the
right of xn. Therefore the result follows from Proposition 3.10. �

3.3 Proof of Theorem 1.1

The only if part follows from Theorem 3.9. Let us prove the if part. We consider the case where
|A∩ B+|<∞. The other case is treated similarly.

Recall the definition of the set of configurations

L = {η; s. t. η(x) = 2, and η(y) = 1 imply y < x}.
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We let
T = inf{t ≥ 0, ηt ∈ L}.

Clearly |A∩ B+|<∞ implies that
PA,B(T <∞)> 0.

Hence from the strong Markov property it remains to show that whenever A∩ B+ = ;,

PA,B(the type 2 population survives for ever)> 0.

This last statement follows from translation invariance, (3.2) and Corollary 3.8.

3.4 Proof of Theorem 1.2

By the Markov property and symmetry it suffices to show that the theorem holds for some A and B.
To prove this, let (xn)n≥0 and (ym)m≥0 be as in the statement of Lemma 3.11 and let Cn and Dm be
as in the proof of that lemma. It follows from that same lemma that there exist n and m such that
P(Cn ∩ Dm)> 0. This implies that

P{ym}{xn}(∀ t > 0 ∃ x , y : ηt(x) = 1,ηt(y) = 2)> 0.

Hence, the theorem holds when A= {xn} and B = {ym}.

3.5 Corollary for the one–type contact process

The following is an immediate consequence of the above results.

Corollary 3.12. Let {ξA
t , t ≥ 0} denote the one–type contact process starting from the configuration

ξ0 and let A= {x , ξ0(x) = 1}. It follows from our results that

1. if A contains both a sequence which converges to +∞ and a sequence which converges to −∞,
then no individual has a progeny which survives for ever;

2. if |A|=+∞ but sup A<∞, then exactly one individual has a progeny which survives for ever.

PROOF: The first statement is a consequence of Theorem 3.9. For the second statement first note that
it follows from (3.2) and Corollary 3.8 that for any initial condition having a rightmost individual,
the probability that this individual has a progeny which survives forever is bounded below by γ > 0.
We then define an increasing sequence of stopping times: τ1 is the smallest time at which the
progeny of the rightmost initial individual dies out, τ2 is the smallest time at which the progeny of
the rightmost individual at time τ1 dies out and so on. It then follows from a repeated application
of the Strong Markov Property that P(τn <∞) ≤ γn. Hence, with probability 1 for some k, τk =∞
which implies that at least one individual has a progeny wchich survives forever. Suppose now
that two individuals, say x < y , have a progeny which survives for ever with positive probability.
Adding infinitely many individuals at time t = 0 on the right of y cannot possibly modify the fate
of the progeny of x . This would mean that the progeny of x would survive for ever with positive
probability, in the presence of infinitely many individuals at time t = 0 on both of its sides. This
contradicts Theorem 3.9.
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4 Remarks about the case of unequal birth rates

Assume that the type 1 individuals have the birth rate µ, and type 2 individuals have the birth rate
λ.

It is not hard to deduce from our argument that for µ > λc there exists ε > 0 such that the conclusion
of 1.1 remains true if µ− ε < λ < µ. However, we conjecture that this is not the case for all values
of λ in the interval (λc ,µ). Consider now the right contact process, where each individual gives birth
to offsprings on its right at rate λ, and does not give birth to any offspring on its left. Let now
λcc denote the critical value of the parameter λ, such that whenever λ > λcc , the one–type right
contact process starting from {0} has a positive probability of survival. Going back to our two–types
contact process, whenever λ > λcc , whatever the value of µ may be, the progeny of a single type 2
individual with a finite number of type 1 individuals on its right at time 0, has a positive probability
of survival.

In the other direction, we conjecture that if the rates favor type 2 individuals (i.e. λ > µ > λc) then
a unique type 2 individual has a positive probability of having descendants at all times even when
all remaining sites are occupied at time 0 by type 1 individuals.

Acknowledgment We thank T.M. Liggett and J. Steif for useful discussions concerning the proof of
Lemma 2.10, and F. Ezanno for his careful reading of an earlier version of this paper.
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