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Abstract

We study here a heat-type differential equation of order n greater than two, in the case where
the time-derivative is supposed to be fractional. The corresponding solution can be described
as the transition function of a pseudoprocess Ψn (coinciding with the one governed by the
standard, non-fractional, equation) with a time argument Tα which is itself random. The
distribution of Tα is presented together with some features of the solution (such as analytic
expressions for its moments).
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1 Introduction

The study of diffusion equations with a fractional derivative component have been firstly moti-
vated by the analysis of thermal diffusion in fractal media in Nigmatullin (1986) and Saichev and
Zaslavsky (1997). This topic has been extensively treated in the probabilistic literature since
the end of the Eighties: see, for examples, Wyss (1986), Schneider and Wyss (1989), Mainardi
(1996), Angulo et al. (2000). Recently fractional equations of different types have been also stud-
ied, such as, for example, the Black and Scholes equation (see Wyss (2000)) and the fractional
diffusion equations with stochastic initial conditions (see Anh and Leonenko (2000)).

Our aim will concern the extension, to the case of fractional time-derivative, of a class of equa-
tions which is well known in the literature, namely the higher-order heat-type equations. There-
fore we will be interested in the solution of the following problem, for 0 < α ≤ 1, n ≥ 2,

{
∂α

∂tα u(x, t) = kn
∂n

∂xn u(x, t) x ∈ R, t > 0,
u(x, 0) = δ(x)

(1)

where δ(·) is the Dirac delta function, kn = (−1)q+1 for n = 2q, q ∈ N, while kn = ±1 for
n = 2q + 1. The fractional derivative appearing in (1) is meant, in the Dzherbashyan-Caputo
sense, as

(Dαf)(t) =
dα

dtα
f(t) =

{
1

Γ(m−α)

∫ t
0

f (m)(z)
(t−z)1+α−m dz, for m − 1 < α < m

dm

dtm f(t), for α = m
,

where m − 1 = ⌊α⌋ and f ∈ Cm (see Samko et al. (1993) for a general reference on fractional
calculus).

In the non-fractional case (i.e. for α = 1) the pseudoprocesses Ψn = Ψn(t), t > 0 driven by n-th
order equations, i.e.

∂

∂t
p(x, t) = kn

∂n

∂xn
p(x, t), x ∈ R, t > 0, (2)

for n > 2, have been introduced in the Sixties and studied so far by many authors starting from
Krylov (1960), Daletsky (1969). They have been rigorously defined by constructing a signed
measure Qn on the basis of the fundamental solution pn = pn(x, t) of (2), as we briefly recall
here. Denote by X = {x : t ∈ [0,∞) → x(t)} the space of bounded functions (the sample paths
of Ψn(t)). As usual, we define the cylinder sets by

C = {x : a1 ≤ x(t1) ≤ b1, ..., an ≤ x(tn) ≤ bn} ,

for aj , bj real numbers and 0 = t0 < ... < tn = t. Now put

Qn(C) =

∫ b1

a1

...

∫ bn

an

n∏

j=1

un(xj − xj−1; tj − tj−1)dxj

where xj = x(tj). It can be proved (see Daletsky and Fomin (1965)) that, for fixed tj ’s, Qn is a
finite σ-additive measure on the Borel field generated by the cylinders C and has total variation
greater than one.

The distributions of many functionals of Ψn have been obtained: in Hochberg and Orsingher
(1994) the distribution of sojourn time on the positive half-line is presented, for n odd, while
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for an arbitrary n the same topic is analyzed in Lachal (2003). For n = 3, 4, the case where the
pseudoprocess is constrained to be zero at the end of the time interval is considered in Nikitin
and Orsingher (2000) and the corresponding distribution of the sojourn time is evaluated. In
Beghin et al. (2000) the distribution of the maximum is obtained under the same circumstances.
In the unconditional case the maximal distribution is presented in Orsingher (1991), for n odd,
while the joint distribution of the maximum and the process for diffusion of order n = 3, 4 is
presented in Beghin et al. (2001). Lachal (2003) has extended these results to any order n > 2.

Some other functionals, such as the first passage time, are treated in Nishioka (1997) and Lachal
(2008). Finally in Beghin and Orsingher (2005) it is proved that the local time in zero possesses a
proper probability distribution which coincides with the (folded) solution of a fractional diffusion
equation of order 2(n − 1)/n, n ≥ 2.

In the fractional case under investigation (i.e. for 0 < α < 1) we prove that the process related to
(1) is a pseudoprocess Ψn evaluated at a random time Tα = Tα(t), t > 0, so that we can write it as
Ψn(Tα). The probability law of the random time is shown to solve a fractional diffusion equation
of order 2α and it can be expressed in terms of Wright functions. It is interesting to stress
that the introduction of a fractional time-derivative exerts its influence only on the “temporal”
argument, while the governing process is not affected and depends only on the degree n of the
equation.

Moreover, in section 2, some particular cases of these results are analyzed: in the non-fractional
case, α = 1, we easily get Tα(t)

a.s.
= t. For α = 1/2 it can be verified that Tα coincides with

the reflecting Brownian motion and then the pseudoprocess governed by equation (1) reduces
to Ψn(|B(t)|), t > 0 (where B denotes a standard Brownian motion).

In section 3 the moments of Ψn(Tα) are obtained in two alternative ways.

Section 4 presents some more explicit forms of the solution to equation (1) which can be obtained
by splitting the interval of values for α in two different ones and treating them separately. Indeed,
if we restrict ourselves to the case α ∈ [1/2, 1], the distribution of the random time Tα coincides
with 1

α p̃ 1
α
(u; t), u ≥ 0, where by p̃ 1

α
(·; t) we have denoted a stable law of index 1/α.

As far as the other interval is concerned (i.e. α ∈ (0, 1/2]), an explicit expression of the solution
can be evaluated by specifying α = 1/m, m ∈ N, m > 2. In this particular setting the pseu-
doprocess can be represented by Ψn (G(t)) , t > 0, where G(t) =

∏m−1
j=1 Gj(t), t > 0 and Gj(t),

j = 1, ..., m − 1 are independent random variables whose density is presented in explicit form.

Finally we obtain some interesting results by specifying (1) for particular values of n. For exam-
ple, taking n = 2, we can conclude that the process related to the fractional diffusion equation

∂α

∂tα
u(x, t) =

∂2

∂x2
u(x, t) x ∈ R, t > 0, (3)

for 0 < α < 1, is represented by B(Tα), in accordance with the results already known on (3).
In particular for α = 1/m, equation (3) turns out to be solved by the density of the process
B (G(t)) , t > 0.

In the special case n = 3 the results above reduces to those presented in De Gregorio (2002),
while, for n = 4, they represent a probabilistic alternative to the analytic approach provided by
Agrawal (2000).

We note also that equation (1) can be considered as a special case of the general model analyzed
by Anh and Leonenko (2001)-(2003). These authors provide the spectral theory and renormalized
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solution of the so-called fractional kinetic equation; more precisely, they consider, in the two
references above,

∂α

∂tα
u(x, t) = −µ(−∆)β/2 (I − ∆)γ/2 u(x, t), µ, β > 0, (4)

for α ∈ (0, 1] and α ∈ (0, 2] , respectively. Equation (4) is analyzed for x ∈ Rd, under random
initial conditions expressed by

u(x, 0) = η(x), x ∈ R
d,

where {η(x)} denotes a measurable random field. The Green function of (4) is also obtained in
analytic form in terms of Fox functions; in the special case where d = 1, β = 2n and γ = 0, this
can be compared with our expression for the solution. The latter is expressed as the transition
function of the composition of pseudoprocesses with a random time Ψn(Tα(t)), providing an
alternative interpretation.

2 First expressions for the solution

We start by considering the n-th order fractional equation and the following corresponding
initial-value problem, for 0 < α ≤ 1, n ≥ 2,

{
∂α

∂tα u(x, t) = kn
∂n

∂xn u(x, t) x ∈ R, t > 0
u(x, 0) = δ(x)

(5)

where kn = (−1)q+1 for n = 2q, q ∈ N, while kn = ±1 for n = 2q + 1 and δ(·) is the Dirac delta
function. The first step consists in evaluating the Laplace transform of the solution uα(x, t),
namely

Uα(x, s) =

∫ ∞

0
e−stuα(x, t)dt, (6)

and recognizing that it is related to the Laplace transform of the solution pn(x, t) of the corre-
sponding non-fractional n-th order equation (2) (which coincides with (5) for α = 1). The latter
is usually expressed as

pn(x, t) =
1

2π

∫ +∞

−∞
eixz+knt(iz)n

dz. (7)

Theorem 2.1 Let Φn(x, s) =
∫ ∞
0 e−stpn(x, t)dt be the Laplace transform of the solution to

(2); then (6) can be expressed as follows

Uα(x, s) = sα−1Φn(x, sα). (8)

Proof

By taking the Laplace transform of (5) and considering the initial condition, we get

sαUα(x, s) − sα−1δ(x) = kn
∂n

∂xn
Uα(x, s). (9)
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Then, by integrating (9) with respect to x in [−ε, ε] and letting ε → 0, we have the following
condition for the (n − 1)-th derivative

−sα−1 = kn
∂n−1

∂xn−1
Uα(x, s)

∣∣∣∣
x=0+

x=0−
,

which must be added to the continuity conditions in zero holding for the j-th derivatives, for
j = 0, .., n − 2. Therefore our problem is reduced to the n-th order linear equations





kn
∂n

∂xn Uα(x, s) = sαUα(x, s), x 6= 0

∂j

∂xj Uα(x, s)
∣∣∣
x=0+

x=0−
= 0, for j = 0, 1, ..., n − 2

∂n−1

∂xn−1 Uα(x, s)
∣∣∣
x=0+

x=0−
= −knsα−1

. (10)

If we now impose the boundedness condition for x → ±∞, we obtain

Uα(x, s) =

{ ∑
k∈I cke

θksα/nx, if x > 0∑
k∈J dke

θksα/nx, if x ≤ 0
, (11)

where θk are the n-th roots of kn, I = {k : Re(θk) < 0} and J = {k : Re(θk) > 0} . The n
unknown constants ck, k ∈ I and dk, k ∈ J, appearing in (11) must be determined by taking into
account the matching conditions in (10), as follows:

{ ∑
k∈I ckθ

j
k − ∑

k∈J dkθ
j
k = 0, for j = 0, ..., n − 2∑

k∈I ckθ
n−1
k − ∑

k∈J dkθ
n−1
k = −knsα/n−1 . (12)

By defining

zk =

{
ck, if k ∈ I
−dk, if k ∈ J

, (13)

the linear system in (12) can be rewritten as the following Vandermonde system

n−1∑

k=0

zkθ
j
k =

{
0, for j = 0, ..., n − 2

−knsα/n−1, for j = n − 1
. (14)

Following an argument similar to Beghin and Orsingher (2005) (see p.1024-5) we get

zk = (−1)nknsα/n−1
n−1∏

r=0
r 6=k

1

θr − θk
(15)

=

{
− 1

nsα/n−1e
2kπi

n , if kn = 1

− 1
nsα/n−1e

(2k+1)πi
n , if kn = −1

,

where, in the last step, we have used formula (2.19) obtained therein. We now substitute into
(11) the constants evaluated in (15), taking into account (13) and distinguishing the case of n
even from the odd one. Indeed, for n = 2q + 1, the roots of kn are respectively

θk =

{
e

2kπi
n , for kn = 1

e
(2k+1)πi

n , for kn = −1
(16)
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so that (11) becomes, in this case,

Uα(x, s) =

{
− 1

nsα/n−1
∑

k∈I θke
θksα/nx, for x > 0

1
nsα/n−1

∑
k∈J θke

θksα/nx, for x ≤ 0
. (17)

Analogously, for n = 2q and kn = (−1)q+1, the roots are θk = e
(2k+q+1)πi

n so that we get

θk =

{
e

(2k+q+1)πi
n = e

2kπi
n , for kn = 1

e
(2k+q+1)πi

n = e
(2k+1)πi

n , for kn = −1
, (18)

where, in the first line, we have used the following relationship

e(q+1)πi = (−1)q+1 = kn = 1,

while, in the second one, we have considered the fact that

eqπi = (−1)kn = 1.

Since (18) coincides with (16) we obtain even for n = 2q formula (17). The proof is completed
by comparing it with formula (12) of Lachal (2003), which reads
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Φn(x, s) =

{
− 1

ns1/n−1
∑

k∈I θke
θks1/nx, for x > 0

1
ns1/n−1

∑
k∈J θke

θks1/nx, for x ≤ 0
.

¤

By inverting the Laplace transform (8) we can obtain a first expression of the solution in terms
of a fractional integral of a particular stable law. Following the notation of Samorodnitsky and
Taqqu (1994), we will denote by Sα(σ, β, µ) the distribution of a stable random variable X of
index α, with characteristic function

EeisX = exp
{
−σα|s|α

(
1 − iβ(sign s) tan

πα

2

)
+ iµs

}
, α 6= 1, s ∈ R. (19)

Moreover let I(1−α) denote the Riemann-Liouville fractional integral of order 1 − α, which is

defined as I(1−α) [f(w)] (t) = 1
Γ(1−α)

∫ t
0 (t − w)−αf(w)dw (see Samko et al. (1993), p.33).

Theorem 2.2 Let pα(·; u) be the stable distribution Sα(σ, 1, 0), with parameters σ =
(u cos πα/2)1/α, β = 1, µ = 0, then the fundamental solution to (5) can be expressed, for
0 < α < 1, as

uα(x, t) =

∫ ∞

0
pn(x, u)I(1−α) [pα(w; u)] (t)du. (20)

Proof

We recall that, for 0 < α ≤ 2 and α 6= 1, a stable random variable X ∼ Sα(σ, 1, 0) has Laplace
transform

E(e−sX) = e
− σα

cos(πα/2)
sα

, s > 0

(see Samorodnitsky and Taqqu (1994), p.15, for details), so that, in our case (for σ =
(u cos πα/2)1/α), it reduces to E(e−sX) = e−sαu. Therefore we can rewrite (8) as

Uα(x, s) = sα−1

∫ +∞

0
e−sαtpn(x, t)dt (21)

= sα−1

∫ +∞

0

(∫ +∞

0
e−szpα(z; u)dz

)
pn(x, u)du

= sα−1

∫ +∞

0
e−sz

(∫ +∞

0
pα(z; u)pn(x, u)du

)
dz.

For 0 < α < 1 the first term appearing in (21) can be easily inverted by considering that

sα−1 =
1

Γ(1 − α)

∫ +∞

0
e−stt−αdt

so that the inverse Laplace transform of (21) can be written as

uα(x, t) =
1

Γ(1 − α)

∫ t

0
(t − w)−α

(∫ +∞

0
pα(w; u)pn(x, u)du

)
dw (22)

=
1

Γ(1 − α)

∫ +∞

0

(∫ t

0
(t − w)−αpα(w; u)dw

)
pn(x, u)du.
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Finally we recognize in the last expression a fractional Riemann-Liouville integral I(1−α) of order
1−α of the stable density (where the integration is intended with respect to the first argument,
since the second represents a constant in the scale parameter). ¤

The previous result suggests that the solution to our problem can be described as the transition
function pn = pn(x, u) of a pseudoprocess Ψn with a time-argument Tα which is itself random.
Only for α = 1 we can derive from Theorem 2.1 the obvious result that Tα(t)

a.s.
= t, so that

the solution to (5) coincides, as expected, with pn(x, t). In all other cases the governing process
coincides with the non-fractional one, while the introduction of a fractional time-derivative exerts
its influence only on the time argument (as remarked above).

To check that Tα possesses a true probability density we can observe that it is non-negative:
indeed it coincides with the fractional integral of a stable density Sα(σ, 1, 0) with skewness
parameter equal to 1 (which, by the way, for 0 < α < 1, has support restricted to [0,∞)).
Moreover it integrates to one, as can be ascertained by the following steps:

∫ ∞

0

du

Γ(1 − α)

∫ t

0
(t − w)−αpα(w; u)dw

=
1

Γ(1 − α)

∫ ∞

0
du

∫ t

0
(t − w)−αdw

1

2πi

∫ +i∞

−i∞
eswe−sαuds

=
1

2πiΓ(1 − α)

∫ t

0
(t − w)−αdw

∫ ∞

0
du

∫ +i∞

−i∞
eswe−sαuds

=
1

2πiΓ(1 − α)

∫ t

0
(t − w)−αdw

∫ +i∞

−i∞
s−αeswds

=
1

Γ(α)Γ(1 − α)

∫ t

0
wα−1(t − w)−αdw =

B(α, 1 − α)

Γ(α)Γ(1 − α)
= 1 .

Our aim is now to explicit, by means of successive steps, the density v2α = v2α(u, t) of Tα(t), t >
0: we first prove that it satisfies a fractional diffusion equation of order 2α and, as a consequence,
it can be expressed in terms of Wright function. Let

W (x; η, β) =
∞∑

k=0

xk

k!Γ(ηk + β)

be a Wright function of parameters η, β, then we state the following result.

Theorem 2.3 The fundamental solution to (5) coincides with

uα(x, t) =

∫ ∞

0
pn(x, u)v2α(u, t)du, (23)

where

v2α(u, t) =
1

tα
W

(
− u

tα
;−α, 1 − α

)
, u ≥ 0, t > 0. (24)

Proof
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It is proved in Orsingher and Beghin (2004) that, for 0 < α < 1,

I(1−α) [pα(|w|; u)] (t) =
1

Γ(1 − α)

∫ t

0
(t − w)−αpα(|w|; u)dw

coincides with the solution v2α(u, t) of the following initial-value problem, for 0 < α < 1,





∂2α

∂t2α v(u, t) = ∂2

∂u2 v(u, t) u ∈ R, t > 0
v(u, 0) = δ(u)
∂
∂tv(u, 0) = 0
lim|u|→∞ v(u, t) = 0

, (25)

where the second initial condition applies only for α ∈ (1/2, 1) . As a consequence, formula (20)
can be rewritten as (23) with

v2α(u, t) =

{
2v2α(u, t), for u ≥ 0
0, for u < 0

. (26)

Since it is known (see, among the others, Mainardi (1996)) that the solution to (25) can be
expressed as

v2α(u, t) =
1

2tα

∞∑

k=0

(−|u|t−α)k

k!Γ(−αk + 1 − α)

=
1

2tα
W

(
−|u|

tα
;−α, 1 − α

)
, u ∈ R, t > 0,

we immediately get (24). ¤

Remark 2.1

By means of the previous result we can remark again that the random time Tα possesses a true
probability density, which is concentrated on the positive half line and moreover it is possible,
thanks to representation (24), to evaluate the moments of any order δ ≥ 0 of this distribution.
We recall the well known expression of the inverse of the Gamma function as integral on the
Hankel contour

1

Γ(x)
=

1

2πi

∫

Ha
eττ−xdτ,

which implies the representation of the Wright function as

W (x; η, β) =
∞∑

k=0

xk

k!Γ (ηk + β)

=
1

2πi

∫

Ha
eτ

∞∑

k=0

xkτ−ηk−β

k!
dτ

=
1

2πi

∫

Ha
τ−βeτ+xτ−η

dτ.
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Therefore we can show that
∫ +∞

0
uδv2α(u, t)du (27)

=

∫ ∞

0

uδ

tα
W

(
− u

tα
;−α, 1 − α

)
du

=

∫ ∞

0

uδ

tα
du

2πi

∫

Ha
ey− u

tα
yα

yα−1dy

=
1

2πi

∫

Ha
eyyα−1dy

1

tα

∫ +∞

0
e−

u
tα

yα
uδdu

=
tαδ

2πi

∫

Ha
eyy−αδ−1dy

∫ +∞

0
e−zzδdz

=
Γ(1 + δ)tαδ

Γ(1 + αδ)
=

tαδΓ(δ)

αΓ(αδ)
.

From (27) it is again evident that
∫ +∞
0 v2α(u, t)du = 1 by choosing δ = 0.

Remark 2.2

It is interesting to analyze the particular case obtained for α = 1/2: indeed, from the previous

results, we can show that the process governed by ∂1/2

∂t1/2 u(x, t) = kn
∂n

∂xn u(x, t), x ∈ R, t > 0, can
be represented as Ψn (|B(t)|) , t > 0, where B(t), t > 0 denotes a standard Brownian motion.

This can be seen by noting that S1/2

(
u2

2 , 1, 0
)

coincides with the Lévy distribution, so that the

fractional integral in (20) reduces to

I(1/2)

[
p1/2(w; u)

]
(t) =

1

Γ(1/2)

∫ t

0

ue−u2/4w

2
√

π(t − w)w3
dw (28)

=
e−u2/4t

√
πt

, u > 0, t > 0,

where the second step follows by applying formula n.3.471.3, p.384 of Gradshteyn and Rhyzik
(1994), for µ = 1/2. Formula (28) represents the density of a Brownian motion with reflecting
barrier in u = 0. This result is confirmed by noting that equation (25), for α = 1/2, reduces

to the heat equation ∂
∂tv(x, t) = ∂2

∂x2 v(x, t) and then the corresponding process coincides with a
Brownian motion with σ2 = 2t. Alternatively, from (24), by applying some known properties of
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the Gamma function, we can write

v1(u, t) =
1√
t

∞∑

k=0

(−ut−1/2)k

k!Γ
(
1 − k+1

2

) (29)

=
1√
t

∞∑

k=0
k even

(−1)k/2(ut−1/2)kΓ
(

k+1
2

)

πk!

=
1

π
√

t

∞∑

k=0
k even

(−1)k/2(ut−1/2)kΓ (k + 1)
√

π21−(k+1)

k!Γ
(

k
2 + 1

)

=
1√
πt

∞∑

j=0

(−1)ju2j(4t)−j

j!
=

e−u2/4t

√
πt

.

3 On the moments of the solution

We are now interested in evaluating the moments of the solution of equation (5), that is the
moments of the pseudoprocess Ψn(Tα(t)), t > 0: as we will see, they can be obtained in two
alternative ways.

By using the representation of the solution derived in (23) and thanks to the independence of
the leading process from the (random) temporal argument, we can write the r-th order moments
as

E (Ψr
n(Tα(t))) (30)

=

∫ ∞

0
EΨr

n(s)v2α(s, t)ds,

for r ∈ N, t > 0. The moments of the non-fractional n-th order pseudoprocess can be evaluated
by means of the Fourier transform of the solution of equation (2) which can be expressed as
follows

E
(
eiβΨn(t)

)
=

∫ +∞

−∞
eiβxpn(x, t)dx = e(−iβ)nknt (31)

=
∞∑

j=0

(iβ)nj

(nj)!

(−1)njkj
ntj(nj)!

j!
.

Therefore we get

EΨr
n(t) =

{
(−1)r(knt)r/nr!

(r/n)! r = nj, j = 1, 2, ...

0 r 6= nj
,

which, inserted together with (27) into (30), gives, for r = nj, j = 1, 2, ...

E (Ψr
n(Tα(t))) (32)

=
(−1)njkj

n(nj)!

j!

∫ ∞

0
sjv2α(s, t)ds

= (−1)njkj
ntαj Γ(nj + 1)

Γ(αj + 1)
,
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while it is equal to zero for r 6= nj.

We can alternatively derive the moments of the pseudoprocesses by evaluating them directly
from the characteristic function of the solution. The latter can be obtained by performing
successively the Fourier and Laplace transforms of equation (5) as follows: let us denote by
ũα(β, t) the Fourier transform of the solution, i.e.

ũα(β, t) =

∫ +∞

−∞
eiβxuα(x, t)dx, β, t > 0,

then, from (5), we get
∂αũα

∂tα
(β, t) = kn(−iβ)nũα(β, t). (33)

By applying now the Laplace transform to (33) we get

sαŨα(β, s) − sα−1 = kn(−iβ)nŨα(β, s),

so that the Fourier-Laplace transform of the solution can be written as

Ũα(β, s) =
sα−1

sα − kn(−iβ)n
. (34)

Now recall that for the Mittag-Leffler function

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)

the Laplace transform (for β = 1) is equal to
∫ ∞

0
e−szEα,1(cz

α)dz =
sα−1

sα − c

(see Podlubny (1999), formula (1.80) p. 21, for k = 0, β = 1); hence from (34) we get the
following expression for the characteristic function of the solution

ũα(β, t) = Eα,1(kn(−iβ)ntα) (35)

and for the solution itself

uα(x, t) =
1

2π

∫ +∞

−∞
e−ixβEα,1(kn(−iβ)ntα)dβ. (36)

In the particular case α = 1 the Mittag-Leffler function reduces to the exponential so that (35)
coincides with the Fourier transform of the solution to the n-th order equation, reported in (31),
as it should be in the non-fractional case. Analogously, from (36) we get the usual expression of
pn(x, t) reported in (7). On the other hand, in the fractional case (α 6= 1) formula (35) reduces,
for n = 2, to the well-known Fourier transform of the solution to equation (3).

Finally we can evaluate the moments of the solution by rewriting formula (35) as

ũα(β, t) =
∞∑

j=0

(iβ)nj

(nj)!

(−1)njkj
ntαj

Γ(αj + 1)
Γ(nj + 1),

so that we get again expression (32).
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4 More explicit forms of the solution

In order to obtain a more explicit form of the solution to (5), in terms of known densities, we
need to distinguish between two intervals of values for α.

(i) Case 1/2 ≤ α < 1

If we restrict ourselves to the case α ∈ [1/2, 1) , so that 1 ≤ 2α < 2, it is possible to apply
a result obtained in Fujita (1990), which expresses the solution to a time-fractional diffusion
equation in terms of a stable density of appropriate index. By adapting that result to our case,
we can conclude that the solution to (25) coincides with

v2α(u, t) =
1

2α
p̃1/α(|u|; t), u ∈ R, t > 0,

where p̃1/α(·; t) denotes a stable density of index 1/α ∈ [1, 2) with parameters σ = (t cos(π −
π
2α))α, β = −1, µ = 0 (for brevity S1/α(σ,−1, 0)).

Therefore the density of Tα(t), t > 0 is proportional to the positive branch of a stable density,
as the following expression shows:

v2α(u, t) =
1

α
p̃1/α(u; t), u > 0, t > 0. (37)

Remark 4.1

It is possible to recognize, in the previous expression, a known density, by resorting to results
on the supremum of stable processes (see, for example, Bingham (1973)). More precisely, let us
define Y (t) = sup0≤s≤t X1/α(s) where X1/α(t), t > 0 is a stable process of index 1/α and with
characteristic function

E(eisX1/α(t)) = exp

{
−t|s|1/α

(
1 + i tan

π

2α

s

|s|

)}
, t, s > 0.

It corresponds, for any fixed t, to the stable law p̃1/α(·; t) defined above and, for t varying, to a
spectrally negative process, which has no positive jumps (since, for β = −1, the Lévy-Khinchine
measure assigns zero mass to (0,∞), see Samorodnitsky and Taqqu (1994), p.6). Under these
circumstances and for 1/α ∈ [1, 2) , it is known that the Laplace transform of Y (t) is equal, for
any s, t > 0, to

E(e−sY (t)) = Eα,1(−stα),

where Eα,β(x) is the Mittag-Leffler function defined above. Since it is also well-known that

∫ ∞

0
e−sup̃1/α(u; t)du = αEα,1(−stα), t, s > 0,

we can conclude that

E(e−sY (t)) =

∫ ∞

0
e−su 1

α
p̃1/α(u; t)du.
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Alternatively it can be shown, by adapting the result of Bingham (1973), that the density of
Y (t) can be written as

P {Y (t) ∈ du} =
t−α

απ

∞∑

n=1

(−1)n−1

n!
sin (πnα) Γ (1 + nα)

( u

tα

)n−1
du

=
1

α
p̃1/α(u; t)du, u > 0, t > 0

which coincides with (37).

Formula (37) shows that, for 1/2 ≤ α < 1,

I(1−α) [pα(w; u)] (t) =
1

α
p̃1/α(u; t), u > 0, t > 0.

Then, as a result of the fractional integration of the stable density pα(·; t), which is totally skewed
to the right (with support [0,∞)), we obtain the positive (normalized) branch of a new stable
density p̃1/α(·; t) (defined on the whole real axes, since it is 1/α ∈ (1, 2]), which represents the
distribution of the maximum of a stable process of index 1/α.

(ii) Case 0 < α ≤ 1/2

We turn now to the other interval of values for α, i.e. (0, 1/2] , so that, in this case, it is
0 < 2α ≤ 1. An explicit expression of the solution can be evaluated by specifying α = 1/m,
m ∈ N, m > 2. In this particular setting, problem (25) becomes





∂2/m

∂t2/m v(u, t) = ∂2

∂u2 v(u, t), u ∈ R, t > 0

v(u, 0) = δ(u)
lim|u|→∞ v(u, t) = 0

(38)

so that it can be considered as a special case of the fractional telegraph equation studied in
Beghin and Orsingher (2003), for λ = 0 and c = 1. By applying formula (2.11) of that paper,
the solution to (38) can be expressed, for u ∈ R, t > 0, as

v2/m(u, t) (39)

=
( m

2π

)m−1
2 1

2
√

t

∫ ∞

0
dw1...

∫ ∞

0
dwm−1 ·

·e−
wm

1 +...+wm
m−1

m−1√
mmt w2 · · · wm−2

m−1 [δ(u − w1 · · · wm−1) + δ(u + w1 · · · wm−1] .

By taking, as before,

v2/m(u, t) =

{
2v2/m(u, t), for u ≥ 0

0, for u < 0
, (40)

the solution to our problem (5) can be expressed, in this case, as

u1/m(x, t) =

∫ ∞

0
pn(x, u)v2/m(u, t)du

=

∫ ∞

0
pn(x, u)pG(t)(u)du
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where G(t) =
∏m−1

j=1 Gj(t), t > 0 and Gj(t), j = 1, ..., m − 1 are independent random variables
with the following probability law

pGj(t)(w) =
1

m
j

m−1
−1t

j
m(m−1) Γ( j

m)
exp

(
− wm

m−1
√

mmt

)
wj−1 w > 0. (41)

We can check the independence by noting that

m−1∏

j=1

pGj(t)(wj) (42)

=
m−1∏

j=1

1

m
j

m−1
−1t

j
m(m−1) Γ( j

m)
exp

(
−

wm
j

m−1
√

mmt

)
wj−1

j

=
( m

2π

)m−1
2 1√

t
exp

(
−

∑m−1
j=1 wm

j
m−1
√

mmt

)
m−1∏

j=1

wj−1
j ,

where, in the second step, we have applied the multiplication formula of the Gamma function

Γ(z)Γ

(
z +

1

m

)
...Γ

(
z +

m − 1

m

)
= (2π)

m−1
2 m

1
2
−mzΓ (mz) ,

for z = 1/m. The last expression in (42) coincides with the joint density of the variables
Gj(t) given in formula (1.7) of Beghin and Orsingher (2003). Therefore the corresponding
pseudoprocess is represented, in this case, as Ψn (G(t)) , t > 0.

Remark 4.2

We can check the previous results, obtained separately for the two intervals, by choosing α = 1/2.
From both cases we obtain again that the pseudoprocess governed by our equation can be
represented by Ψn (|B(t)|) , t > 0.

Indeed from the first case, i.e. for 1/2 ≤ α < 1, we get, by means of (37), that the density
of Tα(t), t > 0, for α = 1/2, coincides with the folded normal. More precisely, S2(

√
t,−1, 0)

coincides with N(0, 2t) and then

v1(u, t) = 2p̃2(u; t) =
e−u2/4t

√
πt

(43)

for u > 0, t > 0.

On the other hand, if we consider the expression of the density of Tα obtained for 0 < α ≤ 1/2,
we get, for α = 1/2 and m = 2, from (42) that again

pG1(t)(u) =
e−u2/4t

√
πt

. (44)

Moreover both (43) and (44) coincide with (28) derived above, as expected.
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An interesting application of our results can be obtained by specializing Theorems 2.2 and 2.3
to the particular case n = 2. In this situation the pseudoprocess Ψn(t), t > 0 reduces to the
Brownian motion (with variance 2t) B(t), t > 0 and therefore the solution of (5) coincides with
the transition density of the process B(Tα(t)), t > 0 obtained by the composition of B with the
random time Tα. We state this last result as follows

Corollary 4.1

The solution of the problem
{

∂α

∂tα u(x, t) = ∂2

∂x2 u(x, t) x ∈ R, t > 0,
u(x, 0) = δ(x)

(45)

for 0 < α ≤ 1, is represented by the transition function of B(Tα). The density of the random
time Tα = Tα(t), t > 0 is the folded solution of the time-fractional equation

∂2α

∂t2α
v(u, t) =

∂2

∂u2
v(u, t) u ∈ R, t > 0

and is given in (24).

We can prove that this is in accordance with what is already known on (45): for n = 2 we can
substitute in (23) the transition function of the Brownian motion, so that we get:

uα(x, t) =
1

tα

∫ ∞

0

e−x2/4udu√
4πu

W
(
− u

tα
;−α, 1 − α

)
(46)

=
1

tα

∫ ∞

0

e−x2/4udu√
4πu

1

2πi

∫

Ha

ey− u
tα

yα

y1−α
dy

=
1

4itα
√

π3

∫

Ha

ey

y1−α
dy

∫ ∞

0

e−
x2

4u
− u

tα
yα

√
u

du.

If we show now that ∫ ∞

0

e−
x2

4u
− u

tα
yα

√
u

du =
√

πtα/2y−α/2e
− |x|

tα/2
yα/2

(47)

and substitute (47) into (46), we finally get the known result

uα(x, t) =
1

2tα/2

1

2πi

∫

Ha

e
y− |x|

tα/2
yα/2

y1−α/2
dy

=
1

2tα/2
W

(
− |x|

tα/2
;−α

2
, 1 − α

2

)
.

In order to verify formula (47) we use the following relationship, known for the Laplace transform
of the first-passage time of Brownian motion,

e−|x|√s =

∫ ∞

0
e−su |x|

2
√

π
√

u3
e−

|x|2
4u du,
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which, integrated with respect to x gives (47), for s = yα/tα. Alternatively, we can apply formula
n.3.471.9, p.384 of Gradshteyn and Ryzhik (1994), for β = x2/4, γ = yα/tα, ν = 1/2 (noting
that K1/2(z) =

√
π/2ze−z, see Gradshteyn and Ryzhik (1994), n.8469.3, p.978).

We can also compare the result of Corollary 4.1 with formula (3.1) of Anh and Leonenko (2001),
which, in our notation, reads

uα(x, t) =
1

α

∫ +∞

0

t

u1+ 1
α

e−x2/4utα

√
4πutα

pα

(
t

u1/α
; 1

)
du, (48)

where again pα (·; ) is the stable distribution Sα(σ, 1, 0), with parameters σ =
(u cos πα/2)1/α, β = 1, µ = 0. Formula (48) coincides with the density of B(Tα); indeed, by
the change of variable z = utα, we can rewrite

uα(x, t) =
1

α

∫ +∞

0

1

u1+ 1
α

e−x2/4utα

√
4πz

pα

(
t

u1/α
; 1

)
du .

If we restrict ourselves to the case α ∈ [1/2, 1) , the density of Tα(t), t > 0 is again proportional
to the positive branch of a stable density, as expressed in (37).

On the other hand, for α ∈ (0, 1/2] and in particular α = 1/m, m ∈ N, it is represented by the
law presented in (39) and (40), so that the process governed by equation (45) is, in this case,
B(

∏m−1
j=1 Gj(t)), t > 0.
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