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1 Introduction

A continuing challenge in the theory of nonlinear filtering is the identification of natural conditions

under which the so-called innovations conjecture is valid. The essence of the problem is as follows: on

a filtered probability space (Ω,F , P; {Ft}) one is given an RD-valued Ft -standard Wiener process

{Wt}, together with an RD-valued Ft -progressively measurable signal process {βt} subject to the

“finite energy” condition

E

∫ T

0

|βt |
2 dt <∞, (1.1)

for some finite “horizon” T ∈ (0,∞). Define the observation process {Yt} and its associated filtration

{F Y
t } in the usual way, namely

Yt :=Wt +

∫ t

0

βs ds, F Y
t := σ{Ys, s ∈ [0, t]}, t ∈ [0, T]. (1.2)

Put β̂t := E
�

βt

¯

¯ F Y
t

�

, and define the innovation process {It} and filtration {F I
t } as

It := Yt −

∫ t

0

β̂s ds, F I
t := σ{Is, s ∈ [0, t]}, t ∈ [0, T]. (1.3)

In this rather informal introduction we disregard such measure-theoretic technicalities as the need to

deal with the usual augmentations of the filtrations {F Y
t } and {F I

t }, and for {β̂t} to be interpreted

as the optional projection of {βt} onto the usual augmentation of the filtration {F Y
t }; all these

refined technicalities will be given due consideration from Section 2 onwards. One sees from (1.3)

that {It} is F Y
t -adapted, hence F I

t ⊂ F
Y
t . The innovations conjecture states that one actually has

equality of the σ-algebras, namely F I
t =F

Y
t for each t ∈ [0, T].

The innovations conjecture is in fact false under the “minimal” conditions above, as follows from

results of Benes ([2], Sect. 8), which are based upon a subtle example due to Tsirel’son [25] of a

functional stochastic differential equation (SDE) which fails to have a strong solution. It is therefore

necessary to formulate supplementary conditions under which the innovations conjecture can be

shown to hold. One of the earliest results of this kind is due to Clark [5], who established the

conjecture in the case where the signal {βt} is uniformly bounded and independent of {Wt}, using

an argument based on the Kallianpur-Striebel representation for the conditional expectation β̂t (the

main result of [5] appears as Theorem 11.4.1 of Kallianpur [[11], p.284], as well as in Meyer [[19],

pp.244-246]).

A powerful approach for dealing with the innovations problem was introduced in the late 1970’s

with the recognition by Allinger, Benes, Clark, Erzhov and Mitter that a theorem of Yamada and

Watanabe [27] on pathwise uniqueness and strong solutions of SDEs was key to an alternative and

very elegant approach for establishing the innovations conjecture. The central idea is the following:

when {βt} and {Wt} are independent then the Kallianpur-Striebel formula yields an RD-valued non-

anticipative function {γt} on C[0, T : RD] (the space of continuous functions from [0, T] into RD,

with the raw canonical filtration) such that β̂(t,ω) = γt(Y (ω)) (P ⊗ λ) a.e., and therefore the

defining relation for the innovation process in (1.3) can be written in the differential form

dYt = dIt + γt(Y ) dt, Y0 = 0. (1.4)
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Since {It} is a standardF Y
t -Wiener process (see e.g. Rogers and Williams [22], Theorem VI(8.4)(i),

p.323) it follows that the pair {(Yt , It)} on the filtered probability space (Ω,F , P; {F Y
t }) is a solu-

tion of (1.4) in the “weak” or “usual” sense (see e.g. Revuz and Yor [20], Definition IX(1.2), p.350).

Consequently, if it can be verified that (1.4) has the property of pathwise uniqueness, then the the-

orem of Yamada and Watanabe (see e.g. Theorem IX(1.7)(ii) of [20], p.352) asserts that {(Yt , It)}

is a strong solution of (1.4), that is {Yt} is F I
t -adapted, and hence F Y

t ⊂ F
I
t , as required to get

the innovations conjecture. This is the approach used in [1], in which the innovations conjecture is

established when {βt} is independent of {Wt} and satisfies the finite energy condition (1.1).

The preceding results rely completely on the basic condition that the given processes {βt} and

{Wt} in (1.2) are independent. When these processes are correlated it is not possible to establish

the innovations conjecture unless specific models which define the structure of the correlation are

postulated. The simplest of these is the linear Gaussian model, for which the innovations conjecture

may be established by functional-analytic methods which depend on the underlying linearity (see

e.g. Kallianpur [11], Section 10.2). In the genuinely nonlinear and non-Gaussian case the problem

of establishing the innovations conjecture with correlated data becomes much more challenging.

The most significant results on this problem are due to Krylov [15], who considers the following

model defined on the finite interval t ∈ [0, T]:
(

(1′) dX t = b1(t, X t , Yt) dt +σ11(t, X t , Yt) dW 1
t +σ12(t, X t , Yt) dW 2

t , X0 = ξ0,

(2′) dYt = b2(t, X t , Yt) dt + dW 2
t , Y0 = 0;

(1.5)

(in fact, Krylov considers a rather more general model - see (1) of [15], p.773 - which we have

simplified to (1.5) in order to focus on just the main essentials). In this model {X t} is an Rd -valued

“state” process (typically not available for exact measurement), {Yt} is an RD-valued observation

process, {(W 1
t ,W 2

t )} is a standard Wiener process independent of the initial state ξ0, and b1, b2, σ11,

σ12 are vector or matrix-valued Borel measurable functions (of appropriate dimension) defined and

uniformly bounded on [0, T]×Rd×RD, and globally Lipschitz-continuous on Rd×RD with Lipschitz-

constant independent of t ∈ [0, T]. For the filtration {Ft} given by Ft := σ{ξ0,W 1
s ,W 2

s , s ∈ [0, t]}

and {βt} defined by βt := b2(t, X t , Yt) it follows that {W 2
t } is a standard Ft -Wiener process, and

{βt} is a uniformly bounded and Ft -adapted process. Thus (1.5)(2′) corresponds to the observa-

tion equation in (1.2) (with W 2 interpreted as W ), and we are therefore in the setting of the first

paragraph of the present section, and can pose the question of the validity of the innovations con-

jecture for the model (1.5). This was established by Krylov [15], using an approach which relies

on the normalized (Kushner-Stratonovich) filter equation written as a “forward equation" in density

form (due to Krylov and Rozovskii [16], Theorem 1.2, pp.341-342), together with an ingenious

recursive approximation of the optimal nonlinear filter, each approximation being adapted to the

innovations filtration; this effectively yields that the optimal nonlinear filter itself is adapted to the

innovations filtration, from which the innovations conjecture follows. The associated hypotheses are

enumerated in ([15], pp.773-774), as well as in Kallianpur ([11], pp.302-303), and in particular

include (1) the law of ξ0 has a continuous density which belongs to an appropriate Sobolev space of

functions on Rd ; (2) the least eigenvalue of the symmetric matrix σ11σ
′
11(t, x , y) is lower-bounded

by some µ > 0 uniformly in (t, x , y); (3) σ11(t, x , y) and σ12(t, x , y) are third-order smooth with

respect to x , and b1(t, x , y) and b2(t, x , y) are second-order smooth with respect to x; and (4) the

“sensor function” b2(t, x , y) is square-integrable in x with respect to Lebesgue measure in the sense

that there is some Borel-measurable g : Rd → [0,∞) such that
∫

Rd g2(x) dx <∞ and
¯

¯b2(t, x , y)
¯

¯≤ g(x) for all (t, x , y) ∈ [0, T]×Rd ×RD, (1.6)

2192



(see eqn. (4) of [15], p.774, or (v) of [11], p.302). This latter condition is fairly strong, since it

supplements the previous postulate of uniform boundedness of the sensor function b2(t, x , y) with

respect to (t, x , y) ∈ [0, T]× Rd × RD with the further condition that b2(t, x , y) be a member of

L2(Rd), when regarded as a function of the “state” parameter x ∈ Rd . In addition, the requirement

that the initial state ξ0 have a continuous density is also quite strong, since it excludes for example

the simple case where the initial state is non-random.

In view of the preceding discussion, an obvious goal is to try to extend the basic approach used

for resolving the innovations conjecture when {βt} and {Wt} in the observation equation (1.2)

are independent, to models such as (1.5) for which this independence no longer holds. It is this

problem that we address here. The advantages of this approach are that it is conceptually quite

simple, and, as will be seen, it also enables one to remove several of the stronger hypotheses that

appear to be necessary when resolving the innovations conjecture for the model (1.5) by methods

based on the density form of the normalized filter equation. In fact we shall study a model which is

a non-Markov variant of (1.5) with path-dependent coefficients and hypotheses which do not entail

uniform boundedness, smoothness, or square-integrability of the coefficients, or require the initial

state distribution ξ0 to have a density. The approach relies only on elementary stochastic analysis,

together with a modification due to Clark [6] of the classical theorem of Yamada and Watanabe [27]

on the relation between strong solutions of SDEs and pathwise uniqueness.

In Section 2 we formulate the model and the basic hypotheses, and state the main result (Propo-

sition 2.6) on equality of the observation and innovation σ-algebras. In Section 3 we summarize

a number of preliminaries that we shall need, in particular a “pathwise” Bayes formula and the

afore-mentioned result of Clark [6], and in Section 4 we establish the innovation conjecture for the

model of Section 2. Finally, in Section 5, we specialize the nonlinear filtering problem of Section

2, and obtain as a by-product of the innovations conjecture that the corresponding measure-valued

normalized filter equation has the property of pathwise-uniqueness; this supplements some earlier

results of this kind of Kurtz and Ocone [17] and the authors [18]. Throughout the exposition we

isolate in numbered Remarks various facts and observations which we shall need for later reference.

2 Conditions, Model and Main Result

To facilitate easy reference we summarize all of our notation as follows:

Notation 2.1. (I) For a positive integer q write Rq for the space of all real q-dimensional column

vectors, write x i or [x]i for the i-th scalar entry and |x | := [
∑q

i=1(x
i)2]1/2 for the Euclidean norm

of x ∈ Rq. Likewise, for positive integers q and r, write Rq×r for the space of all q by r matrices

with real entries, write Ai j or [A]i j for the (i, j)-th scalar entry, A′ for the transpose, and ‖A‖ :=

maxx∈Rr , |x |=1 |Ax | for the operator norm of A∈ Rq×r .

(II) For a fixed T ∈ (0,∞) let C[0, T ;Rq] denote the space of all continuous mappings from [0, T]

into Rq, with the usual supremum norm. For notational brevity we also denote this space by Cq

when there is no possibility of confusion, and put Bt(Cq) = σ{ψ(s), s ∈ [0, t]}, t ∈ [0, T], for the

canonical filtration on Cq (with ψ a generic member of Cq).

(III) B(S) denotes the Borel σ-algebra of a separable metric space (S,ρ), and, for a F/B(S)-

measurable mapping ξ from a probability space (Ω,F , P) into S, let Pξ−1 denote the probability

measure onB(S) given by Pξ−1(A) := P[ξ ∈ A] for each A∈B(S).

(IV) For an Rq-valued process {ηt} put F
η
t := σ{ηs, s ∈ [0, t]} for its raw filtration.
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(V) For a continuous semimartingale {Mt} put E (M)t := exp{Mt − (1/2)〈M〉t}.

(VI) For a measure space (E,S ,µ) (not necessarily complete) write Zµ[S ] for the collection {N ⊂

E : N ⊂ H for some H ∈ S with µ(H) = 0}. For a σ-algebraM ⊂ S writeM ∨ Zµ[S ] for the

minimal σ-algebra on E which includes all members ofM and Zµ[S ].

(VII) Let C∞(Rq) denote the set of all infinitely smooth R-valued mappings on Rq, and let C∞c (R
q)

denote the set of all members of C∞(Rq) with compact support.

To specify a model for the filtering problem, fix a constant T ∈ (0,∞), which determines a finite

“time-horizon” t ∈ [0, T] of interest, together with an Rd -valued “state” process {X t , t ∈ [0, T]} and

an RD-valued observation process {Yt , t ∈ [0, T]} determined by the coupled SDE (2.7), which is

subject to the following Conditions 2.2 and 2.3:
(

(1′) dX t = at(X , Y ) dt + bt(X , Y ) dW 1
t + ct(X , Y ) dYt , X0 = ξ0,

(2′) dYt = ht(X , Y ) dt + dW 2
t , Y0 = 0.

(2.7)

Condition 2.2. The process {(W 1
t ,W 2

t ), t ∈ [0, T]} in (2.7) is an Rq+D-valued standard Wiener

process with respect to the filtration {Ft} on a given filtered probability space (Ω,F , P; {Ft}) sat-

isfying the “usual conditions” (see e.g. [21], Definition II(67.1), p.172), and ξ0 is an Rd -valued

F0-measurable random variable such that E
¯

¯ξ0

¯

¯

4
<∞.

Condition 2.3. For Ξ := [0, T]×C[0, T ;Rd]×C[0, T ;RD] the mappings a : Ξ→ Rd , b : Ξ→ Rd×q,

c : Ξ → Rd×D, and h : Ξ → RD in (2.7) have the following properties: (i) if α denotes a generic

scalar entry from a, b, c or h, then the mapping (t, x , y) 7→ αt(x , y) : Ξ 7→ R is continuous, and the

the mapping (x , y) 7→ αt(x , y) : Cd × CD 7→ R is Bt(Cd × CD)-measurable for each t ∈ [0, T]; (ii)

there is a constant K ∈ [0,∞) such that, if α denotes a generic scalar entry from a, b, c, h, or ch,

then
¯

¯αt(x1, y1)−αt(x2, y2)
¯

¯≤ K sup
s∈[0,t]

{
¯

¯x1(s)− x2(s)
¯

¯+
¯

¯y1(s)− y2(s)
¯

¯},

for all t ∈ [0, T], (x i , yi) ∈ Cd × CD; (iii) h is uniformly bounded on Ξ.

Remark 2.4. The third term on the right of (2.7)(1′) represents “feedback” of the observation {Yt}

to the dynamics of the state process {X t}. When (2.7)(2′) is used to remove “ dYt” from (2.7)(1′)

then we get state-dynamics in a form similar to (1.5)(1′) (but for path-dependent coefficients). From

Condition 2.3 and standard results on SDE’s with Lipschitz-continuous “functional” coefficients (e.g.

Kallianpur [11], Theorem 5.1.1, p.97) we know that the processes {X t} and {Yt} are uniquely

determined to within indistinguishability, and adapted to the filtration σ{ξ0, W 1
s , W 2

s , s ∈ [0, t]} ∨

ZP[F ]⊂Ft , hence are continuous Ft -semimartingales.

Remark 2.5. Let {Yt} be the “usual augmentation” (Rogers and Williams [21], Definition II(67.3)

and Lemma II(67.4), p.172) of the raw filtration F Y
t = σ{Ys, s ∈ [0, t]} of the observation process

{Yt} given by (2.7)(2′) (recall Notation 2.1(IV)). Put

βt := ht(X , Y ), t ∈ [0, T], (2.8)

(for {(X t , Yt)} given by (2.7)), and let {β̂t , t ∈ [0, T]} denote the optional projection of {βt , t ∈

[0, T]} onto the filtration {Yt} (see e.g. Definition VI(7.1) of [22], p.319). With β̂t thus understood,

define the innovations process {It} by

It := Yt −

∫ t

0

β̂s ds, t ∈ [0, T], (2.9)
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and let {It} be the usual augmentation of the raw filtration {F I
t } of the process given by (2.9).

It follows that {It} is Yt -adapted, hence It ⊂ Yt . Our main result asserts that the opposite set

inclusion holds, which establishes the innovations conjecture for the model (2.7):

Proposition 2.6. Suppose Conditions 2.2 and 2.3 for the coupled SDE (2.7). Then, with reference

to Remark 2.5, we have that Yt = It for each t ∈ [0, T].

Comparing this result with that summarized in Section 1, we see that (2.7) admits coefficients

with “functional” dependence (in contrast to the “diffusion-type” coefficients in (1.5)), without any

postulated smoothness, allows unbounded coefficients in the “state” equation (2.7)(1′), and does not

require that the initial state ξ0 in (2.7) have a density function. We do need uniform boundedness

of the “sensor function” ht in the observation equation (2.7)(2′), but do not postulate that this

function enjoy any square-integrability properties comparable to (1.6) (which would of course not

make sense in the setting of path-dependent coefficients).

3 A Pathwise Bayes Formula and Other Preliminaries

Essential to the proof of Proposition 2.6 is a “pathwise” Bayes representation for the process {β̂t}

(recall Remark 2.5) which is given in the present section. We begin by recalling a Bayes formula for

the conditional expectation E
�

βt

¯

¯ Yt

�

which is established in Elliott ([7], (18.24), p.290) in the

case of Markov dynamics for the state/observation pair (X , Y ). We briefly summarize the derivation

of the formula, since our setting is somewhat different from that of [7], and because later on we

shall need some of the ideas which arise in the derivation. The process {βt} is continuous, Ft -

adapted and uniformly bounded (see (2.8), Remark 2.4, and Condition 2.3(i)(iii)), and hence (see

Notation 2.1(V)) the process given by

Γt := exp

�

−

∫ t

0

β ′τ dW 2
τ −

1

2

∫ t

0

¯

¯βτ
¯

¯

2
dτ

�

= E (−[0 β]′ • [W 1 W 2])t , (3.10)

defines a continuous Ft -martingale on (Ω,F , P). It follows that

P0(A) := E[ΓT ; A], A∈ F , (3.11)

defines a probability measure on (Ω,F ) equivalent to P, and for A ∈ F0, we have P0(A) =

E[E
�

ΓT

¯

¯ F0

�

; A] = E[Γ0; A] = P(A). Since ξ0 is F0-measurable (Condition 2.2) it follows in

particular that ξ0 has the same law relative to both P and P0, namely

π0(B) := P[ξ0 ∈ B] = P0[ξ0 ∈ B], B ∈B(Rd). (3.12)

Moreover, from (2.8) and (2.7)(2′), we have

�

W 1
t

Yt

�

=

�

W 1
t

W 2
t

�

+

∫ t

0

�

0

βs

�

ds, (3.13)

and it follows from (3.10), (3.11), (3.13), and the Girsanov theorem that

{(W 1
t , Yt), t ∈ [0, T]} is an Rq+D-valued standard Ft -Wiener process on (Ω,F , P0). (3.14)
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Now put

Λt := 1/Γt = exp

�∫ t

0

β ′τ dYτ−
1

2

∫ t

0

¯

¯βτ
¯

¯

2
dτ

�

, t ∈ [0, T], (3.15)

(where we have used (3.13) at the second equality). From (3.11), for each t ∈ [0, T] we have

P(A) = E0[Λt ; A] for all A ∈ Ft (E0 denotes P0-expectation). Since Yt ⊂ Ft , the change-of-

variables formula for Radon-Nikodym derivatives (e.g. Wong and Hajek [26], Lemma 7.1, p.243)

then establishes the desired Bayes representation, namely for each t ∈ [0, T] we have

E
�

βt

¯

¯ Yt

�

=
E0

�

βtΛt

¯

¯ Yt

�

E0

�

Λt

¯

¯ Yt

� , P − a.s. (3.16)

In the sequel it will be essential to have at hand a “pathwise” representation of the Bayes formula

(3.16) which is due to Bhatt and Karandikar [3]. As preparation for stating this representation we

summarize in the following Theorem 3.1 two fundamental results of Karandikar ([13], Theorem

3) and ([12], Theorem 4.3) on pathwise representations for stochastic integrals and for solutions

of SDEs with Lipschitz-continuous coefficients. These results are needed to state the “pathwise”

representation of the Bayes formula (3.16) and will also be used for the proof of Proposition 2.6 in

Section 4.

Theorem 3.1. The following “pathwise” representations hold:

(I) There exists a universal “stochastic integral” mapping J : C1× C1→ C1 (where C1 := C[0, T : R]

- recall Notation 2.1(II)) with the following properties:

(a) (ψ1,ψ2) 7→ J(ψ1,ψ2) : C1× C1 7→ C1 isB(C1× C1)/B(C1)-measurable;

(b) if {ρt} is an R-valued continuousAt -adapted process and {ηt} is an R-valued continuous semi-

martingale on a filtered probability space (E,A ,µ; {At}) satisfying the usual conditions, then the

process {Jt(ρ,η)} (defined pathwise) is indistinguishable from the (At -adapted) stochastic integral

process

(ρ •η)t :=

∫ t

0

ρτ dητ, t ∈ [0, T].

(II) Suppose that Condition 2.3 holds for the coefficients a, b and c in (2.7)(1′). Then there exists a

universal “solution” mapping e : Rd × Cq × CD→ Cd with the following properties:

(a) (ξ, w, y) 7→ e(ξ, w, y) : Rd × Cq × CD 7→ Cd isB(Rd × Cq × CD)/B(Cd)-measurable;

(b) if {(η1
t ,η2

t )} is an Rq+D-valued continuous semimartingale on a filtered probability space

(E,A ,µ; {At}) satisfying the usual conditions, and χ0 is some Rd -valued A0-measurable random

vector, then the process {et(χ0,η1,η2)} (defined pathwise) is indistinguishable from the (Rd -valued,

continuous, andAt -adapted) process {ζt} defined by

dζt = at(ζ,η
2) dt + bt(ζ,η

2) dη1
t + ct(ζ,η

2) dη2
t , ζ0 = χ0, (3.17)

(existence and uniqueness - to within indistinguishability - of solutions for (3.17) follows from

Picard iterations and Condition 2.3)

The mapping J in Theorem 3.1(I) is “universal” in the sense that it does not depend in any way

on the laws of the continuous process {ρt} and the continuous semimartingale {ηt}. Similarly, the

solution mapping e in Theorem 3.1(II) is “universal” in that it is determined by the coefficients a, b
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and c only, and does not depend on the laws of χ0 or the semimartingale {(η1
t ,η2

t )}. It will be useful

to define a “canonical set-up” as follows: recalling Notation 2.1(II)(III) put

Q1 :=Wiener measure onB(Cq), Q2 :=Wiener measure onB(CD), (3.18)

E := Rd × Cq × CD, µ(A) := (π0×Q1×Q2)(A), A∈B(E), (3.19)

in which π0 is the law of the initial state ξ0 for the model (2.7) (see (3.12)).

Remark 3.2. For later use we note the following simple observation: By (3.14) and (3.18) we have

P0Y−1 =Q2 onB(CD); since P and P0 are equivalent on F (by (3.11)), we then see that PY−1 and

Q2 are equivalent probability measures onB(CD).

Denote byA :=B(E)∨ Zµ[B(E)] the µ-completion ofB(E) (see Notation 2.1(VI)), and put

At := (B(Rd)⊗Bt(Cq)⊗Bt(CD))∨ Zµ[B(E)]. (3.20)

Then the filtered probability space (E,A ,µ; {At}) satisfies the usual conditions (see e.g. [21],

Theorem (II)(68.4), p.175). If (ξ, w, y) is a generic member of E then {et(ξ, w, y)} is an Rd -valued,

continuous andAt -adapted process on (E,A ,µ; {At}), and then, for

ϑt(ξ, w, y) := ht(e(ξ, w, y), y), (t,ξ, w, y) ∈ [0, T]×Rd × Cq × CD, (3.21)

we see from Condition 2.3(i) that {ϑt(ξ, w, y)} is an RD-valued, continuous andAt -adapted process

on (E,A ,µ; {At}). From this it follows that {Jt(ϑ
k(ξ, w, y), yk)} is R-valued, continuous and At -

adapted for each k = 1,2, . . . , D, and hence the (0,∞)-valued process {ρt(ξ, w, y)} defined on

(E,A ,µ; {At}) by

ρt(ξ, w, y) := exp





D
∑

k=1

Jt(ϑ
k(ξ, w, y), yk)−

1

2

∫ t

0

¯

¯ϑτ(ξ, w, y)
¯

¯

2
dτ



 , (3.22)

is likewise continuous andAt -adapted.

From now onB(CD)
Q2

denotes the Q2-completion ofB(CD) andBt(CD)
Q2

denotes the completion

ofBt(CD) with the Q2-null sets ofB(CD)
Q2

, namely (see Notation 2.1(VI))

B(CD)
Q2

:=B(CD)∨ ZQ2[B(CD)], Bt(CD)
Q2

:=Bt(CD)∨ ZQ2[B(CD)]. (3.23)

Then the filtered probability space (CD,B(CD)
Q2

,Q2; {Bt(CD)
Q2
}) is just the usual augmentation

of (CD,B(CD),Q2; {Bt(CD)}) (since Q2 is Wiener measure onB(CD)).

With these preliminaries in place, we can state the following representation formulae of Bhatt and

Karandikar ([3], p.45, p.46): The (0,∞)-valued process {Gt(y)} defined by

Gt(y) :=

∫

Rd×Cq

ρt(ξ, w, y) d(π0×Q1)(ξ, w), (t, y) ∈ [0, T]× CD, (3.24)

isBt(CD)
Q2

-predictable (or previsible), the RD-valued process {Ft(y)} defined by

Ft(y) :=

∫

Rd×Cq

ϑt(ξ, w, y)ρt(ξ, w, y) d(π0×Q1)(ξ, w), (t, y) ∈ [0, T]× CD, (3.25)
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isBt(CD)
Q2

-predictable, and for each t ∈ [0, T] we have

E0

�

Λt

¯

¯ Yt

�

= Gt(Y ) and E0

�

βtΛt

¯

¯ Yt

�

= Ft(Y ), P − a.s. (3.26)

Thus, from (3.26) and (3.16), for each t ∈ [0, T] one has

E
�

βt

¯

¯ Yt

�

= γt(Y ), P − a.s. (3.27)

for the RD-valued andBt(CD)
Q2

-predictable function {γt(y)} given by

γt(y) :=
Ft(y)

Gt(y)
, (t, y) ∈ [0, T]× CD. (3.28)

Remark 3.3. The “pathwise” representation (3.27) will be essential to establishing Proposition 2.6.

In fact, it will be useful to have the representation in the form of a functional which is predictable

with respect to the raw canonical filtration {Bt(CD)} rather than its Q2-augmentation {Bt(CD)
Q2
},

in order to facilitate later application of results on SDE’s with coefficients having functional depen-

dence (see Rogers and Williams [22], Definition V(8.3) and V(8.7), p.122-123). To this end, observe

from (3.23) and ([22], V(10.12), p.128) that there exists some RD-valuedBt(CD)-predictable pro-

cess {γ0
t } such that

Q2{y ∈ CD : γt(y) = γ
0
t (y), t ∈ [0, T]} = 1. (3.29)

Moreover, from (3.21), (3.24), (3.25), and the uniform bound on h (Condition 2.3(iii)), we see

that |Ft(y)| ≤ ‖h‖Gt(y) (for ‖h‖ := sup(t,x ,y)∈Ξ |ht(x , y)| <∞), thus |γt(y)| ≤ ‖h‖ for all (t, y) ∈

[0, T] × CD, and it is easily seen from the monotone-class argument leading to (3.29) that γ0 is

subject to the same uniform bound, namely

|γ0
t (y)| ≤ ‖h‖ , (t, y) ∈ [0, T]× CD. (3.30)

Since {γ0
t } isBt(CD)-predictable, it follows that {γ0

t (Y )} is Yt -predictable (see [22], V(8.6), p.123)

hence Yt -optional. Moreover, from (3.29), (3.27), Remark 3.2, and β̂t = E
�

βt

¯

¯ Yt

�

, P−a.s. (recall

Remark 2.5), we get β̂t = γ
0
t (Y ), P − a.s. for each t ∈ [0, T]. From this relation, along with (2.9)

and Fubini’s theorem, we see that {It} and {Yt} satisfy the identity

It = Yt −

∫ t

0

γ0
τ(Y ) dτ, t ∈ [0, T], P − a.s. (3.31)

Remark 3.4. For later reference we next recall the notions of solution and strong solution in the

context of the particular SDE arising from (3.31). Although these ideas are quite standard in the

theory of SDE’s, there is some variation in terminology and formulation from one reference to

another. In view of their considerable importance it seems appropriate to recall the definitions

clearly at this point:

(I) A pair {(Ω̄, F̄ , P̄; {F̄t}), (Ȳt , Īt)} is a solution of the SDE with drift function {γ0
t } and unit covari-

ance when (Ω̄, F̄ , P̄; {F̄t}) is a filtered probability space satisfying the usual conditions, {Ȳt} is an

R
D-valued continuous F̄t -adapted process, and { Īt} is an RD-valued standard F̄t -Wiener process on

(Ω̄, F̄ , P̄), such that

Ȳt = Īt +

∫ t

0

γ0
τ(Ȳ ) dτ, t ∈ [0, T], P̄ − a.s.
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Furthermore, a solution {(Ω̄, F̄ , P̄; {F̄t}), (Ȳt , Īt)} is said to be a strong solution when {Ȳt} is adapted

to the filtration {Īt} (which is the usual augmentation of the raw filtration {F Ī
t } of the Wiener

process { Īt}), or equivalently when Ȳt ⊂ Īt , t ∈ [0, T], where {Ȳt} is the usual augmentation of

the raw filtration {F Ȳ
t } of the process {Ȳt}.

(II) For the innovation process {It} and observation filtration {Yt} defined at Remark 2.5 it is a

standard result that {It} is an RD-valued Yt -Wiener process on (Ω,F , P) (see e.g. Rogers and

Williams [22], Theorem VI(8.4)(i), p.323). It then follows from (3.31) that {(Ω,F , P; {Yt}), (Yt , It)}

is a solution of the SDE with drift function {γ0
t } and unit covariance (in the sense of (I)). It remains

to show that it is a strong solution, for then we have that Yt ⊂ It , which gives Proposition 2.6. To

this end, we shall use a variant of the theorem of Yamada and Watanabe [27] due to Clark ([6],

Proposition and Corollary p.157), which, in the context of the SDE with drift function {γ0
t } and unit

covariance, states the following:

Theorem 3.5. Suppose that the SDE with drift function {γ0
t } and unit covariance has the

property of pathwise-uniqueness in the following restricted sense: given any pair of solu-

tions {(Ω̄, F̄ , P̄; {F̄t}), (Ȳ
i
t , Īt)}, i = 1,2, each having joint-law identical to that of the solution

{(Ω,F , P; {Yt}), (Yt , It)} in Remark 3.4(II) (that is P(I , Y )−1 = P̄( Ī , Ȳ 1)−1 = P̄( Ī , Ȳ 2)−1), it nec-

essarily follows that {Ȳ 1
t } and {Ȳ 2

t } are P̄-indistinguishable. Then {(Ω,F , P; {Yt}), (Yt , It)} is a

strong solution, that is Yt ⊂ It for each t ∈ [0, T].

Remark 3.6. Some remarks on the relationship between the classical theorem of Yamada and

Watanabe [27] and Clark’s modification of this theorem are in order. The theorem of Yamada

and Watanabe asserts (among other things) that if pathwise-uniqueness holds among all pairs of

postulated solutions of an SDE (on an arbitrary common filtered probability space, with common

initial value and common “driving” Wiener process) then each and every solution of the SDE is a

strong solution (see e.g. Theorem IX(1.7)(ii) of [20], p.352, for a very nice rendition of this result).

In contrast, Clark’s modification [6] of this theorem postulates the weaker hypothesis of pathwise-

uniqueness among all pairs of postulated solutions of the SDE having the same joint law as some

designated solution, and in return gives the weaker conclusion that just the designated solution is

strong. For many applications this conclusion is all that is wanted (the present one being a case

in point), and the weaker hypothesis is often easier to verify, since pathwise-uniqueness need be

established only among putative solutions with the same law as the solution whose strength must

be demonstrated, rather than among all postulated solutions. Although Theorem 3.5 is a statement

of Clark’s result only for the specific case of the SDE with drift function {γ0
t } and unit covariance,

the result in fact pertains to completely general SDE’s with functional coefficients (see Clark [6],

Proposition and Corollary on p.157).

Remark 3.7. From now on fix a pair of solutions {(Ω̄, F̄ , P̄; {F̄t}), (Ȳ
i
t , Īt)}, i = 1,2, of the

SDE with drift function {γ0
t } and unit covariance, having the same joint-law as the solution

{(Ω,F , P; {Yt}), (Yt , It)} of Remark 3.4(II), that is P(I , Y )−1 = P̄( Ī , Ȳ 1)−1 = P̄( Ī , Ȳ 2)−1 (as in The-

orem 3.5). In Section 4 we shall use the structure of the drift functional {γ0
t } to establish

P̄{Ȳ 1
t = Ȳ 2

t , t ∈ [0, T]} = 1. (3.32)

Once this has been shown, Proposition 2.6 follows immediately from Theorem 3.5. To estab-

lish (3.32) it is necessary to “expand” the filtered probability space (Ω̄, F̄ , P̄; {F̄t}) on which the

solutions are defined. Fix a standard Rq-valued F̂t -Wiener process {Ŵt , t ∈ [0, T]} and an Rd -

valued F̂0-measurable random vector ξ̂0 on a filtered probability space (Ω̂, F̂ , P̂; {F̂t}), such that
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P̂ξ̂−1
0 = Pξ−1

0 := π0 (recall Condition 2.2 and definition of π0 at (3.12)). Next, put

Ω̃ := Ω̄× Ω̂, G̃ := F̄ ⊗ F̂ , G̃t := F̄t ⊗ F̂t , P̃ := P̄ × P̂, (3.33)

and let (Ω̃, F̃ , P̃; {F̃t}) be the usual augmentation of the filtered probability space (Ω̃, G̃ , P̃; {G̃t})

(see [21], Lemma II(67.4), p.172). Next, for ω̃ := (ω̄, ω̂), put

Ĩt(ω̃) := Īt(ω̄), Ỹ i
t (ω̃) := Ȳ i

t (ω̄), W̃t(ω̃) := Ŵt(ω̂), ξ̃0(ω̃) := ξ̂0(ω̂). (3.34)

Since a Wiener process remains so when its filtration is augmented ([21], Lemma II(72.2), p.180),

we have

{W̃t} and { Ĩt} are Rq and RD-valued F̃t -standard Wiener processes on (Ω̃, F̃ , P̃), (3.35)

σ{ξ̃0, W̃t , t ∈ [0, T]} and σ{ Ĩt , Ỹ 1
t , Ỹ 2

t , t ∈ [0, T]} are P̃-independent, (3.36)

P̃(ξ̃0, W̃ )−1 = π0×Q1, P(I , Y )−1 = P̄( Ī , Ȳ i)−1 = P̃( Ĩ , Ỹ i)−1, i = 1,2, (3.37)

and {Ỹ 1
t } and {Ỹ 2

t } are RD-valued continuous F̃t -semimartingales such that

Ỹ i
t = Ĩt +

∫ t

0

γ0
τ(Ỹ

i) dτ, t ∈ [0, T], P̃ − a.s. (3.38)

Upon defining

l̃t := γ0
t (Ỹ

1)− γ0
t (Ỹ

2), (3.39)

we see from (3.38) that

Ỹ 1
t − Ỹ 2

t =

∫ t

0

l̃τ dτ. (3.40)

It therefore remains to show that

l̃t(ω̃) = 0, λ× P̃ − a.e. (3.41)

for then (3.40) and the Fubini theorem establish that {Ỹ 1
t } and {Ỹ 2

t } are P̃-indistinguishable, which,

in view of (3.33) and (3.34), gives (3.32).

4 Proof of Proposition 2.6

In the present section our goal is to show (3.41); as noted at the end of the previous section, this

establishes (3.32) and hence Proposition 2.6. To this end, and recalling Remark 3.7 and Theorem

3.1(II), define

X̃ i
t := et(ξ̃0, W̃ , Ỹ i), i = 1,2, ∆X̃ t := sup

s≤t

|X̃ 1
s − X̃ 2

s |, (4.42)

Ht := σ{Ỹ 1
s , Ỹ 2

s , s ∈ [0, t]}, Ỹt :=Ht+ ∨ ZP̃[F̃ ]⊂ F̃t , (4.43)

(i.e. {Ỹt} is the usual augmentation of the filtration {Ht}; the set-inclusion at (4.43) follows because

the {Ỹ i} are F̃t -adapted and {F̃t} satisfies the usual conditions). To establish (3.41) we shall need

the following result, the proof of which is deferred to later in this section:
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Proposition 4.1. Suppose that Conditions 2.2 and 2.3 hold. Then there exists a sequence of Ỹt -

stopping times {Tn, n = 1,2, . . .} on (Ω̃, F̃ , P̃), together with a sequence of constants {K(n), n =

1,2, . . .} ⊂ [0,∞), such that

(i) 0≤ Tn(ω̃)≤ Tn+1(ω̃)≤ T for all ω̃ ∈ Ω̃ and n= 1,2, . . .;

(ii) limn→∞ Tn(ω̃) = T for P̃-almost all ω̃ ∈ Ω̃;

(iii) for each n= 1,2, . . ., the following inequalities (4.44) and (4.45) hold for all t ∈ [0, T]:

Ẽ[|l̃t |
2 I[0, Tn)(t)] ≤ K(n)

¨∫ t

0

Ẽ[I[0, Tn)(τ)|∆X̃τ|
2]dτ (4.44)

+

∫ t

0

Ẽ[I[0, Tn)(τ) |l̃τ|
2] dτ+ Ẽ[I[0, Tn)(t)|∆X̃ t |

2]

«

,

Ẽ[I[0, Tn)(t)|∆X̃ t |
2] ≤ K(n)

¨∫ t

0

Ẽ[I[0, Tn)(τ) |∆X̃τ|
2] dτ (4.45)

+

∫ t

0

Ẽ[I[0, Tn)(τ) |l̃τ|
2] dτ

«

.

Remark 4.2. From (3.35) and (3.38), we see that {(W̃t , Ỹ i
t )} is an Rq+D-valued continuous F̃t -

semimartingale, hence, for {X̃ i
t} defined by (4.42), it follows from Theorem 3.1(II)(b) that

X̃ i
t = ξ̃0+

∫ t

0

aτ(X̃
i , Ỹ i) dτ+

∫ t

0

bτ(X̃
i , Ỹ i) dW̃τ+

∫ t

0

cτ(X̃
i , Ỹ i) dỸ i

τ, t ∈ [0, T], (4.46)

and in particular {X̃ i
t} is an Rd -valued continuous F̃t -semimartingale. Now Ẽ|ξ̃0|

4 <∞ (by Condi-

tion 2.2 and Remark 3.7), the coefficients in (4.46) are globally Lipschitz-continuous hence linearly

bounded (by Condition 2.3), and {γ0
t (Ỹ

i)} is uniformly bounded (by (3.30)). From this, together

with (4.46), (3.38), (3.35), and a proof identical to that for no. 5.3.15 of Karatzas and Shreve

([14], p.306), we get the following bound which will often be used:

Ẽ[ max
t∈[0,T]

|X̃ i
t |

4]<∞, i = 1,2. (4.47)

Proof of (3.41): For each t ∈ [0, T] and n= 1,2, . . ., put

αn
t := Ẽ[I[0, Tn)(t)|∆X̃ t |

2], ηn
t := Ẽ[I[0, Tn)(t)|l̃t |

2], βn
t := K(n)

∫ t

0

ηn
τ dτ, (4.48)

where Tn and K(n) are as asserted in Proposition 4.1. Then (4.45) gives

αn
t ≤ β

n
t + K(n)

∫ t

0

αn
τ dτ, t ∈ [0, T], (4.49)

for each n = 1,2, . . . From (4.47) it follows in particular that t 7→ αn
t is integrable on t ∈ [0, T],

and t 7→ βn
t is of course integrable on t ∈ [0, T] (in view of (3.30) and (3.39)). Hence (4.49) and

Gronwall’s inequality (Kallianpur [11], Proposition 5.1.1, p.94-95) give, for all t ∈ [0, T],

αn
t ≤ β

n
t + K(n)

∫ t

0

e(t−τ)K(n)βn
τ dτ≤ βn

t + T K(n) eT K(n)βn
t = K1(n)β

n
t , (4.50)
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where K1(n) := 1 + T K(n)exp{T K(n)} ∈ [0,∞), and we have used the fact that the mapping

t 7→ βn
t is nondecreasing at the second inequality of (4.50). In light of (4.50) and (4.48), we obtain

the following integral inequalities: for each n= 1,2, . . .,

αn
t ≤ K2(n)

∫ t

0

ηn
τ dτ, t ∈ [0, T], (4.51)

with K2(n) := K1(n)K(n) ∈ [0,∞). From (4.51), (4.48) and (4.44), for each t ∈ [0, T] and n =

1,2, . . .,

ηn
t ≤ K(n)

¨

(1+ K2(n))

∫ t

0

ηn
τ dτ+ K2(n)

∫ t

0

�∫ τ

0

ηn
s ds

�

dτ

«

. (4.52)

Since ηn
s ≥ 0, s ∈ [0, T], we have

∫ t

0

[

∫ τ

0

ηn
s ds]dτ≤ t

∫ t

0

ηn
s ds ≤ T

∫ t

0

ηn
s ds, t ∈ [0, T];

it follows from this inequality and (4.52) that there is a constant K3(n) ∈ [0,∞) such that

ηn
t ≤ K3(n)

∫ t

0

ηn
τ dτ, t ∈ [0, T], (4.53)

and therefore, from (4.53), (4.48) and the Gronwall inequality, for each t ∈ [0, T] we have

Ẽ[I[0, Tn)(t) |l̃t |
2] = 0, n= 1,2,3, . . . (4.54)

Now limn→∞ Tn = T (P̃ − a.s.) and monotonically (by Proposition 4.1), and therefore, in view of

(4.54) and the monotone convergence theorem, we obtain Ẽ|l̃t |
2 = 0 for each t ∈ [0, T ); now

(3.41) follows from this and the Fubini theorem. �

Proof of Proposition 4.1: The proof involves constructing a sequence of Ỹt -stopping times

Tn and constants K(n) with the stated properties, and relies of course on the structure of the drift

functional {γ0
t } (defined by (3.21), (3.22), (3.24), (3.25), (3.28) and (3.29)). Since the proof

divides quite naturally into five distinct steps, we choose to present it as such (rather than breaking

it up into a number of independent lemmas, propositions, etc).

Step 1: In this step we begin construction of the stopping times Tn asserted in Proposition 4.1. From

Remark 3.2 and (3.37),

P̃(Ỹ i)−1 and Q2 are equivalent probability measures onB(CD) for i = 1,2, (4.55)

and hence, from this, together with (3.29) and (3.28),

P̃

¨

ω̃ : γ0
t (Ỹ

i(ω̃)) =
Ft(Ỹ

i(ω̃))

Gt(Ỹ
i(ω̃))

, t ∈ [0, T]

«

= 1, i = 1,2. (4.56)

Next, we need the following result, which follows immediately from Bhatt and Karandikar (see

Theorem 4.1 and eqn. (4.4) on p.47 of [3]):
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Theorem 4.3. There exists some N ∈ B(CD)
Q2

such that Q2(N) = 0, and, for each y 6∈ N , the

mappings t 7→ Ft(y) and t 7→ Gt(y) are continuous on [0, T] with inft∈[0,T] Gt(y)> 0.

Now use the set N from Theorem 4.3 to define processes {F̃t(y)} and {G̃t(y)} on the probability

space (CD,B(CD)
Q2

,Q2) by

¨

F̃t(y) := Ft(y) & G̃t(y) := Gt(y), t ∈ [0, T], when y 6∈ N ,

F̃t(y) := 0 & G̃t(y) := 1, t ∈ [0, T], when y ∈ N .
(4.57)

Since Q2(N) = 0, and we have already seen that {Ft(y)} and {Gt(y)} are Bt(CD)
Q2

-adapted (at

(3.24), (3.25)), it follows that {F̃t(y)} and {G̃t(y)} are continuous andBt(CD)
Q2

-adapted processes

on (CD,B(CD)
Q2

,Q2). Moreover, Bt(CD)
Q2
= Bt(CD) ∨ ZP̃(Ỹ i)−1

[B(CD)] for i = 1,2, (as follows

from (4.55) and (3.23)), thus each set A ∈ Bt(CD)
Q2

has the form A= B△C for some B ∈ Bt(CD)

and C ∈ ZP̃(Ỹ i)−1

[B(CD)], and from this together with (4.43) it is seen that F̃t(Ỹ
i) and G̃t(Ỹ

i) are

Ỹt -measurable, that is







{F̃t(Ỹ
i)} and {G̃t(Ỹ

i)} are continuous and Ỹt -adapted processes,

inf
t∈[0,T]

G̃t(Ỹ
i(ω̃))> 0, for each ω̃ ∈ Ω̃,

(4.58)

P̃{F̃t(Ỹ
i) = Ft(Ỹ

i), t ∈ [0, T]} = P̃{G̃t(Ỹ
i) = Gt(Ỹ

i), t ∈ [0, T]} = 1, (4.59)

(the latter following from (4.55), (4.57) and Q2(N) = 0). Then, from (4.59), (4.56), (3.39),

P̃

¨

l̃t =
F̃t(Ỹ

1)− F̃t(Ỹ
2)

G̃t(Ỹ
1)

+
F̃t(Ỹ

2)[G̃t(Ỹ
2)− G̃t(Ỹ

1)]

G̃t(Ỹ
1)G̃t(Ỹ

2)
, t ∈ [0, T]

«

= 1. (4.60)

In view of (4.58) we see that

(

T i
n(ω̃) := inf{t ∈ [0, T] : G̃t(Ỹ

i(ω̃))≤ 1/n} ∧ T, i = 1,2,

T3
n (ω̃) := inf{t ∈ [0, T] : |F̃t(Ỹ

2(ω̃))| ≥ n} ∧ T,
(4.61)

are Ỹt -stopping times for all n= 1,2, . . ., and

lim
n→∞

T i
n(ω̃) = T, for each ω̃ ∈ Ω̃, i = 1,2,3. (4.62)

Now put

l̃1
t := G̃t(Ỹ

1)− G̃t(Ỹ
2), l̃2

t := F̃t(Ỹ
1)− F̃t(Ỹ

2). (4.63)

Then it follows from (4.60), (4.61) and (4.63) that, for P̃-almost all ω̃,

|l̃t(ω̃)| ≤ n|l̃2
t (ω̃)|+ n3|l̃1

t (ω̃)|, 0≤ t ≤ (T 1
n ∧ T2

n ∧ T3
n )(ω̃). (4.64)

Step 2: In this step we work out upper-bounds for the quantities |l̃1
t | and |l̃2

t | defined at (4.63)

(these upper-bounds are given by (4.79) and (4.82)).

By (4.42) and (3.21) we have {ϑt(ξ̃0, W̃ , Ỹ i)} = {ht(X̃
i , Ỹ i)}, and this process is continuous F̃t -

adapted (by Condition 2.2 and the fact that {(X̃ i
t , Ỹ i

t )} is continuous F̃t -adapted - see Remark 4.2
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and Remark 3.7). Since {Ỹ i
t } is also a F̃t -semimartingale, we get from Theorem 3.1(I)(b) that the

process {Jt(ϑ
k(ξ̃0, W̃ , Ỹ i), (Ỹ i)k)} and stochastic integral hk(X̃ i , Ỹ i) • (Ỹ i)k are indistinguishable for

each k = 1,2, . . . , D. From these observations and (3.22), we find

ρt(ξ̃0, W̃ , Ỹ i) = exp

�∫ t

0

h′τ(X̃
i , Ỹ i) dỸ i

τ −
1

2

∫ t

0

|hτ(X̃
i , Ỹ i)|2 dτ

�

. (4.65)

To simplify the notation, put

hi
t := h′t(X̃

i , Ỹ i), i = 1,2, (4.66)

(thus hi
t is D-dimensional row-vector), and observe from (4.65) and (3.38), together with the uni-

form boundedness of h and γ0 (see Condition 2.3(iii) and (3.30)), that there is a constant C ∈ [0,∞)

such that

ρt(ξ̃0, W̃ , Ỹ i) = E (hi • Ĩ)t exp

�∫ t

0

hi
τ γ

0
τ(Ỹ

i) dτ

�

≤ CE (hi • Ĩ)t , t ∈ [0, T], (4.67)

(recall Notation 2.1(V), and the fact that { Ĩt} is an RD-valued F̃t -Wiener process - see (3.35)). Since

{hi
t} is uniformly bounded, continuous, and F̃t -adapted, we see that {E (hi • Ĩ)t} is a continuous Lp-

bounded F̃t -martingale for each p ∈ [1,∞), hence Doob’s maximal inequality and (4.67) establish

Ẽ[ sup
t∈[0,T]

{ρt(ξ̃0, W̃ , Ỹ i)}α]<∞ for each α ∈ [1,∞). (4.68)

Now P̃(ξ̃0, W̃ )−1 = π0 ×Q1 (by (3.37)), while σ{ξ̃0, W̃t , t ∈ [0, T]} and σ{Ỹ 1, Ỹ 2, t ∈ [0, T]} are

P̃-independent (by (3.36)). It then follows from the Fubini theorem for conditional expectations

(Ethier and Kurtz [8], Proposition 4.5, p.498), (3.24) and (4.59), that, for each t ∈ [0, T],

Ẽ
�

ρt(ξ̃0, W̃ , Ỹ i)
¯

¯ Ỹt

�

= Gt(Ỹ
i) = G̃t(Ỹ

i), P̃ − a.s. (4.69)

and thus, from (4.69), (4.63) and Jensen’s inequality, for each t ∈ [0, T],

|l̃1
t | ≤ Ẽ
�

|ρt(ξ̃0, W̃ , Ỹ 1)−ρt(ξ̃0, W̃ , Ỹ 2)|
¯

¯ Ỹt

�

, P̃ − a.s. (4.70)

We next upper-bound the quantity on the right side of (4.70). To this end, put

χt := (1/2)[ρt(ξ̃0, W̃ , Ỹ 1) +ρt(ξ̃0, W̃ , Ỹ 2)]. (4.71)

From the elementary upper-bound |ex − e y | ≤ (1/2)(ex + e y)|x− y |, x , y ∈ R, together with (4.71),

(4.66), (4.65), and (3.40), we find

|ρt(ξ̃0, W̃ , Ỹ 1)−ρt(ξ̃0, W̃ , Ỹ 2)| ≤ χt

(¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] dỸ 1
τ +

∫ t

0

h2
τ l̃τ dτ (4.72)

+
1

2

∫ t

0

[|h2
τ|

2− |h1
τ|

2] dτ

¯

¯

¯

¯

¯

)

.
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Since |h2
τ|

2− |h1
τ|

2 = [h2
τ+ h1

τ][h
2
τ− h1

τ]
′, we can use (3.38) and the Cauchy-Schwarz inequality for

the dτ-integrals on the right side of (4.72) to get

|ρt(ξ̃0, W̃ , Ỹ 1)−ρt(ξ̃0, W̃ , Ỹ 2)| (4.73)

≤ χt







¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

+

�∫ t

0

|h1
τ− h2

τ|
2 dτ

�1/2�∫ t

0

|γ0
τ(Ỹ

1)|2 dτ

�1/2

+

�∫ t

0

|h2
τ|

2 dτ

�1/2�∫ t

0

|l̃τ|
2 dτ

�1/2

+
1

2

�∫ t

0

|h1
τ − h2

τ|
2 dτ

�1/2�∫ t

0

|h1
τ+ h2

τ|
2 dτ

�1/2







.

Since {γ0
t (y)} is Bt(CD)-predictable and {Ỹ i

t } are continuous Ỹt -adapted, we see from (3.39) that

{l̃t} is Ỹt -predictable, and hence
∫ t

0
|l̃τ|

2 dτ is Ỹt -measurable. Then, upon taking Ỹt -conditional

expectations on each side of (4.73) and using the uniform-boundedness of {hi
t} and {γ0

t (Ỹ
1)}, for

each t ∈ [0, T] we get

Ẽ
�

|ρt(ξ̃0, W̃ , Ỹ 1)−ρt(ξ̃0, W̃ , Ỹ 2)|
¯

¯ Ỹt

�

≤ Ẽ



χt

¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

Ỹt



 (4.74)

+K1Ẽ





χt

�∫ t

0

|h1
τ − h2

τ|
2 dτ

�1/2
¯

¯

¯

¯

¯

¯

Ỹt





+ K1Ẽ
�

χt

¯

¯ Ỹt

�

�∫ t

0

|l̃τ|
2 dτ

�1/2

, P̃ − a.s.

in which K1 ∈ [0,∞) is a constant (depending only on the uniform bound ‖h‖ on {hi
t} and {γ0

t (Ỹ
1)}

- see (3.30)). Next, consider each term on the right of (4.74). Put

ψ1
t := Ẽ



 sup
t∈[0,T]

(χt)
2

¯

¯

¯

¯

¯

Ỹt



 , (4.75)

and observe, from (4.68) and (4.71), that

{ψ1
t } is a Ỹt -martingale such that sup

t∈[0,T]

Ẽ[(ψ1
t )
α]<∞, for each α ∈ [1,∞). (4.76)

From (4.75) and the Cauchy-Schwarz inequality for conditional expectations (Chow and Teicher

[4], Theorem 7.2.4, p.219) we obtain

Ẽ



χt

¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

Ỹt



 ≤ [ψ1
t ]

1/2 Ẽ
1/2







¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

2
¯

¯

¯

¯

¯

¯

Ỹt





 , P̃ − a.s. (4.77)

Ẽ





χt

�∫ t

0

|h1
τ− h2

τ|
2 dτ

�1/2
¯

¯

¯

¯

¯

¯

Ỹt





 ≤ [ψ
1
t ]

1/2 Ẽ
1/2





∫ t

0

|h1
τ− h2

τ|
2 dτ

¯

¯

¯

¯

¯

Ỹt



 , P̃ − a.s. (4.78)
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Now substitute (4.77) - (4.78) into (4.74) and square both sides. From this, together with the

upper-bound [
∑m

i=1 ai]
2 ≤ m2
∑m

i=1 a2
i (for ai ∈ R) and (4.70), for each t ∈ [0, T] we get

|l̃1
t |

2 ≤
�

Ẽ
�

|ρt(ξ̃0, W̃ , Ỹ 1)−ρt(ξ̃0, W̃ , Ỹ 2)|
¯

¯ Ỹt

��2
(4.79)

≤ K2ψ
1
t







Ẽ







¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

2
¯

¯

¯

¯

¯

¯

Ỹt







+ Ẽ





∫ t

0

|h1
τ− h2

τ|
2 dτ

¯

¯

¯

¯

¯

Ỹt



+

∫ t

0

|l̃τ|
2 dτ

)

, P̃ − a.s.

the constant K2 ∈ [0,∞) depending only on the uniform bound ‖h‖ on {hi
t} and {γ0

t (Ỹ
1)}.

We next establish a similar upper-bound on |l̃2
t |. From (4.42) and an argument identical to that

which led to (4.69) we obtain

Ẽ
�

ht(X̃
i , Ỹ i)ρt(ξ̃0, W̃ , Ỹ i)

¯

¯ Ỹt

�

= F̃t(Ỹ
i), P̃ − a.s.

Then it follows from (4.63) that

l̃2
t = Ẽ
�

ht(X̃
1, Ỹ 1)[ρt(ξ̃0, W̃ , Ỹ 1)−ρt(ξ̃0, W̃ , Ỹ 2)]

¯

¯ Ỹt

�

+ Ẽ
�

[ht(X̃
1, Ỹ 1)− ht(X̃

2, Ỹ 2)]ρt(ξ̃0, W̃ , Ỹ 2)
¯

¯ Ỹt

�

, P̃ − a.s.

and then, from Jensen’s inequality, for each t ∈ [0, T] we get

|l̃2
t | ≤ K3Ẽ
�

|ρt(ξ̃0, W̃ , Ỹ 1)−ρt(ξ̃0, W̃ , Ỹ 2)|
¯

¯ Ỹt

�

(4.80)

+ Ẽ
�

|ht(X̃
1, Ỹ 1)− ht(X̃

2, Ỹ 2)|ρt(ξ̃0, W̃ , Ỹ 2)
¯

¯ Ỹt

�

, P̃ − a.s.

for a constant K3 ∈ [0,∞) depending only on the uniform bound on h (Condition 2.3(iii)). From

the Cauchy-Schwarz inequality for conditional expectations, together with (4.71), (4.66),

Ẽ
�

|ht(X̃
1, Ỹ 1)− ht(X̃

2, Ỹ 2)|ρt(ξ̃0, W̃ , Ỹ 2)
¯

¯ Ỹt

�

≤ 2[ψ1
t ]

1/2 Ẽ
1/2 �

|h1
t − h2

t |
2
¯

¯ Ỹt

�

. (4.81)

From (4.81), (4.80), and (the second inequality of) (4.79), for each t ∈ [0, T] we have

|l̃2
t |

2 ≤ K4ψ
1
t







Ẽ
�

|h1
t − h2

t |
2
¯

¯ Ỹt

�

+ Ẽ







¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

2
¯

¯

¯

¯

¯

¯

Ỹt





 (4.82)

+ Ẽ





∫ t

0

|h1
τ − h2

τ|
2 dτ

¯

¯

¯

¯

¯

Ỹt



+

∫ t

0

|l̃τ|
2 dτ

)

, P̃ − a.s.

for a constant K4 ∈ [0,∞) depending only on the uniform bound ‖h‖.

Step 3: In this step we complete construction of the stopping times Tn in Proposition 4.1

(by introducing stopping times for the martingale {ψ1
t } at (4.75) and for the martingale {ψ2

t } to be

defined at (4.86)).
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In view of (4.43), the filtered probability space (Ω̃, F̃ , P̃; {Ỹt}) satisfies the usual conditions (i.e.

is an R-filtered probability space in the sense of [21], Definition II(67.1), p.172), and thus, from

(4.76) and ([21], Theorem II(67.7), p.173), {ψ1
t } has a modification which is a cadlag process (or

R-process in the sense of [21], Definitions II(62.1) and II(63.5), p. 163 and p.167). Since (4.79)

and (4.82) hold P̃ − a.s. for each t ∈ [0, T], with no loss of generality we shall always suppose that

{ψ1
t } is a Ỹt -adapted cadlag process. Now define

T4
n := inf{t ∈ [0, T] : ψ1

t > n} ∧ T. (4.83)

Since {Ỹt} is a right-continuous filtration we then see that T4
n is a Ỹt -stopping time ([21],

Lemma II(74.3), p.184). Moreover, from (4.76) and Doob’s maximal inequality, we obtain

Ẽ[supt∈[0,T](ψ
1
t )
α]<∞ for each α > 1, thus supt∈[0,T]ψ

1
t <∞, P̃ − a.s., and hence

lim
n→∞

T4
n = T, P̃ − a.s. (4.84)

Next, put

ζ :=

∫ T

0

|cτ(X̃
2, Ỹ 2)|2 dτ. (4.85)

Now Ẽ[maxt∈[0,T] |Ỹ
2
t |

4] <∞ (see (3.38), (3.35) and (3.30)); from this, together with (4.47) and

the fact that coefficient c is linearly bounded (being globally Lipschitz-continuous - see Condition

2.3), we obtain E|ζ|2 <∞. For each t ∈ [0, T] put

ψ2
t := Ẽ
�

ζ | Ỹt

�

. (4.86)

Then {ψ2
t } is a square-integrable Ỹt -martingale, which, without loss in generality, we shall suppose

is a cadlag process. Then

T5
n := inf{t ∈ [0, T] : ψ2

t > n} ∧ T, (4.87)

defines a Ỹt -stopping time, and, from the square-integrability of ζ together with Doob’s maximal

inequality, we find that

lim
n→∞

T5
n = T, P̃ − a.s. (4.88)

(exactly as at (4.84)). Recalling (4.61) and (4.83), put

Tn :=

5
∧

k=1

T k
n . (4.89)

Then Tn is a Ỹt -stopping time (since the T k
n are Ỹt -stopping times), and, from (4.88), (4.84) and

(4.62) we see that limn→∞ Tn = T , P̃ − a.s., and monotonically, as required.

Step 4: In this step we use the inequalities (4.79) and (4.82) (that were obtained in Step 2)

to establish (4.44) for some constants K(n) ∈ [0,∞) (and stopping times Tn given by (4.89)). From

(4.64) and (4.89) we have

|l̃t |
2 I[0, Tn)(t)≤ 2n6|l̃1

t |
2 I[0, Tn)(t) + 2n2|l̃2

t |
2 I[0, Tn)(t), P̃ − a.s. (4.90)

for each n= 1,2, . . . and t ∈ [0, T]. We next use the inequalities (4.79) and (4.82) obtained in Step

2 to upper-bound each term on the right of (4.90). From (4.89) and (4.83) we have the upper-bound
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ψ1
t (ω̃)I[0, Tn(ω̃))(t) ≤ n for all (t, ω̃) ∈ [0, T]× Ω̃, thus, from (4.79) and the Ỹt -measurability of

I[0, Tn)(t), for each n= 1,2, . . . and t ∈ [0, T],

|l̃1
t |

2 I[0, Tn)(t) ≤ K2n







Ẽ





 I[0, Tn)(t)

¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ]d Ĩτ

¯

¯

¯

¯

¯

2
¯

¯

¯

¯

¯

¯

Ỹt





 (4.91)

+ Ẽ



 I[0, Tn)(t)

∫ t

0

|h1
τ − h2

τ|
2 dτ

¯

¯

¯

¯

¯

Ỹt



+ I[0, Tn)(t)

∫ t

0

|l̃τ|
2 dτ

)

.

Since Ỹt ⊂ F̃t (from (4.43)) we see that Tn is a F̃t -stopping time. But {h1
t −h2

t } is F̃t -progressively

measurable (recall (4.66)), thus it follows from (3.35) and Karatzas and Shreve ([14], (2.24) of

Proposition 3.2.10, p.139-140) that

I[0, Tn)(t)

¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

2

=

¯

¯

¯

¯

¯

I[0, Tn)(t)

∫ t∧Tn

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

2

(4.92)

≤

¯

¯

¯

¯

¯

∫ t

0

I[0, Tn](τ) [h
1
τ− h2

τ] d Ĩτ

¯

¯

¯

¯

¯

2

,

hence, upon taking expectations in (4.92), and using (3.35) together with the Itô isometry and

Fubini theorem, for each t ∈ [0, T] we have

Ẽ





I[0, Tn)(t)

¯

¯

¯

¯

¯

∫ t

0

[h1
τ − h2

τ] d Ĩτ

¯

¯

¯

¯

¯

2




≤

∫ t

0

Ẽ[I[0, Tn)(τ) |h
1
τ− h2

τ|
2] dτ. (4.93)

Moreover, since I[0, Tn)(t)≤ I[0, Tn)(τ) when 0≤ τ≤ t, it is clear that

Ẽ

�

I[0, Tn)(t)

∫ t

0

|h1
τ − h2

τ|
2 dτ

�

≤

∫ t

0

Ẽ[I[0, Tn)(τ) |h
1
τ− h2

τ|
2] dτ, (4.94)

and from (4.94), (4.93) and (4.91), for each t ∈ [0, T] and n= 1,2, . . .,

Ẽ[|l̃1
t |

2 I[0, Tn)(t)] ≤ 2K2n

¨∫ t

0

Ẽ[I[0, Tn)(τ)|h
1
τ− h2

τ|
2]dτ (4.95)

+

∫ t

0

Ẽ[I[0, Tn)(τ) |l̃τ|
2] dτ

«

.

Similarly, from (4.82), (4.93), (4.94) and the Ỹt -measurability of I[0, Tn)(t), we obtain

Ẽ[|l̃2
t |

2 I[0, Tn)(t)] ≤ 2K4n

¨∫ t

0

Ẽ[I[0, Tn)(τ)|h
1
τ− h2

τ|
2]dτ (4.96)

+

∫ t

0

Ẽ[I[0, Tn)(τ) |l̃τ|
2] dτ+ Ẽ[I[0, Tn)(t)|h

1
t − h2

t |
2]

«

,
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and, upon combining (4.96), (4.95) and (4.90), for each t ∈ [0, T] and n= 1,2, . . ., we have

Ẽ[|l̃t |
2 I[0, Tn)(t)] ≤ K5n7

¨∫ t

0

Ẽ[I[0, Tn)(τ)|h
1
τ− h2

τ|
2]dτ (4.97)

+

∫ t

0

Ẽ[I[0, Tn)(τ) |l̃τ|
2] dτ+ Ẽ[I[0, Tn)(t)|h

1
t − h2

t |
2]

«

,

in which K5 ∈ [0,∞) is a constant. Next consider the first and third terms on the right of (4.97).

From Condition 2.3, (3.40), (4.42), (4.66) and the Cauchy-Schwarz inequality,

|h1
t − h2

t |
2 I[0, Tn)(t) ≤ 2K2

¨

sup
s≤t

|X̃ 1
s − X̃ 2

s |
2+ sup

s≤t

|Ỹ 1
s − Ỹ 2

s |
2

«

I[0, Tn)(t) (4.98)

≤ 2K2(T + 1)

¨

|∆X̃ t |
2 I[0, Tn)(t) +

∫ t

0

I[0, Tn)(τ) |l̃τ|
2 dτ

«

,

(since I[0, Tn)(t)≤ I[0, Tn)(τ) when 0≤ τ≤ t). Now it is clear that

∫ t

0

�∫ τ

0

I[0, Tn)(s) |l̃s|
2 ds

�

dτ≤ t

∫ t

0

I[0, Tn)(s)|l̃s|
2 ds, t ∈ [0, T], (4.99)

and upon inserting (4.98) into (4.97) and then using (4.99), we see that there is a constant

K6 ∈ [0,∞) such that (4.44) holds for each t ∈ [0, T] and n= 1,2, . . ., with K(n) := K6n7.

Step 5: In this step we establish (4.45) for some constants K(n) ∈ [0,∞) (with the stopping

times Tn given by (4.89)). From (4.46), (3.40) and (3.38),

X̃ 1
t − X̃ 2

t =

∫ t

0

[aτ(X̃
1, Ỹ 1)− aτ(X̃

2, Ỹ 2)] dτ+

∫ t

0

[bτ(X̃
1, Ỹ 1)− bτ(X̃

2, Ỹ 2)] dW̃τ

+

∫ t

0

[cτ(X̃
1, Ỹ 1)− cτ(X̃

2, Ỹ 2)] dỸ 1
τ +

∫ t

0

cτ(X̃
2, Ỹ 2)d(Ỹ 1− Ỹ 2)τ

=

∫ t

0

[aτ(X̃
1, Ỹ 1)− aτ(X̃

2, Ỹ 2)] dτ+

∫ t

0

[bτ(X̃
1, Ỹ 1)− bτ(X̃

2, Ỹ 2)] dW̃τ (4.100)

+

∫ t

0

[cτ(X̃
1, Ỹ 1)− cτ(X̃

2, Ỹ 2)] d Ĩτ +

∫ t

0

[cτ(X̃
1, Ỹ 1)− cτ(X̃

2, Ỹ 2)]γ0
τ(Ỹ

1)dτ

+

∫ t

0

cτ(X̃
2, Ỹ 2) l̃τ dτ.

In view of this, together with (4.42), (4.85), and the Cauchy-Schwarz inequality, we find a constant
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K7 ∈ [0,∞) (depending only on T) such that, for each t ∈ [0, T], n= 1,2, . . .,

|∆X̃ t |
2 I[0, Tn)(t) ≤ K7

¨

I[0, Tn)(t)

∫ t

0

|aτ(X̃
1, Ỹ 1)− aτ(X̃

2, Ỹ 2)|2 dτ

+ I[0, Tn)(t) sup
s≤t

¯

¯

¯

¯

¯

∫ s

0

[bτ(X̃
1, Ỹ 1)− bτ(X̃

2, Ỹ 2)] dW̃τ

¯

¯

¯

¯

¯

2

+ I[0, Tn)(t) sup
s≤t

¯

¯

¯

¯

¯

∫ s

0

[cτ(X̃
1, Ỹ 1)− cτ(X̃

2, Ỹ 2)] d Ĩτ

¯

¯

¯

¯

¯

2

(4.101)

+ I[0, Tn)(t)

�∫ t

0

|cτ(X̃
1, Ỹ 1)− cτ(X̃

2, Ỹ 2)|2 dτ

��∫ t

0

|γ0
τ(Ỹ

1)|2 dτ

�

+ I[0, Tn)(t) ζ

�∫ t

0

|l̃τ|
2 dτ

�«

.

Now upper-bound each term on the right of (4.101). It follows from Condition 2.3, reasoning

identical to that used at (4.98), and (4.99), that

I[0, Tn)(t)

∫ t

0

|aτ(X̃
1, Ỹ 1)− aτ(X̃

2, Ỹ 2)|2 dτ (4.102)

≤ 2K2(T + 1)2

¨∫ t

0

|∆X̃τ|
2 I[0, Tn)(τ) dτ+

∫ t

0

I[0, Tn)(τ)|l̃τ|
2 dτ

«

.

As for the second and third terms on the right of (4.101), put

∆bt := bt(X̃
1, Ỹ 1)− bt(X̃

2, Ỹ 2), ∆ct := ct(X̃
1, Ỹ 1)− ct(X̃

2, Ỹ 2). (4.103)

Then, again since I[0, Tn)(t)≤ I[0, Tn)(s) when 0≤ s ≤ t, we have

I[0, Tn)(t) sup
s≤t

¯

¯

¯

¯

¯

∫ s

0

∆bτ dW̃τ

¯

¯

¯

¯

¯

2

≤ sup
s≤t

I[0, Tn)(s)

¯

¯

¯

¯

¯

∫ s

0

∆bτ dW̃τ

¯

¯

¯

¯

¯

2

(4.104)

≤ sup
s≤t

¯

¯

¯

¯

¯

∫ s

0

I[0, Tn](τ)∆bτ dW̃τ

¯

¯

¯

¯

¯

2

,

where the second inequality of (4.104) follows exactly as at (4.92). For the third term on the right of

(4.101) we clearly have a bound identical to that of (4.104) but with ∆cτ and Ĩ in place of ∆bτ and

W̃ respectively. For the fourth term on the right of (4.101), it follows from the uniform-boundedness

of {γ0
t (Ỹ

1)} and the same reasoning which led to (4.102), that

I[0, Tn)(t)

�∫ t

0

|∆cτ|
2 dτ

��∫ t

0

|γ0
τ(Ỹ

1)|2 dτ

�

(4.105)

≤ CK2(T + 1)2

¨∫ t

0

|∆X̃τ|
2 I[0, Tn)(τ) dτ+

∫ t

0

I[0, Tn)(τ)|l̃τ|
2 dτ

«
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for some constant C ∈ [0,∞) (depending only on T and the uniform bound on γ0). Upon combining

(4.101), (4.102), (4.104), and (4.105), we find a constant K8 ∈ [0,∞) such that, for each t ∈ [0, T]

and n= 1,2, . . .,

|∆X̃ t |
2 I[0, Tn)(t) ≤ K8

¨∫ t

0

|∆X̃τ|
2 I[0, Tn)(τ) dτ+

∫ t

0

|l̃τ|
2 I[0, Tn)(τ) dτ

+ sup
s≤t

¯

¯

¯

¯

¯

∫ s

0

I[0, Tn](τ)∆bτ dW̃τ

¯

¯

¯

¯

¯

2

+ sup
s≤t

¯

¯

¯

¯

¯

∫ s

0

I[0, Tn](τ)∆cτ d Ĩτ

¯

¯

¯

¯

¯

2

(4.106)

+ ζ I[0, Tn)(t)

∫ t

0

I[0, Tn)(τ)|l̃τ|
2 dτ

«

.

We next take expectations on each side of (4.106). To this end, from Doob’s L2-maximal inequality,

(3.35), and the Itô isometry, we get

Ẽ





sup
s≤t

¯

¯

¯

¯

¯

∫ s

0

I[0, Tn](τ)∆bτ dW̃τ

¯

¯

¯

¯

¯

2




 ≤ 4

∫ t

0

Ẽ[I[0, Tn)(τ) |∆bτ|
2] dτ, (4.107)

and, exactly as at (4.98) together with Fubini’s theorem, we obtain

Ẽ[|∆bτ|
2 I[0, Tn)(τ)]≤ 2K2(T + 1)

¨

Ẽ[|∆X̃τ|
2 I[0, Tn)(τ)] +

∫ τ

0

Ẽ[|l̃s|
2 I[0, Tn)(s)] ds

«

.

Combining this with (4.107) then establishes

Ẽ





sup
s≤t

¯

¯

¯

¯

¯

∫ s

0

I[0, Tn](τ)∆bτ dW̃τ

¯

¯

¯

¯

¯

2




 ≤ 8K2(T + 1)

¨∫ t

0

Ẽ[I[0, Tn)(τ)|∆X̃τ|
2]dτ

+ T

∫ t

0

Ẽ[I[0, Tn)(τ)|l̃τ|
2] dτ

«

, (4.108)

and an identical upper-bound holds for the expectation of the fourth term on the right side of

(4.106). As for the fifth term on the right of (4.106), for each t ∈ [0, T] we have

Ẽ



ζ I[0, Tn)(t)

∫ t

0

I[0, Tn)(τ)|l̃τ|
2 dτ

¯

¯

¯

¯

¯

Ỹt



 (4.109)

=ψ2
t I[0, Tn)(t)

∫ t

0

I[0, Tn)(τ)|l̃τ|
2 dτ≤ n

∫ t

0

I[0, Tn)(τ) |l̃τ|
2 dτ, P̃ − a.s.

where we have used the Ỹt -measurability of I[0, Tn)(t)
∫ t

0
I[0, Tn)(τ)|l̃τ|

2 dτ and (4.86) at the

equality in (4.109), and (4.89) and (4.87) at the inequality in (4.109). Taking expectations in

(4.109) then gives, for each t ∈ [0, T] and n= 1,2, . . .,

Ẽ

�

ζI[0, Tn)(t)

∫ t

0

I[0, Tn)(τ)|l̃τ|
2 dτ

�

≤ n

∫ t

0

Ẽ[I[0, Tn)(τ)|l̃τ|
2] dτ. (4.110)

Combining (4.110), (4.108), and (4.106), we see that there is a constant K(n) ∈ [0,∞) such that

(4.45) holds for each t ∈ [0, T] and n= 1,2, . . . �
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Remark 4.4. As we have noted at Remark 3.4(II), establishing the innovations conjecture is really

a matter of showing that {(Ω,F , P; {Yt}), (Yt , It)} is a strong solution of the SDE with drift function

{γ0
t } and unit covariance (see Remark 3.4(I)), and this in turn follows from Theorem 3.5 once we

have shown that this SDE has the property of pathwise uniqueness. Although global Lipschitz-

continuity is postulated for the coefficients of the state/observation equation (2.7) (see Condition

2.3) it is well to note that the complexity of the drift term {γ0
t } means that standard results on

pathwise-uniqueness for classical Itô SDEs (see e.g. Theorem 5.1.1 of [Kallianpur [11], p.97]) do

not apply directly to the SDE with unit covariance and drift {γ0
t }. In fact, the global Lipschitz-

continuity of Condition 2.3 is essential for securing the representation of the drift {γ0
t } due to Bhatt

and Karandikar [3], but is otherwise used only rather indirectly in the proof of pathwise-uniqueness

(at (4.98), (4.102), (4.105) and (4.108)).

5 Pathwise-uniqueness for the Normalized Filter Equation

In this section we shall use Proposition 2.6 to establish pathwise-uniqueness for the measure-valued

SDE which gives the nonlinear filter for a simplified version of the model (2.7). To this end we shall

suppose from now on that {X t , t ∈ [0, T]} is an Rd -valued “state” process and {Yt , t ∈ [0, T]} is an

R
D-valued observation process given by

(

(1′) dX t = a(X t) dt + b(X t) dW 1
t + c(X t) dYt , X0 = ξ0,

(2′) dYt = h(X t) dt + dW 2
t , Y0 = 0.

(5.111)

subject to Condition 2.2 as well as

Condition 5.1. The mappings a : Rd → Rd , b : Rd → Rd×q, c : Rd → Rd×D and h : Rd → RD are

globally Lipschitz-continuous, h is uniformly bounded, and the d × d-matrix b(x)b′(x) is strictly

positive definite for each x ∈ Rd .

Remark 5.2. The model (5.111) is just a special case of (2.7), and therefore Remark 2.4 continues

to hold for (5.111). We define the observation filtration {Yt}, the innovations process {It}, and the

innovations filtration {It}, exactly as in Remark 2.5, except that {(X t , Yt)} is now given by (5.111)

(in place of (2.7)), and we put

βt := h(X t), t ∈ [0, T], (5.112)

(in place of (2.8)). From Proposition 2.6 we then have Yt = It , t ∈ [0, T].

Our goal is to establish pathwise-uniqueness for the measure-valued SDE giving the optimal nonlin-

ear filter for the model (5.111). For completeness we briefly recall this equation together with the

related ideas of a solution, pathwise-uniqueness, and uniqueness-in-law. From (5.111) we see that

{X t} is a diffusion process given by

dX t = (a+ ch)(X t) dt + c(X t)dW 2
t + b(X t)dW 1

t , X0 = ξ0, (5.113)

for which the corresponding linear second-order differential operator is

Aφ(x) =

d
∑

i=1

[a+ ch]i(x)∂iφ(x) +
1

2

d
∑

i, j=1

[m(x)m′(x)]i j∂i∂ jφ(x), (5.114)
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for all x ∈ Rd and φ ∈ C∞(Rd), with m : Rd → Rd×(D+q) given by m(x) :=
�

c(x) b(x)
�

, x ∈

R
d . To account for the dependence of the state-process {X t} on the Wiener process {W 2

t } in the

observation equation (5.111)(2′) define the linear first-order differential operator

Bkφ(x) :=

d
∑

i=1

c ik(x)∂iφ(x), k = 1, . . . , D, (5.115)

for all x ∈ Rd and φ ∈ C∞(Rd). From Kurtz and Ocone ([17], Lemma 1.1, p.82) there exists some

P (Rd)-valued and Yt -optional process {πt , t ∈ [0, T]} (called the optimal nonlinear filter), defined

on (Ω,F , P) and unique to within indistinguishability, such that

πtφ = E[φ(X t)|Yt], P − a.s. for each t ∈ [0, T] and φ ∈ B(Rd). (5.116)

From Fujisaki, Kallianpur and Kunita ([9], Theorem 5.1, p.34) (see also Rogers and Williams [22],

VI(8.11), p.325) we then have the following

Theorem 5.3. Suppose that {πt , t ∈ [0, T]} is the optimal nonlinear filter for the model (5.111).

Then, for each φ ∈ C∞c (R
d), the following holds to within indistinguishability:

πtφ = π0φ+

∫ t

0

πs(Aφ) ds+

∫ t

0

D
∑

k=1

[πs(h
kφ+Bkφ)− (πsh

k)(πsφ)] dI k
s , t ∈ [0, T]. (5.117)

Remark 5.4. Theorem 5.3 shows that {πtφ, t ∈ [0, T]} is continuous for each φ ∈ C∞c (R
d); since

C∞c (R
d) is convergence-determining (Ethier and Kurtz [8], Problem 3.11.11, p.151), it follows that

{πt , t ∈ [0, T]} is a continuous P (Rd)-valued and Yt -adapted process.

Remark 5.5. The family of relations (5.117) indexed by φ ∈ C∞c (R
d), constitutes the Fujisaki-

Kallianpur-Kunita-Kushner-Stratonovich equation or normalized filter equation, and effectively de-

fines a “probability measure-valued SDE” in which {It} is the “driving” Wiener process. A basic

viewpoint introduced by Szpirglas [24] and used in [18], is to regard the normalized filter equation

as a probability measure-valued SDE determined completely by the functions hk and linear oper-

ators A and Bk (given by (5.114) and (5.115)), but otherwise quite separate from the nonlinear

filtering problem, for which one can formulate the notions of solution, pathwise-uniqueness, and

uniqueness-in-law by direct analogy with these concepts for “ordinary” SDEs (see e.g. Revuz and

Yor [20], Definitions IX(1.2)-(1.3), pp. 350-351). For completeness we repeat the basic definitions

from [18]:

Definition 5.6. A pair {(Ω̄, F̄ , P̄; {F̄t}), (π̄t , Īt)} is a solution of the normalized filter equation when:

1. (Ω̄, F̄ , P̄; {F̄t}) is an R-filtered probability space (Definition II(67.1) on p.172 of [21]);

2. { Īt , t ∈ [0, T]} is an RD-valued standard F̄t -Wiener process on (Ω̄, F̄ , P̄);

3. {π̄t , t ∈ [0, T]} is a P (Rd)-valued, continuous, F̄t -adapted process such that, for each φ ∈

C∞c (R
d), the following holds to within P̄-indistinguishability

π̄tφ = π̄0φ +

∫ t

0

π̄s(Aφ) ds+

∫ t

0

D
∑

k=1

[π̄s(h
kφ +Bkφ)− (π̄sh

k)(π̄sφ)] d Ī k
s , t ∈ [0, T].
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Remark 5.7. Since the innovation {It} is an RD-valued Yt -Wiener process on (Ω,F , P) (by Re-

mark 5.2 and ([22], Theorem VI(8.4), p.323)), it follows from Remark 5.4 and Theorem 5.3 that

{(Ω,F , P; {Yt}), (πt , It)} is a solution of the normalized filter equation (5.117) in the sense of Defi-

nition 5.6 (where {πt} is the optimal nonlinear filter defined by (5.116)).

Definition 5.8. (1) The normalized filter equation has the property of pathwise-uniqueness when the

following holds: If {(Ω̄, F̄ , P̄; {F̄t}), (π̄
i
t , Īt)}, i = 1,2, are solutions of the normalized filter equation

such that P̄(π̄1
0 = π̄

2
0) = 1, then {π̄1

t , t ∈ [0, T]} and {π̄2
t , t ∈ [0, T]} are P̄-indistinguishable.

(2) The normalized filter equation has the property of uniqueness-in-joint law when the following

holds: If {(Ω̃, F̃ , P̃; {F̃t}), (π̃t , Ĩt)} and {(Ω̄, F̄ , P̄; {F̄t}), (π̄t , Īt)} are solutions of the normalized

filter equation and P̃(π̃0)
−1 = P̄(π̄0)

−1, then the P (Rd)×RD-valued processes {(π̃t , Ĩt), t ∈ [0, T]}

and {(π̄t , Īt), t ∈ [0, T]} have identical finite-dimensional distributions.

In ([18], Theorem 2.21(ii), p.190) it is established that the normalized filter equation has the prop-

erty of uniqueness-in-joint law, but it is not shown that this equation has the property of pathwise-

uniqueness (see [18], Remark 3.8, p.197). Using the innovations conjecture asserted in Remark 5.2

we can establish a restricted form of pathwise-uniqueness:

Proposition 5.9. Suppose Condition 5.1 and fix a pair of solutions {(Ω̄, F̄ , P̄; {F̄t}), (π̄
i
t , Īt)}, i = 1,2,

of the normalized filter equation such that P̄(π̄1
0 = π̄

2
0) = 1. If π̄1

0 and π̄2
0 are such that Ē[π̄i

0ψ] <∞

for ψ(x) := |x |4, x ∈ Rd , then {π̄1
t , t ∈ [0, T]} and {π̄2

t , t ∈ [0, T]} are P̄-indistinguishable.

Remark 5.10. Proposition 5.9 postulates fourth-power integrability of the initial-value probability

measures π̄i
0, and for this reason gives a restricted form of pathwise-uniqueness when compared

with Definition 5.8(1), in which there is no comparable integrability condition on the initial-value

measures. Proposition 5.9 should be compared with Theorem 4.5 of Kurtz and Ocone ([17], p.99),

which establishes a partial pathwise-uniqueness for the normalized filter equation in the following

sense: if {µt , t ∈ [0, T]} is a P (Rd)-valued continuous process on the probability space (Ω,F , P)

on which the random data of the nonlinear filtering problem is specified, adapted to the observation

filtration {Yt} and satisfying a relation exactly analogous to the normalized filter equation, then {µt}

and the optimal nonlinear filter {πt} are P-indistinguishable. The hypotheses for this result are quite

general (see (4.19)(i)-(iv) in [17], p.98), and in particular do not entail the uniform-boundedness

and Lipschitz-continuity of the sensor function h(·) or fourth-power integrability of the initial laws

that are needed for Proposition 5.9. On the other hand, in return for these stronger hypotheses,

Proposition 5.9 establishes pathwise uniqueness in the genuine “Yamada-Watanabe” sense, that is

among pairs of candidate solutions on an arbitrary common filtered probability space (Ω̄, F̄ , P̄; {F̄t})

and “driven” by an arbitrary F̄t -Wiener Process { Īt}, rather than for candidate solutions {µt} on the

particular filtered probability space (Ω,F , P; {Yt}), adapted specifically to the observation filtration,

and “driven” specifically by the innovations process.

Proof of Proposition 5.9: From the hypotheses we have

π̄1
0ψ= π̄

2
0ψ<∞, P̄ − a.s. for ψ(x) := |x |4, x ∈ Rd . (5.118)

By a simple conditioning argument (see Ikeda and Watanabe [10], Remark IV.1.4, p.149) it is enough

to establish pathwise-uniqueness in the special case where the π̄i
0 are non-random, and thus, without

loss of generality, we shall suppose that

π̄1
0 = π̄

2
0 for some π̄i

0 ∈ P (R
d) such that π̄i

0ψ<∞ (for ψ given by (5.118)). (5.119)
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Fix some Rq+D-valued Wiener process {(W 1
t ,W 2

t ), t ∈ [0, T]} and some Rd -valued random vector

ξ0 on a common complete probability space (Ω,F , P), with σ{W 1
t ,W 2

t , t ∈ [0, T]} and ξ0 being

independent, and ξ0 having the common distribution π̄i
0 at (5.119), and let {Ft} be the usual

augmentation of the filtration {Gt} given by Gt := σ{ξ0,W 1
s ,W 2

s , s ∈ [0, t]}. Then the filtered

probability space (Ω,F , P; {Ft}), Wiener process {(W 1
t ,W 2

t ), t ∈ [0, T]}, and random vector ξ0

satisfy Condition 2.2, thus, for {(X t , Yt)} given by (5.111), it follows from Remark 5.2 that Yt = It

for each t ∈ [0, T]. Denote by {πt , t ∈ [0, T]} the optimal nonlinear filter corresponding to the

model (5.111) (that is, {πt} is characterized by (5.116)). From Condition 5.1 one sees immediately

that Conditions 2.18, 2.19 and 2.20 of [18] hold, and hence Theorem 2.21(ii) of ([18], p.190)

establishes that the normalized filter equation (5.117) has the property of uniqueness-in-joint law

(see Definition 5.8(2)). Accordingly, since {(Ω,F , P; {Yt}), (πt , It)} is a solution of the normalized

filter equation (recall Remark 5.7), and π0 = Pξ−1
0 = π̄i

0, i = 1,2 (the first equality following from

(5.116) together with X0 = ξ0, and the second equality following from the definition of ξ0), we find

that

{(πt , It), t ∈ [0, T]} and {(π̄i
t , Īt), t ∈ [0, T]} are identically distributed processes. (5.120)

Fix an arbitrary t ∈ [0, T]. We know that πt is Yt -measurable and therefore It -measurable (since

we have seen that Yt = It), and, since {It} is Wiener-distributed, we also have It = σ{Is, s ∈

[0, t]} ∨ ZP[F ] (by Rogers and Williams [21], II(68.4), p.175). But P (Rd) is a Polish space (when

it carries the Prohorov metric - see Ethier and Kurtz [8], Theorem 3.1.7, p.101), and therefore the

σ{Is, s ∈ [0, t]} ∨ ZP[F ]-measurability of πt implies that there is a sequence {tn, n = 1,2, . . .} ⊂

[0, t] and a Borel-measurable mapping Ψt : Π∞n=1R
D→P (Rd) such that

πt =Ψt(It1
, It2

, It3
, . . .), P − a.s. (5.121)

(see e.g. Stroock and Varadhan [23], Ex.1.5.6, p.44). In light of (5.121) and (5.120) we find

π̄i
t =Ψt( Īt1

, Īt2
, Īt3

, . . .), P̄ − a.s.,

for i = 1,2. Thus π̄1
t = π̄

2
t , P̄ − a.s., for arbitrary t ∈ [0, T], and the processes {π̄1

t , t ∈ [0, T]} and

{π̄2
t , t ∈ [0, T]}, being continuous, are therefore indistinguishable. �
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