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Abstract

We analyze the asymptotic behavior of sequences of random variables (x(n))n∈N
defined

by an initial condition and the induction formula xi(n + 1) = maxj (Aij(n) + xj(n)), where
(A(n))n∈N

is a stationary and ergodic sequence of random matrices with entries in R ∪ {−∞}.
This type of recursive sequences are frequently used in applied probability as they model
many systems as some queueing networks, train and computer networks, and production
systems.
We give a necessary condition for

(
1

n
x(n)

)
n∈N

to converge almost-surely, which proves to be

sufficient when the A(n) are i.i.d.
Moreover, we construct a new example, in which (A(n))n∈N

is strongly mixing, that condition

is satisfied, but
(

1

n
x(n)

)
n∈N

does not converge almost-surely .
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1 Introduction

1.1 Model

We analyze the asymptotic behavior of the sequence of random variables (x(n, x0))n∈N
defined

by: {
x(0, x0) = x0

xi(n + 1, x0) = maxj (Aij(n) + xj(n, x0))
, (1)

where (A(n))n∈N
is a stationary and ergodic sequence of random matrices with entries in

R ∪ {−∞}. Moreover, we assume that A(n) has at least one finite entry on each row, which is
a necessary and sufficient condition for x(n, x0) to be finite. (Otherwise, some coefficients can
be −∞.)

Such sequences are best understood by introducing the so-called max-plus algebra, which is
actually a semiring.

Definition 1.1. The max-plus semiring Rmax is the set R∪{−∞}, with the max as a sum (i.e.
a ⊕ b = max(a, b)) and the usual sum as a product (i.e. a ⊗ b = a + b). In this semiring, the
identity elements are −∞ and 0.

We also use the matrix and vector operations induced by the semiring structure. For matrices
A, B with appropriate sizes, (A⊕B)ij = Aij ⊕Bij = max(Aij , Bij), (A⊗B)ij =

⊕
k Aik⊗Bkj =

maxk(Aik + Bkj), and for a scalar a ∈ Rmax, (a ⊗ A)ij = a ⊗ Aij = a + Aij . Now, Equation (1)
x(n + 1, x0)⊗A(n)x(n, x0). In the sequel, all products of matrices by vectors or other matrices
are to be understood in this structure.

For any integer k ≥ n, we define the product of matrices A(k, n) := A(k) · · ·A(n) with entries
in this semiring. Therefore, we have x(n, x0) = A(n − 1, 0)x0 and if the sequence has indices
in Z, which is possible up to a change of probability space, we define a new random vector
y(n, x0) := A(−1,−n)x0, which has the same distribution as x(n, x0).

Sequences defined by Equation 1 model a large class of discrete event dynamical systems.
This class includes some models of operations research like timed event graphs (F. Bac-
celli [1]), 1-bounded Petri nets (S. Gaubert and J. Mairesse [10]) and some queuing networks (J.
Mairesse [15], B. Heidergott [12]) as well as many concrete applications. Let us cite job-shops
models (G. Cohen et al.[7]), train networks (H. Braker [6], A. de Kort and B. Heidergott [9]),
computer networks (F. Baccelli and D. Hong [3]) or a statistical mechanics model (R. Grif-
fiths [11]). For more details about modelling, see the books by F. Baccelli and al. [2] and by
B. Heidergott and al. [13].

1.2 Law of large numbers

The sequences satisfying Equation (1) have been studied in many papers. If a matrix A has at
least one finite entry on each row, then x 7→ Ax is non-expanding for the L∞ norm. Therefore,
we can assume that x0 is the 0-vector, also denoted by 0, and we do it from now on.
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We say that (x(n, 0))n∈N
defined in (1) satisfies the strong law of large numbers if

(
1
n
x(n, 0)

)
n∈N

converges almost surely. When it exists, the limit in the law of large numbers is called the cycle
time of (A(n))n∈N

or (x(n, 0))n∈N
, and may in principle be a random variable. Therefore, we

say that (A(n))n∈N
has a cycle time rather than (x(n, 0))n∈N

satisfies the strong law of large
numbers.

Some sufficient conditions for the existence of this cycle time were given by J.E. Cohen [8],
F. Baccelli and Liu [4; 1], Hong [14] and more recently by Bousch and Mairesse [5], the author [16]
or Heidergott et al. [13].

Bousch and Mairesse proved (Cf. [5]) that, if A(0)0 is integrable, then the sequence(
1
n
y(n, 0)

)
n∈N

converges almost-surely and in mean and that, under stronger integrability

conditions,
(

1
n
x(n, 0)

)
n∈N

converges almost-surely if and only if the limit of
(

1
n
y(n, 0)

)
n∈N

is
deterministic. The previous results can be seen as providing sufficient conditions for this to
happen. Some results only assumed ergodicity of (A(n))n∈N

, some others independence. But,
even in the i.i.d. case, it was still unknown, which sequences had a cycle time and which had none.

In this paper, we solve this long standing problem. The main result (Theorem 2.4) establishes
a necessary and sufficient condition for the existence of the cycle time of (A(n))n∈N

. Moreover,
we show that this condition is necessary (Theorem 2.3) but not sufficient (Example 1) when
(A(n))n∈N

is only ergodic or mixing. Theorem 2.3 also states that the cycle time is always
given by a formula (Formula (3)), which was proved in Baccelli [1] under several additional
conditions.

To state the necessary and sufficient condition, we extend the notion of graph of a random
matrix from the fixed support case, that is when the entries are either almost-surely finite or
almost-surely equal to −∞, to the general case. The analysis of its decomposition into strongly
connected components allows us to define new submatrices, which must have almost-surely at
least one finite entry on each row, for the cycle time to exist.

To prove the necessity of the condition, we use the convergence results of Bousch and Mairesse [5]
and a result of Baccelli [1]. To prove the converse part of Theorem 2.4, we perform an induction
on the number of strongly connected components of the graph. The first step of the induction
(Theorem 3.11) is an extension of a result of D. Hong [14].

The paper is organized as follows. In Section 2, we state our results and give examples to
show that the hypotheses are necessary. In Section 3, we successively prove Theorem 2.3 and
Theorem 2.4

2 Results

2.1 Theorems

In this section we attach a graph to our sequence of random matrices, in order to define the
necessary condition and to split the problem for the inductive proof of the converse theorem.
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Before defining the graph, we need the following result, which directly follows from Kingman’s
theorem and goes back to J.E. Cohen [8]:

Theorem-Definition 2.1 (Maximal Lyapunov exponent).
If (A(n))n∈N

is an ergodic sequence of random matrices with entries in Rmax such that
the positive part of maxij Aij(0) is integrable, then the sequences

(
1
n

maxi xi(n, 0)
)
n∈N

and(
1
n

maxi yi(n, 0)
)
n∈N

converge almost-surely to the same constant γ ∈ Rmax, which is called
the maximal (or top) Lyapunov exponent of (A(n))n∈N

.

We denote this constant by γ
(
(A(n))n∈N

)
, or γ(A).

Remarks 2.1.

1. The constant γ(A) is well-defined even if (A(n))n∈N
has a row without finite entry.

2. The variables maxi xi(n, 0) and maxi yi(n, 0) are equal to maxij A(n − 1, 0)ij and
maxij A(−1,−n)ij respectively.

Let us define the graph attached to our sequence of random matrices as well as some subgraphs.
We also set the notations for the rest of the text.

Definition 2.2 (Graph of a random matrix). For every x ∈ R
[1,··· ,d]
max and every subset I ⊂

[1, · · · , d], we define the subvector xI := (xi)i∈I .

Let (A(n))n∈N
be a stationary sequence of random matrices with values in Rd×d

max.

i) The graph of (A(n))n∈N
, denoted by G(A), is the directed graph whose nodes are the integers

between 1 and d and whose arcs are the pairs (i, j) such that P(Aij(0) 6= −∞) > 0.

ii) To each strongly connected component (s.c.c) c of G(A), we attach the submatrices
A(c)(n) := (Aij(n))i,j∈c and the exponent γ(c) := γ(A(c)).

Nodes which are not in a circuit are assumed to be alone in their s.c.c Those s.c.c are called
trivial and they satisfy A(c) = −∞ a.s. and therefore γ(c) = −∞.

iii) A s.c.c c̃ is reachable from a s.c.c c (resp. from a node i) if c = c̃ (resp. i ∈ c) or if there
exists a path on G(A) from a node in c (resp. from i) to a node in c̃. In this case, we write
c → c̃. (resp. i → c̃).

iv) To each s.c.c. c, we associate the set {c} constructed as follows. First, one finds all s.c.c.
downstream of c with maximal Lyapunov exponent. Let C be their union. Then the set
{c} consists of all nodes between c and C:

{c} :=
{

i ∈ [1, d]
∣∣∣∃c̃, c → i → c̃, γ(c̃) = max

c→c̄
γ(c)

}
.

Remark 2.2 (Paths on G(A)).

1. The products of matrices satisfy the following equation:

A(k, k − n)ij = max
i0=i,in=j

n−1∑

l=0

Ailil+1
(k − l),
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which can be read as ’A(k, k − n)ij is the maximum of the weights of paths from i to j

with length n on G(A), the weight of the lth arc being given by A(k − l)’. For k = −1, it
implies that yi(n, 0) is the maximum of the weights of paths on G(A) with initial node i

and length n but γ(A) is not really the maximal average weight of infinite paths, because
the average is a limit and maximum is taken over finite paths, before the limit over n.
However, Theorem 3.3, due to Baccelli and Liu [1; 4], shows that the maximum and the
limit can be exchanged.

2. Previous author used such a graph, in the fixed support case, that is when P (Aij(0) =
−∞) ∈ {0, 1}. In that case, the (random) weights where almost surely finite. Here, we
can have weights equal to −∞, but only with probability strictly less than one.

3. In the literature, the isomorphic graph with weight Aji on arc (i, j) is often used, although
only in the fixed support case. This is natural in order to multiply vectors on their left an
compute x(n, 0). Since we mainly work with y(n, 0) and thus multiply matrice on their
right, our definition is more convenient.

With those definitions, we can state the announced necessary condition for (x(n, X0))n∈N
to

satisfy a strong law of large numbers:

Theorem 2.3. Let (A(n))n∈N
be a stationary and ergodic sequence of random matrices with

values in Rd×d
max and almost-surely at least one finite entry on each row, such that the positive

part of maxij Aij(0) is integrable.

1. If the limit of
(

1
n
y(n, 0)

)
n∈N

is deterministic, then it is given by:

∀i ∈ [1, d], lim
n

1

n
yi(n, 0) = max

i→c
γ(c) a.s., (2)

That being the case, for every s.c.c c of G(A), the submatrix A{c} of A(0) whose indices
are in {c} almost-surely has at least one finite entry on each row.

2. If
(

1
n
x(n, 0)

)
n∈N

converges almost-surely, then its limit is deterministic and is equal to that

of
(

1
n
y(n, 0)

)
n∈N

, that is we have:

∀i ∈ [1, d], lim
n

1

n
xi(n, 0) = max

i→c
γ(c) a.s., (3)

To make the submatrices A{c} more concrete, we give on Fig. 1 an example of a graph G(A)
with the exponent γ(k) attached to each s.c.c ck and we compute {c2}. The maximal Lyapunov
exponent of s.c.c. downstream of c2, is γ(5). The only s.c.c. downstream of c2 with this Lyapunov
exponent is c5 and the only s.c.c. between c2 and c5 is c3. Therefore, {c2} is the union of c2, c3

and c5.

The necessary and sufficient condition in the i.i.d. case reads

Theorem 2.4 (Independent case). If (A(n))n∈N
is a sequence of i.i.d. random matri-

ces with values in Rd×d
max and almost-surely at least one finite entry on each row, such that

maxAij(0) 6=−∞ |Aij(0)| is integrable, then the sequence
(

1
n
x(n, 0)

)
converges almost-surely if and

only if for every s.c.c c, the submatrix A{c} of A(0) defined in Theorem 2.3 almost-surely has at
least one finite entry on each row. That being the case the limit is given by Equation (3).
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Figure 1: An example of computations on G(A)

γ(4) = 2

γ(1) = 4

γ(6) = 0

γ(5) = 3

Legend

: c

: {c2}

:
S

c2→c c

γ(2) = 1

γ(3)=−∞

Remark 2.3. We also prove that, when A(0)0 ∈ L1, the limit of
(

1
n
y(n, 0)

)
is deterministic if

and only if the matrices A{c} almost-surely have at least one finite entry on each row.

The stronger integrability ensures the convergence of
(

1
n
x(n, 0)

)
to this limit, like in [5, Theo-

rem 6.18]. There, it appeared as the specialization of a general condition for uniformly topical
operators, whereas in this paper it ensures that B0 is integrable for every submatrix B of A(0)
with at least one finite entry on each row.

Actually, we prove that
(

1
n
x(n, 0)

)
converges, provided that ∀c, A{c}0 ∈ L1, (see Proposition 3.5).

We chose to give a slightly stronger integrability condition, which is easier to check because it
does not depend on G(A).

2.2 Examples

To end this section, below are three examples that show that the independence is necessary but
not sufficient to ensure the strong law of large numbers and that the integrability condition is
necessary. We will denote by x⊤ the transpose of a vector x.

Example 1 (Independence is necessary). Let A and B be defined by

A =

(
1 −∞

−∞ 0

)
and B =

(
−∞ 0
0 −∞

)
.

For any positive numbers γ1 and γ2 such that γ1 +γ2 < 1, we set δ = 1−γ1−γ2

2 . Let (A(n), in)n∈N

be a stationnary version of the irreducible Markov chain on {A, B} × {1, 2} with transition
probabilities given by the diagram of Figure 2:

Then, (A(n))n∈N
is a strongly mixing sequence of matrices, which means that it satisfies

E [f (A(0)) g (A(n))] → E [f (A(0))] E [f (A(0))]
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Figure 2: Transition probabilities of (A(n), in)n∈N

A,1

B,2

A,2

B,1

δ
γ2

1 − γ2

δγ1

1 − γ1

1 − δ 1 − δ

for any integrable functions fand g on Rd×d
max. Moreover, its support is the full shift {A, B}N, but

we have

P

(
lim
n

1

n
y1(n, 0) = γ1

)
= γ1 + δ and P

(
lim
n

1

n
y1(n, 0) = γ2

)
= γ2 + δ, (4)

and thus, according to Theorem 2.3,
(

1
n
x(n, 0)

)
n∈N

does not converge. Finally, even if (A(n))n∈N

is a quickly mixing sequence, which means that it is in some sense close to i.i.d. , and G(A) is
strongly connected, does (A(n))n∈N

fail to have a cycle time.

To prove Equation (4), let us denote by τ the permutation between 1 and 2 and by g(C, i) the
only finite entry on the ith row of C. It means that for any i, g(A, i) = Aii and g(B, i) = Biτ(i).
Since all arcs of the diagram arriving to a node (A, i) are coming from a node (C, i), while those
arriving at a node (B, i) are coming from a node (C, τ(i)), we almost surely have

xin(n + 1, 0) − xin−1(n, 0) = g(A(n), in)) and xτ(in)(n + 1, 0) − xτ(in−1)(n, 0) = g(A(n), τ(in))),

and thus

xin−1(n, 0) =
n−1∑

k=0

g(A(k), ik) and xτ(in−1)(n, 0) =
n−1∑

k=0

g(A(k), τ(ik)),

yi−1(n, 0) =

n∑

k=1

g(A(−k), i−k) and yτ(i−1)(n, 0) =

n∑

k=1

g(A(−k), τ(i−k)).

It is easily checked that the invariant distribution of the Markov chain is given by the following
table:

x (A, 1) (B, 2) (A, 2) (B, 1)

P((A(n), in) = x) γ1 δ γ2 δ

and that g is equal to 0 except in (A, 1).

Therefore, we have

lim
n

1

n
yi−1(n, 0) = E (g(A(0), i0)) = P ((A(0), i0) = (A, 1)) = γ1

lim
n

1

n
yτ(i−1)(n, 0) = E (g(A(0), τ(i0))) = P ((A(0), τ(i0)) = (A, 2)) = γ2
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and consequently

lim
n

1

n
y(n, 0) = (γi−1 , γτ(i−1))

⊤a.s.

which implies Equation (4).

The next example, due to Bousch and Mairesse shows that the cycle time may not exist, even
if the A(n) are i.i.d.

Example 2 (Bousch and Mairesse, Independence is not sufficient). Let (A(n))n∈N
be the sequence

of i.i.d. random variables taking values

B =




0 −∞ −∞
0 −∞ −∞
0 1 1


 and C =




0 −∞ −∞
0 −∞ 0
0 0 −∞




with probabilities p > 0 and 1 − p > 0. Let us compute the action of B and C on vectors of
type (0, x, y)⊤, with x, y ≥ 0:

B(0, x, y)⊤ = (0, 0, max(x, y) + 1)⊤ and C(0, x, y)⊤ = (0, y, x)⊤.

Therefore x1(n, 0) = 0 and maxi xi(n+1, 0) = #{0 ≤ k ≤ n|A(k) = B}. In particular, if A(n) =
B, then x(n+1, 0) = (0, 0, #{0 ≤ k ≤ n|A(k) = B})⊤, and if A(n) = C and A(n−1) = B, then
x(n + 1, 0) = (0, #{0 ≤ k ≤ n|A(k) = B}, 0)⊤. Since

(
1
n
#{0 ≤ k ≤ n|A(k) = B}

)
n∈N

converges
almost-surely to p, we arrive at:

limn
1
n
x1(n, 0) = 0 a.s.

∀i ∈ {2, 3}, lim infn
1
n
xi(n, 0) = 0 and lim supn

1
n
xi(n, 0) = p a.s.

(5)

Therefore the sequence
(

1
n
x(n, 0)

)
n∈N

almost-surely does not converge.

We notice that G(A) has two s.c.c c1 = {1} and c2 = {2, 3}, with Lyapunov exponents γ(c1) = 0
and γ(c2) = p, and 2 → 1. Therefore, we check that the first row of A{c2} has no finite entry
with probability p.

Theorem 2.4 gives a necessary and sufficient condition for the existence of the cycle time of an
i.i.d. sequence of matrices A(n) such that maxAij(0) 6=−∞ |Aij(0)| is integrable. But the limit

of
(

1
n
y(n, 0)

)
n∈N

exists as soon as A(0)0 is integrable. Thus, it would be natural to expect
Theorem 2.4 to hold under this weaker integrability assumption. However, it does not, as the
example below shows.

Example 3 (Integrability). Let (Xn)n∈Z
be an i.i.d. sequence of real variables satisfying Xn ≥

1 a.s. and E(Xn) = +∞. The sequence of matrices is defined by:

A(n) =




−Xn −Xn 0
−∞ 0 0
−∞ −∞ −1




A straightforward computation shows that x(n, 0) is (max(−Xn,−n), 0,−n)⊤ and
y(n, 0) = (max(−X0,−n), 0,−n)⊤. It follows from Borel-Cantelli lemma that limn

1
n
Xn = 0 a.s.

if and only if E(Xn) < ∞. Hence
(

1
n
x(n, 0)

)
n∈N

converges to (0, 0,−1)⊤ in probability but the
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convergence does not occur almost-surely.

Let us notice that the limit of
(

1
n
y(n, 0)

)
n∈N

is given by Remark 2.3: each s.c.c has exactly one

node, γ(1) = −E(Xn) = −∞, γ(2) = 0 and γ(3) = −1.

3 Proofs

3.1 Necessary conditions

3.1.1 Additional notations

To interpret the results in terms of paths on G(A), and prove them, we redefine the A{c} and
some intermediate submatrices.

Definition 3.1. To each s.c.c c, we attach three sets of elements.

i) Those that only depend on c itself.

x(c)(n, x0) := A(c)(n − 1, 0)(x0)
c and y(c)(n, x0) := A(c)(−1,−n)(x0)

c

ii) Those that depend on the graph downstream of c.

Ec := {c̃|c → c̃}, γ[c] := max
c̃∈Ec

γ(c̃),

Fc :=
⋃

c̃∈Ec

c̃, A[c](n) := (Aij(n))i,j∈Fc

x[c](n, x0) := A[c](n − 1, 0)(x0)
Fc and y[c](n, x0) := A[c](−1,−n)(x0)

Fc .

iii) Those that depend on {c}, as defined in Definition 2.2.

Gc := {c̃ ∈ Ec|∃ĉ, c → c̃ → ĉ, γ(ĉ) = γ[c]},

Hc :=
⋃

c̃∈Gc

c̃ , A{c}(n) := (Aij(n))i,j∈Hc

x{c}(n, x0) := A{c}(n − 1, 0)(x0)
Hc and y{c}(n, x0) := A{c}(−1,−n)(x0)

Hc .

iv) A s.c.c c is called dominating if Gc = {c}, that is if for every c̃ ∈ Ec\{c}, we have: γ(c) > γ(c̃).

With those notations, the {c} of Definition 2.2 is denoted by Hc, while A{c} is A{c}(0).

As in Remark 2.2, we notice that the coefficients y
(c)
i (n, 0), y

[c]
i (n, 0) and y

{c}
i (n, 0) are the

maximum of the weights of paths on the subgraph of G(A) with nodes in c, Fc and Hc respectively.

Consequently γ(c), γ(A[c]) and γ(A{c}) are the maximal average weight of infinite paths on c,
Fc and Gc respectively. Since γ[c] is the maximum of the γ(c̃) for s.c.c c̃ downstream of c, the
interpretation suggests it might be equal to γ(A[c]) and γ(A{c}). That this is indeed true has
been shown by F. Baccelli [1].

Clearly, γ(A[c]) ≥ γ(A{c}) ≥ γ(A[c]), but the maximum is actually taken for finite paths, so that
the converse inequalities are not obvious.
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3.1.2 Formula for the limit

Up to a change of probability space, we can assume that A(n) = A ◦ θn, where A is a random
variable and (Ω, θ, P) is an invertible ergodic measurable dynamical system. We do it from now
on.

Let L be the limit of
(

1
n
y(n, 0)

)
n∈N

, which exists according to [5, Theorem 6.7] and is assumed
to be deterministic.

By definition of G(A), if (i, j) is an arc of G(A), then, with positive probability, we have Aij(−1) 6=
−∞ and

Li = lim
n

1

n
yi(n, 0) ≥ lim

n

1

n
(Aij(−1) + yj(n, 0) ◦ θ−1) = 0 + Lj ◦ θ−1 = Lj .

If c → c̃, then for every i ∈ c and j ∈ c̃, there exists a path on G(A) from i to j, therefore
Li ≥ Lj . Since this holds for every j ∈ Fc, we have:

Li = max
j∈Fc

Lj (6)

To show that maxj∈Fc Lj = γ[c], we have to study the Lyapunov exponents of sub-matrices.

The following proposition states some easy consequences of Definition 3.1 which will be useful
in the sequel.

Proposition 3.2. The notations are those of Definition 3.1

i) For every s.c.c. c, x[c](n, x0) = xFc(n, x0).

ii) For every s.c.c. m, and every i ∈ c, we have:

xi(n, 0) = x
[c]
i (n, 0) ≥ x

{c}
i (n, 0) ≥ x

(c)
i (n, 0).

yi(n, 0) = y
[c]
i (n, 0) ≥ y

{c}
i (n, 0) ≥ y

(c)
i (n, 0). (7)

iii) Relation → is a partial order, for both the nodes and the s.c.c.

iv) If A(0) has almost-surely at least one finite entry on each row, then for every s.c.c. c,
A[c](0) has almost-surely has least one finite entry on each row.

v) For every c̃ ∈ Ec, we have γ(c̃) ≤ γ[c̃] ≤ γ[c] and Gc = {c̃ ∈ Ec|γ
[c̃] = γ[c]}.

The next result is about Lyapunov exponents. It is already in [1; 4] and its proof does not uses
the additional hypotheses of those articles. For a point by point checking, see [16].

Theorem 3.3 (F. Baccelli and Z. Liu [1; 4; 2]). If (A(n))n∈N
is a stationary and ergodic sequence

of random matrices with values in Rd×d
max such that the positive part of maxi,j Aij is integrable,

then γ(A) = maxc γ(c).

Applying this theorem to sequences
(
A[c](n)

)
n∈N

and
(
A{c}(n)

)
n∈N

, we get the following corol-
lary.
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Corollary 3.4. For every s.c.c. c, we have

γ(A{c}) = γ(A[c]) = γ[c].

It follows from Proposition 3.2 and the definition of Lyapunov exponents that for every s.c.c c

of G(A),

max
i∈Fc

Li = lim
n

1

n
max
i∈Fc

yi(n, 0) = γ(A[c]).

Combining this with Equation (6) and Corollary 3.4, we deduce that the limit of
(

1
n
y(n, 0)

)
n∈N

is given by Equation (2).

3.1.3 A{c}(0) has at least one finite entry on each row

We still have to show that for every s.c.c c, A{c}(0) almost-surely has at least one finite entry
on each row. Let us assume it has none. It means that there exists a s.c.c. c and an i ∈ c such
that the set

{∀j ∈ Hc, Aij(−1) = −∞}

has positive probability. On this set, we have:

yi(n, 0) ≤ max
j∈Fc\Hc

Aij(−1) + max
j∈Fc\Hc

yj(n − 1, 0) ◦ θ−1.

Dividing by n and letting n to +∞, we have Li ≤ maxj∈Fc\Hc
Lj . Replacing L according to

Equation (2) we get γ[c] ≤ maxk∈Ec\Gc
γ[k]. This last inequality contradicts Proposition 3.2 v).

Therefore, A{c}(0) has almost-surely at least one finite entry on each row.

3.1.4 The limit is deterministic

Let us assume that
(

1
n
x(n, 0)

)
n∈N

converges almost-surely to a limit L′.

It follows from [5, Theorem 6.7] that
(

1
n
y(n, 0)

)
n∈N

converges almost-surely, thus we have

1

n
y(n, 0) −

1

n + 1
y(n + 1, 0)

P
→ 0.

We compound each term of this relation by θn+1 and, since x(n, 0) = y(n, 0) ◦ θn, it proves that:

1

n
x(n, 0) ◦ θ −

1

n + 1
x(n + 1, 0)

P
→ 0.

When n tends to +∞, it becomes L′ ◦ θ − L′ = 0. Since θ is ergodic, this implies that L′ is
deterministic.

Since 1
n
y(n, 0) = 1

n
x(n, 0) ◦ θn, L′ and L have the same law. Since L′ is deterministic, L =

L′ almost-surely, therefore L is also the limit of
(

1
n
x(n, 0)

)
n∈N

. This proves formula (3) and
concludes the proof of Theorem 2.3
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3.2 Sufficient conditions

3.2.1 Right products

In this section, we prove the following proposition, which is a converse to Theorem 2.3. In the
sequel, 1 will denote the vector all coordinates of which are equal to 1.

Proposition 3.5. Let (A(n))n∈N
be an ergodic sequence of random matrices with values in Rd×d

max

such that the positive part of maxij Aij(0) is integrable and that the three following hypotheses
are satisfied:

1. For every s.c.c c of G(A), A{c}(0) almost-surely has at least one finite entry on each row.

2. For every dominating s.c.c c of G(A), limn
1
n
y(c)(n, 0) = γ(c)1 a.s.

3. For every subsets I and J of [1, · · · , d], such that random matrices Ã(n) = (Aij(n))i,j∈I∪J

almost-surely have at least one finite entry on each row and split along I and J following
the equation

Ã(n) =:

(
B(n) D(n)
−∞ C(n)

)
, (8)

such that G(B) is strongly connected and D(n) is not almost-surely (−∞)I×J , we have:

P ({∃i ∈ I,∀n ∈ N, (B(−1) · · ·B(−n)D(−n − 1)0)i = −∞}) = 0. (9)

Then the limit of
(

1
n
y(n, 0)

)
n∈N

is given by Equation (2).

If Hypothesis 1. is strengthened by demanding that A{c}(0)0 is integrable, then the sequence(
1
n
x(n, 0)

)
n∈N

converges almost-surely and its limit is given by Equation (3).

Hypothesis 1. is necessary according to Theorem 2.3, Hypothesis 2 ensures the basis of the
inductive proof, while Hypothesis 3 ensures the inductive step.

Remark 3.1 (Non independent case). Proposition 3.5 does not assume the independence of
the A(n). Actually, it also implies that

(
1
n
x(n, 0)

)
n∈N

almost surely if the A(n) have fixed
support (that is P(Aij(n) = −∞) ∈ {0, 1}) and the powers of the shift are ergodic, which is
an improvement of [1]. It also allows to prove the convergence when the diagonal entries of the
A(n) are almost surely finite, under weaker integrability conditions than in [5] (see [17] or [16]
for details).

Remark 3.2 (Paths on G(A), continued). Let us interpret the three hypotheses with the paths
on G(A).

1. The hypothesis on A{c}(0) means that, whatever the initial condition i ∈ c, there is always
an infinite path beginning in i and not leaving Hc.

2. The hypothesis on dominating s.c.c means that, whatever the initial condition i in a
dominating s.c.c c, there is always a path beginning in i with average weight γ(c). The
proof of Theorem 3.3 (see [1] or [16]) can be adapted to show that it is a necessary condition.

333



3. We will use the last hypothesis with Ã(n) = A{c}(n), B(n) = A(c)(n). It means that there
is a path from i ∈ c, to Hc\c. Once we know that the limit of

(
1
n
y(n, 0)

)
n∈N

is given by

Equation (2) this hypothesis is obviously necessary when γ(c) < γ[c].

The remainder of this subsection is devoted to the proof of Proposition 3.5. It follows from
Propositions 3.2 and 3.4 and the definition of Lyapunov exponents that we have, for every s.c.c
c of G(A),

lim sup
n

1

n
yc(n, 0) ≤ γ[c]1 a.s. (10)

Therefore, it is sufficient to show that lim infn
1
n
yc(n, 0) ≥ γ[c]1 a.s. Because of Proposition 3.2 i),

lim
n

1

n
y{c}(n, 0) = γ[c]1. (11)

is a stronger statement. We prove Equation (11) by induction on the size of Gc. The initialization
of the induction is exactly Hypothesis 2. of Proposition 3.5.

Let us assume that Equation (11) is satisfied by every c such that the size of Gc is less than N ,
and let c be such that the size of Gc is N +1. Let us take I = c and J = Hc\c. If c is not trivial, it
is the situation of Hypothesis 3. with Ã = A{c}, which almost-surely has at least one finite entry
on each row thanks to Hypothesis 1. Therefore, Equation (9) is satisfied. If c is trivial, G(B) is
not strongly connected, but Equation (9) is still satisfied because D(−1)0 = (Ã(−1)0)I ∈ RI .

Moreover, J is the union of the c̃ such that c̃ ∈ Gc\{c}, thus the induction hypothesis implies
that:

∀j ∈ J, j ∈ c̃ ⇒ lim
n

1

n
(C(−1,−n)0)j = lim

n

1

n
y
{c̃}
j (n, 0) = γ[c̃] a.s..

Because of Corollary 3.4 ii), γ[c̃] = γ[c], therefore the right side of the last equation is γ[c] and
we have:

lim
n

1

n
(y{c})J(n, 0) = lim

n

1

n
C(−1,−n)0 = γ[c]1 a.s.. (12)

Equation (9) ensures that, for every i ∈ I, there exists almost-surely a T ∈ N and a j ∈ J

such that (B(−1,−T )D(−T − 1))ij 6= −∞. Since we have limn
1
n

(C(−T,−n)0)j = γ[c] a.s., it
implies that:

lim inf
n

1

n
y
{c}
i (n, 0)

≥ lim
n

1

n
(B(−1,−T )D(−T − 1))ij + lim

n

1

n
(C(−T,−n)0)j = γ[c] a.s.

Because of upper bound (10) and inequality (7), it implies that

lim
n

1

n
(y{c})I(n, 0) = γ[c]1 a.s..

which, because of Equation (12), proves Equation (11). This concludes the induction and the
proof of Proposition 3.5.
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3.2.2 Left products

As recalled in the introduction, T. Bousch an J. Mairesse proved that
(

1
n
x(n, 0)

)
n∈N

converges

almost-surely as soon as the limit of
(

1
n
y(n, 0)

)
n∈N

is deterministic. Therefore, the hypotheses
of Proposition 3.5 should imply the existence of the cycle time. But the theorem in [5, Theo-
rem 6.18] assumes a reinforced integrability assumption, that is not necessary for our proof. We
will prove the following proposition in this section:

Proposition 3.6. Let (A(n))n∈N
be an ergodic sequence of random matrices with values in Rd×d

max

such that the positive part of maxij Aij(0) is integrable and that satisfies the three hypotheses of
Proposition 3.5.

If Hypothesis 1. is strengthened by demanding that A{c}(0)0 is integrable, then the sequence(
1
n
x(n, 0)

)
n∈N

converges almost-surely and its limit is given by Equation (3).

To deduce the results on x(n, 0) from those on y(n, 0), we introduce the following theorem-
definition, which is a special case of J.-M. Vincent [18, Theorem 1] and directly follows from
Kingman’s theorem:

Theorem-Definition 3.7 (J.-M. Vincent [18]). If (A(n))n∈Z
is a stationary and ergodic se-

quence of random matrices with values in Rd×d
max and almost-surely at least one finite entry on

each row such that A(0)0 is integrable, then there are two real numbers γ(A) and γb(A) such
that

lim
n

1

n
max

i
xi(n, 0) =

1

n
max

i
yi(n, 0) = γ(A) a.s.

lim
n

1

n
min

i
xi(n, 0) =

1

n
min

i
yi(n, 0) = γb(A) a.s.

It implies the following corollary, which makes the link between the results on (y(n, 0))n∈N
and

those on (x(n, 0))n∈N
when all γ[c] are equal, that is when γ(A) = γb(A).

Corollary 3.8. If (A(n))n∈Z
is a stationary and ergodic sequence of random matrices with values

in Rd×d
max and almost-surely at least one finite entry on each row such that A(0)0 is integrable then

lim
n

1

n
x(n, 0) = γ(A)1 if and only if lim

n

1

n
y(n, 0) = γ(A)1.

Let us go back to the proof of the general result on (x(n, 0))n∈N
. Because of Proposition 3.2 and

Proposition 3.4 and the definition of Lyapunov exponents, we already have, for every s.c.c c of
G(A),

lim sup
n

1

n
xc(n, 0) ≤ γ[c]1 a.s.

Therefore it is sufficient to show that lim infn
1
n
xc(n, 0) ≥ γ[c]1 a.s. and even that

lim
n

1

n
x{c}(n, 0) = γ[c]1.

Because of corollary 3.8, it is equivalent to limn
1
n
y{c}(n, 0) = γ[c]1. Since all s.c.c of G(A{c}) are

s.c.c of G(A) and have the same Lyapunov exponent γ(c), it follows from the result on the y(n, 0)
applied to A{c}.

335



3.3 Independent case

In this section, we prove Theorem 2.4.

Because of Theorem 2.3, it is sufficient to show that, if, for every s.c.c c, A{c} almost-surely
has at least one finite entry on each row, then the sequence

(
1
n
x(n, 0)

)
converges almost-surely.

To do this, we will prove that, in this situation, the hypotheses of Proposition 3.6 are satisfied.
Hypothesis 1. is exactly Hypothesis 1. of Theorem 2.4 and Hypotheses 2. and 3. respectively
follow from the next lemma and theorem.

Definition 3.9. For every matrix A ∈ Rd×d
max, the pattern matrix Â is defined by Âij = −∞ if

Aij = −∞ and Aij = 0 otherwise.

For every matrix A, B ∈ Rd×d
max, we have ÂB = ÂB̂.

Lemma 3.10. Let (A(n))n∈N
be a stationary sequence of random matrices with values in Rd×d

max

and almost-surely at least one finite entry on each row. Let us assume that there exists a partition
(I, J) of [1, · · · , d] such that A = Ã satisfy Equation (8), with G(B) strongly connected. For every
i ∈ I, let us define

Ai := {∀n ∈ N, (B(1, n)D(n + 1)0)i = −∞} .

1. If ω ∈ Ai, then we have ∀n ∈ N,∃in ∈ I (B(1, n))iin
6= −∞.

2. If the set E =
{

M ∈ {0,−∞}d×d
∣∣∣P

(
Â(1, n) = M

)
> 0

}
is a semigroup, and if

P
(
D = (−∞)I×J

)
< 1, then for every i ∈ I, we have P(Ai) = 0.

Proof.

1. For every ω ∈ Ai, we prove our result by induction on n.

Since the A(n) almost-surely have at least one finite entry on each row, there exists an i1 ∈
[1, · · · , d], such that Aii1(1) 6= −∞. Since (D(1)0)i = −∞, every entry on row i of D(1) is
−∞, that is Aij(1) = −∞ for every j ∈ J , therefore i1 ∈ I and Bii1(1) = Aii1(1) 6= −∞.

Let us assume that the sequence is defined up to rank n. Since A(n + 1) almost-surely
has at least one finite entry on each row, there exists an in+1 ∈ [1, · · · , d], such that
Ainin+1(n + 1) 6= −∞.

Since ω ∈ Ai, we have:

−∞ = (B(1, n)D(n + 1)0)i ≥ (B(1, n))iin
+ (D(n + 1)0)in

,

therefore (D(n + 1)0)in
= −∞.

It means that every entry on row in of D(n + 1) is −∞, that is Ainj(n + 1) = −∞ for
every j ∈ J , therefore in+1 ∈ I and

Binin+1(n + 1) = Ainin+1(n + 1) 6= −∞.

Finally, we have:

(B(1, n + 1))iin+1
≥ (B(1, n))iin

+ Binin+1(n + 1) 6= −∞.
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2. As a first step, we want to construct a matrix M ∈ E such that

∀i ∈ I,∃j ∈ J, Mij = 0.

Since P
(
D = (−∞)I×J

)
< 1, there are α ∈ I, β ∈ J and M0 ∈ E with M0

αβ = 0. For
any i ∈ I, since G(B) is strongly connected, there is M ∈ E such that M ∈ E and Miα = 0.
Therefore M i = MM0 is in E and satisfies M i

iβ = 0.

Now let us assume I = {α1, · · · , αm} and define by induction the finite sequence of matrices
P k.

• P 1 = Mα1

• If there exists j ∈ J such that P k
αk+1j = 0, then P k+1 = P k. Else, since the matrices

have at least one finite entry on each row, there is an i ∈ I, such that P k
αki, and

P k+1 = P kM i.

It is easily checked that such P k satisfy,

∀l ≤ k,∃j ∈ J, P k
αlj

= 0.

Therefore, we set M = Pm and denote by p the smallest integer such that

P

(
Â(1, p) = M

)
> 0

Now, it follows from the definition of E and the ergodicity of (A(n))n∈N
that there is almost

surely an N ∈ N , such that Â(N + 1, N + p) = M .

On Ai, that would define a random jN ∈ J such that MiN jN
= 0, where iN is defined

according to the first point of the lemma. Then, we would have

(A(1, N + p))ijN
≥ (A(1, N))iiN + (A(N + 1, N + p))iN jN

> −∞

But Ai is defined as the event on which there is never a path from i to J , so that we should
have ∀n ∈ N,∀j ∈ J, A(1, n))ij = −∞.

Finally, Ai is included in the negligible set
{
∀n ∈ N, Â(n + 1, n + p) 6= M

}
.

Theorem 3.11. If (A(n))n∈N
is a sequence of i.i.d. random matrices with values in Rd×d

max such
that the positive part of maxij Aij(0) is integrable, A(0) almost-surely has at least one finite entry
on each row and G(A) is strongly connected, then we have

∀i ∈ [1, d], lim
n

1

n
yi(n, 0) = γ(A)

.

This theorem is stated by D. Hong in the unpublished [14], but the proof is rather difficult to
understand and it is unclear if it holds when A(1) takes infinitely many values. Building on [5],
we now give a short proof of this result.
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Proof. According to [5, Theorem 6.7],
(

1
n
y(n, 0)

)
n∈N

converges a.s. We have to show that its
limit is deterministic.

The sequence R(n) := Â(−1,−n) is a Markov chain with states space is
{

M ∈ {0,−∞}d×d |M0 = 0
}

and whose transitions are defined by:

P (R(n + 1) = F |R(n) = E) = P

(
ÊA(1) = F

)
.

For every i, j ∈ I, we have Rij(n) = 0 if and only if (A(−1,−n))ij 6= −∞.

Let i be any integer in {1, · · · , d} and E be a recurrent state of (R(n))n∈N
. There ex-

ists a j ∈ [1, · · · , d] such that Eij = 0. Since G(A) is strongly connected, there exists
a p ∈ N, such that (B(−1,−p))ji 6= −∞ with positive probability. Let G be such that

P

(
(B(−1,−p))ji 6= −∞, B̂(−1,−p) = G

)
> 0. Now, F = EG is a state of the chain, reachable

from state E and such that Fii = 0. Since E is recurrent, so is F and E and F belong to the
same recurrence class.

Let E be a set with exactly one matrix F in each recurrence class, such that Fii = 0. Let Sn be
the nth time (R(m))m∈N

is in E .

Since the Markov chain has finitely many states and E intersects every recurrence class, Sn is
almost-surely finite, and even integrable. Moreover, the Sn+1 − Sn are i.i.d. (we set S0 = 0)
and so are the A(−Sn − 1,−Sn+1). Since P (S1 > k) decreases exponentially fast, A(−1,−S1)0
is integrable and thus the sequence

(
1
n
y(Sn, 0)

)
n∈N

converges a.s. Let us denote its limit by l.

Let us denote by F0 the σ-algebra generated by the random matrices A(−Sn − 1,−Sn+1). Then
l is F0 measurable, and the independence of the A(−Sn − 1,−Sn+1) means that (Ω,F0, P, θS1)
is an ergodic measurable dynamical system. Because of the choice of S1, we have li ≥ li ◦ θS1 ,
so that li is deterministic.

Now, let us notice that the limit of 1
n
yi(n, 0) is that of 1

Sn
yi(Sn, 0), that is li

E(S1) , which is
deterministic.

This means that lim 1
n
yi(n, 0) is deterministic for any i, and, according to Theorem 2.3, it implies

that it is equal to γ(A).
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