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Abstract

We give a self-contained and detailed presentation of Kesten’s results that allow to relate critical
and near-critical percolation on the triangular lattice. They constitute an important step in the
derivation of the exponents describing the near-critical behavior of this model. For future use
and reference, we also show how these results can be obtained in more general situations, and
we state some new consequences.
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1 Introduction

Since 2000, substantial progress has been made on the mathematical understanding of percolation
on the triangular lattice. In fact, it is fair to say that it is now well-understood. Recall that performing
a percolation with parameter p on a lattice means that each site is chosen independently to be black
with probability p and white with probability 1 − p. We then look at the connectivity properties
of the set of black sites (or the set of white ones). It is well-known that on the regular triangular
lattice, when p ≤ 1/2 there is almost surely no infinite black connected component, whereas when
p > 1/2 there is almost surely one infinite black connected component. Its mean density can then
be measured via the probability θ(p) that a given site belongs to this infinite black component.

Thanks to Smirnov’s proof of conformal invariance of the percolation model at p = 1/2 [46], allow-
ing to prove that critical percolation interfaces converge toward SLE6 as the mesh size goes to zero,
and to the derivation of the SLE6 critical exponents [34; 35] by Lawler, Schramm and Werner, it is
possible to prove results concerning the behavior of the model when p is exactly equal to 1/2, that
had been conjectured in the physics literature, such as the values of the arm exponents [47; 36].
See e.g. [49] for a survey and references.

More than ten years before the above-mentioned papers, Kesten had shown in his 1987 paper Scaling

relations for 2D-percolation [31] that the behavior of percolation at criticality (ie when p = 1/2) and
near criticality (ie when p is close to 1/2) are very closely related. In particular, the exponents
that describe the behavior of quantities such as θ(p) when p → 1/2+ and the arm exponents for
percolation at p = 1/2 are related via relations known as scaling (or hyperscaling) relations. At that
time, it was not proved that any of the exponents existed (not to mention their actual value) and
Kesten’s paper explains how the knowledge of the existence and the values of some arm exponents
allows to deduce the existence and the value of the exponents that describe “near-critical” behavior.
Therefore, by combining this with the derivation of the arm exponents, we can for instance conclude
[47] that θ(p) = (p− 1/2)5/36+o(1) as p→ 1/2+.

The first goal of the present paper is to give a complete self-contained proof of Kesten’s results that
are used to describe near-critical percolation. Some parts of the proofs are simplified by using the
so-called 5-arm exponent and Reimer’s inequality. We hope that this will be useful and help a wider
community to have a clear and complete picture of this model.

It is also worth emphasizing that the proofs contain techniques (such as separation lemmas for
arms) that are interesting in themselves and that can be applied to other situations. The second
main purpose of the present paper is to state results in a more general setting than in [31], for
possible future use. In particular, we will see that the “uniform estimates below the characteristic
length” hold for an arbitrary number of arms and non-homogeneous percolation (see Theorem 11 on
separation of arms, and Theorem 27 on arm events near criticality). Some technical difficulties arise
due to these generalizations, but these new statements turn out to be useful. They are for instance
instrumental in our study of gradient percolation in [39]. Other new statements in the present
paper concern arms “with defects” or the fact that the finite-size scaling characteristic length Lε(p)

remains of the same order of magnitude when ε varies in (0,1/2) (Corollary 37) – and not only for
ε small enough. This last fact is used in [40] to study the “off-critical” regime for percolation.
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Figure 1: Percolation on the triangular lattice can be viewed as a random coloring of the dual
hexagonal lattice.

2 Percolation background

Before turning to near-critical percolation in the next section, we review some general notations
and properties concerning percolation. We also sketch the proof of some of them, for which small
generalizations will be needed. We assume the reader is familiar with the standard fare associated
with percolation, and we refer to the classic references [27; 23] for more details.

2.1 Notations

Setting

Unless otherwise stated, we will focus on site percolation in two dimensions, on the triangular
lattice. This lattice will be denoted by T= (VT ,ET ), where VT is the set of vertices (or “sites”), and
E

T is the set of edges (or “bonds”), connecting adjacent sites. We restrict ourselves to this lattice
because it is at present the only one for which the critical regime has been proved to be conformal
invariant in the scaling limit.

The usual (homogeneous) site percolation process of parameter p can be defined by taking the
different sites to be black (or occupied) with probability p, and white (vacant) with probability
1 − p, independently of each other. This gives rise to a product probability measure on the set
of configurations, which is referred to as Pp, the corresponding expectation being Ep. We usually
represent it as a random (black or white) coloring of the faces of the dual hexagonal lattice (see
Figure 1).

More generally, we can associate to each family of parameters p̂ = (p̂v)v a product measure P̂ for
which each site v is black with probability p̂v and white with probability 1− p̂v , independently of all
other sites.
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0

Sn

Figure 2: We refer to oblique coordinates, and we denote by Sn the “box of size n”.

Coordinate system

We sometimes use complex numbers to position points in the plane, but we mostly use oblique
coordinates, with the origin in 0 and the basis given by 1 and eiπ/3, ie we take the x–axis and its
image under rotation of angle π/3 (see Figure 2). For a1 ≤ a2 and b1 ≤ b2, the parallelogram R

of corners a j + bkeiπ/3 ( j, k = 1,2) is thus denoted by [a1, a2] × [b1, b2], its interior being ºR :=
]a1, a2[×]b1, b2[= [a1+1, a2−1]×[b1+1, b2−1] and its boundary ∂ R := R\ºR the concatenation
of the four boundary segments {ai} × [b1, b2] and [a1, a2]× {bi}.
We denote by ‖z‖∞ the infinity norm of a vertex z as measured with respect to these two axes, and
by d the associated distance. For this norm, the set of points at distance at most N from a site z forms
a rhombus SN (z) centered on this site and whose sides line up with the basis axes. Its boundary,
the set of points at distance exactly N , is denoted by ∂ SN (z), and its interior, the set of points at
distance strictly less that N , byºSN (z). To describe the percolation process, we often use SN := SN (0)
and call it the “box of size N”. Note that it can also be written as SN = [−N , N]× [−N , N]. It will
sometimes reveal useful to have noted that

|SN (z)| ≤ C0N2 (2.1)

for some universal constant C0. For any two positive integers n ≤ N , we also consider the annulus
Sn,N (z) := SN (z) \ºSn(z), with the natural notation Sn,N := Sn,N (0).

Connectivity properties

Two sites x and y are said to be connected if there exists a black path, ie a path consisting only of
black sites, from x to y . We denote it by x   y . Similarly, if there exists a white path from x to y ,
these two sites are said to be ∗–connected, which we denote by x  ∗ y .

For notational convenience, we allow y to be “∞”: we say that x is connected to infinity (x  ∞)
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if there exists an infinite, self-avoiding and black path starting from x . We denote by

θ(p) := Pp

�

0 ∞
�

(2.2)

the probability for 0 (or any other site by translation invariance) to be connected to∞.

To study the connectivity properties of a percolation realization, we often are interested in the
connected components of black or white sites: the set of black sites connected to a site x (empty
if x is white) is called the cluster of x , denoted by C(x). We can define similarly C∗(x) the white
cluster of x . Note that x  ∞ is equivalent to the fact that |C(x)|=∞.

If A and B are two sets of vertices, the notation A  B is used to denote the event that some site in A

is connected to some site in B. If the connection is required to take place using exclusively the sites

in some other set C , we write A
C
  B.

Crossings

A left-right (or horizontal) crossing of the parallelogram [a1, a2]× [b1, b2] is simply a black path
connecting its left side to its right side. However, this definition implies that the existence of a
crossing in two boxes sharing just a side are not completely independent: it will actually be more
convenient to relax (by convention) the condition on its extremities. In other words, we request such
a crossing path to be composed only of sites in ]a1, a2[×]b1, b2[ which are black, with the exception
of its two extremities on the sides of the parallelogram, which can be either black or white. The
existence of such a horizontal crossing is denoted by CH([a1, a2] × [b1, b2]). We define likewise
top-bottom (or vertical) crossings and denote their existence by CV ([a1, a2] × [b1, b2]), and also
white crossings, the existence of which we denote by C ∗H and C ∗V .

More generally, the same definition applies for crossings of annuli Sn,N (z), from the internal bound-
ary ∂ Sn(z) to the external one ∂ SN (z), or even in more general domains D, from one part of the
boundary to another part.

Asymptotic behavior

We use the standard notations to express that two quantities are asymptotically equivalent. For two
positive functions f and g, the notation f ≍ g means that f and g remain of the same order of
magnitude, in other words that there exist two positive and finite constants C1 and C2 such that
C1 g ≤ f ≤ C2 g (so that the ratio between f and g is bounded away from 0 and +∞), while f ≈ g

means that log f /log g → 1 (“logarithmic equivalence”) – either when p → 1/2 or when n → ∞,
which will be clear from the context. This weaker equivalence is generally the one obtained for
quantities behaving like power laws.

2.2 General properties

On the triangular lattice, it is known since [26] that percolation features a phase transition at
p = 1/2, called the critical point: this means that

• When p < 1/2, there is (a.s.) no infinite cluster (sub-critical regime), or equivalently θ(p) = 0.
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• When p > 1/2, there is (a.s.) an infinite cluster (super-critical regime), or equivalently θ(p)>
0. Furthermore, the infinite cluster turns out to be unique in this case.

In sub- and super-critical regimes, “correlations” decay very fast, this is the so-called exponential

decay property:

• For any p < 1/2,
∃C1, C2(p)> 0, Pp(0  ∂ Sn)≤ C1e−C2(p)n.

• We can deduce from it that for any p > 1/2,

Pp(0  ∂ Sn, |C(0)|<∞)
≤ Pp(∃ white circuit surrounding 0 and a site on ∂ Sn)

≤ C ′1e−C ′2(p)n

for some C ′1(p), C ′2(p)> 0.

We would like to stress the fact that the speed at which these correlations vanish is governed by
a constant C2 which depends on p – it becomes slower and slower as p approaches 1/2. To study
what happens near the critical point, we need to control this speed for different values of p: we will
derive in Section 7.4 an exponential decay property that is uniform in p.

The intermediate regime at p = 1/2 is called the critical regime. It is known for the triangular lattice
that there is no infinite cluster at criticality: θ(1/2) = 0. Hence to summarize,

θ(p)> 0 iff p > 1/2.

Correlations no longer decay exponentially fast in this critical regime, but (as we will see) just like
power laws. For instance, non trivial random scaling limits – with fractal structures – arise. This
particular regime has some very strong symmetry property (conformal invariance) which allows to
describe it very precisely.

2.3 Some technical tools

Monotone events

We use the standard terminology associated with events: an event A is increasing if “it still holds
when we add black sites”, and decreasing if it satisfies the same property, but when we add white
sites.

Recall also the usual coupling of the percolation processes for different values of p: we associate
to the different sites x i.i.d. random variables Ux uniform on [0,1], and for any p, we obtain the
measure Pp by declaring each site x to be black if Ux ≤ p, and white otherwise. This coupling shows
for instance that

p 7→ Pp(A)

is a non-decreasing function of p when A is an increasing event. More generally, we can represent
in this way any product measure P̂.
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Correlation inequalities

The two most common inequalities for percolation concern monotone events: if A and B are increas-
ing events, we have ([5; 23])

1. the Harris-FKG inequality:
P(A∩ B)≥ P(A)P(B).

2. the BK inequality:
P(A◦ B)≤ P(A)P(B)

if A and B depend only on sites in a finite set, A ◦ B meaning as usual that A and B occur
“disjointly”.

In the paper [5] where they proved the BK inequality, Van den Berg and Kesten also conjectured
that this inequality holds in a more general fashion, for any pair of events A and B (depending on
a finite number of sites): if we define A�B the disjoint occurrence of A and B in this situation, we
have

P(A�B)≤ P(A)P(B). (2.3)

This was later proved by Reimer [42], and it is now known as Reimer’s inequality. We will also use
the following inequality:

P1/2(A◦ B)≤ P1/2(A∩ B̃), (2.4)

where B̃ is the event obtained by “flipping” the configurations in B. This inequality is an intermediate
step in Reimer’s proof. On this subject, the reader can consult the nice review [8].

Russo’s formula

Russo’s formula allows to study how probabilities of events vary when the percolation parameter
p varies. Recall that for an increasing event A, the event “v is pivotal for A” is composed of the
configurations ω such that if we make v black, A occurs, and if we make it white, A does not occur.
Note that by definition, this event is independent of the particular state of v. An analog definition
applies for decreasing events.

Theorem 1 (Russo’s formula). Let A be an increasing event, depending only on the sites contained in

some finite set S. Then
d

dp
Pp(A) =
∑

v∈S

Pp(v is pivotal for A). (2.5)

We now quickly remind the reader how to prove this formula, since we will later (in Section 6)
generalize it a little.

Proof. We allow the parameters p̂v (v ∈ S) to vary independently, which amounts to consider the
more general function P : p̂ = (p̂v)v∈S 7→ P̂(A). This is clearly a smooth function (it is polynomial),
and Pp(A) = P (p, . . . , p). Now using the standard coupling, we see that for any site w, for a small
variation ε > 0 in w,

P̂
+ε(A)− P̂(A) = ε× P̂(w is pivotal for A), (2.6)
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so that
∂

∂ p̂w

P̂(A) = P̂(w is pivotal for A).

Russo’s formula now follows readily by expressing d

dp
Pp(A) in terms of the previous partial deriva-

tives:

d

dp
Pp(A) =
∑

v∈S

�

∂

∂ p̂v

P̂(A)

�

p̂=(p,...,p)

=
∑

v∈S

Pp(v is pivotal for A).

Russo-Seymour-Welsh theory

For symmetry reasons, we have:

∀n, P1/2(CH([0, n]× [0, n])) = 1/2. (2.7)

In other words, the probability of crossing an n×n box is the same on every scale. In particular, this
probability is bounded from below: this is the starting point of the so-called Russo-Seymour-Welsh
theory (see [23; 27]), that provides lower bounds for crossings in parallelograms of fixed aspect
ratio τ× 1 (τ≥ 1) in the “hard direction”.

Theorem 2 (Russo-Seymour-Welsh). There exist universal non-decreasing functions fk(.) (k ≥ 2),

that stay positive on (0,1) and verify: if for some parameter p the probability of crossing an n × n

box is at least δ1, then the probability of crossing a kn× n parallelogram is at least fk(δ1). Moreover,

these functions can be chosen satisfying the additional property: fk(δ)→ 1 as δ→ 1, with fk(1− ε) =
1− Ckε

αk + o(εαk) for some Ck,αk > 0.

If for instance p > 1/2, we know that when n gets very large, the probability δ1 of crossing an n×n

rhombus becomes closer and closer to 1, and the additional property tells that the probability of
crossing a kn× n parallelogram tends to 1 as a function of δ1.

Combined with Eq.(2.7), the theorem implies:

Corollary 3. For each k ≥ 1, there exists some δk > 0 such that

∀n, P1/2(CH([0, kn]× [0, n]))≥ δk. (2.8)

Note that only going from rhombi to parallelograms of aspect ratio slightly larger than 1 is difficult.
For instance, once the result is known for 2n× n parallelograms, the construction of Figure 3 shows
that we can take

fk(δ) = δ
k−2( f2(δ))

k−1. (2.9)
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Figure 3: This construction shows that we can take fk(δ) = δ
k−2( f2(δ))

k−1.

c1

c2

c3

r2

t

l1

l2

b

r1

H H
′

1. 2.

3.

Figure 4: Proof of the RSW theorem on the triangular lattice.
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Proof. The proof goes along the same lines as the one given by Grimmett [23] for the square lattice.
We briefly review it to indicate the small adaptations to be made on the triangular lattice. We hope
Figure 4 will make things clear. For an account on RSW theory in a general setting, the reader
should consult Chapter 6 of [27].

We work with hexagons, since they exhibit more symmetries. Note that a crossing of an N × N

rhombus induces a left-right crossing of a hexagon of side length N/2 (see Figure 4.1). We then
apply the “square-root trick” – used recurrently during the proof – to the four events {li   r j}: one

of them occurs with probability at least 1− (1−δ)1/4. This implies that

P(l1  r1) = P(l2  r2)≥ (1− (1−δ)1/4)2 =: τ(δ). (2.10)

(if P(l1  r1) = P(l2  r2)≥ 1−(1−δ)1/4 we are OK, otherwise we just combine a crossing l1  r2

and a crossing l2  r1).

Now take two hexagons H, H ′ as on Figure 4.2 (with obvious notation for their sides). With proba-
bility at least 1−(1−δ)1/2 there exists a left-right crossing in H whose last intersection with l ′1∪ l ′2 is
on l ′2. Assume this is the case, and condition on the lowest left-right crossing in H: with probability
at least 1 − (1 − τ(δ))1/2 it is connected to t ′ in H ′. We then use a crossing from l ′1 to r ′1 ∪ r ′2,
occurring with probability at least 1− (1−δ)1/2, to obtain

P(l1 ∪ l2  r ′1 ∪ r ′2)≥ (1− (1−δ)
1/2)× (1− (1−τ(δ))1/2)× (1− (1−δ)1/2).

The hard part is done: it now suffices to use t successive “longer hexagons”, and t − 1 top-bottom
crossings of regular hexagons, for t large enough (see Figure 4.3). We construct in such a way a left
right-crossing of a 2N × N parallelogram, with probability at least

f2(δ) := (1− (1−δ)1/2)2t(1− (1−τ(δ))1/2)2t−1. (2.11)

When δ tends to 1, τ(δ), and thus f2(δ), also tend to 1. Moreover, it is not hard to convince oneself
that f2 admits near δ = 1 an asymptotic development of the form

f2(1− ε) = 1− Cε1/8+ o(ε1/8). (2.12)

Eq.(2.9) then provides the desired conclusion for any k ≥ 2.

3 Near-critical percolation overview

3.1 Characteristic length

We will use throughout the paper a certain “characteristic length” L(p) defined in terms of crossing
probabilities, or “sponge-crossing probabilities”. This length is often convenient to work with, and
it has been used in many papers concerning finite-size scaling, e.g. [15; 16; 6; 7].

Consider the rhombi [0, n]× [0, n]. At p = 1/2, Pp(CH([0, n]× [0, n])) = 1/2. When p < 1/2 (sub-
critical regime), this probability tends to 0 when n goes to infinity, and it tends to 1 when p > 1/2
(super-critical regime). We introduce a quantity that measures the scale up to which these crossing
probabilities remain bounded away from 0 and 1: for each ε ∈ (0,1/2), we define

Lε(p) =

(

min{n s.t. Pp(CH([0, n]× [0, n]))≤ ε} when p < 1/2,

min{n s.t. Pp(C ∗H([0, n]× [0, n]))≤ ε} when p > 1/2.
(3.1)
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Hence by definition,
Pp(CH([0, Lε(p)− 1]× [0, Lε(p)− 1]))≥ ε (3.2)

and
Pp(CH([0, Lε(p)]× [0, Lε(p)]))≤ ε (3.3)

if p < 1/2, and the same with ∗’s if p > 1/2.

Note that by symmetry, we also have directly Lε(p) = Lε(1− p). Since P1/2(CH([0, n]× [0, n])) is
equal to 1/2 on every scale, we will take the convention Lε(1/2) = +∞, so that in the following, the
expression “for any n≤ Lε(p)” must be interpreted as “for any n” when p = 1/2. This convention is
also consistent with the following property.

Proposition 4. For any fixed ε ∈ (0,1/2), Lε(p)→ +∞ when p→ 1/2.

Proof. Was it not the case, we could find an integer N and a sequence pk→ 1/2, say pk < 1/2, such
that for each k, Lε(pk) = N , which would imply

Ppk
(CH([0, N]× [0, N]))≤ ε.

This contradicts the fact that

Ppk
(CH([0, N]× [0, N]))→ 1/2,

the function p 7→ Pp(CH([0, N]× [0, N])) being continuous (it is polynomial in p).

3.2 Russo-Seymour-Welsh type estimates

When studying near-critical percolation, we will have to consider product measures P̂ more general
than simply the measures Pp (p ∈ [0,1]), with associated parameters p̂v which are allowed to
depend on the site v:

Definition 5. A measure P̂ on configurations is said to be “between Pp and P1−p” if it is a product

measure, and if its parameters p̂v are all between p and 1− p.

The Russo-Seymour-Welsh theory implies that for each k ≥ 1, there exists some δk = δk(ε) > 0
(depending only on ε) such that for all p, P̂ between Pp and P1−p,

∀n≤ Lε(p), P̂(CH([0, kn]× [0, n]))≥ δk, (3.4)

and for symmetry reasons this bound is also valid for horizontal white crossings.

These estimates for crossing probabilities will be the basic building blocks on which most further
considerations are built. They imply that when n is not larger than Lε(p), things can still be com-
pared to critical percolation: roughly speaking, Lε(p) is the scale up to which percolation can be
considered as “almost critical”.

In the other direction, we will see in Section 7.4 that Lε(p) is also the scale at which percolation
starts to look sub- or super-critical. Assume for instance that p > 1/2, we know that

Pp(CH([0, Lε(p)]× [0, Lε(p)]))≥ 1− ε.
Then using RSW (Theorem 2), we get that

Pp(CH([0,2Lε(p)]× [0, Lε(p)]))≥ 1− ε̃,
where 1− ε̃= f2(1−ε) can be made arbitrarily close to 1 by taking ε sufficiently small. This will be
useful in the proof of Lemma 39 (but actually only for it).
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3.3 Outline of the paper

In the following, we fix some value of ε in (0,1/2). For notational convenience, we forget about
the dependence on ε. We will see later (Corollary 37) that the particular choice of ε is actually not
relevant, in the sense that for any two ε, ε′, the corresponding lengths are of the same order of
magnitude.

In Section 4 we define the so-called arm events. On a scale L(p), the RSW property, which we know
remains true, allows to derive separation results for these arms. Section 5 is devoted to critical
percolation, in particular how arm exponents – describing the asymptotic behavior of arm events
– can be computed. In Section 6 we study how arm events are affected when we make vary the
parameter p: if we stay on a scale L(p), the picture does not change too much. It can be used to
describe the characteristic functions, which we do in Section 7. Finally, Section 8 concludes the
paper with some remarks and possible applications.

With the exception of this last section, the organization follows the implication between the different
results: each section depends on the previous ones. A limited number of results can however be
obtained directly, we will indicate it clearly when this is the case.

4 Arm separation

We will see that when studying critical and near-critical percolation, certain exceptional events play
a central role: the arm events, referring to the existence of some number of crossings (“arms”) of the
annuli Sn,N (n < N), the color of each crossing (black or white) being prescribed. These events are
useful because they can be combined together, and they will prove to be instrumental for studying
more complex events. Their asymptotic behavior can be described precisely using SLE6 (see next
section), allowing to derive further estimates, especially on the characteristic functions.

4.1 Arm events

Let us consider an integer j ≥ 1. A color sequenceσ is a sequence (σ1, . . . ,σ j) of “black” and “white”
of length j. We use the letters “W ” and “B” to encode the colors: the sequence (black,white, black)
is thus denoted by “BW B”. Only the cyclic order of the arms is relevant, and we identify two
sequences if they are the same up to a cyclic permutation: for instance, the two sequences “BW BW ”
and “W BW B” are the same, but they are different from “BBWW ”. The resulting set is denoted by
S̃ j . For any color sequence σ, we also introduce σ̃ = (σ̃1, . . . , σ̃ j) the inverted sequence, where
each color is replaced by its opposite.

For any two positive integers n≤ N , we define the event

A j,σ(n, N) := {∂ Sn  j,σ ∂ SN} (4.1)

that there exist j disjoint monochromatic arms in the annulus Sn,N , whose colors are those prescribed
by σ, when taken in counterclockwise order (see Figure 5). We denote such an ordered set of
crossings by C = {ci}1≤i≤ j , and we say it to be “σ-colored”. Recall that by convention, we have
relaxed the color prescription for the extremities of the ci ’s. Hence for j = 1 and σ = B, A j,σ(0, N)

just denotes the existence of a black path 0  ∂ SN .
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∂SN

∂Sn

Figure 5: The event A6,σ(n, N), with σ = BBBW BW .

Note that a combinatorial objection due to discreteness can arise: if j is too large compared to n, the
event A j,σ(n, N) can be void, just because the arms do not have enough space on ∂ Sn to arrive all
together. For instance A j,σ(0, N) =∅ if j ≥ 7. In fact, we just have to check that n is large enough so
that the number of sites touching the exterior of |∂ Sn| (ie |∂ Sn+1| with the acute corners removed)
is at least j: if this is true, we can then draw straight lines heading toward the exterior. For each
positive integer j, we thus introduce n0( j) the least such nonnegative integer, and we have

∀N ≥ n0( j), A j,σ(n0( j), N) 6= ∅.

Note that n0( j) = 0 for j = 1, . . . , 6, and that n0( j)≤ j. For asymptotics, the exact choice of n is not
relevant since anyway, for any fixed n1, n2 ≥ n0( j),

P̂(A j,σ(n1, N))≍ P̂(A j,σ(n2, N)).

Remark 6. Note that Reimer’s inequality implies that for any two integers j, j′, and two color sequences

σ, σ′ of these lengths, we have:

P̂(A j+ j′,σσ′(n, N))≤ P̂(A j,σ(n, N))P̂(A j′,σ′(n, N)) (4.2)

for any P̂, n≤ N (denoting by σσ′ the concatenation of σ and σ′).

4.2 Well-separateness

We now impose some restrictions on the events A j,σ(n, N). Our main goal is to prove that we can
separate macroscopically (the extremities of) any sequence of arms: with this additional condition,
the probability of A j,σ(n, N) does not decrease from more than a (universal) constant factor. This
result is not really surprising, but we will need it recurrently for technical purposes.

Let us now give a precise meaning to the property of being “separated” for sets of crossings. In the
following, we will actually consider crossings in different domain shapes. We first state the definition
for a parallelogram of fixed (1×τ) aspect ratio, and explain how to adapt it in other cases.
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Figure 6: Well-separateness for a set of crossings C = {ci}.

We first require that the extremities of these crossings are distant from each other. We also need to
add a condition ensuring that the crossings can easily be extended: we impose the existence of “free
spaces” at their extremities, which will allow then to construct longer extensions. This leads to the
following definition, similar to Kesten’s “fences” [31] (see Figure 6).

Definition 7. Consider some M × τM parallelogram R = [a1, a1 + M] × [b1, b1 + τM], and C =
{ci}1≤i≤ j a (σ-colored) set of j disjoint left-right crossings. Introduce zi the extremity of ci on the right

side of the parallelogram, and for some η ∈ (0,1], the parallelogram ri = zi+[0,
p
ηM]×[−ηM ,ηM],

attached to R on its right side.

We say that C is well-separated at scale η (on the right side) if the two following conditions are

satisfied:

1. The extremity zi of each crossing is not too close from the other ones:

∀i 6= j, dist(zi, z j)≥ 2
p
ηM , (4.3)

nor from the top and bottom right corners Z+, Z− of R:

∀i, dist(zi, Z±)≥ 2
p
ηM . (4.4)

2. Each ri is crossed vertically by some crossing c̃i of the same color as ci , and

ci   c̃i in ºSpηM (zi). (4.5)

For the second condition, we of course require the path connecting ci and c̃i to be of the same color
as these two crossings. The crossing c̃i is thus some small extension of ci on the right side of R. The
free spaces ri will allow us to use locally an FKG-type inequality to further extend the ci ’s on the
right.

1575



Definition 8. We say that a set C = {ci}1≤i≤ j of j disjoint left-right crossings of R can be made well-
separated on the right side if there exists another set C ′ = {c′i}1≤i≤ j of j disjoint crossings that is

well-separated on the right side, such that c′i has the same color as ci , and the same extremity on the

left side.

The same definitions apply for well-separateness on the left side, and also for top-bottom crossings.
Consider now a set of crossings of an annulus Sn,N . We can divide this set into four subsets, according
to the side of ∂ SN on which they arrive. Take for instance the set of crossings arriving on the right
side: we say it to be well-separated if, as before, the extremities of these crossings on ∂ SN are distant
from each other and from the top-right and bottom-right corners, and if there exist free spaces ri that
satisfy condition 2 of Definition 7. Then, we say that a set of crossings of Sn,N is well-separated on
the external boundary if each of the four previous sets is itself well-separated. Note that requiring
the extremities to be not too close from the corners ensures that they are not too close from the
extremities of the crossings arriving on the other sides either. We take the same definition for the
internal boundary ∂ Sn: in this case, taking the extremities away from the corners also ensures that
the free spaces are included in Sn and do not intersect each other.

We are in a position to define our first sub-event of A j,σ(n, N): for any η,η′ ∈ (0,1),

Ã
η/η′

j,σ (n, N) := {∂ Sn 
η/η′

j,σ ∂ SN} (4.6)

denotes the event A j,σ(n, N) with the additional condition that the set of j arms is well-separated at
scale η on ∂ Sn, and at scale η′ on ∂ SN .

We can even prescribe the “landing areas” of the different arms, ie the position of their extremities.
We introduce for that some last definition:

Definition 9. Consider ∂ SN for some integer N: a landing sequence {Ii}1≤i≤ j on ∂ SN is a sequence of

disjoint sub-intervals I1, . . . , I j on ∂ SN in counterclockwise order. It is said to be η-separated if1,

1. dist(Ii, Ii+1)≥ 2
p
ηN for each i,

2. dist(Ii, Z)≥ 2
p
ηN for each i and each corner Z of ∂ SN .

It is called a landing sequence of size η if the additional property

3. length(Ii)≥ ηN for each i

is also satisfied.

We identify two landing sequences on ∂ SN and ∂ SN ′ if they are identical up to a dilation. This leads

to the following sub-event of Ã
η/η′

j,σ (n, N): for two landing sequences I = {Ii}1≤i≤ j and I ′ = {I ′i }1≤i′≤ j ,

˜̃Aη,I/η′,I ′

j,σ (n, N) := {∂ Sn 
η,I/η′,I ′

j,σ ∂ SN} (4.7)

denotes the event Ã
η/η′

j,σ (n, N), with the additional requirement on the set of crossings {ci}1≤i≤ j that

for each i, the extremities zi and z′i of ci on (respectively) ∂ Sn and ∂ SN satisfy zi ∈ Ii and z′i ∈ I ′i .

1As usual, we consider cyclic indices, so that here for instance I j+1 = I1.
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We will also have use for another intermediate event between A and ˜̃A: Ā
I/I ′

j,σ (n, N), for which we

only impose the landing areas I/I ′ of the j arms. We do not ask a priori the sub-intervals to be
η-separated either, just to be disjoint. Note however that if they are η/η′-separated, then the
extremities of the different crossings will be η/η′-separated too.

To summarize:

A j,σ(n, N) = { j arms ∂ Sn  ∂ SN , color σ}

separated at scale η/η′ + small extensions
hhhhhhh

tthhhhhhhh
landing areas I/I ′

UUUUUUU

**UUUUUUUU

Ã
η/η′

j,σ (n, N)

landing areas I/I ′
UUUUUUUU

**UUUUUU

Ā
I/I ′

j,σ (n, N)

small extensions (if I/I ′ are η/η′-separated)
iiiiiiii

ttiiiiii

˜̃Aη,I/η′,I ′

j,σ (n, N)

Remark 10. If we take for instance alternating colors (σ̄ = BW BW), and as landing areas Ī1, . . . , Ī4

the (resp.) right, top, left and bottom sides of ∂ SN , the 4-arm event Ā
./ Ī
4,σ̄(0, N) (the “.” meaning that we

do not put any condition on the internal boundary) is then the event that 0 is pivotal for the existence

of a left-right crossing of SN .

4.3 Statement of the results

Main result

Our main separation result is the following:

Theorem 11. Fix an integer j ≥ 1, some color sequence σ ∈ S̃ j and η0,η′0 ∈ (0,1). Then we have

P̂
� ˜̃Aη,I/η′,I ′

j,σ (n, N)
�

≍ P̂
�

A j,σ(n, N)
�

(4.8)

uniformly in all landing sequences I/I ′ of size η/η′, with η ≥ η0 and η′ ≥ η′0, p, P̂ between Pp and

P1−p, n≤ N ≤ L(p).

First relations

Before turning to the proof of this theorem, we list some direct consequences of the RSW estimates
that will be needed.

Proposition 12. Fix j ≥ 1, σ ∈ S̃ j and η0,η′0 ∈ (0,1).

1. “Extendability”: We have

P̂
� ˜̃Aη,I/η̃′, Ĩ ′

j,σ (n, 2N)
�

, P̂
� ˜̃Aη̃, Ĩ/η′,I ′

j,σ (n/2, N)
�

≍ P̂
� ˜̃Aη,I/η′,I ′

j,σ (n, N)
�

uniformly in p, P̂ between Pp and P1−p, n ≤ N ≤ L(p), and all landing sequences I/I ′ (resp.

Ĩ/ Ĩ ′) of size η/η′ (resp. η̃/η̃′) larger than η0/η
′
0. In other words: “once well-separated, the

arms can easily be extended”.
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2. “Quasi-multiplicativity”: We have for some C = C(η0,η′0)> 0

P̂(A j,σ(n1, n3))≥ C P̂( ˜̃A
./η,Iη
j,σ (n1, n2/4))P̂(

˜̃A
η′,Iη′/.

j,σ (n2, n3))

uniformly in p, P̂ between Pp and P1−p, n0( j) ≤ n1 < n2 < n3 ≤ L(p) with n2 ≥ 4n1, and all

landing sequences I/I ′ of size η/η′ larger than η0/η
′
0.

3. For any η,η′ > 0, there exists a constant C = C(η,η′) > 0 with the following property: for any

p, P̂ between Pp and P1−p, n ≤ N ≤ L(p), there exist two landing sequences I and I ′ of size η

and η′ (that may depend on all the parameters mentioned) such that

P̂
� ˜̃Aη,I/η′,I ′

j,σ (n, N)
�

≥ C P̂
�

Ã
η,η′

j,σ (n, N)
�

.

Proof. The proof relies on gluing arguments based on RSW constructions. However, the events
considered are not monotone when σ is non-constant (there is at least one black arm and one white
arm). We will thus need a slight generalization of the FKG inequality for events “locally monotone”.

Lemma 13. Consider A+, Ã+ two increasing events, and A−, Ã− two decreasing events. Assume that

there exist three disjoint finite sets of vertices A , A + and A − such that A+, A−, Ã+ and Ã− depend

only on the sites in, respectively,A ∪A +,A ∪A −,A + andA −. Then we have

P̂(Ã+ ∩ Ã−|A+ ∩ A−)≥ P̂(Ã+)P̂(Ã−) (4.9)

for any product measure P̂.

Proof. Conditionally on the configurationωA inA , the events A+∩Ã+ and A−∩Ã− are independent,
so that

P̂(A+ ∩ Ã+ ∩ A− ∩ Ã−|ωA ) = P̂(A+ ∩ Ã+|ωA )P̂(A− ∩ Ã−|ωA ).
The FKG inequality implies that

P̂(A+ ∩ Ã+|ωA )≥ P̂(A+|ωA )P̂(Ã+|ωA )
= P̂(A+|ωA )P̂(Ã+)

and similarly with A− and Ã−. Hence,

P̂(A+ ∩ Ã+ ∩ A− ∩ Ã−|ωA )≥ P̂(A+|ωA )P̂(Ã+)P̂(A−|ωA )P̂(Ã−)
= P̂(A+ ∩ A−|ωA )P̂(Ã+)P̂(Ã−).

The conclusion follows by summing over all configurations ωA .

Once this lemma at our disposal, items 1. and 2. are straightforward. For item 3., we consider a
covering of ∂ Sn (resp. ∂ SN ) with at most 8η−1 (resp. 8η′−1) intervals {I} of length η (resp. (I ′) of
length η′). Then for some I , I ′,

P̂
� ˜̃Aη,I/η′,I ′

j,σ (n, N)
�

≥ (8η−1)−1(8η′−1)−1
P̂
�

Ã
η,η′

j,σ (n, N)
�

.
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We also have the following a-priori bounds for the arm events:

Proposition 14. Fix some j ≥ 1, σ ∈ S̃ j and η0,η′0 ∈ (0,1). Then there exist some exponents

0< α j ,α
′ <∞, as well as constants 0< C j , C ′ <∞, such that

C j

�

n

N

�α j

≤ P̂
� ˜̃Aη,I/η′,I ′

j,σ (n, N)
�

≤ C ′
�

n

N

�α′

(4.10)

uniformly in p, P̂ between Pp and P1−p, n ≤ N ≤ L(p), and all landing sequences I/I ′ of size η/η′

larger than η0/η
′
0.

The lower bound comes from iterating item 1. The upper bound can be obtained by using concentric
annuli: in each of them, RSW implies that there is a probability bounded away from zero to observe
a black circuit, preventing the existence of a white arm (consider a white circuit instead if σ =
BB . . . B).

4.4 Proof of the main result

Assume that A j,σ(n, N) is satisfied: our goal is to link this event to the event ˜̃A
η0,Iη0

/η′0,Iη′0
j,σ (n, N), for

some fixed scales η0,η′0.

Proof. First note that it suffices to prove the result for n, N which are powers of two: then we would
have, if k, K are such that 2k−1 < n≤ 2k and 2K ≤ n< 2K+1,

P̂
�

A j,σ(n, N)
�

≤ P̂
�

A j,σ(2
k, 2K)
�

≤ C1P̂
� ˜̃Aη,I/η′,I ′

j,σ (2k, 2K)
�

≤ C2P̂
� ˜̃Aη,I/η′,I ′

j,σ (n, N)
�

.

We have to deal with the extremities of the j arms on the internal boundary ∂ Sn, and on the external
boundary ∂ SN .

1. External extremities

Let us begin with the external boundary. In the course of proof, we will have use for the intermediate

event Ã
./η′

j,σ (n, N) that there exists a set of j arms that is well-separated on the external side ∂ SN only,

and also the event ˜̃A./η′,I ′

j,σ (n, N) associated to some landing sequence I ′ on ∂ SN . Each of the j arms

induces in S2K−1,2K a crossing of one of the four U-shaped regions U
1,ext
2K−1 , . . . , U

4,ext
2K−1 depicted in Figure

7. The “ext” indicates that a crossing of such a region connects the two marked parts of the boundary.
For the internal extremities, we will use the same regions, but we distinguish different parts of the
boundary. The key observation is the following.

In a U-shaped region, any set of disjoint crossings can be made well-separated with high

probability.
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Figure 7: The four U-shaped regions that we use for the external extremities.

More precisely, if we take such an N × 4N domain, the probability that any set of disjoint crossings
can be made η-well-separated (on the external boundary) can be made arbitrarily close to 1 by
choosing η sufficiently small, uniformly in N . We prove the following lemma, which implies that on
every scale, with very high probability the j arms can be made well-separated.

Lemma 15. For any δ > 0, there exists a size η(δ) > 0 such that for any p, any P̂ between Pp and

P1−p and any N ≤ L(p): in the domain U
1,ext
N ,

P̂(Any set of disjoint crossings can be made η-well-separated)≥ 1−δ. (4.11)

Proof. First we note that there cannot be too many disjoint crossings in U
1,ext
N . Indeed, there is a

crossing in this domain (either white or black) with probability less than some 1 − δ′, by RSW:
combined with the BK inequality (and also FKG), this implies that the probability of observing at
least T crossings is less than

(1−δ′)T . (4.12)

We thus take T such that this quantity is less than δ/4.

Consider for the moment any η ∈ (0,1) (we will see during the proof how to choose it). We
note that we can put disjoint annuli around Z− and Z+ to prevent crossings from arriving there.
Consider Z− for instance, and look at the disjoint annuli centered on Z− of the form S2l−1,2l (Z−), with
p
ηN ≤ 2l−1 < 2l ≤ η3/8N (see Figure 8). We can take at least −C4 logη such disjoint annuli for

some universal constant C4 > 0, and with probability at least 1−(1−δ′′)−C4 logη there exists a black
circuit in one of the annuli. Consider then the annuli S2l−1,2l (Z−), with η3/8N ≤ 2l−1 < 2l ≤ η1/4N :

with probability at least 1−(1−δ′′)−C ′4 logη we observe a white circuit in one of them. If two circuits
as described exist, we say that Z− is “protected”. The same reasoning applies for Z+.
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Consider now the following construction: take c1 the lowest (ie closest to the bottom side)
monochromatic crossing (which can be either black or white), then c2 the lowest monochromatic
crossing disjoint from c1, and so on. The process stops after t steps, and we denote byC = {cu}1≤u≤t

the set of crossings so-obtained. Of course, C can be void: we set t = 0 in this case. We have

P(t ≥ T )≤ (1−δ′)T ≤ δ/4 (4.13)

by definition of T . We denote by zu the extremity of cu on the right side, and by σu ∈ {B,W} its
color.

In order to get some independence and be able to apply the previous construction around the ex-
tremities of the crossings, we condition on the successive crossings. Consider some u ∈ {1, . . . , T}
and some ordered sequence of crossings c̃1, c̃2, . . . , c̃u, together with colors σ̃1, σ̃2, . . . , σ̃u. The event
Eu := {t ≥ u and cv = c̃v , σv = σ̃v for any v ∈ {1, . . . ,u}} is independent from the status of the sites
above c̃u. Hence, if we condition on Eu, percolation there remains unbiased and we can use the RSW
theorem.

We now do the same construction as before. Look at the disjoint annuli centered on zu of the form
S2l−1,2l (zu), with

p
ηN ≤ 2l−1 < 2l ≤ η3/8N on one hand, and with η3/8N ≤ 2l−1 < 2l ≤ η1/4N on

the other hand. Assume for instance that σ̃u = B. With probability at least 1− (1− δ′′)−C ′′4 logη we
observe a white circuit in one of the annuli in the first set, preventing other disjoint black crossings to
arrive near zu, and also a black one in the second set, preventing white crossings to arrive. Moreover,
by considering a black circuit in the annuli S2l−1,2l (zu) with η3/4N ≤ 2l−1 < 2l ≤ pηN , we can
construct a small extension of cu. If the three circuits described exist, cu is said to be “protected from
above”. Summing over all possibilities for c̃i , σ̃i (1≤ i ≤ u), we get that for some C ′′′4 ,

P(t ≥ u and cu is not protected from above)≤ (1−δ′′)−C ′′′4 logη. (4.14)

Now for our set of crossings C ,

P(C is not η-well-separated)

≤ P(t ≥ T ) +

T−1
∑

u=1

P(t ≥ u and cu is not protected from above)

+ P(Z− is not protected) + P(Z+ is not protected).

First, each term in the sum, as well as the last two terms, are less than (1− δ′′)−C ′′′4 logη. We also
have P(t ≥ T )≤ δ/4, so that the right-hand side is at most

(T + 1)(1−δ′′)−C ′′′4 logη +
δ

4
. (4.15)

It is less than δ if we choose η sufficiently small (T is fixed).

We now assume that C is η-well-separated, and prove that any other set C ′ = {c′u}1≤u≤t ′ of t ′ (≤ t)
disjoint crossings (we take it ordered) can also be made η-well-separated. For that purpose, we
replace recursively the tip of each c′u by the tip of one of the cv ’s. If we take c′1 for instance, it has to
cross at least one of the cv ’s (by maximality of C ). Let us call cv1

the lowest one: still by maximality,
c′1 cannot go below it. Take the piece of c′1 between its extremity z′1 and its last intersection a1 with
cv1

, and replace it with the corresponding piece of cv1
: this gives c′′1 . This new crossing has the
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Figure 8: We apply RSW in concentric annuli around Z− and Z+, and then around the extremity zu

of each crossing cu.

same extremity as cv1
on the right side, and it is not hard to check that it is connected to the small

extension c̃v1
of cv1

on the external side. Indeed, this extension is connected by a path that touches
cv1

in, say, b1: either b1 is between a1 and z1, in which case c′′1 is automatically connected to c̃v1
,

otherwise c′1 has to cross the connecting path before a1 and c′′1 is also connected to c̃v1
.

Consider then c2, and cv2
the lowest crossing it intersects: necessarily v2 > v1 (since c1 stays above

cv1
), and the same reasoning applies. The claim follows by continuing this procedure until c′

t ′ .

The arms are well-separated with positive probability.

The idea is then to “go down” in successive concentric annuli, and to apply the lemma in each of
them. We work with two different scales of separation:

• a fixed (macroscopic) scale η′0 that we will use to extend arms, associated to a constant exten-
sion cost.

• another scale η′ which is very small (η′≪ η′0), so that the j arms can be made well-separated
at scale η′ with very high probability.

The proof goes as follows. Take some δ > 0 very small (we will see later how small), and some
η′ > 0 associated to it by Lemma 15. We start from the scale ∂ S2K and look at the crossings induced
by the j arms. The previous lemma implies that with very high probability, these j arms can be
modified in S2K−1,2K so that they are η′-well-separated. Otherwise, we go down to the next annulus:
there still exist j arms, and what happens in S2K−1,2K is independent of what happens in S2K−1 . On
each scale, we have a very low probability to fail, and once the arms are separated on scale η′, we
go backwards by using the scale η′0, for which the cost of extension is constant.
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More precisely, after one step we get

A j,σ(2
k, 2K)⊆ Ã

./η′

j,σ (2
k, 2K)∪
�

{One of the four U
i,ext
2K−1 fails} ∩ A j,σ(2

k, 2K−1)
�

.

Hence, by independence of the two latter events and Lemma 15,

P̂(A j,σ(2
k, 2K))≤ P̂(Ã./η′

j,σ (2
k, 2K)) + (4δ)P̂(A j,σ(2

k, 2K−1)).

We then iterate this argument: after K − k steps,

P̂(A j,σ(2
k, 2K))

≤ P̂(Ã./η′

j,σ (2
k, 2K)) + (4δ)P̂(Ã./η′

j,σ (2
k, 2K−1)) + (4δ)2P̂(Ã./η′

j,σ (2
k, 2K−2)) + . . .

+ (4δ)K−k−1
P̂(Ã

./η′

j,σ (2
k, 2k+1)) + (4δ)K−k.

We then use the size η′0 to go backwards: if the crossings are η′-separated at some scale m, there
exists some landing sequence Iη′ of size η′ where the probability of landing is comparable to the
probability of just being η′-well-separated, and then we can reach Iη′0

of size η′0 on the next scale.
More precisely, there exist universal constants C1(η

′), C2(η
′) depending only on η′ such that for all

1≤ i′ ≤ i, we can choose some Iη′ (which can depend on i′) such that

P̂(Ã
./η′

j,σ (2
k, 2K−i′))≤ C1(η

′)P̂( ˜̃A
./η′,Iη′

j,σ (2k, 2K−i′))

(by item 3. of Proposition 12) and then go to Iη′0
on the next scale with cost C2(η

′):

P̂( ˜̃A
./η′,Iη′

j,σ (2k, 2K−i′))≤ C2(η
′)P̂( ˜̃A

./η′0,Iη′0
j,σ (2k, 2K−i′+1))

(by item 1.). Now for the size η′0, going from ∂ Sm to ∂ S2m has a cost C ′0 depending only on η′0 on
each scale m, we thus have

P̂(Ã
./η′

j,σ (2
k, 2K−i′))≤ C1(η

′)C2(η
′)C i′−1

0 P̂(
˜̃A

./η′0,Iη′0
j,σ (2k, 2K)).

There remains a problem with the first term P̂(Ã./η′

j,σ (2
k, 2K)). . . So assume that we have started from

2K−1 instead, so that the annulus S2K−1,2K remains free:

P̂(A j,σ(2
k, 2K))

≤ P̂(A j,σ(2
k, 2K−1))

≤ P̂(Ã./η′

j,σ (2
k, 2K−1)) + (4δ)P̂(Ã./η′

j,σ (2
k, 2K−2)) + (4δ)2P̂(Ã./η′

j,σ (2
k, 2K−3)) + . . .

+ (4δ)K−k−2
P̂(Ã

./η′

j,σ (2
k, 2k+1)) + (4δ)K−k−1

≤ C1(η
′)C2(η

′)

�

1+ (4δC0) + . . .+ (4δC0)
K−k−1
�

P̂( ˜̃A
./η′0,Iη′0
j,σ (2k, 2K)).

Now C0 is fixed as was noticed before, so we may have taken δ such that 4δC0 < 1/2, so that

C1(η
′)C2(η

′)

�

1+ (4δC0) + . . .+ (4δC0)
K−k−1
�

≤ C3(η
′)

for some C3(η
′). We have thus reached the desired conclusion for external extremities:

P̂(A j,σ(2
k, 2K))≤ C3(η

′)P̂( ˜̃A
./η′0,Iη′0
j,σ (2k, 2K)).
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Figure 9: For the internal extremities, we consider the same domains but we mark different parts of
the boundary.

2. Internal extremities

The reasoning is the same for internal extremities, except that we work in the other direction, from
∂ S2k toward the interior. If we consider the domains U

i,int
N having the same shapes as the U

i,ext
N

domains, but with different parts of the boundary distinguished (see Figure 9), then the lemma
remains true. Hence,

P̂( ˜̃A
./η′0,Iη′0
j,σ (2k, 2K))≤ P̂( ˜̃A

./η′0,Iη′0
j,σ (2k+1, 2K))

≤ P̂( ˜̃A
η,./η′0,Iη′0
j,σ (2k+1, 2K)) + (4δ)P̂( ˜̃A

η,./η′0,Iη′0
j,σ (2k+2, 2K)) + . . .

+ (4δ)K−k−2
P̂( ˜̃A

η,./η′0,Iη′0
j,σ (2K−1, 2K)) + (4δ)K−k−1

≤ C1(η)C2(η)

�

1+ (4δC0) + . . .+ (4δC0)
K−k−1
�

P̂( ˜̃A
η0,Iη0

/η′0,Iη′0
j,σ (2k, 2K))

and the conclusion follows.

4.5 Some consequences

We now state some important consequences of the previous theorem.
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Extendability

Proposition 16. Take j ≥ 1 and a color sequence σ ∈ S̃ j . Then

P̂(A j,σ(n, 2N)), P̂(A j,σ(n/2, N))≍ P̂(A j,σ(n, N)) (4.16)

uniformly in p, P̂ between Pp and P1−p and n0( j)≤ n≤ N ≤ L(p).

Proof. This proposition comes directly from combining the arm separation theorem with the extend-
ability property of the ˜̃A events (item 1. of Proposition 12).

Quasi-multiplicativity

Proposition 17. Take j ≥ 1 and a color sequence σ ∈ S̃ j . Then

P̂(A j,σ(n1, n2))P̂(A j,σ(n2, n3))≍ P̂(A j,σ(n1, n3)) (4.17)

uniformly in p, P̂ between Pp and P1−p and n0( j)≤ n1 < n2 < n3 ≤ L(p).

Proof. On one hand, we have

P̂(A j,σ(n1, n3))≤ P̂(A j,σ(n1, n2)∩ A j,σ(n2, n3)) = P̂(A j,σ(n1, n2))P̂(A j,σ(n2, n3))

by independence of the events A j,σ(n1, n2) and A j,σ(n2, n3).

On the other hand, we may assume that n2 ≥ 8n1. Then for some η0, Iη0
, the previous results (sep-

aration and extendability) allow to use the quasi-multiplicativity for ˜̃A events (item 2. of Proposition
12):

P̂(A j,σ(n1, n2))P̂(A j,σ(n2, n3))≍ P̂(A j,σ(n1, n2/4))P̂(A j,σ(n2, n3))

≍ P̂( ˜̃A./η0,Iη0
j,σ (n1, n2/4))P̂(

˜̃A
η0,Iη0

/.

j,σ (n2, n3))

≍ P̂(A j,σ(n1, n3)).

Arms with defects

In some situations, the notion of arms that are completely monochromatic is too restrictive, and the
following question arises quite naturally: do the probabilities change if we allow the arms to present
some (fixed) number of “defects”, ie sites of the opposite color?

We define A
(d)

j,σ(n, N) the event that there exist j disjoint arms a1, . . . , a j from ∂ Sn to ∂ SN with the
property: for any i ∈ {1, . . . , j}, ai contains at most d sites of color σ̃i . The quasi-multiplicativity
property entails the following result, which will be needed for the proof of Theorem 27:

Proposition 18. Let j ≥ 1 and σ ∈ S̃ j . Fix also some number d of defects. Then we have

P̂
�

A
(d)

j,σ(n, N)
�

≍ (1+ log(N/n))d P̂
�

A j,σ(n, N)
�

(4.18)

uniformly in p, P̂ between Pp and P1−p and n0( j)≤ n≤ N ≤ L(p).
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Actually, we will only need the upper bound on P̂
�

A
(d)

j,σ(n, N)
�

. For instance, we will see in the next
section that the arm events decay like power laws at the critical point. This proposition thus implies,
in particular, that the “arm with defects” events are described by the same exponents: allowing
defects just adds a logarithmic correction.

Proof. We introduce a logarithmic division of the annulus Sn,N : we take k and K such that 2k−1 <

n ≤ 2k and 2K ≤ N < 2K+1. Roughly speaking, we “take away” the annuli where the defects take
place, and “glue” the pieces of arms in the remaining annuli by using the quasi-multiplicativity
property.

Let us begin with the upper bound: we proceed by induction on d. The property clearly holds for
d = 0. Take some d ≥ 1: by considering the first annuli S2i ,2i+1 where a defect occurs, we get

P̂(A
(d)

j,σ(n, N))≤
K−1
∑

i=k

P̂(A j,σ(2
k, 2i))P̂(A

(d−1)
j,σ (2i+1, 2K)). (4.19)

We have P̂(A(d−1)
j,σ (2i+1, 2K)) ≤ Cd−1(1+ log(N/n))d−1

P̂(A j,σ(2
i+1, 2K)) thanks to the induction hy-

pothesis, and by quasi-multiplicativity,

P̂(A
(d)

j,σ(n, N))≤ (1+ log(N/n))d−1Cd−1

K−1
∑

i=k

P̂(A j,σ(2
k, 2i))P̂(A j,σ(2

i+1, 2K))

≤ Cd−1(1+ log(N/n))d−1
K−1
∑

i=k

C ′P̂(A j,σ(2
k, 2K))

≤ Cd(1+ log(N/n))d−1(K − k)P̂(A j,σ(2
k, 2K)),

which gives the desired upper bound.

For the lower bound, note that for any k ≤ i0 < i1 < . . . < id < id+1 = K , A
(d)

j,σ(n, N) ⊇
A
(d)

j,σ(2
k−1, 2K+1) ⊇ A

(d)

j,σ(2
k−1, 2K+1) ∩ {Each of the j arms has exactly one defect in each of the

annuli S2ir ,2ir+1 , 1≤ r ≤ d}, so that for K − k ≥ d + 1,

P̂(A
(d)

j,σ(n, N))≥
∑

k=i0<i1<i2<...<id<id+1=K

Cd

d
∏

r=0

P̂(A j,σ(2
ir+1, 2ir+1))

≥ C ′d

�

K − k− 1

d

�

P̂(A j,σ(2
k−1, 2K+1))

≥ C ′′d (K − k)d P̂(A j,σ(2
k−1, 2K+1)),

and our lower bound follows.

Remark: more general annuli

We will sometimes need to consider more general arm events, in annuli of the form R \ r, for
non-necessarily concentric parallelograms r ⊆ ºR. Items 1. and 2. of Proposition 12 can easily be
extended. Separateness and well-separateness can be defined in the same way for these arm events,
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and for any τ > 1, we can get results uniform in the usual parameters and in parallelograms r, R

such that Sn ⊆ r ⊆ Sτn and SN/τ ⊆ R⊆ SN for some n, N ≤ L(p):

P̂(∂ r   j,σ ∂ R)≍ P̂(∂ Sn  j,σ ∂ SN ), (4.20)

and similarly with separateness conditions on the external boundary or on the internal one.

4.6 Arms in the half-plane

So far, we have been interested in arm events in the whole plane: we can define in the same way
the event B j,σ(n, N) that there exist j arms that stay in the upper half-plane H, of colors prescribed
by σ ∈ S̃ j and connecting ∂ S′n to ∂ S′N , with the notation ∂ S′n = (∂ Sn) ∩H. These events appear
naturally when we look at arms near a boundary.

For the sake of completeness, let us just mention that all the results stated here remain true for arms
in the half-plane. In fact, there is a natural way to order the different arms, which makes this case
easier. We will not use these events in the following, and we leave the details to the reader.

5 Description of critical percolation

When studying the phase transition of percolation, the critical regime plays a very special role.
It possesses a strong property of conformal invariance in the scaling limit. This particularity, first
observed by physicists ([41; 9; 10]), has been proved by Smirnov in [46], and later extended
by Camia and Newman in [11]. It allows to link the critical regime to the SLE processes (with
parameter 6 here) introduced by Schramm in [44], and thus to use computations made for these
processes ([34; 35]).

In the next sections, we will see why our description of critical percolation yields in turn a good
description of near-critical percolation (which does not feature a priori any sort of conformal invari-
ance), in particular how the characteristic functions behave through the phase transition.

5.1 Arm exponents for critical percolation

Color switching

We focus here on the probabilities of arm events at the critical point. For arms in the half-plane, a
nice combinatorial argument (noticed in [3; 47]) shows that once fixed the number j of arms, pre-
scribing the color sequence σ does not change the probability. This is the so-called “color exchange
trick”:

Proposition 19. Let j ≥ 1 be any fixed integer. If σ,σ′ are two color sequences, then for any n′0( j) ≤
n≤ N,

P1/2(B j,σ(n, N)) = P1/2(B j,σ′(n, N)). (5.1)

Proof. The proof relies on the fact that there is a canonical way to order the arms. If we condition
on the i left-most arms, percolation in the remaining domain is unbiased, so that we can “flip” the
sites there: for any color sequence σ, if we denote by

σ̃(i) = (σ1, . . . ,σi , σ̃i+1, . . . , σ̃ j)
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the sequence with the same i first colors, and the remaining ones flipped, then

P1/2(B j,σ(n, N)) = P1/2(B j,σ̃(i)(n, N)).

It is not hard to convince oneself that for any two sequences σ,σ′, we can go from σ to σ′ in a finite
number of such operations.

This result is not as direct in the whole plane case, since there is no canonical ordering any more.
However, the argument can be adapted to prove that the probabilities change only by a constant
factor, as long as there is an interface, ie as long as σ contains at least one white arm and one black
arm.

Proposition 20. Let j ≥ 1 be any fixed integer. If σ,σ′ ∈ S̃ j are two non-constant color sequences (ie
both colors are present), then

P1/2(A j,σ(n, N))≍ P1/2(A j,σ′(n, N)) (5.2)

uniformly in n0( j)≤ n≤ N.

Proof. Assume that σ1 = B and σ2 = W , and fix some landing sequence I . If we replace the
event A j,σ(n, N) by the strengthened event Ā

I/.
j,σ(n, N), we are allowed to condition on the black arm

arriving on I1 and on the white arm arriving on I2 that are closest to each other: if we choose for
instance I such that the point (N , 0) is between I1 and I2, these two arms can be determined via an
exploration process starting at (N , 0). We can then “flip” the remaining region. More generally, we
can condition on any set of consecutive arms including these two arms, and the result follows for
the same reasons as in the half-plane case.

We would like to stress the fact that for the reasoning, we crucially need two arms of opposite colors.
In fact, the preceding result is expected to be false if σ is constant and σ′ non-constant (the two
probabilities not being of the same order of magnitude), which may seem quite surprising at first
sight.

Derivation of the exponents

The link with SLE6 makes it possible to prove the existence of the (multichromatic) “arm exponents”,
and derive their values ([36; 47]), that had been predicted in the physics literature (see e.g. [3]
and the references therein).

Theorem 21. Fix some j ≥ 1. Then for any non-constant color sequence σ ∈ S̃ j ,

P1/2
�

A j,σ(n0( j), N)
�

≈ N−α j (5.3)

when N →∞, with

• α1 = 5/48,

• and for j ≥ 2, α j = ( j
2− 1)/12.
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Let us sketch very briefly how it is proved. Consider the discrete (radial) exploration process in a
unit disc: using the property of conformal invariance in the scaling limit, we can prove that this
process converges toward a radial SLE6, for which we can compute disconnection probabilities. It
implies that

P1/2(A j,σ(ηn, n))→ g j(η),

for some function g j(η) ∼ ηα j as η → 0. Then, the quasi-multiplicativity property in concentric
annuli of fixed modulus provides the desired result.

As mentioned, this theorem is believed to be false for constantσ, ie when the arms are all of the same
color. In this case, the probability should be smaller, or equivalently the exponent (assuming its exis-
tence) larger. Hence for each j = 2,3, . . ., there are two different arm exponents, the multichromatic
j-arm exponent α j given by the previous formula (most often simply called the j-arm exponent) and
the monochromatic j-arm exponent α′j , for which no closed formula is currently known, nor even
predicted. The only result proved so far concerns the case j = 2: as shown in [36], the monochro-
matic 2-arm exponent can be expressed as the leading eigenvalue of some (complicated) differential
operator. Numerically, it has been found (see [3]) to be approximately α′2 ≃ 0.35 . . .

Note also that the derivation using SLE6 only provides a logarithmic equivalence. However, there
are reasons to believe that a stronger equivalence holds, a “≍”: for instance we know that this is the
case for the “universal exponents” computed in the next sub-section.

We will often relate events to combinations of arm events, that in turn can be linked (see next
section) to arm events at the critical point p = 1/2. It will thus be convenient to introduce the
following notation, with σ j = BW BW . . .: for any n0( j)≤ n< N ,

π j(n, N) := P1/2(A j,σ j
(n, N)) (5.4)

(≍ P1/2(A j,σ(n, N)) for any non-constant σ), and in particular

π j(N) := P1/2(A j,σ j
(n0( j), N)) (≈ N−α j ). (5.5)

Note that with this notation, the a-priori bound and the quasi-multiplicativity property take the
aesthetic forms

C j(n/N)
α j ≤ π j(n, N)≤ C ′(n/N)α

′
, (5.6)

and π j(n1, n2)π j(n2, n3)≍ π j(n1, n3). (5.7)

Let us mention that we can derive in the same way exponents for arms in the upper half-plane, the
“half-plane exponents”:

Theorem 22. Fix some j ≥ 1. Then for any sequence of colors σ,

P1/2
�

B j,σ(n
′
0( j), N)
�

≈ N−β j (5.8)

when N →∞, with

β j = j( j + 1)/6.

Remark 23. As mentioned earlier, the triangular lattice is at present the only lattice for which conformal

invariance in the scaling limit has been proved, and as a consequence the only lattice for which the

existence and the values of the arm exponents have been established – with the noteworthy exception of

the three “universal” exponents that we are going to derive.
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Note: fractality of various sets

These arm exponents can be used to measure the size (Hausdorff dimension) of various sets describ-
ing percolation clusters. In physics literature for instance (see e.g. [3]), a set S is said to be fractal
of dimension DS if the density of points in S within a box of size n decays as n−xS , with xS = 2− DS

(in 2D). The co-dimension xS is related to arm exponents in many cases:

• The 1-arm exponent is related to the existence of long connections, from the center of a box
to its boundary. It will thus measure the size of “big” clusters, like the incipient infinite cluster
(IIC) as defined by Kesten ([28]), which scales as n(2−5/48) = n91/48.

• The monochromatic 2-arm exponent describes the size of the “backbone” of a cluster. The fact
that this backbone is much thinner than the cluster itself was used by Kesten [30] to prove
that the random walk on the IIC is sub-diffusive (while it has been proved to converge toward
a Brownian Motion on a super-critical infinite cluster).

• The multichromatic 2-arm exponent is related to the boundaries (hulls) of big clusters, which
are thus of fractal dimension 2−α2 = 7/4.

• The 3-arm exponent concerns the external (accessible) perimeter of a cluster, which is the
accessible part of the boundary: one excludes “fjords” which are connected to the exterior
only by 1-site wide passages. The dimension of this frontier is 2−α3 = 4/3. These two latter
exponents can be observed on random interfaces, numerically and in “real-life” experiments
as well (see [43; 21] for instance).

• As mentioned earlier, the 4-arm exponent with alternating colors counts the pivotal (singly-
connecting) sites (often called “red” sites in physics literature). This set can be viewed as the
contact points between two distinct (large) clusters, its dimension is 2− α4 = 3/4. We will
relate this exponent to the characteristic length exponent ν in Section 7.

5.2 Universal exponents

We will now examine as a complement some particular exponents, for which heuristic predictions
and elementary derivations exist, namely β2 = 1, β3 = 2 and α5 = 2. They are all integers, and
they were established before the complete derivation using SLE6 (and actually they provide crucial
a-priori estimates to prove the convergence toward SLE6). Moreover, the equivalence that we get is
stronger: we can replace the “≈” by a “≍”.

Theorem 24. When N →∞,

1. For any σ ∈S2,

P1/2
�

B2,σ(0, N)
�

≍ N−1.

2. For any σ ∈S3,

P1/2
�

B3,σ(0, N)
�

≍ N−2.
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Figure 10: The landing sequence I1, . . . , I5.

3. For any non-constant σ ∈ S̃5,

P1/2
�

A5,σ(0, N)
�

≍ N−2.

Proof. We give a complete proof only for item 3., since we will not need the two first ones – we will
however sketch at the end how to derive them.

Heuristically, we can prove that the 5-arm sites can be seen as particular points on the boundary of
two big black clusters, and that consequently their number is of order 1 in SN/2. Then it suffices to
use the fact that the different sites in SN/2 produce contributions of the same order. This argument
can be made rigorous by proving that the number of “macroscopic” clusters has an exponential tail:
we refer to the first exercise sheet in [49] for more details. We propose here a more direct – but less
elementary – proof using the separation lemmas (see [32], Lemma 5).

By color switching, it is sufficient to prove the claim for σ = BW BBW . In light of our previous
results, it is clear that

P1/2
�

v 5,σ ∂ SN )≍ P1/2
�

0 5,σ ∂ SN )

uniformly in N , v ∈ SN/2. It is thus enough to prove that the number of such 5-arm sites in SN/2 is
of order 1.

Let us consider the upper bound first. Take the particular landing sequence I1, . . . , I5 depicted on
Figure 10, and consider the event

Av := {v I
5,σ ∂ SN} ∩ {v is black}.

Note that P1/2(Av) =
1
2
P(v I

5,σ ∂ SN ) since the existence of the arms is independent of the status of
v, so that P1/2(Av) ≍ P1/2

�

0 5,σ ∂ SN ). We claim that Av can occur for at most one site v. Indeed,
assume that Av and Aw occur, and denote by r1, . . . , r5 and r ′1, . . . , r ′5 the corresponding arms. Since
r1 ∪ r4 ∪ {v} separates I3 from I5, necessarily w ∈ r1 ∪ r4 ∪ {v}. Similarly, w ∈ r2 ∪ r4 ∪ {v}: since
r1 ∩ r2 = ∅, we get that w ∈ r4 ∪ {v}. But only one arm can “go through” r3 ∪ r5: the arm r ′1 ∪ {w}
from w to I1 has to contain v, and so does r ′2 ∪ {w}. Since r ′1 ∩ r ′2 =∅, we get finally v = w.
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Consequently,

1≥ P1/2
�

∪v∈SN/2
Av

�

=
∑

v∈SN/2

P1/2(Av)≍ N2
P1/2
�

0 5,σ ∂ SN ), (5.9)

which provides the upper bound.

Let us turn to the lower bound. We perform a construction showing that a 5-arm site appears with
positive probability, by using multiple applications of RSW. With a probability of at least δ2

16 > 0,
there is a black horizontal crossing in the strip [−N , N]× [0, N/8], together with a white one in
[−N , N]× [−N/8,0]. Assume this is the case, and condition on the lowest black left-right crossing
c. We note that any site on this crossing has already 3 arms, 2 black arms and a white one. On the
other hand, percolation in the region above it remains unbiased.

Now, still using RSW, with positive probability c is connected to the top side by a black path included
in [−N/8,0]× [−N , N], and another white path included in [0, N/8]× [−N , N]. Let us assume
that these paths exist, and denote by v1 and v2 the respective sites on c where they arrive. Let us
then follow c from left to right, and consider the last vertex v before v2 that is connected to the top
side: it is not hard to see that there is a white arm from v to the top side, and that v ∈ SN/2, since v

is between v1 and v2. Hence,

P1/2
�

∪v∈SN/2
{v 5,σ ∂ SN}
�

≥ C (5.10)

for some universal constant C > 0. Since we also have

P1/2
�

∪v∈SN/2
{v 5,σ ∂ SN}
�

≤
∑

v∈SN/2

P1/2
�

v 5,σ ∂ SN )

≤ C ′N2
P1/2
�

0 5,σ ∂ SN ),

the desired lower bound follows.

We now explain briefly how to obtain the two half-plane exponents (items 1. and 2.). We again
use the arm separation theorem, but note that [49] contains elementary proofs for them too. For
the 2-arm exponent in the half-plane, we take σ = BW and remark that if we fix two landing areas
I1 and I2 on ∂ S′N , at most one site on the segment [−N/2, N/2]× {0} is connected by two arms
to I1 and I2. On the other hand, a 2-arm site can be constructed by considering a black path from
[−N/2,0] × {0} to I1 and a white path from [0, N/2] × {0} to I2. Then the right-most site on
[−N/2, N/2] × {0} connected by a black arm to I1 is a 2-arm site. Several applications of RSW
allow to conclude.

For the 3-arm exponent, we take three landing areas I1, I2 and I3, and σ = BW B. It is not hard
to construct a 3-arm site by taking a black crossing from I1 to I3 and considering the closest to I2.
We can then force it to be in SN/2 ∩H by a RSW construction. For the upper bound, we first notice
that if we require the arms to stay strictly positive (except in the sites neighboring the origin), the
probability remains of the same order of magnitude. We then use the fact that at most three sites in
SN/2 ∩H are connected to the landing areas by three positive arms.

The proofs given here only require RSW-type considerations (including separation of arms). As a
consequence, they also apply to near-critical percolation. It is clear for Pp, on scales N ≤ L(p), but a
priori only for the color sequences we have used in the proofs (resp. σ = BW , BW B and BW BBW –
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and of course those we can deduce from them by the symmetry p↔ 1− p): it is indeed not obvious
that Pp

�

0 5,σ ∂ SN

�

≍ Pp

�

0 5,σ′ ∂ SN

�

for two distinct non-constant σ and σ′. This is essentially
Theorem 27, its proof occupies a large part of the next section.

For a general measure P̂ between Pp and P1−p, we similarly have to be careful: we do not know
whether P̂(v  5,σ ∂ SN ) remains of the same order of magnitude when v varies. This also comes
from Theorem 27, but in the course of its proof we will need an a-priori estimate on the probability of
5 arms, so temporarily we will be content with a weaker statement that does not use its conclusion:

Lemma 25. For σ = BW BBW (= σ5), we have uniformly in p, P̂ between Pp and P1−p and N ≤ L(p):

∑

v∈SN/2

P̂
�

v 5,σ ∂ SN

�

≍
∑

v∈SN/8

P̂
�

v 5,σ ∂ SN

�

≍ 1. (5.11)

Remark 26. We would like to mention that these estimates for critical and near-critical percolation

remain also valid on other lattices, like the square lattice (see the discussion in the last section) – at

least for the color sequences that we have used in the proofs, no analog of the color exchange trick being

available (to our knowledge).

6 Arm events near criticality

6.1 Statement of the theorem

We would like now to study how the events A j,σ(n, N) are affected by a variation of the parameter
p. We have defined L(p) in terms of crossing events to be the scale on which percolation can be
considered as (approximately) critical, we would thus expect the probabilities of these events not to
vary too much if n, N remain below L(p). This is what happens:

Theorem 27. Let j ≥ 1, σ ∈ S̃ j be as usual. Then we have

P̂
�

A j,σ(n, N)
�

≍ P̂′
�

A j,σ(n, N)
�

(6.1)

uniformly in p, P̂ and P̂′ between Pp and P1−p, and n0( j)≤ n≤ N ≤ L(p).

Note that if we take in particular P̂′ = P1/2, we get that below the scale L(p), the arm events remain
roughly the same as at criticality:

P̂
�

A j,σ(n, N)
�

≍ P1/2
�

A j,σ(n, N)
�

.

This will be important to derive the critical exponents for the characteristic functions from the arm
exponents at criticality.

Remark 28. Note that the property of exponential decay with respect to L(p) (Lemma 39), proved in

Section 7.4, shows that we cannot hope for a similar result on a much larger range, so that L(p) is the

appropriate scale here: consider for instance Pp with p > 1/2, the probability to observe a white arm

tends to 0 exponentially fast (and thus much faster than at the critical point), while the probability to

observe a certain number of disjoint black arms tends to a positive constant.
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6.2 Proof of the theorem

We want to compare the value of P̂(A j,σ(n, N)) for different measures P̂. A natural way of doing this
is to go from one to the other by using Russo’s formula (Theorem 1). But since for j ≥ 2 and non-
constant σ, the event A j,σ(n, N) is not monotone, we need a slight generalization of this formula,
for events that can be expressed as the intersection of two monotone events, one increasing and one
decreasing. We also allow the parameters pv to be differentiable functions of t ∈ [0,1].

Lemma 29. Let A+ and A− be two monotone events, respectively increasing and decreasing, depending

only on the sites contained in some finite set of vertices S. Let (p̂v)v∈S be a family of differentiable

functions p̂v : t ∈ [0,1] 7→ p̂v(t) ∈ [0,1], and denote by (P̂t)0≤t≤1 the associated product measures.

Then

d

d t
P̂t(A

+ ∩ A−)

=
∑

v∈S

d

d t
p̂v(t)
h

P̂t(v is pivotal for A+ but not for A−, and A− occurs)

− P̂t(v is pivotal for A− but not for A+, and A+ occurs)
i

.

Proof. We adapt the proof of standard Russo’s formula. We use the same function P of the param-
eters (p̂v)v∈S, and we note that for a small variation ε > 0 in w,

P̂
+ε(A+ ∩ A−)− P̂(A+ ∩ A−)

= ε× P̂(w is pivotal for A+ but not for A−, and A− occurs)

− ε× P̂(w is pivotal for A− but not for A+, and A+ occurs).

Now, it suffices to compute the derivative of the function t 7→ P̂t(A
+ ∩ A−) by writing it as the

composition of t 7→ (p̂v(t)) and (p̂v)v∈S 7→ P̂(A).

Remark 30. Note that if we take A− = Ω in Lemma 29, we get usual Russo’s formula for A+, with

parameters that can be functions of t.

Proof of the theorem. We now turn to the proof itself. It is divided into three main steps.

1. First simplifications

Note first that by quasi-multiplicativity, we can restrict ourselves to n = n0( j). It also suffices to
prove the result for some fixed P̂′, with P̂ varying: we thus assume that p < 1/2, and take P̂′ = Pp.
Denoting by p̂v the parameters of P̂, we have by hypothesis p̂v ≥ p for each site v. For technical
reasons, we suppose that the sizes of annuli are powers of two: take k0, K such that 2k0−1 < n0 ≤ 2k0

and 2K ≤ N < 2K+1, then
Pp(A j,σ(n0, N))≍ Pp(A j,σ(2

k0 , 2K))

and the same is true for P̂.

To estimate the change in probability when p is replaced by p̂v , we will use the observation that the
pivotal sites give rise to 4 alternating arms locally (see Figure 11). However, this does not work so
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v

∂S2l

∂S2l+3

∂S2K

∂S2l(v)

Figure 11: If v is pivotal, 4 alternating arms arise locally.

nicely for the sites v which are close to ∂ S2k0 or ∂ S2K , so for the sake of simplicity we treat aside
these sites. We perform the change p  p̂v in S2k0 ,2K \S2k0+3,2K−3 . Note that the intermediate measure
P̃ so obtained is between Pp and P1−p, and that P̃(A j,σ(2

k0+3, 2K−3)) = Pp(A j,σ(2
k0+3, 2K−3)). We

have
P̃(A j,σ(2

k0 , 2K))≍ P̃(A j,σ(2
k0+3, 2K−3)) (6.2)

and also
Pp(A j,σ(2

k0 , 2K))≍ Pp(A j,σ(2
k0+3, 2K−3)), (6.3)

which shows that it would be enough to prove the result with P̃ instead of Pp.

2. Make appear the logarithmic derivative of the probability by applying Russo’s formula

The event A j,σ(2
k0 , 2K) cannot be directly written as an intersection like in Russo’s formula, since

the order of the different arms is prescribed. To fix this difficulty, we impose the landing areas of the
different arms on ∂ S2K , ie we fix some landing sequence I ′ = I ′1, . . . , I ′j and we consider the event

Ā
./I ′

j,σ(2
k0 , 2K). Since we know that

P̃
�

A j,σ(2
k0 , 2K)
�

≍ P̃
�

Ā
./I ′

j,σ(2
k0 , 2K)
�

, (6.4)

and also with P̂ instead of P̃, it is enough to prove the result for this particular landing sequence.

We study successively three cases. We begin with the case of one arm, which is slightly more direct
than the two next ones – however, only small adaptations are needed. We then consider the special
case where j is even and σ alternating: due to the fact that any arm is surrounded by two arms of
opposite color, the local four arms are always long enough. We finally prove the result for any j and
any σ: a technical complication arises in this case, for which the notion of “arms with defects” is
needed.

Case 1: j = 1
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We first consider the case of one arm, and assume for instance σ = B. We introduce the family of
measures (P̃t)t∈[0,1] with parameters

p̃v(t) = t p̂v + (1− t)p (6.5)

in S2k0+3,2K−3 , corresponding to a linear interpolation between p and p̂v . For future use, note that

P̃t is between Pp and P1−p for any t ∈ [0,1]. We have d

d t
p̃v(t) = p̂v − p if v ∈ S2k0+3,2K−3 (and 0

otherwise), generalized Russo’s formula (with just an increasing event – see Remark 30) thus gives:

d

d t
P̃t

�

Ā
./I ′

1,σ(2
k0 , 2K)
�

=
∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t(v is pivotal for Ā
./I ′

1,σ(2
k0 , 2K)).

The key remark is that the summand can be expressed in terms of arm events: for probabilities,
being pivotal is approximately the same as having a black arm, and four arms locally around v.

Indeed,
�

v is pivotal for Ā
./I ′

1,σ(2
k0 , 2K)
�

iff

(1) there exists an arm r1 from ∂ S2k0 to I ′1, with v ∈ r1; r1 is black, with a possible exception in v

(Ā./I ′

1,σ(2
k0 , 2K) occurs when v is black),

(2) there exists a path c1 passing through v and separating ∂ S2k0 from I ′1 (c1 may be either a circuit
around ∂ S2k0 or a path with extremities on ∂ S2K ); c1 is white, except possibly in v (there is no

black arm from ∂ S2k0 to I ′1 when v is white).

We now put a rhombus R(v) around v: if it does not contain 0, then v is connected to ∂ R(v) by 4
arms of alternating colors. Indeed, r1 provides two black arms, and c1 two white arms.

Let us look at the pieces of the black arm outside of R(v): if R(v) is not too large, we can expect
them to be sufficiently large to enable us to reconstitute the whole arm. We also would like that the
two white arms are a good approximation of the whole circuit. We thus take R(v) of size comparable
to the distance d(0, v): if 2l+1 < ‖v‖∞ ≤ 2l+2, we take R(v) = S2l (v). It is not hard to check that
R(v)⊆ S2l ,2l+3 for this particular choice of R(v) (see Figure 11), so that for any t ∈ [0,1],

P̃t(v is pivotal for Ā
./I ′

1,σ(2
k0 , 2K))

≤ P̃t

�

{∂ S2k0   ∂ S2l } ∩ {∂ S2l+3   ∂ S2K } ∩ {v 4,σ4
∂ S2l (v)}
�

= P̃t

�

∂ S2k0   ∂ S2l

�

P̃t

�

∂ S2l+3   ∂ S2K

�

P̃t

�

v 4,σ4
∂ S2l (v)
�

by independence of the three events, since they are defined in terms of sites in disjoint sets (recall
that σ4 = BW BW ). We can then make appear the original event by combining the two first terms,
using quasi-multiplicativity and extendability2:

P̃t

�

∂ S2k0   ∂ S2l

�

P̃t

�

∂ S2l+3   ∂ S2K

�

≤ C2P̃t

�

Ā
./I ′

1,σ(2
k0 , 2K)
�

(6.6)

for some C2 universal. Hence3,

P̃t(v is pivotal for Ā
./I ′

1,σ(2
k0 , 2K))≤ C2P̃t

�

Ā
./I ′

1,σ(2
k0 , 2K)
�

P̃t

�

v 4,σ4
∂ S2l (v)
�

. (6.7)

2Note that in the case of one arm, the extendability property, as well as the quasi-multiplicativity, are direct conse-
quences of RSW and do not require the separation lemmas.

3As we will see in the next sub-section (Proposition 32), the converse bound also holds: the estimate obtained gives
the exact order of magnitude for the summand.
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We thus get

d

d t
P̃t

�

Ā
./I ′

1,σ(2
k0 , 2K)
�

≤ C2

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

�

Ā
./I ′

1,σ(2
k0 , 2K)
�

P̃t

�

v 4,σ4
∂ S2l (v)
�

.

Now, dividing by P̃t

�

Ā
./I ′

1,σ(2
k0 , 2K)
�

, we make appear its logarithmic derivative in the left-hand side,

d

d t
log
�

P̃t

�

Ā
./I ′

1,σ(2
k0 , 2K)
��

≤ C2

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

�

v 4,σ4
∂ S2l (v)
�

, (6.8)

it thus suffices to show that for some C3 universal,

∫ 1

0

∑

v∈S
2k0+3,2K−3

(p̂v − p) P̃t

�

v 4,σ4
∂ S2l (v)
�

d t ≤ C3. (6.9)

We will prove this in the next step, but before that, we turn to the two other cases: even if the
computations need to be modified, it is still possible to reduce the proof to this inequality.

Case 2: j even and σ alternating

In this case,
Ā

./I ′

j,σ(2
k0 , 2K) = A+ ∩ A− (6.10)

with A+ = A+(2k0 , 2K) = {There exist j/2 disjoint black arms r1 : ∂ S2k0   I ′1, r3 : ∂ S2k0   I ′3 . . .}
and A− = A−(2k0 , 2K) = {There exist j/2 disjoint white arms r2 : ∂ S2k0  

∗ I ′2, r4 : ∂ S2k0  
∗ I ′4 . . .}.

We then perform the change p   p̂v in S2k0+3,2K−3 linearly as before (Eq.(6.5)), which gives rise to
the family of measures (P̃t)t∈[0,1], and generalized Russo’s formula reads

d

d t
P̃t

�

Ā
./I ′

j,σ(2
k0 , 2K)
�

=
∑

v∈S
2k0+3,2K−3

(p̂v − p)
h

P̃t(v is pivotal for A+ but not for A−, and A− occurs)

− P̃t(v is pivotal for A− but not for A+, and A+ occurs)
i

.

We note that
�

v is pivotal for A+(2k0 , 2K) but not for A−(2k0 , 2K), and A−(2k0 , 2K) occurs
�

iff for
some i′ ∈ {1,3 . . . , j − 1},

(1) there exist j disjoint monochromatic arms r1, . . . , r j from ∂ S2k0 to I ′1, . . . , I ′j , with v ∈ ri′;
r2, r4, . . . are white, and r1, r3, . . . are black, with a possible exception for ri′ in v (the event

Ā
./I ′

j,σ(2
k0 , 2K) is satisfied when v is black),

(2) there exists a path ci′ separating ∂ S2k0 from I ′
i′ ; this path is white, except possibly in v (∂ S2k0

and I ′
i′ are separated when v is white).
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If we take the same rhombus R(v) ⊆ S2l ,2l+3 around v, then v is still connected to ∂ R(v) by 4 arms
of alternating colors. Indeed, ri′ provides two black arms, and ci′ (which can contain parts of ri′−1

or ri′+1 – see Figure 11) provides the two white arms.

Hence for any t ∈ [0,1],

P̃t(v is pivotal for A+ but not for A−, and A− occurs)

≤ P̃t

�

A j,σ(2
k0 , 2l)∩ Ā

./I ′

j,σ(2
l+3, 2K)∩ {v 4,σ4

∂ S2l (v)}
�

= P̃t

�

A j,σ(2
k0 , 2l)
�

P̃t

�

Ā
./I ′

j,σ(2
l+3, 2K)
�

P̃t

�

v 4,σ4
∂ S2l (v)
�

by independence of the three events. We then combine the two first terms using extendability and
quasi-multiplicativity:

P̃t

�

A j,σ(2
k0 , 2l)
�

P̃t

�

Ā
./I ′

j,σ(2
l+3, 2K)
�

≤ C1P̃t

�

Ā
./I ′

j,σ(2
k0 , 2K)
�

(6.11)

for some C1 universal. We thus obtain

P̃t(v is pivotal for A+ but not for A−, and A− occurs)

≤ C1P̃t

�

Ā
./I ′

j,σ(2
k0 , 2K)
�

P̃t

�

v 4,σ4
∂ S2l (v)
�

.

If we then do the same manipulation on the second term of the sum, we get
¯

¯

¯

¯

d

d t
P̃t

�

Ā
./I ′

j,σ(2
k0 , 2K)
�

¯

¯

¯

¯

≤ 2C1

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

�

Ā
./I ′

j,σ(2
k0 , 2K)
�

P̃t

�

v 4,σ4
∂ S2l (v)
�

,

and if we divide by P̃t

�

Ā
./I ′

j,σ(2
k0 , 2K)
�

,
¯

¯

¯

¯

d

d t
log
�

P̃t

�

Ā
./I ′

j,σ(2
k0 , 2K)
��

¯

¯

¯

¯

≤ 2C1

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

�

v 4,σ4
∂ S2l (v)
�

. (6.12)

As promised, we have thus reduced this case to Eq.(6.9).

Case 3: Any j, σ

In the general case, a minor complication may arise, coming from consecutive arms of the same
color: indeed, the property of being pivotal for a site v does not always give rise to four arms in
R(v), but to some more complex event E(v) (see Figure 12). If v is on ri , and this arm is black for
instance, there are still two black arms coming from ri , but the two white arms do not necessarily
reach ∂ R(v), since they can encounter neighboring black arms.

We first introduce an event for which the property of being pivotal is easier to formulate. We group
consecutive arms of the same color in “packs”: if (riq

, riq+1, . . . , riq+lq−1) is such a sequence of arms,

say black, we take an interval Ĩq covering all the Ii for iq ≤ i ≤ iq + lq − 1 and replace the condition
“ri   Ii for all iq ≤ i ≤ iq + lq − 1” by “ri   Ĩq for all iq ≤ i ≤ iq + lq − 1”. We construct in this way

an event Ã= Ã+ ∩ Ã−: since it is intermediate between Ā
./I ′

j,σ(2
k0 , 2K) and A j,σ(2

k0 , 2K), we have

P̃t(Ã)≍ P̃t(Ā
./I ′

j,σ(2
k0 , 2K)).
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∂S
2l(v)

v

∂S
2l′+1(v)

∂S
2l′ (v)

Figure 12: More complex events may arise when σ is not alternating.

This new definition allows to use Menger’s theorem (see [22], Theorem 3.3.1):
�

v is pivotal for Ã+

but not for Ã−, and Ã− occurs
�

iff for some arm ri′ in a black pack (riq
, riq+1, . . . , riq+lq−1),

(1) there exist j disjoint monochromatic arms r1, . . . , r j from ∂ S2k0 to Ĩq (an appropriate number of
arms for each of these intervals), with v ∈ ri′ ; all of these arms are of the prescribed color, with
a possible exception for ri′ in v (Ã occurs when v is black),

(2) there exists a path ci′ separating ∂ S2k0 from Ĩq; this path is white, except in (at most) lq − 1
sites, and also possibly in v (∂ S2k0 and Ĩq can be separated by turning white lq−1 sites when v is

white).

Now, we take once again the same rhombus R(v) ⊆ S2l ,2l+3 around v: if there are four arms
v  4,σ4

∂ S2l−1(v), we are OK. Otherwise, if l ′, 1 ≤ l ′ ≤ l − 2, is such that the defect on ci′ closest
to v is in S2l′+1(v) \ S2l′ (v), then there are 4 alternating arms v  4,σ4

∂ S2l′ (v), and also 6 arms

∂ S2l′+1(v) 
( j)

6,σ′6
∂ S2l (v) having at most j defects, with the notation σ′6 = BBW BBW . We denote by

E(v) the corresponding event: E(v) := {There exists l ′ ∈ {1, . . . , l − 2} such that v  4,σ4
∂ S2l′ (v)

and ∂ S2l′+1(v) 
( j)

6,σ′6
∂ S2l (v)} ∪ {v 4,σ4

∂ S2l−1(v)}.

For the 6 arms with defects, Proposition 18 applies and the probability remains roughly the same,
with just an extra logarithmic correction:

P̃t

�

∂ S2l′+1(v) 
( j)

6,σ′6
∂ S2l (v)
�

≤ C1(l − l ′) jP̃t

�

∂ S2l′+1(v) 6,σ′6
∂ S2l (v)
�

≤ C1(l − l ′) jP̃t

�

∂ S2l′+1(v) 4,σ4
∂ S2l (v)
�

P̃t

�

∂ S2l′+1(v) 2,BB ∂ S2l (v)
�

≤ C2(l − l ′) jP̃t

�

∂ S2l′+1(v) 4,σ4
∂ S2l (v)
�

2−α
′(l−l ′)

using Reimer’s inequality (its consequence Eq.(4.2)) and the a-priori bound for one arm (Eq.(4.10)).
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This implies that
P̃t

�

E(v)
�

≤ C5P̃t

�

v 4,σ4
∂ S2l (v)
�

(6.13)

for some universal constant C5: indeed, by quasi-multiplicativity,

l−2
∑

l ′=1

P̃t

�

v 4,σ4
∂ S2l′ (v)
�

P̃t

�

∂ S2l′+1(v) 
( j)

6,σ′6
∂ S2l (v)
�

≤ C2

l−2
∑

l ′=1

P̃t

�

v 4,σ4
∂ S2l′ (v)
�

P̃t

�

∂ S2l′+1(v) 4,σ4
∂ S2l (v)
�

(l − l ′) j2−α
′(l−l ′)

≤ C3P̃t

�

v 4,σ4
∂ S2l (v)
�

l−2
∑

l ′=1

(l − l ′) j2−α
′(l−l ′)

≤ C4P̃t

�

v 4,σ4
∂ S2l (v)
�

,

since
∑l−2

l ′=1(l − l ′) j2−α
′(l−l ′) ≤
∑∞

r=1 r j2−α
′r <∞.

The reasoning is then identical:

P̃t(v is pivotal for Ã+ but not for Ã−, and Ã− occurs)

≤ P̃t

�

A j,σ(2
k0 , 2l)
�

P̃t

�

A j,σ(2
l+3, 2K)
�

P̃t

�

E(v)
�

≤ C6P̃t

�

A j,σ(2
k0 , 2K)
�

P̃t

�

v 4,σ4
∂ S2l (v)
�

,

and using P̃t

�

A j,σ(2
k0 , 2K)
�

≤ C7P̃t(Ã), we get

¯

¯

¯

¯

d

d t
log
�

P̃t

�

Ã
��

¯

¯

¯

¯

≤ C8

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

�

v 4,σ4
∂ S2l (v)
�

. (6.14)

Once again, Eq.(6.9) would be sufficient.

3. Final summation

We now prove Eq.(6.9), ie that for some universal constant C1,

∫ 1

0

∑

v∈S
2k0+3,2K−3

(p̂v − p) P̃t

�

v 4,σ4
∂ S2l (v)
�

d t ≤ C1. (6.15)

Recall that Russo’s formula allows to count 4-arm sites: for any N and any measure P̄ between Pp

and P1−p,
∫ 1

0

∑

v∈SN

(p̄v − p) P̄t

�

v 
./ Ī
4,σ4
∂ SN

�

d t = P̄(CH(SN ))− Pp(CH(SN ))≤ 1 (6.16)

(we remind that Ī consists of the different sides of ∂ SN ). This is essentially the only relation we
have at our disposal, the end of the proof consists in using it in a clever way.
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Roughly speaking, when applied to N = L(p), this relation gives that (p− 1/2)N2π4(N) ≤ 1, since
all the sites give a contribution of order

P̄t

�

0 4,σ4
∂ SN/2
�

≍ π4(N). (6.17)

This corresponds more or less to the sites in the “external annulus” in Eq.(6.15). Now each time we
get from an annulus to the next inside it, the probability to have 4 arms is multiplied by 2α4 ≈ 25/4,
while the number of sites is divided by 4, so that things decay exponentially fast, and the sum of
Eq.(6.15) is bounded by something like

K−4
∑

j=k0+3

(25/4−2)K−4− j ≤
∞
∑

q=0

(2−3/4)q <∞.

We have to be more cautious, in particular Eq.(6.17) does not trivially hold, since we do not know
at this point that the probability of having 4 arms remains of the same order on a scale L(p) (and
the estimate for 4 arms only gives a logarithmic equivalence). The a-priori estimate coming from
the 5-arm exponent will allow us to circumvent these difficulties. We also need to take care of the
boundary effects.

Assume that v ∈ S2l+1,2l+2 as before. We subdivide this annulus into 12 sub-boxes of size 2l+1 (see
Figure 13) R̃i

2l+1 (i = 1, . . . , 12). At least one of these boxes contains v: we denote it by R̃(v). We

then associate to each of these boxes a slightly enlarged box R̃′i
2l+1 of size 2l+2, and we also use the

obvious notation R̃′(v). Since

{v 4,σ4
∂ S2l+2(v)} ⊆ {v 4,σ4

∂ R̃′(v)} ⊆ {v 4,σ4
∂ S2l (v)},

we have
P̃t

�

v 4,σ4
∂ S2l (v)
�

≍ P̃t

�

v 4,σ4
∂ R̃′(v)
�

.

We thus have to find an upper bound for

K−4
∑

j=k0+3

12
∑

i=1

∫ 1

0

∑

v∈R̃i

2 j

(p̂v − p) P̃t

�

v 4,σ4
∂ R̃′i

2 j

�

d t. (6.18)

For that purpose, we will prove that for i = 1, . . . , 12, and fixed t ∈ [0,1],

S
i,(4)
j

:=
∑

v∈R̃i

2 j

(p̂v − p) P̃t

�

v 4,σ4
∂ R̃′i

2 j

�

indeed decays fast when, starting from j = K − 4, we make j decrease. For that, we duplicate the
parameters in the box R̃′i

2 j periodically inside S2K−3 : this gives rise to a new measure P̄ inside S2K (to

completely define it, simply take p̄v = p outside of S2K−3). This measure contains 22(K− j−3) copies
of the original box (of size 2 j+1), that we denote by (R̄′q). We also consider R̄q the box of size 2 j

centered inside R̄′q. We know that

∫ 1

0

∑

v∈S2K−3

(p̄v − p) P̄t

�

v 4,σ4
∂ S2K

�

d t ≤ 1. (6.19)
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∂S2l+2

∂S2l+1
v

0

Figure 13: We replace R(v) = S2l (v) by one of the R̃′i
2l+1 (i = 1, . . . , 12).

If we restrict the summation to the sites in the union of the R̄q ’s, we get that

∑

v∈S2K−3

(p̄v − p)P̄t(v 4,σ4
∂ S2K )

≥
∑

q

∑

v∈R̄q

(p̄v − p)P̄t(v 4,σ4
∂ S2K )

≥ C1

∑

q

∑

v∈R̄q

(p̄v − p)P̄t

�

v 4,σ4
∂ R̄′q
�

P̄t

�

∂ R̄′q 4,σ4
∂ S2K

�

= C1

�

∑

q

P̄t

�

∂ R̄′q 4,σ4
∂ S2K

�

�

S
i,(4)
j

.

Hence, using Reimer’s inequality and the a-priori bound for one arm,
∑

v∈S2K−3

(p̄v − p)P̄t(v 4,σ4
∂ S2K )

≥ C2

�

∑

q

P̄t

�

∂ R̄′q 5,σ5
∂ S2K

�

P̄t

�

∂ R̄′q  ∂ S2K

�−1
�

S
i,(4)
j

≥ C32α
′(K− j)S

i,(4)
j

�

∑

q

P̄t

�

∂ R̄′q 5,σ5
∂ S2K

�

�

.

The same type of manipulation for 5 arms gives, introducing R̄′′q the box of size 2 j+2 centered on R̄′q,

∑

v∈S2K−3

P̄t(v 5,σ5
∂ S2K )≤
∑

q

∑

v∈R̄′q

P̄t

�

v 5,σ5
∂ R̄′′q
�

P̄t

�

∂ R̄′′q  5,σ5
∂ S2K

�

≤ C4

�

∑

q

P̄t

�

∂ R̄′′q  5,σ5
∂ S2K

�

�

,

since we know from Lemma 25 that
∑

v∈R̄′q
P̄t

�

v  5,σ5
∂ R̄′′q
�

≍ 1. We also know that
∑

v∈S2K−3
P̄t(v  5,σ5

∂ S2K ) ≍ 1 (still by Lemma 25) and P̄t

�

∂ R̄′′q  5,σ5
∂ S2K

�

≍ P̄t

�

∂ R̄′q  5,σ5
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∂ S2K

�

, we thus have
∑

q

P̄t

�

∂ R̄′q 5,σ5
∂ S2K

�

≥ C5 (6.20)

for some C5 > 0. This implies that

S
i,(4)
j
≤ C62−α

′(K− j)
∑

v∈S2K−3

(p̄v − p)P̄t(v 4,σ4
∂ S2K ),

and finally, by integrating and using Eq.(6.19),

∫ 1

0

∑

v∈R̃i

2 j

(p̂v − p) P̃t

�

v 4,σ4
∂ R̃′i

2 j

�

d t ≤ C62−α
′(K− j).

The sum of Eq.(6.18) is thus less than

K−4
∑

j=k0+3

12C62−α
′(K− j) ≤ C7

∞
∑

r=0

2−α
′r <∞,

which completes the proof.

Remark 31. We will use this theorem in the next section to relate the so-called “characteristic functions”

to the arm exponents at criticality. We will have use in fact only for the two cases j = 1 and j = 4,

σ = σ4: the general case (3rd case in the previous proof) will thus not be needed there. It is however of

interest for other applications, for instance to say that for an interface in near-critical percolation, the

dimension of the accessible perimeter is the same as at criticality: this requires the case j = 3, σ = σ3.

6.3 Some complements

Theorem for more general annuli

We will sometimes need a version of Theorem 27 with non concentric rhombi. For instance, for any
fixed η > 0,

P̂(∂ Sn(v)  ∂ SN )≍ P1/2(∂ Sn  ∂ SN ) (6.21)

uniformly in v ∈ S(1−η)N . It results from the remark on more general annuli (Eq.(4.20)) combined
with Theorem 27 applied to P̂v, the measure P̂ translated by v.

A complementary bound

Following the same lines as in the previous proof, we can get a bound in the other direction:

Proposition 32. There exists some universal constant C̃ > 1 such that for all p > 1/2,

Pp

�

0  ∂ SL(p)

�

≥ C̃ P1/2
�

0  ∂ SL(p)

�

. (6.22)

In other words, the one-arm probability varies of a non-negligible amount, like the crossing proba-
bility: there is a macroscopic difference with the critical regime.
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Proof. Take K such that 2K ≤ L(p) < 2K+1 and (P̂t) the linear interpolation between P1/2 and Pp.
By gluing arguments, for A= {0  ∂ SL(p)}, for any v ∈ S2K−4,2K−3 ,

P̃t(v is pivotal for A)

≥ C1P̃t

�

0  ∂ S2K−5
�

P̃t

�

∂ S2K−2   ∂ SL(p)

�

P̃t

�

v 4,σ4
∂ S2K−5(v)
�

≥ C2P̃t

�

0  ∂ S2K

�

P̃t

�

v 4,σ4
∂ S2K−5(v)
�

,

so that

d

d t
log
�

P̃t(A)
�

≥
∑

v∈S2K−4,2K−3

(p− 1/2)P̂t

�

v 4,σ4
∂ S2K−5(v)
�

≥ C3(p− 1/2)L(p)2P̂t

�

0 4,σ4
∂ SL(p)

�

,

since each of the sites v ∈ S2K−4,2K−3 produces a contribution of order P̂t

�

0 4,σ4
∂ SL(p)

�

. Proposi-
tion 34, proved later4, allows to conclude.

7 Consequences for the characteristic functions

7.1 Different characteristic lengths

Roughly speaking, a characteristic length is a quantity intended to measure a “typical” scale of the
system. There may be several natural definitions of such a length, but we usually expect the different
possible definitions to produce lengths that are of the same order of magnitude. For two-dimensional
percolation, the three most common definitions are the following:

Finite-size scaling

The lengths Lε that we have used throughout the paper, introduced in [15], are known as “finite-size
scaling characteristic lengths”:

Lε(p) =

(

min{n s.t. Pp(CH([0, n]× [0, n]))≤ ε} when p < 1/2,

min{n s.t. Pp(C ∗H([0, n]× [0, n]))≤ ε} when p > 1/2.
(7.1)

Mean radius of a finite cluster

The (quadratic) mean radius measures the “typical” size of a finite cluster. It can be defined by the
formula

ξ(p) =

�

1

Ep

�

|C(0)|; |C(0)|<∞
�

∑

x

‖x‖2∞Pp

�

0  x , |C(0)|<∞
�

�1/2

. (7.2)

4This does not raise any problem since we have included this complementary bound only for the sake of completeness,
and we will not use it later.
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Connection probabilities

A third possible definition would be via the rate of decay of correlations. Take first p < 1/2 for
example. For two sites x and y , we consider the connection probability between them

τx ,y := Pp

�

x   y
�

, (7.3)

and then
τn := sup

x∈∂ Sn

τ0,x , (7.4)

the maximum connection probability between sites at distance n (using translation invariance). For
any n, m≥ 0, we have

τn+m ≥ τnτm,

in other words (− logτn)n≥0 is sub-additive, which implies the existence of a constant ξ̃(p) such
that

−
logτn

n
−→

1

ξ̃(p)
= inf

m

�

−
logτm

m

�

(7.5)

when n→∞. Note the following a-priori bound:

Pp

�

0  x
�

≤ e−‖x‖∞/ξ̃(p). (7.6)

For p > 1/2, we simply use the symmetry p↔ 1− p: we consider

τ∗n := sup
x∈∂ Sn

Pp

�

0 ∗ x
�

(7.7)

and then ξ̃(p) in the same way. We have in this case

Pp

�

0 ∗ x
�

≤ e−‖x‖∞/ξ̃(p). (7.8)

Note that the symmetry p↔ 1− p gives immediately

ξ̃(p) = ξ̃(1− p).

Relation between the different lengths

As expected, these characteristic lengths turn out to be all of the same order of magnitude: we will
prove in Section 7.3 that Lε ≍ Lε′ for any two ε,ε′ ∈ (0,1/2), in Section 7.4 that L ≍ ξ̃, and in
Section 7.5 that L ≍ ξ.

7.2 Main critical exponents

We focus here on three functions commonly used to describe the macroscopic behavior of percola-
tion. We have already encountered some of them:

(i) ξ(p) =

�

1

Ep

�

|C(0)|;|C(0)|<∞
�

∑

x ‖x‖2∞Pp

�

0   x , |C(0)| < ∞
�

�1/2

the mean radius of a finite

cluster.
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(ii) θ(p) := Pp(0 ∞). This function can be viewed as the density of the infinite cluster C∞, in
the following sense:

1

|SN |
¯

¯SN ∩ C∞
¯

¯

a.s.−→ θ(p) (7.9)

when N →∞.

(iii) χ(p) = Ep

�

|C(0)|; |C(0)|<∞
�

the average size of a finite cluster.

Theorem 33 (Critical exponents). The following power-law estimates hold:

(i) When p→ 1/2,

ξ(p)≍ ξ̃(p)≍ L(p)≈ |p− 1/2|−4/3. (7.10)

(ii) When p→ 1/2+,

θ(p)≈ (p− 1/2)5/36. (7.11)

(iii) When p→ 1/2,

χ(p)≈ |p− 1/2|−43/18. (7.12)

The corresponding exponents are usually denoted by (respectively) ν , β and γ. This theorem is
proved in the next sub-sections by combining the arm exponents for critical percolation with the
estimates established for near-critical percolation.

7.3 Critical exponent for L

We derive here5 the exponent for Lε(p) by counting the sites which are pivotal for the existence of a

crossing in a box of size Lε(p). These pivotal sites are exactly those for which the 4-arm event Ā
./ Ī
4,σ4

with alternating colors (σ4 = BW BW ) and sides ( Ī = right, top, left and bottom sides):

Proposition 34 ([31; 47]). For any fixed ε ∈ (0,1/2), the following equivalence holds:

|p− 1/2|
�

Lε(p)
�2
π4(Lε(p))≍ 1. (7.13)

Recall now the value α4 = 5/4 of the 4-arm exponent, stated in Theorem 21. If we plug it into
Eq.(7.13), we get the value of the characteristic length exponent: when p→ 1/2,

1≈ |p− 1/2|
�

Lε(p)
�2�

Lε(p)
�−5/4

= |p− 1/2|
�

Lε(p)
�3/4,

so that indeed
Lε(p)≈ |p− 1/2|−4/3.

5In this sub-section and in the next one, we temporarily choose to stress that L depends on ε – in particular we study
this dependence.
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ηL ηL

L
1/2

1/2 p

Figure 14: We restrict to the sites at distance at least ηL from the boundary of [0, L]2: these sites
produce contributions of the same order, since the 4 arms stay comparable in size.

Proof. For symmetry reasons, we can assume that p > 1/2. The proof goes as follows. We first apply
Russo’s formula to estimate the variation in probability of the event CH([0, Lε(p)] × [0, Lε(p)])

between 1/2 and p, which makes appear the events Ā
./ Ī
4,σ4

. By construction of Lε(p), the variation of
the crossing event is of order 1, and the sites that are “not too close to the boundary” (such that none
of the 4 arms can become too small – see Figure 14) each produce a contribution of the same order
by Theorem 27: proving that they all together produce a non-negligible variation in the crossing
probabilities will thus imply the result. For that, we need the following lemma:

Lemma 35. For any δ > 0, there exists η0 > 0 such that for all p, P̂ between Pp and P1−p, we have:

for any parallelogram [0, n]× [0, m] with sides n, m ≤ L(p) and aspect ratio less than 2 (ie such that

1/2≤ n/m≤ 2), for any η≤ η0,

¯

¯P̂(CH([0, n]× [0, m]))− P̂(CH([0, (1+η)n]× [0, m]))
¯

¯≤ δ. (7.14)

Proof of lemma. First, we clearly have

P̂(CH([0, n]× [0, m]))≥ P̂(CH([0, (1+η)n]× [0, m])).

For the converse bound, we use the same idea as for Lemma 15, we apply RSW in concentric annuli
(see Figure 15). By considering (parts of) annuli centered on the top right corner of [0, n]× [0, m],
with radii between η3/4n and

p
ηn, we see that the probability for a crossing to arrive at a distance

less than η3/4n from this corner is at most δ/100 for η0 small enough. Assume this is not the case,
condition on the lowest crossing and apply RSW in annuli between scales ηn and η3/4n: if η0 is
sufficiently small, with probability at least 1− δ/100, this crossing can be extended into a crossing
of [0, (1+η)n]× [0, m].

Let us return to the proof of the proposition. Take η0 associated to δ = ε/100 by the lemma, and
assume that instead of performing the change 1/2   p in the whole box [0, Lε(p)]

2, we make it
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m

n

Figure 15: We extend a crossing of [0, n]×[0, m] into a crossing of [0, (1+η)n]×[0, m] by applying
RSW in concentric annuli.

only for the sites in the sub-box [ηLε(p), (1− η)Lε(p)]2, for η = η0/4. It amounts to consider the
measure P̂(η) with parameters

p̂(η)v =

¯

¯

¯

¯

¯

p if v ∈ [ηLε(p), (1−η)Lε(p)]2,

1/2 otherwise.
(7.15)

We are going to prove that P̂(η)(CH([0, Lε(p)]
2)) and Pp(CH([0, Lε(p)]

2)) are very close by show-

ing that they are both very close to Pp(CH([ηLε(p), (1 − η)Lε(p)]2)) = P̂(η)(CH([ηLε(p), (1 −
η)Lε(p)]

2)). Indeed, for any P̃ ∈ {P̂(η),Pp}, we have by the lemma

P̃(CH([0, Lε(p)]
2))≤ P̃(CH([ηLε(p), (1−η)Lε(p)]× [0, Lε(p)]))

= 1− P̃(C ∗V ([ηLε(p), (1−η)Lε(p)]× [0, Lε(p)]))

≤ 1−
�

P̃(C ∗V ([ηLε(p), (1−η)Lε(p)]2))− 2δ
�

= P̃(CH([ηLε(p), (1−η)Lε(p)]2)) + 2δ,

and in the other way,

P̃(CH([0, Lε(p)]
2))≥ P̃(CH([ηLε(p), (1−η)Lε(p)]× [0, Lε(p)]))− 2δ

= 1− P̃(C ∗V ([ηLε(p), (1−η)Lε(p)]× [0, Lε(p)]))− 2δ

≥ 1− P̃(C ∗V ([ηLε(p), (1−η)Lε(p)]2))− 2δ

= P̃(CH([ηLε(p), (1−η)Lε(p)]2))− 2δ.

The claim follows readily, in particular

P̂
(η)(CH([0, Lε(p)]

2))≥ Pp(CH([0, Lε(p)]
2))− 4δ, (7.16)

which is at least (1/2+ε)−4δ ≥ 1/2+ε/2 by the very definition of Lε(p). It shows as desired that
the sites in [ηLε(p), (1−η)Lε(p)]2 produce all together a non-negligible contribution.

Now, Russo’s formula applied to the interpolating measures (P̂(η)t )t∈[0,1] (with parameters p̂
(η)
v (t) =
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t × p̂
(η)
v + (1− t)× 1/2) and the event CH([0, Lε(p)]

2) gives
∫ 1

0

∑

v∈[ηLε(p),(1−η)Lε(p)]2

�

p− 1/2
�

P̂
(η)
t

�

v  Ī
4,σ4
∂ [0, Lε(p)]

2�d t

= P̂(η)(CH([0, Lε(p)]
2))− P1/2(CH([0, Lε(p)]

2)),

and this quantity is at least ε/2, and thus of order 1.

Finally, it is not hard to see that once η fixed, we have (uniformly in p, P̂ between Pp and P1−p, and
v ∈ [ηLε(p), (1−η)Lε(p)]2)

P̂
�

v  Ī
4,σ4
∂ [0, Lε(p)]

2�≍ P̂
�

v 4,σ4
∂ S η

2
Lε(p)
(v)
�

≍ P1/2(0 4,σ4
∂ S η

2
Lε(p)
)

≍ P1/2(0 4,σ4
∂ SLε(p)

),

which yields the desired conclusion.

Remark 36. Note that the intermediate lemma was required for the lower bound only, the upper bound

can be obtained directly from Russo’s formula. To get the lower bound, we could also have proved that

for n≤ L(p),
∑

x∈Sn

P̂
�

x  4,σ4
∂ Sn

�

≍ n2π4(n). (7.17)

Basically, it comes from the fact that when we get closer to ∂ SN , one of the arms may be shorter, but

the remaining arms also have less space – and the 3-arm exponent in the half-plane appears.

All the results we have seen so far hold for any fixed value of ε in (0,1/2), in particular Proposition
34. Combining it with the estimate for 4 arms, we get an important corollary, that the behavior of
Lε does not depend on the value of ε.

Corollary 37. For any ε,ε′ ∈ (0,1/2),

Lε(p)≍ Lε′(p). (7.18)

Proof. To fix ideas, assume that ε ≤ ε′, so that Lε(p) ≥ Lε′(p), and we need to prove that Lε(p) ≤
C Lε′(p) for some constant C . We know that

|p− 1/2|
�

Lε(p)
�2
π4(Lε(p))≍ 1≍ |p− 1/2|

�

Lε′(p)
�2
π4(Lε′(p)),

hence for some constant C1,
�

Lε(p)
�2
π4(Lε(p))

�

Lε′(p)
�2
π4(Lε′(p))

≤ C1.

This yields
�

Lε(p)

Lε′(p)

�2

≤ C1
π4(Lε′(p))

π4(Lε(p))
≤ C2
�

π4(Lε′(p), Lε(p))
�−1

by quasi-multiplicativity. Now we use the a-priori bound for 4 arms given by the 5-arm exponent:

π4(Lε′(p), Lε(p))≥ C3

�

Lε′(p)

Lε(p)

�−α′

π5(Lε′(p), Lε(p))≥ C4

�

Lε′(p)

Lε(p)

�2−α′

.
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Together with the previous equation, it implies the result:

Lε(p)≤ (C5)
1/α′ Lε′(p).

Remark 38. In the other direction, a RSW construction shows that we can increase Lε by any constant

factor by choosing ε small enough.

7.4 Uniform exponential decay, critical exponent for θ

Up to now, our reasonings (separation of arms, arm events near criticality, critical exponent for L)
were based on RSW considerations on scales n ≤ L(p), so that critical and near-critical percolation
could be handled simultaneously. In the other direction, the definition of L(p) also implies that
when n > L(p), the picture starts to look like super/sub-critical percolation, supporting the choice
of L(p) as the characteristic scale of the model.

More precisely, we prove a property of exponential decay uniform in p. This property will then be
used to link L with the other characteristic functions, and we will derive the following expressions
of θ , χ and ξ as functions of L:

(i) θ(p)≍ π1(L(p)),

(ii) χ(p)≍ L(p)2π2
1(L(p)),

(iii) ξ(p)≍ L(p).

The critical exponents for these three functions will follow readily, since we already know the expo-
nent for L.

Uniform exponential decay

The following lemma shows that correlations decay exponentially fast with respect to L(p). This
allows to control the speed for p varying:

Lemma 39. For any ε ∈ (0,1/2), there exist constants Ci = Ci(ε)> 0 such that for all p < 1/2, all n,

Pp(CH([0, n]× [0, n]))≤ C1e−C2n/Lε(p). (7.19)

Proof. We use a block argument: for each integer n,

Pp(CH([0,2n]× [0,4n]))≤ C ′[Pp(CH([0, n]× [0,2n]))]2, (7.20)

with C ′ = 102 some universal constant.

It suffices for that (see Figure 16) to divide the parallelogram [0,2n]×[0,4n] into 4 horizontal sub-
parallelograms [0,2n]×[in, (i+1)n] (i = 0, . . . , 3) and 6 vertical ones [in, (i+1)n]×[ jn, ( j+2)n]
(i = 0,1, j = 0,1,2). Indeed, consider a horizontal crossing of the big parallelogram: by considering
its pieces in the two regions 0 < x < n and n < x < 2n, we can extract from it two sub-paths, each
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Figure 16: Two of the small sub-parallelograms are crossed in the “easy” way.

crossing one of the 10 sub-parallelograms “in the easy way”. They are disjoint by construction, so
the claim follows by using the BK inequality.

We then obtain by iterating:

C ′Pp(CH([0,2k Lε(p)]× [0,2k+1 Lε(p)]))≤ (C ′ε̃)2
k

(7.21)

with ε̃≥ Pp(CH([0, Lε(p)]× [0,2Lε(p)])).

Recall that by definition, Pp(CH([0, Lε(p)] × [0, Lε(p)])) ≤ ε0 if ε ≤ ε0. The RSW theory thus
implies (Theorem 2) that for all fixed ε̃ > 0, we can take ε0 sufficiently small to get automatically
(and independently of p) that

Pp(CH([0, Lε(p)]× [0,2Lε(p)]))≤ ε̃. (7.22)

We now choose ε̃ = 1/(e2C ′). For each integer n ≥ Lε(p), we can define k = k(n) such that
2k ≤ n/Lε(p)< 2k+1, and then,

Pp(CH([0, n]× [0, n]))≤ Pp(CH([0,2k Lε(p)]× [0,2k+1 Lε(p)]))

≤ e−2k+1

≤ e× e−n/Lε(p),

which is also valid for n< Lε(p), thanks to the extra factor e.

Hence, we have proved the property for any ε below some fixed value ε0 (given by RSW). The
result for any ε ∈ (0,1/2) follows readily by using the equivalence of lengths for different values of
ε (Corollary 37).

We would like to stress the fact that in the proof, we have not used any of the previous results until
the last step. This exponential decay property could thus have been derived much earlier – but only
for values of ε small enough. It would for instance provide a more direct way to prove that

Lε(p)≍ Lε′(p),

but still only for ε, ε′ less than some fixed value.
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∂SL(p)

0

Figure 17: We consider overlapping parallelograms, with size doubling at each step.

Remark 40. It will sometimes reveal useful to know this property for crossings of longer parallelograms

“in the easy way”: we also have for any k ≥ 1,

Pp(CH([0, n]× [0, kn]))≤ C
(k)

1 e−C
(k)
2 n/Lε(p) (7.23)

for some constants C
(k)

i
(depending on k and ε). This can be proved by combining the previous lemma

with the fact that in Theorem 2, we can take fk satisfying fk(1− ε) = 1− Ckε
αk + o(εαk) for some

Ck,αk > 0.

Consequence for θ

When p > 1/2, we now show that at a distance L(p) from the origin, we are already “not too far
from infinity”: once we have reached this distance, there is a positive probability (bounded away
from 0 uniformly in p) to reach infinity.

Corollary 41. We have

θ(p) = Pp

�

0 ∞
�

≍ Pp

�

0  ∂ SL(p)

�

(7.24)

uniformly in p > 1/2.

Proof. It suffices to consider overlapping parallelograms as in Figure 17, each parallelogram twice
larger than the previous one, so that the kth of them has a probability at least 1−C1e−C22k

to present
a crossing in the “hard” direction (thanks to the previous remark). Since

∏

k(1− C1e−C22k

)> 0, we
are done.

Now, combining Eq.(7.24) with Theorem 27 gives, for p > 1/2,

θ(p)≍ Pp

�

0  ∂ SL(p)

�

≍ P1/2
�

0  ∂ SL(p)

�

= π1(L(p)). (7.25)

Using the 1-arm exponent α1 = 5/48 stated in Theorem 21, we get

θ(p)≈
�

L(p)
�−5/48 (7.26)

as p→ 1/2+. Together with the critical exponent for L derived previously, this provides the critical
exponent for θ :

θ(p)≈
�

(p− 1/2)−4/3�−5/48 ≈ (p− 1/2)5/36. (7.27)
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Equivalence of L and ξ̃

To fix ideas, we assume in this sub-section that p < 1/2. Performing a RSW-type construction as in
Figure 3 yields

Pp(CH([0, kL(p)]× [0, L(p)]))≥ δk−1
2 δk−2

1 = C1e−C2kL(p)/L(p), (7.28)

so that L(p) measures exactly the speed of decaying. Once knowing this, it is easy to compare L and
ξ̃.

Corollary 42. We have

ξ̃(p)≍ L(p). (7.29)

Proof. We exploit the previous remark: on one hand L measures the speed of decaying for cross-
ings of rhombi, and on the other hand ξ̃ was defined to give the optimal bound for point-to-point
connections.

More precisely, consider any x ∈ ∂ Sn. If for instance x is on the right side of ∂ Sn, then 0   x

implies that CH([0, n]× [−n, n]) occurs, so that

τ0,x = Pp(0  x)≤ Pp(CH([0, n]× [0,2n]))

≤ C
(2)
1 e−C

(2)
2 n/L(p).

By definition of τn (Eq.(7.4)), we thus have τn ≤ C
(2)
1 e−C

(2)
2 n/L(p), which gives τkL(p) ≤ C

(2)
1 e−C

(2)
2 k

and

−
logτkL(p)

kL(p)
≥−

1

kL(p)

�

log C
(2)
1 − C

(2)
2 k
�

−−−→
k→∞

C
(2)
2

L(p)
.

Hence,
1

ξ̃(p)
≥

C
(2)
2

L(p)

and finally ξ̃(p)≤ C L(p).

Conversely, we know that Pp(CH([0, kL(p)]× [0, kL(p)])) ≥ C̃1e−C̃2k for some C̃i > 0 (Eq.(7.28)).
Consequently,

τkL(p) ≥
1

(kL(p) + 1)2
Pp(CH([0, kL(p)]× [0, kL(p)]))≥

1

(kL(p))2
C̃1e−C̃2k,

which implies

−
logτkL(p)

kL(p)
≤−

1

kL(p)

�

log C̃1− 2 log(kL(p))− C̃2k
�

−−−→
k→∞

C̃2

L(p)
,

whence the conclusion: ξ̃(p)≥ C ′L(p).
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7.5 Further estimates, critical exponents for χ and ξ

Estimates from critical percolation

We start by stating some estimates that we will need. These estimates were originally derived for
critical percolation (see e.g. [28; 29]), but for exactly the same reasons they also hold for near-
critical percolation on scales n≤ L(p):

Lemma 43. Uniformly in p, P̂ between Pp and P1−p and n≤ L(p), we have

1. Ê
�

|x ∈ Sn : x   ∂ Sn|
�

≍ n2π1(n).

2. For any t ≥ 0,
∑

x∈Sn

‖x‖t∞P̂
�

0  x
�

≍
∑

x∈Sn

‖x‖t∞P̂
�

0
Sn
  x
�

≍ nt+2π2
1(n).

Note that item 2. implies in particular for t = 0 that

Ê
�

|x ∈ Sn : x   0|
�

≍ Ê
�

|x ∈ Sn : x
Sn
  0|
�

≍ n2π2
1(n).

Proof. We will have use for the fact that we can take α1 = 1/2 for j = 1 in Eq.(5.6) (actually any
α < 1 would be enough for our purpose): for any integers n< N ,

π1(n, N)≥ C(n/N)1/2. (7.30)

This can be proved like (3.15) of [5]: just use blocks of size n instead of individual sites to obtain
that N

n
π2

1(n, N) is bounded below by a constant.

Proof of item 1. We will use that

Ê
�

|x ∈ Sn : x   ∂ Sn|
�

=
∑

x∈Sn

P̂(x   ∂ Sn). (7.31)

For the lower bound, it suffices to note that for any x ∈ Sn,

P̂(x   ∂ Sn)≥ P̂(x   ∂ S2n(x)) = P̂
x(0  ∂ S2n) (7.32)

(where P̂x is the measure P̂ translated by x), and that

P̂
x(0  ∂ S2n)≥ C1P̂

x(0  ∂ Sn)≥ C2π1(n) (7.33)

by extendability and Theorem 27 for one arm.

For the upper bound, we sum over concentric rhombi around 0:
∑

x∈Sn

P̂(x   ∂ Sn)≤
∑

x∈Sn

P̂(x   ∂ Sd(x ,∂ Sn)
(x))

=
∑

x∈Sn

P̂
x(0  ∂ Sd(x ,∂ Sn)

)

≤ C1n+

n
∑

j=1

C1n× C2P1/2(0  ∂ S j)
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using that there are at most C1n sites at distance j from ∂ Sn, and Theorem 27. This last sum is at
most

C3n

n
∑

j=1

π1( j)≤ C3nπ1(n)

n
∑

j=1

π1( j)

π1(n)

≤ C4nπ1(n)

n
∑

j=1

π1( j, n)−1

by quasi-multiplicativity. Now Eq.(7.30) says that π1( j, n)≥ C( j/n)1/2, so that

n
∑

j=1

π1( j, n)−1 ≤
n
∑

j=1

( j/n)−1/2 = n1/2
n
∑

j=1

j−1/2 ≤ C5n,

which gives the desired upper bound.

Proof of item 2.

Since
∑

x∈Sn

‖x‖t∞P̂
�

0
Sn
  x
�

≤
∑

x∈Sn

‖x‖t∞P̂
�

0  x
�

,

it suffices to prove the desired lower bound for the left-hand side, and the upper bound for the
right-hand side.

Consider the lower bound first. We note (see Figure 18) that if 0 is connected to ∂ Sn and if there
exists a black circuit in S2n/3,n (which occurs with probability at least δ4

6 by RSW), then any x ∈
Sn/3,2n/3 connected to ∂ S2n(x) will be connected to 0 in Sn. Using the FKG inequality, we thus get
for such an x:

P̂(0
Sn
  x)≥ δ4

6P̂(0  ∂ Sn)P̂(x   ∂ S2n(x))

which is at least (still using extendability and Theorem 27) C1π
2
1(n). Consequently,

∑

x∈Sn

‖x‖t∞P̂
�

0
Sn
  x
�

≥
∑

x∈Sn/3,2n/3

‖x‖t∞C1π
2
1(n)

≥ C2n2(n/3)tπ2
1(n).

Let us turn to the upper bound. We take a logarithmic division of Sn: define k = k(n) so that
2k < n≤ 2k+1, we have

∑

x∈Sn

‖x‖t∞P̂
�

0  x
�

≤ C1+

k+1
∑

j=3

∑

x∈S2 j−1,2 j

‖x‖t∞P̂
�

0  x
�

. (7.34)

Now for x ∈ S2 j−1,2 j , take the two boxes S2 j−2(0) and S2 j−2(x): since they are disjoint,

P̂
�

0  x
�

≤ P̂
�

0  S2 j−2(0)
�

P̂
�

x   S2 j−2(x)
�

, (7.35)

which is at most C2π
2
1(2

j−1) using the same arguments as before. Our sum is thus less than (since
|S2 j−1,2 j | ≤ C322 j)

k+1
∑

j=3

C322 j × (2 j)t × (C2π
2
1(2

j−1))≤ C42(2+t)kπ2
1(2

k)×
�

k+1
∑

j=3

2(2+t)( j−k)
π2

1(2
j−1)

π2
1(2

k)

�

. (7.36)
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x

0

∂Sn

∂S2n(x)

Figure 18: With this construction, any site x in Sn/3,2n/3 connected to a site at distance 2n is also
connected to 0 in Sn.

Now, 2(2+t)kπ2
1(2

k) ≤ C5n2+tπ2
1(n), and this yields the desired result, using as previously π1(2

j−1)

π1(2k)
≤

C6π1(2
j−1, 2k)−1 ≤ C72−( j−k)/2:

k+1
∑

j=3

2(2+t)( j−k)
π2

1(2
j−1)

π2
1(2

k)
≤ C7

k+1
∑

j=3

2(2+t)( j−k)2−( j−k)

≤ C8

k−3
∑

l=−1

2−(1+t)l ,

and this sum is bounded by
∑∞

l=−1 2−(1+t)l <∞.

Main estimate

The following lemma will allow us to link directly χ and ξ with L. Roughly speaking, it relies on the
fact that the sites at a distance much larger than L(p) from the origin have a negligible contribution,
due to the exponential decay property, so that the sites in SL(p) produce a positive fraction of the
total sum:

Lemma 44. For any t ≥ 0, we have
∑

x

‖x‖t∞Pp

�

0  x , |C(0)|<∞
�

≍ L(p)t+2π2
1(L(p)) (7.37)

uniformly in p.

Proof. Lower bound. The lower bound is a direct consequence of item 2. above: indeed,
∑

x

‖x‖t∞Pp

�

0  x , |C(0)|<∞
�

≥ Pp(∃ white circuit in SL,2L)
∑

x∈SL

‖x‖t∞Pp

�

0
SL
  x
�

≥ δ4
4

∑

x∈SL

‖x‖t∞Pp

�

0
SL
  x
�
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∂SL

Figure 19: For the upper bound, we cover the plane with rhombi of size 2L and sum their different
contributions.

by RSW, and item 2. gives
∑

x∈SL

‖x‖t∞Pp

�

0
SL
  x
�

≥ C L t+2π2
1(L).

Upper bound. To get the upper bound, we cover the plane by translating SL: we consider the
family of rhombi SL(2n1 L, 2n2 L), for any two integers n1 and n2 (see Figure 19). By isolating the
contribution of SL, we get:
∑

x

‖x‖t∞Pp

�

0  x , |C(0)|<∞
�

≤
∑

x∈SL

‖x‖t∞Pp

�

0  x , |C(0)|<∞
�

+
∑

(n1,n2) 6=(0,0)

∑

x∈SL(2n1 L,2n2 L)

‖x‖t∞Pp

�

0  x , |C(0)|<∞
�

.

Using item 2. above, we see that the rhombus SL gives a contribution
∑

x∈SL

‖x‖t∞Pp

�

0  x , |C(0)|<∞
�

≤ C L t+2π2
1(L),

which is of the right order of magnitude.

We now prove that each small rhombus outside of SL at a distance kL gives a contribution of order
π1(L)× L t × Ep

�

|x ∈ SL : x   ∂ SL|
�

≍ L t+2π2
1(L) (using item 1.), multiplied by some quantity

which decays exponentially fast in k and will thus produce a series of finite sum. More precisely, if
we regroup the rhombi into concentric annuli around SL , we get that the previous summation is at
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most

∞
∑

k=1

∑

(n1,n2)
‖(n1,n2)‖∞=k

∑

x∈SL(2n1 L,2n2 L)

‖x‖t∞Pp

�

0  x , |C(0)|<∞
�

≤
∞
∑

k=1

∑

(n1,n2)
‖(n1,n2)‖∞=k

∑

x∈SL(2n1 L,2n2 L)

[(2k+ 1)L]tPp

�

0  x , |C(0)|<∞
�

≤
∞
∑

k=1

∑

(n1,n2)
‖(n1,n2)‖∞=k

C ′kt L t
Ep

�

|C(0)∩ SL(2n1 L, 2n2 L)|; |C(0)|<∞
�

.

Now, we have to distinguish between the sub-critical and the super-critical cases: we are going to
prove that in both cases,

Ep

�

|C(0)∩ SL(2n1 L, 2n2 L)|; |C(0)|<∞
�

≤ C1 L2π2
1(L)e

−C2k (7.38)

for some constants C1, C2 > 0. When p < 1/2, we will use that

Pp(∂ SL   ∂ SkL)≤ C3e−C4k, (7.39)

which is a direct consequence of the exponential decay property Eq.(7.23) for “longer” parallelo-
grams. When p > 1/2, we have an analog result, which can be deduced from the sub-critical case
just as in the discrete case (replace sites by translates of SL):

Pp(∂ SL   ∂ SkL , |C(0)|<∞)
≤ Pp(∃ white circuit surrounding a site on ∂ SL and a site on ∂ SkL)

≤ C5e−C6k.

Assume first that p < 1/2. By independence, we have (‖(n1, n2)‖∞ = k)

Ep

�

|C(0)∩ SL(2n1 L, 2n2 L)|; |C(0)|<∞
�

≤ Pp(0  ∂ SL)×Ep

�

|x ∈ SL(2n1 L, 2n2 L) : x   ∂ SL(2n1 L, 2n2 L)|
�

× Pp(∂ SL   ∂ S(2k−1)L)

≤ π1(L)× (C ′′L2π1(L))× C ′3e−C ′4k.

If p > 1/2, we write similarly (here we use FKG to separate the existence of a white circuit (decreas-
ing) from the other terms (increasing), and then independence of the remaining terms)

Ep

�

|C(0)∩ SL(2n1 L, 2n2 L)|; |C(0)|<∞
�

≤ Pp(0  ∂ SL)×Ep

�

|x ∈ SL(2n1 L, 2n2 L) : x   ∂ SL(2n1 L, 2n2 L)|
�

× Pp(∃ white circuit surrounding a site on ∂ SL and a site on ∂ S(2k−1)L)

≤ π1(L)× (C ′′L2π1(L))× C ′5e−C ′6k.
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Since there are at most C (3)k rhombi at a distance k for some constant C (3), the previous summation
is in both cases less than

∞
∑

k=1

C (3)k× C ′kt L t × C1 L2π2
1(L)e

−C2k ≤ C (4)
� ∞
∑

k=1

kt+1e−C2k

�

L t+2π2
1(L),

which yields the desired upper bound, as
∑∞

k=1 kt+1e−C2k <∞.

Critical exponents for χ and ξ

The previous lemma reads for t = 0:

Proposition 45. We have

χ(p) = Ep

�

|C(0)|; |C(0)|<∞
�

≍ L(p)2π2
1(L(p)). (7.40)

In other words, “χ(p)≍ χnear(p)”. It provides the critical exponent for χ:

χ(p)≈ L(p)2
�

L(p)−5/48�2 ≈
�

|p− 1/2|−4/3�86/48 ≈ |p− 1/2|−43/18. (7.41)

Recall also that ξ was defined via the formula

ξ(p) =

�

1

Ep

�

|C(0)|; |C(0)|<∞
�

∑

x

‖x‖2∞Pp

�

0  x , |C(0)|<∞
�

�1/2

.

Using the last proposition and the lemma for t = 2, we get

ξ(p)≍
�

L(p)4π2
1(L(p))

L(p)2π2
1(L(p))

�1/2

= L(p). (7.42)

We thus obtain the following proposition, announced in Section 7.1:

Proposition 46. We have

ξ(p)≍ L(p). (7.43)

This implies in particular that
ξ(p)≈ |p− 1/2|−4/3. (7.44)

8 Concluding remarks

8.1 Other lattices

Most of the results presented here (the separation of arms, the theorem concerning arm events
on a scale L(p), the “universal” arm exponents, the relations between the different characteristic
functions, etc.) come from RSW considerations or the exponential decay property, and remain true
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on other regular lattices like the square lattice. The triangular lattice has a property of self-duality
which makes life easier, in the general case we have to consider the original lattice together with the
matching lattice (obtained by “filling” each face with a complete graph): instead of black or white
connections, we thus talk about primal and dual connections. We can also handle bond percolation
in this way. We refer the reader to the original paper of Kesten [31] for more details, where results
are proved in this more general setting. The only obstruction to get the critical exponents is actually
the derivation of the arm exponents at the critical point p = pc (and only two exponents are needed,
for 1 arm and 4 alternating arms).

Now, consider site percolation on Z2 for instance. We know that the (hypothetical) arm exponents
satisfy 0< α j ,α

′
j ,β j <∞ for any j ≥ 1. Hence the a-priori estimate

Ppc
(0 4,σ4

∂ SN )≥ N−2+α

for some α > 0, coming from the 5-arm exponent, remains true: α4 < 2 (and in the same way α6 >

2). Combined with Proposition 34, this leads to the weaker but nonetheless interesting statement

L(p)≤ |p− pc |−A (8.1)

for some A> 0. Hence ν <∞, and then γ <∞ (if these exponents exist). Using α1 <∞, we also
get β <∞.

If we use a RSW construction in a box, we can make appear 3-arm sites on the lowest crossing and
deduce that α1 ≤ 1/3. Here are rigorous bounds for the critical exponents in two dimensions:

triangular lattice general rigorous bounds

β = 5/36 0< β < 1

γ= 43/18 8/5≤ γ <∞
ν = 4/3 1< ν <∞

For more details, the reader can consult [31] and the references therein.

8.2 Some related issues

For the sake of completeness, let us mention finally that the way the characteristic length L was
defined also allows to use directly the compactness results of [2]. Indeed, the a-priori estimates
on arm events coming from RSW considerations are exactly hypothesis (H1) of this paper. This
hypothesis implies that percolation interfaces cannot cross too many times any annulus, and thus
cannot be too “intricate”: this is Theorem 1, asserting the existence of Hölder parametrizations with
high probability.

This regularity property then implies tightness, using (a version of) Arzela-Ascoli’s theorem for
continuous functions on a compact subset of the plane. We can thus show in this way the existence
of scaling limits for near-critical percolation interfaces.

Let us also mention that the techniques presented here are important to study various models related
to the critical regime, for instance Incipient Infinite Clusters [17; 24; 25], Dynamical Percolation
[45], Gradient Percolation [39]. . .
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