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Abstract

An acyclic mapping from an n element set into itself is a mapping ϕ such that if ϕk(x) = x
for some k and x, then ϕ(x) = x. Equivalently, ϕ` = ϕ`+1 = . . . for ` sufficiently large. We
investigate the behavior as n→∞ of a sequence of a Markov chain on the collection of such
mappings. At each step of the chain, a point in the n element set is chosen uniformly at
random and the current mapping is modified by replacing the current image of that point
by a new one chosen independently and uniformly at random, conditional on the resulting
mapping being again acyclic. We can represent an acyclic mapping as a directed graph (such
a graph will be a collection of rooted trees) and think of these directed graphs as metric spaces
with some extra structure. Informal calculations indicate that the metric space valued process
associated with the Markov chain should, after an appropriate time and “space” rescaling,
converge as n → ∞ to a real tree (R-tree) valued Markov process that is reversible with
respect to a measure induced naturally by the standard reflected Brownian bridge. Although
we don’t prove such a limit theorem, we use Dirichlet form methods to construct a Markov
process that is Hunt with respect to a suitable Gromov-Hausdorff-like metric and evolves
according to the dynamics suggested by the heuristic arguments. This process is similar
to one that appears in earlier work by Evans and Winter as a similarly informal limit of
a Markov chain related to the subtree prune and regraft tree (SPR) rearrangements from
phylogenetics .
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1 Introduction

A mapping ϕ from the set [n] := {1, 2, . . . , n} into itself may be represented as a directed graph
with vertex set [n] and directed edges of the form (i, ϕ(i)), i ∈ [n]. The resulting directed graph
has the feature that every vertex has out-degree 1 (with self-loops – corresponding to fixed points
– allowed), and any such graph corresponds to a unique mapping. For example, the mapping
ϕ : [18]→ [18] in Table 1 corresponds to the directed graph in Figure 1.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ϕ(i) 10 3 18 10 9 2 8 4 3 7 9 2 1 9 15 1 1 9

Table 1: A mapping from [18] into itself.
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Figure 1: The directed graph corresponding to the mapping in Table 1.

The directed graph may be decomposed into a number of connected components. Each of
these components consists of a single directed cycle (possibly a self-loop) plus trees rooted at
each vertex on the directed cycle (such a tree may be a trivial tree consisting of only the root,
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meaning that the only pre-image of that point is its predecessor on the directed cycle). We call
such rooted trees the tree components of the graph.

Aldous and Pitman (AP94) describe a procedure for associating a mapping of [n] into itself with
a lattice reflected bridge path of length 2n, that is, with a function b : {0, 1, . . . , 2n} → {0, 1, 2, . . .}
such that b(0) = b(2n) = 0 and |b(k + 1) − b(k)| = 1 for 0 ≤ k < 2n. The exact details of the
procedure aren’t important for us. However, we note that a tree component with ` vertices
corresponds to a lattice positive excursion path from 0 with 2` steps. Such a segment of path
records the distance from the root plus 1 in a depth-first-search of the tree component. For
example, the tree component of size 5 consisting of the vertices {1, 10, 13, 16, 17} in Figure 1
corresponds to the excursion shown in Figure 2 after a suitable translation of the time axis. In

3

2

1

1 2 3 4 5 6 7 8 9 10

Figure 2: The excursion corresponding to the tree component rooted at vertex 10 in Figure 2
with the start of the excursion shifted to time 0.

particular, a tree component that consists of just one point (which is necessarily a point on a
directed cycle) corresponds to an excursion of the form b(k− 1) = 0, b(k) = 1, and b(k+ 1) = 0.

Of course, the mapping cannot be recovered from just the lattice reflected bridge path. For one
thing, some extra marking of distinguished points of the zero set of the lattice path is required
to split the lattice path up into sub-paths corresponding to components of the directed graph.
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Once this is done, the mapping is uniquely specified by the lattice path up to a relabeling of
the vertices: that is, if two mappings ϕ and ψ correspond to the same lattice reflected bridge
path, then ψ = π ◦ ϕ ◦ π−1 for some permutation π of [n]. Conversely, if ψ = π ◦ ϕ ◦ π−1

for some permutation π of [n], then the lattice path corresponding to ψ may be obtained from
the lattice path corresponding to ϕ by composition with a bijective map of {0, 1, . . . , 2n} that
preserves lengths of excursions above all levels. That is, if the lattice path corresponding to ϕ
has k excursions above some level h, then the same is true of the lattice path corresponding to
ψ.

Suppose now that a mapping of [n] into itself is chosen uniformly at random from the nn

possibilities. This is equivalent to choosing the image of each point of [n] independently and
uniformly at random from [n]. The corresponding lattice reflected bridge path is not uniformly
distributed. However, it is shown in (AP94) that if the lattice reflected bridge path is turned into
a continuous time process by holding it constant between integer time points, time is rescaled
by 2n, and space is rescaled by n

1
2 to produce a function from [0, 1] into R+, then this stochastic

process with càdlàg sample paths converges in distribution to twice a standard reflected Brownian
bridge (that is, twice the Brownian bridge reflected at 0 that goes from position 0 at time 0 to
position 0 again at time 1). In particular, the proportion of vertices that lie on directed cycles
converges to the proportion of time the standard reflected Brownian bridge spends at 0, which
is, of course, 0, so that asymptotically almost all vertices are not roots of tree components. The
asymptotics of the cyclic vertices jointly with the tree vertices are described in (AP94) using
the local time at 0 of the reflected bridge and that paper also describes an auxiliary “marking”
procedure for describing the joint asymptotics of the the component sizes. Some later results in
this same vein may be found in (AMP05; AP02; DS97; DG99; GL00; DG04; Pit02).

A mapping ϕ from [n] into itself is acyclic if the only directed cycles in the corresponding directed
graph are self-loops. That is, each x ∈ [n] is either a fixed point of ϕ (so that x is a vertex on a
self-loop) or ϕk(x) 6= x for any k. Equivalently, ϕ` = ϕ`+1 = . . . for ` sufficiently large. For such
a mapping, each graph component consists of single tree component with a self-loop attached
to the root, and no auxiliary marking procedure is necessary to recover the mapping up to a
permutation from the corresponding lattice reflected bridge path. It is not hard to show that if
we turn the lattice reflected bridge path for a uniformly chosen acyclic random mapping into a
continuous time process indexed by [0, 1] as above, then the resulting process also converges to
twice a standard reflected Brownian bridge – as one would expect from the observation that the
cyclic vertices are asymptotically negligible for a uniformly chosen random mapping,

In this paper we are interested in the asymptotic behavior as n→∞ of a simple Markov chain
that randomly evolves an acyclic mapping from [n] into itself. At each step of the chain, a
point of [n] is chosen uniformly at random and the image of this point is re-set to a new image
chosen independently and uniformly at random from [n], conditional on the resulting mapping
being acyclic. It is clear for each n that this chain is reversible with respect to the uniform
distribution on the set of acyclic mappings from [n] into itself and that the chain converges to
this distribution at large times.

In terms of the corresponding directed graphs, the chain evolves as follows. A directed edge is
first chosen uniformly at random and deleted. The deleted edge is then replaced by another
directed edge with the same initial vertex but a uniformly chosen final vertex, conditional on
the resulting graph having no cycles other than self-loops. Note that the effect of such a step is
the following.
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• If the deleted edge is a self-loop, its deletion turns the graph component that contained
the edge into a rooted subtree. Otherwise, the deletion of the directed edge splits the
graph component that contained it into two pieces, one of which contains a self-loop and
the other of which is a rooted subtree.

• In either case, the addition of the new directed edge either attaches the root of the subtree
to itself by a self-loop, producing an extra graph component, or the new directed edge
attaches the root to a vertex chosen uniformly outside the subtree (possibly to a vertex
outside the subtree but within the same former graph component). All such possibilities
are equally likely.

The effect on the corresponding lattice bridge path is to remove an excursion above some level,
insert a suitable time-space translation of it at some time point in the lattice bridge path outside
the excursion, and then close up the gap left by the removal (more precisely, this transformation
may need to be followed by a bijective map of {0, 1, . . . , 2n} that preserves lengths of excursions
above all levels because of the way that the labeling of vertices in the directed graph is used to
construct the corresponding lattice bridge path).

In order to understand the asymptotic behavior of this sequence of chains as n → ∞, we need
to embed the state space of each chain into a common state space that will also be the state
space of the limit process.

To begin with, we erase all of the self-loops in the directed graph corresponding to an acyclic
mapping. This produces a forest of subtrees rooted at vertices that were formerly on self-loops.
We then connect the roots of these subtrees by directed edges to a single adjoined point to
produce a tree rooted at the adjoined point. Keeping in mind the rescaling identified by Aldous
and Pitman, we think of this tree as a one-dimensional cell complex by regarding each edge as a
segment of length n−

1
2 . We thus have a metric space with a distinguished base point (the root).

This pointed metric space is an instance of a rooted compact real tree (R-tree): see Section 2
for the precise definition of a R-tree – for the moment, all that is important for explaining our
results is that a R-tree is a metric space that is, in some sense, “tree-like”. We regard two
rooted compact R-trees as being equal if one can be mapped into the other by an isometry that
preserves the root. If two mappings ϕ and ψ are related by a relabeling ψ = π ◦ϕ◦π−1 for some
permutation π of [n], then they correspond to the same rooted compact R-tree.

Before we continue with the motivation of our results, we need to indicate how the rooted
compact R-tree associated with a mapping from [n] into itself may be constructed directly from
the corresponding lattice reflected bridge path. We begin by introducing some general notation
that is useful later.

Definition 1.1. Write C(R+,R+) for the space of continuous functions from R+ into R+. For
f ∈ C(R+,R+), put

ζ(f) := inf{s > 0 : f(t) = 0 for all t > s}
with the usual convention that inf ∅ = ∞. The set of positive bridge paths is the set Ω+ ⊂
C(R+,R+) given by

Ω+ :=
{
f ∈ C(R+,R+) :

f(0) = 0, 0 < ζ(f) <∞,
f(t) ≥ 0 for 0 < t < ζ(f).

}
For ` > 0, set Ω`

+ := {f ∈ Ω+ : ζ(f) = `}.
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We associate each f ∈ Ω1
+ with a compact metric space as follows. Define an equivalence relation

∼f on [0, 1] by letting

u1 ∼f u2, iff f(u1) = inf
u∈[u1∧u2,u1∨u2]

f(u) = f(u2).

Consider the pseudo-metric dTf
on [0, 1] defined by

dTf
(u1, u2) := f(u1)− 2 inf

u∈[u1∧u2,u1∨u2]
f(u) + f(u2).

This pseudo-metric becomes a true metric on the quotient space Tf := [0, 1]/∼f
. The resulting

metric space is compact and is an instance of a rooted compact R-tree if we define the root to
be the image of 0 under the quotient map.

Suppose that the function f ∈ Ω1
+ is obtained by first linearly interpolating the lattice reflected

bridge path associated with an acyclic mapping ϕ of [n] into itself to produce a function in Ω2n
+

and then rescaling time by 2n and space by n
1
2 . The corresponding pointed metric space Tf is

the rooted compact R-tree associated with ϕ that we described above.

Any metric space of the form Tf for f ∈ Ω1
+ has two natural Borel measure on it. Firstly, there

is the “uniform” probability measure νTf
given by the push-forward of Lebesgue measure on

[0, 1] by the quotient map. We call this measure the weight on Tf . Secondly, there is the natural
length measure µTf

, which is the one-dimensional Hausdorff measure associated with the metric
dTf

restricted to points of Tf that are not “leaves” (see Section 2 for a more precise definition).
When f is associated with a map of [n] into itself as above, then µTf

is just the “Lebesgue

measure” on the cell complex Tf that assigns mass n−
1
2 to each edge of Tf (recall that we have

rescaled so that each edge has length n−
1
2 ).

Now, if we speed up time by a factor of n
1
2 in our Markov chain for evolving mappings of [n] into

itself and look at the corresponding rooted compact R-tree-valued process, then it is reasonable
at the heuristic level that we should obtain in the limit as n → ∞ a continuous time Markov
process with the following informal description. The state space of the limit process is the space
consisting of rooted compact R-trees T equipped with a probability measure νT : we call such
objects weighted rooted compact R-trees. We note that, as in the special case of R-trees of the
form Tf for f ∈ Ω1

+, an arbitrary compact R-tree has a canonical length measure µT given by
the restriction of the one-dimensional Hausdorff measure associated with the metric to the set of
points that aren’t leaves. The process evolves away from its state at time 0 by choosing a point
(t, v) at rate dt ⊗ µT (dv) in time and on the current tree T , and at time t the subtree above v
(that is, the subtree of points on the other side of v from the root) is re-attached at a point w
chosen according to νT (conditional on w being outside the subtree).

In general, the measure µT may have infinite total mass. For example, if f ∈ Ω1
+ is chosen

according to the distribution of standard reflected Brownian bridge, so that T2f is the rooted
compact R-tree that arises from a limit as n → ∞ of uniform acyclic random mappings of [n]
into itself, then µT2f

almost surely has infinite total mass. Consequently, the above specification
of the dynamics of the limit process does not make rigorous sense for general weighted rooted
compact R-trees.

The aim of this paper is to use Dirichlet form methods to construct a suitably well-behaved
Markov process with evolution dynamics that conform to the heuristic description. Our main
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result in this direction is stated precisely as Theorem 7.5 at the end of the paper after we
have developed the necessary background and notation to describe the result and the requisite
technical machinery to prove it.

We stress that we do not obtain a convergence result. The process we construct has no obvious
Feller-like properties and it is not clear how to define its dynamics for all starting points (as
opposed to almost all starting points with respect to the symmetrizing measure, which is all the
Dirichlet form approach provides). Consequently, it is not clear how standard techniques such
as martingale problem methods might be used to establish convergence.

The process we construct is somewhat similar to the process constructed in (EW06) as the
heuristic limit of a sequence of natural chains based on the subtree prune and regraft (SPR) tree
rearrangement transformations from phylogenetics. Both processes involve the relocation of a
subtree whose root is chosen according to the length measure on the current tree. However, the
state space of the process in (EW06) consists of weighted unrooted compact R-trees, whereas
we work with weighted rooted compact R-trees and the root plays a crucial role in defining the
dynamics. The symmetrizing measures are, as a consequence, rather different: the measure in
(EW06) is the distribution of the Brownian continuum random tree, which is the R-tree “inside”
twice a standard Brownian excursion, whereas our symmetrizing measure is the distribution of
the R-tree “inside” twice a standard reflected Brownian bridge. However, many of the steps in
the construction are quite similar so we omit several arguments and simply refer to the analogous
ones in (EW06).

We note that Markov processes with reflected bridge paths as their state space and continuous
sample paths have been studied in (Zam03; Zam02; Zam01). These processes are reversible with
respect to the distribution of a Bessel bridge of some index.

2 Weighted R-trees

Definition 2.1. A metric space (T, d) is a real tree (R-tree) if it satisfies the following axioms.

Axiom 0: The space (T, d) is complete.

Axiom 1: For all x, y ∈ T there exists a unique isometric embedding φx,y : [0, d(x, y)] → T
such that φx,y(0) = x and φx,y(d(x, y)) = y.

Axiom 2: For every injective continuous map ψ : [0, 1] → T one has ψ([0, 1]) =
φψ(0),ψ(1)([0, d(ψ(0), ψ(1))]).

Axiom 1 says simply that there is a unique “unit speed” path between any two points x and
y. We write [x, y] for the image of this path and call it the segment with endpoints x and y.
Axiom 2 implies that the image of any injective path connecting two points x and y coincides
with the segment [x, y], and so such a path may be re-parameterized to become the unit speed
path. Thus, while Axiom 1 is satisfied by many other spaces such as Rd with the usual metric,
Axiom 2 captures the essence of “treeness” and is only satisfied by Rd when d = 1. See (Dre84;
DT96; DMT95; DMT96; Ter97; Chi01) for background on R-trees. In particular, (Chi01) shows
that a number of other definitions are equivalent to the one above. Much of this content is
synthesized and combined with other material on probability on R-trees in (Eva07). Also, some
probabilistic aspects of R-trees are reviewed in (LG06).
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We define the η-trimming, Rη(T ) of a compact R-tree (T, d) for η > 0 to be the set of points
x ∈ T such that x belongs to a segment [y, z] with d(x, y) = d(x, z) = η – see Figure 3. The
skeleton of (T, d) is the set T o :=

⋃
η>0Rη(T ). Thus x ∈ T o if x ∈]y, z[ for some y, z. The leaf

set of (T, d) is the set T\T o. The length measure on T is the σ-finite measure µT on the Borel
σ-field B(T ) given by the trace onto T o of the one-dimensional Hausdorff measure associated
with d. Equivalently, µT is the unique measure concentrated on T o such that µT ([x, y]) = d(x, y)
for all x, y ∈ T (see Section 2.4 of (EPW06) or Section 2 of (EW06)).

h

T

Figure 3: A R-tree T and its η-trimming Rη(T ). The R-tree T consists of both the solid and
dashed segments, whereas the R-tree Rη(T ) consists of just the solid segments.

In the following, we are interested in compact R-trees (T, d) equipped with a distinguished base
point ρ ∈ T (called the root) and a probability measure ν on the Borel σ-field B(T ) (called the
weight). We call such objects weighted rooted compact R-trees. We say that two weighted rooted
compact R-trees (X, dX , ρX , νX) and (Y, dY , ρY , νY ) are weighted rooted isometric if there exists
a bijective isometry Φ between the metric spaces (X, dX) and (Y, dY ) such that Φ(ρX) = ρY
and the push-forward of νX by Φ is νY , that is,

νY = Φ∗νX := νX ◦ Φ−1.
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The property of being weighted rooted isometric is an equivalence relation. We write Twr for
the collection of equivalence classes of weighted rooted compact R-trees.

In order to define a metric on Twr, we first recall the definition of the Prohorov distance between
two probability measures (see, for example, (EK86)). Given two probability measures α and
β on a metric space (X, d) with the corresponding collection of closed sets denoted by C, the
Prohorov distance between them is

dP(α, β) := inf{ε > 0 : α(C) ≤ β(Cε) + ε for all C ∈ C},

where Cε := {x ∈ X : infy∈C d(x, y) < ε}. The Prohorov distance is a metric on the collection
of probability measures on X.

We are now in a position to define the weighted rooted Gromov-Hausdorff distance between the
two weighted rooted compact R-trees (X, dX , ρX , νX) and (Y, dY , ρY , νY ).

For ε > 0, let F εX,Y denote the set of Borel maps f : X → Y such that f(ρX) = ρY and

sup{|dX(x′, x′′)− dY (f(x′), f(x′′))| : x′, x′′ ∈ X} ≤ ε,

and define F εY,X similarly. Put

∆GHwr(X,Y )

:= inf

{
ε > 0 :

exist f ∈ F εX,Y , g ∈ F εY,X such that
dP(f∗νX , νY ) ≤ ε, dP(νX , g∗νY ) ≤ ε

}
.

Note that the set on the right hand side is non-empty because X and Y are compact, and hence
bounded in their respective metrics. Note also that ∆GHwr(X,Y ) only depends on the weighted
rooted isometry classes of X and Y .

It turns out that the function ∆GHwr satisfies all the properties of a metric except the triangle
inequality. To rectify this, put

dGHwr(X,Y ) := inf

{
n−1∑
i=1

∆GHwr(Zi, Zi+1)
1
4

}
,

where the infimum is taken over all finite sequences of weighted rooted compact R-trees Z1, . . . Zn
with Z1 = X and Zn = Y (the exponent 1

4 is not particularly important, any sufficiently small
number would suffice). Note again that dGHwr(X,Y ) only depends on the weighted rooted
isometry classes of X and Y .

From now on, we think of ∆GHwr and dGHwr as being defined on Twr × Twr. Parts (i) and
(ii) of the following result are analogous to Lemma 2.3 of (EW06), part (iv) is analogous to
Proposition 2.4 of (EW06), part (v) is a re-statement of Lemma 2.6 of (EW06), and part (vi) is
analogous to Theorem 2.5 of (EW06). The results in (EW06) are for R-trees with weights but
without roots, but the addition of roots does not present any new difficulties (cf. the passage
from R-trees without weights or roots to R-trees without weights but with roots in Section 2.3
of (EPW06)). The space T in part (iv) is the collection of isometry classes of compact R-trees
(without weights or roots) and we refer the reader to Section 2.1 of (EPW06) for the definition
of the associated Gromov-Hausdorff distance dGH.
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Proposition 2.2. (i) The map ∆GHwr has the properties:

(a) ∆GHwr(X,Y ) = 0 if and only if X = Y ,

(b) ∆GHwr(X,Y ) = ∆GHwr(Y,X).

(ii) The map dGHwr is a metric on Twr.

(iii) For all X,Y ∈ Twr,

1
2

∆GHwr(X,Y )
1
4 ≤ dGHwr(X,Y ) ≤ ∆GHwr(X,Y )

1
4 .

(iv) A subset D of (Twr, dGHwr) is relatively compact if and only if the subset E := {(T, d) :
(T, d, ρ, ν) ∈ D} of (T, dGH) is relatively compact.

(v) A subset E of (T, dGH) is relatively compact if and only if

sup{µT (Rη(T )) : T ∈ E} <∞

for all η > 0.

(vi) The metric space (Twr, dGHwr) is complete and separable.

We note that an extensive study of spaces of metric spaces equipped with measures is given
in (Stu06a; Stu06b), and the theory of weak convergence for random variables taking values in
such spaces is developed in (GPW06).

3 Trees and continuous paths

Definition 3.1. The space of positive excursion paths is the set Ω++ ⊂ Ω+ ⊂ C(R+,R+) given
by

Ω++ :=
{
f ∈ C(R+,R+) :

f(0) = 0, 0 < ζ(f) <∞,
f(t) > 0 for 0 < t < ζ(f).

}
For ` > 0, set Ω`

++ := {f ∈ Ω++ : ζ(f) = `}.

The following result is a slight generalization of Lemma 3.1 in (EW06). The latter result was for
the special case of R-trees constructed from positive excursion paths rather than general positive
bridge paths. The proof goes through unchanged.

Lemma 3.2. For each f ∈ Ω1
+, the metric space (Tf , dTf

) is a compact R-tree.

We root a R-tree (Tf , dTf
) coming from a positive bridge path in f ∈ Ω1

+ by taking the root to
be the point corresponding to 0 ∈ [0, 1] under the quotient map. We equip (Tf , dTf

) with the
weight νTf

given by the push-forward of Lebesgue measure on [0, 1] by the quotient map.
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For a positive bridge path f ∈ Ω1
+, we identify the length measure µTf

on the associated compact
R-tree (Tf , dTf

) as follows (the discussion is essentially the same as that in Section 3 of (EW06)
which considered R-trees coming from positive excursion paths). For a ≥ 0, let

G(f, a) :=

s ∈ [0, 1] :
f(s) = a and, for some t > s,
f(r) > a for all r ∈]s, t[,

f(t) = a.

 (1)

denote the countable set of starting points of excursions of the function f above the level a –
see Figure 4. Then, the length measure µTf

is the push-forward of the measure

mf :=
∫ ∞

0
da

∑
t∈G(f,a)

δt (2)

by the quotient map, where δt is the unit point mass at t.

f

a

0 1

Figure 4: The set G(f, a) for the reflected bridge path f and the level a is indicated by the four
dots.

Alternatively, write
Γ(f) := {(s, a) : s ∈]0, 1[, a ∈ [0, f(s)[}
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for the region between the time axis and the graph of f , and for (s, a) ∈ Γ(f) denote by

s(f, s, a) := sup{r < s : f(r) = a} (3)

and
s̄(f, s, a) := inf{t > s : f(t) = a} (4)

the start and finish of the excursion of e above level a that straddles time s. Then,

mf =
∫

Γ(f)
ds⊗ da

1
s̄(f, s, a)− s(f, s, a)

δs(f,s,a). (5)

4 A path transformation connecting reflected Brownian bridge
and Brownian excursion

Write P+ for the law of the standard Brownian bridge reflected at 0 that goes from 0 at time 0
to 0 at time 1. Write P++ for the law of standard Brownian excursion. Thus, P+ is a probability
measure on Ω1

+ and P++ is a probability measure on Ω1
++. We show in this section how various

computations for P+ can be reduced to computations for P++ using a result of Bertoin and
Pitman.

Given f ∈ Ω`
+, put

L(t; f) :=


lim supε↓0

1
2ε

∫
[0,t] ds1{f(s) < ε}, if lim supε↓0

1
2ε

∫
[0,`] ds1{f(s) < ε}

<∞,
0, otherwise,

for 0 ≤ t ≤ `, and set L(t; f) = L(`; f) for t ≥ `.
Denote by Ω̃`

+ the subset of Ω`
+ consisting of functions f with the properties:

• the closed set {t ∈ [0, `] : f(t) = 0} is perfect (that is, has no isolated points) and has
Lebesgue measure zero;

• for 0 ≤ t ≤ `,
L(t; f) = lim

ε↓0

1
2ε

∫
[0,t]

ds1{f(s) < ε};

• the function t 7→ L(t; f) is continuous;

• the set of points of increase of the function t 7→ L(t; f) coincides with {t ∈ [0, `] : f(t) = 0}.

Note that if f ∈ Ω̃`
+, then L(·; f) is not identically 0 (indeed, L(·; f) has 0 as a point of increase).

Of course, P+(Ω̃1
+) = 1.

For f ∈ Ω`
+, set

U(f) := sup
{

0 ≤ t ≤ ` : L(t; f) ≤ 1
2
L(`; f)

}
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and put

K→(t; f) :=


L(t; f), 0 ≤ t ≤ U(f),
L(`; f)− L(t; f), U(f) ≤ t ≤ `,
0, t ≥ `.

For f ∈ Ω`
+ and u ∈ [0, `], set

K←(t; f, u) :=


mint≤s≤u f(s), 0 ≤ t ≤ u,
minu≤s≤t f(s), u ≤ t ≤ `,
0, t ≥ `.

The following result is elementary and we leave the proof to the reader. The construction it
describes is illustrated in Figure 5.

Lemma 4.1. Fix a function f ∈ Ω̃`
+. Set

e = K→(·; f) + f.

Then, e ∈ Ω`
++ and

f = K←(·; e, U(f)).

The next result, which is Lemma 3.3 of (BP94), says that under P+ the path-valued random
variable f 7→ K→(·; f) + f has law P++, the random variable f 7→ U(f) is uniformly distributed
on [0, 1], and these two random variables are independent.

Proposition 4.2. For any Borel function F : Ω1
+ × [0, 1]→ R+,∫

P+(df)F (K→(·; f) + f, U(f)) =
∫

P++(de)
∫

[0,1]
du F (e, u).

In order to apply Proposition 4.2, we need to understand for a fixed positive bridge path f ∈ Ω̃1
+

how the measure mf of (2) or (5) is related to the analogous measure for the associated positive
excursion path K→(·; f) + f ∈ Ω1

++.

Definition 4.3. For e ∈ Ω1
++ and u ∈ [0, 1], write

Γ∗(e, u) := {(s, a) ∈ Γ(e) : u /∈ [s(e, s, a), s̄(e, s, a)]}

for the set of points in Γ(e) such that the corresponding straddling sub-excursion does not
straddle the time u – see Figure 6.

Lemma 4.4. Fix f ∈ Ω̃1
+. Set e = K→(·; f) + f ∈ Ω1

++, so that

Γ∗(e, U(f)) = {(s, a) : s ∈]0, 1[, K→(s; f) ≤ a < K→(s; f) + f(s)}.

Define a bijection ξ : Γ(f)→ Γ∗(e, U(f)) by setting

ξ(s, a) := (s, a+K→(s; f)).
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*0 l
U(f)

f

e

l*0

Figure 5: The mapping of Lemma 4.1 between a reflected bridge path f and an excursion paths
e.
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u

e

10

Figure 6: The set Γ∗(e, u) of Definition 4.3 is the region above the horizontal dashed lines and
below the graph of the excursion path e.
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The map ξ is a measure-preserving bijection between the set Γ(f) equipped with the measure

ds⊗ da
1

s̄(f, s, a)− s(f, s, a)

and the set Γ∗(e, U(f)) equipped with the measure

ds⊗ da
1

s̄(e, s, a)− s(e, s, a)
.

Proof. Decompose the open set {t ∈ [0, 1] : f(t) > 0} into a countable union of intervals Ak,
k ∈ N. Set Bk = {(s, a) ∈ Γ(f) : s ∈ Ak}, k ∈ N, and Ck = {(s, a) ∈ Γ∗(e, U(f)) : s ∈ Ak},
k ∈ N. We have λ([0, 1]\

⋃
k Ak) = 0, where λ is Lebesgue measure. Thus, λ⊗λ(Γ(f)\

⋃
k Bk) = 0

and λ⊗ λ(Γ∗(e, U(f)) \
⋃
k Ck) = 0.

The function t 7→ L(t; f) is constant on each of the sets Ak, and so the same is true of the
function t 7→ K→(t; f). Write ck for this constant. The function ξ maps Bk bijectively into Ck
and the restriction of ξ to Bk is the translation (s, a) 7→ (s, a+ ck).

Therefore, ξ is a measure-preserving bijection between the set Γ(f) equipped with the measure
ds⊗ da and the set Γ∗(e, U(f)) equipped with the measure ds⊗ da.

It remains to note that if, for some (s, a) ∈ Γ(f), we write ξ(s, a) = (s, a′), then we have
s(f, s, a) = s(e, s, a′) and s̄(f, s, a) = s̄(e, s, a′), so that, in particular, s̄(f, s, a) − s(f, s, a) =
s̄(e, s, a′)− s(e, s, a′).

Remark 4.5. Assume that f ∈ Ω̃1
+. For a ≥ 0, recall the definition of G(f, a) from (1). For

u ∈ [0, 1] and e ∈ Ω1
++ put

G∗(e, a, u) :=

s ∈ [0, 1] :

e(s) = a and, for some t > s,
e(r) > a for all r ∈]s, t[,

e(t) = a,
u /∈ [s, t].


That is, G∗(e, a, u) is the countable set of starting points of excursions of e above the level a
that don’t straddle the time u. A consequence of Lemma 4.4 is that the measure mf coincides
with the measure ∫ ∞

0
da

∑
t∈G∗(K→(·;f)+f,a,U(f))

δt.

As explained in the Introduction, the dynamics of the process we wish to construct involves
“picking” a point v in a rooted compact R-tree (T, dT , ρT ) according to the length measure µT
and then re-rooting the subtree above v (that is, the subtree consisting of points of x ∈ T such
that v ∈ [ρT , x[) at a new location w. When T = Tf for some f ∈ Ω1

+, this re-rooting of a
subtree corresponds to a rearrangement of f by relocating an excursion of f above some level.
We introduce the following notation to describe such rearrangements – see also Figure 7.
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Definition 4.6. For f ∈ Ω1
+ and (s, a) ∈ Γ(f), define f̂s,a ∈ Ω++ and f̌ s,a ∈ Ω+, by

f̂s,a(t) :=

{
f(s(f, s, a) + t)− a, 0 ≤ t ≤ s̄(f, s, a)− s(f, s, a),
0, t > s̄(f, s, a)− s(f, s, a),

and

f̌s,a(t) :=

{
f(t), 0 ≤ t ≤ s(f, s, a),
f(t+ s̄(f, s, a)− s(f, s, a)), t > s(f, s, a).

That is, f̂s,a is the sub-excursion of f that straddles (s, a) shifted to start at position 0 at time
0, and f̌s,a is f with the sub-excursion that straddles (s, a) excised and the resulting gap closed
up.

f

a

s0 1

Figure 7: The decomposition described in Definition 4.6. The excursion path at the bottom left
is f̂s,a and the reflected bridge path at the bottom right is f̌ s,a. The two points marked by dots
in the graph of the reflected bridge path f at the top correspond to the single point marked by
a dot in the graph of the reflected bridge path f̌s,a at the bottom right.
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Definition 4.7. For f ∈ Ω1
+, u ∈ [0, 1], and (s, a) ∈ Γ∗(f, u), put

Ǔ(f, u, s, a) =

{
u, 0 ≤ u < s(f, s, a),
u− s̄(f, s, a) + s(f, s, a), s̄(f, s, a) < u ≤ 1.

By definition of Γ∗(f, u), the point u belongs to the set

[0, s(f, s, a)[∪ ]s̄(f, s, a), 1]

of length
ζ(f̌ s,a) = 1− ζ(f̂s,a) = 1− (s̄(f, s, a)− s(f, s, a)),

and Ǔ(f, u, s, a) is where u is moved to when we close up the gap to form the interval [0, ζ(f̌s,a)].

The following result is immediate from Lemma 4.1 and Lemma 4.4.

Corollary 4.8. Fix f ∈ Ω̃1
+. Set e = K→(·; f) + f ∈ Ω1

++. Then, for any Borel function
F : Ω+ × Ω+ → R+,∫

Γ(f)
ds⊗ da

1
s̄(f, s, a)− s(f, s, a)

F (f̂ s,a, f̌ s,a)

=
∫

Γ∗(e,U(f))
ds⊗ da

1
s̄(e, s, a)− s(e, s, a)

F (ês,a,K←(·; ěs,a, Ǔ(e, U(f), s, a)).

5 Standard Brownian excursion and length measure

We first recall a result (Proposition 5.2 below) that appears as Corollary 5.2 in (EW06). It says
that if we pick an excursion e according to the standard excursion distribution P++ and then
pick a point (s, a) ∈ Γ(e) according to the σ-finite measure

ds⊗ da
1

s̄(e, s, a)− s(e, s, a)

so that the time point s(e, s, a) is picked according to the σ-finite measure me, then the following
objects are independent:

(a) the length of the excursion above level a that straddles time s;

(b) the excursion obtained by taking the excursion above level a that straddles time s, turning
it (by a shift of axes) into an excursion ês,a above level zero starting at time zero, and then
Brownian re-scaling ês,a to produce an excursion of unit length;

(c) the excursion obtained by taking the excursion ěs,a that comes from excising ês,a and
closing up the gap, and then Brownian re-scaling ěs,a to produce an excursion of unit
length;

(d) the starting time s(e, s, a) of the excursion above level a that straddles time s rescaled by
the length of ěs,a to give a time in the interval [0, 1].
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Moreover,

• the length in (a) is “distributed” according to the σ-finite measure

1
2
√

2π
dr√

(1− r)r3
, r ∈ [0, 1];

• the unit length excursions in (b) and (c) are both distributed as standard Brownian ex-
cursions (that is, according to P++);

• the time in (d) is uniformly distributed on the interval [0, 1].

Definition 5.1. For c > 0, let Sc : Ω1
+ → Ωc

+ be the Brownian re-scaling map defined by

Scf :=
√
cf(·/c).

Proposition 5.2. For any Borel function F : [0, 1]× Ω++ × Ω++ → R+,∫
P++(de)

∫
Γ(e)

ds⊗ da
s̄(e, s, a)− s(e, s, a)

F
(s(e, s, a)
ζ(ěs,a)

, ês,a, ěs,a
)

=
∫

[0,1]
dv

1
2
√

2π

∫
[0,1]

dr√
(1− r)r3

∫
P++(de′)⊗ P++(de′′)F (v,Sre′,S1−re

′′).

With Proposition 4.2 and Corollary 4.8 in mind, we want to obtain an analogous result with
Γ(e) replaced by Γ∗(e, u), where u is picked uniformly from [0, 1].

Corollary 5.3. For any Borel function G : [0, 1]× [0, 1]× Ω++ × Ω++ → R+,∫
[0,1]

du
∫

P++(de)
∫

Γ∗(e,u)

ds⊗ da
s̄(e, s, a)− s(e, s, a)

×G
(
Ǔ(e, u, s, a)
ζ(ěs,a)

,
s(e, s, a)
ζ(ěs,a)

, ês,a, ěs,a
)

=
∫

[0,1]
du
∫

[0,1]
dv

1
2
√

2π

∫
[0,1]

dr

√
1− r
r3

∫
P++(de′)⊗ P++(de′′)

×G(u, v,Sre′,S1−re
′′).

Proof. For v, r ∈ [0, 1] and u ∈ [0, (1− r)v[∪ ](1− r)v + r, 1], put

Ŭ(u, v, r) =

{
u

1−r , 0 ≤ u < (1− r)v,
u−r
1−r , (1− r)v + r < u ≤ 1.
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From Proposition 5.2, we have∫
P++(de)

∫
Γ∗(e,u)

ds⊗ da
s̄(e, s, a)− s(e, s, a)

×G
(
Ǔ(e, u, s, a)
ζ(ěs,a)

,
s(e, s, a)
ζ(ěs,a)

, ês,a, ěs,a
)

=
∫

P++(de)
∫

Γ(e)

ds⊗ da
s̄(e, s, a)− s(e, s, a)

1{u /∈ [s(e, s, a), s̄(e, s, a)]}

×G
(
Ǔ(e, u, s, a)
ζ(ěs,a)

,
s(e, s, a)
ζ(ěs,a)

, ês,a, ěs,a
)

=
∫

[0,1]
dv

1
2
√

2π

∫
[0,1]

dr√
(1− r)r3

∫
P++(de′)⊗ P++(de′′)

× 1{u /∈ [(1− r)v, (1− r)v + r]}

×G
(
Ŭ(u, v, r), v,Sre′,S1−re

′′
)
.

The change of variable w = Ŭ(u, v, r) gives∫
[0,1]

du1{u /∈ [(1− r)v, (1− r)v + r]}G
(
Ŭ(u, v, r), v,Sre′,S1−re

′′
)

= (1− r)
∫

[0,1]
dwG

(
w, v,Sre′,S1−re

′′) ,
and the result follows.

6 A symmetric measure on Ω1
+ × Ω1

+

Definition 6.1. Fix a function f ∈ Ω1
+ and suppose that v ∈ G(f, a) is the starting point of an

excursion of f above some level a. Write

δ(f, v) := inf{t > v : f(t) = a}

for the time at which the excursion finishes. Thus, s(f, s, a) = v and s̄(f, s, a) = δ(f, v) for any
s ∈]v, δ(f, v)[. Define ẽf,v ∈ Ω++ by

ẽf,v :=

{
f(t+ v)− f(v), 0 ≤ t ≤ v − δ(f, v),
0, t > v − δ(f, v).

That is, ẽf,v is the result of taking the excursion starting and ending at times v and δ(f, v),
respectively, and shifting the time and space axes to obtain an excursion that starts at position
0 at time 0. Given w ∈ [0, 1] \ [v, δ(f, v)], denote by fv,w ∈ Ω1

+ the path defined as follows. If
w > v (so that w > δ(f, v)), then

fv,w(t) :=


f(t), 0 ≤ t < v,

f(t− v + δ(f, v)), v ≤ t < v − δ(f, v) + w,

ẽf,v(t− (v − δ(f, v) + w)) + f(w), v − δ(f, v) + w ≤ t < w,

f(t), t ≥ w.
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If w < v, then

fv,w(t) :=


f(t), 0 ≤ t < w,

ẽf,v(t− w) + f(w), w ≤ t < w − v + δ(f, v),
f(t+ v − δ(f, v)), w − v + δ(f, v) ≤ t < δ(f, v),
f(t), t ≥ δ(f, v).

In other words, the excursion of f starting at time v is first moved so that it starts at w and
then the resulting gap left between times v and δ(f, v) is closed up – see Figure 8.

f

v d(f,v) w0 1

f v,w

Figure 8: The transformation taking the path f to the path fv,w when w > v. The figure for
w < v is similar.

Definition 6.2. Define a kernel κ+ on Ω1
+ by

κ+(f,B) :=
∫ ∞

0
da

∑
v∈G(f,a)

1
1− (δ(f, v)− v)

∫
[0,1]\[v,δ(f,v)]

dw 1(fv,w ∈ B).

1172



That is, a starting point v of an excursion is chosen according to the measure mf corresponding
to length measure µTf

on the R-tree associated with f , this excursion is then relocated so that
it starts at a uniformly chosen point w ∈ [0, 1]\ [v, δ(f, v)], and finally the resulting gap is closed
up. Define a measure J+ on Ω1

+ × Ω1
+ by

J+(df ′, df ′′) := P+(df ′)κ+(f ′, df ′′).

Proposition 6.3. The measure J+ is symmetric.

Proof. Given e′, e′′ ∈ Ω1
++, v ∈ [0, 1], and r ∈]0, 1], define e◦(·; e′, e′′, v, r) ∈ Ω1

++ by

e◦(t; e′, e′′, v, r)

:=


S1−re

′′(t), 0 ≤ t ≤ (1− r)v,
S1−re

′′((1− r)v) + Sre′(t− (1− r)v), (1− r)v ≤ t ≤ (1− r)v + r,

S1−re
′′(t− r), (1− r)v + r ≤ t ≤ 1.

That is, e◦(·; e′, e′′, v, r) is the excursion that arises from Brownian re-scaling e′ and e′′ to have
lengths r and 1− r, respectively, and then inserting the re-scaled version of e′ into the re-scaled
version of e′′ at a position that is a fraction v of the total length of the re-scaled version of e′′.

Also, for u ∈ [0, 1] set

Ũ(u, v, r) :=

{
(1− r)u, 0 ≤ u ≤ v,
r + (1− r)u, v < u ≤ 1,

so that Ũ(u, v, r) belongs to the set [0, (1−r)v[∪ ](1−r)v+r, 1] for Lebesgue almost all u ∈ [0, 1]
and the push-forward of Lebesgue measure on [0, 1] by the map u 7→ Ũ(u, v, r) is the uniform
distribution on this union of two intervals.

Define a measure J++ on [0, 1]× [0, 1]× Ω1
++ × Ω1

++ by∫
J++(du∗, du∗∗,de∗,de∗∗)G(u∗, u∗∗, e∗, e∗∗)

:=
∫

[0,1]3
du⊗ dv ⊗ dw

1
2
√

2π

∫
[0,1]

dr

√
1− r
r3

∫
P++(de′)⊗ P++(de′′)

×G
(
Ũ(u, v, r), Ũ(u,w, r), e◦(·; e′, e′′, v, r), e◦(·; e′, e′′, w, r)

)
for any non-negative Borel function G.

Clearly, the measure J++ is preserved by pushing it forward with the map (u∗, u∗∗, e∗, e∗∗) 7→
(u∗∗, u∗, e∗∗, e∗). Also, it follows from Lemma 4.1, Proposition 4.2, Corollary 4.8 and Corol-
lary 5.3 that the measure J+ is the push-forward of the measure J++ by the map

(u∗, u∗∗, e∗, e∗∗) 7→ (K←(·; e∗, u∗),K←(·; e∗∗, u∗∗)),

and the result follows.
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By construction, the measure J+ is concentrated on pairs (f ′, f ′′) ∈ Ω1
+ × Ω1

+ such that f ′′

is obtained from f ′ by the re-location of an excursion. If we shift the starting point of this
excursion in space and time to the origin to obtain an element of Ω++, then the σ-finite law of
this shifted excursion is

P+

∫ ∞
0

da
∑

v∈G(f,a)

1
(
ẽf,v ∈ ·

)
= P+

[∫
Γ(f)

ds⊗ da
1

s̄(f, s, a)− s(f, s, a)
1
(
f̂ s,a ∈ ·

)]
.

Informally, this is the law of the excursion under J+, but we note while J+ is concentrated on pairs
(f ′, f ′′) of the form (f, fv,w) for some v, w ∈ [0, 1], the value of v and the corresponding excursion
ẽf,v cannot be uniquely reconstructed from (f ′, f ′′). Arguing as in the proof of Proposition 6.3,
this law is given by

1
2
√

2π

∫
[0,1]

dr

√
1− r
r3

P++

{
e ∈ Ω1

++ : Sr(e) ∈ ·
}
.

We need the following properties of this law.

Proposition 6.4. (i) For 0 < t ≤ 1,∫
P+(df)

∫ ∞
0

da
∑

v∈G(f,a)

1(ζ(ẽf,v) > t) =
1√
2π

(√
1
t
− 1 + arcsin

(√
t
)
− π

2

)
,

and hence ∫
P+(df)

∫ ∞
0

da
∑

v∈G(f,a)

(ζ(ẽf,v))2 =
π

1
2

16
√

2
.

(ii) For x > 0,∫
P+(df)

∫ ∞
0

da
∑

v∈G(f,a)

1
(

max(ẽf,v) > x
)

=
∞∑
n=1

∫ ∞
2nx

dz exp
(
−z

2

2

)
,

and hence ∫
P+(df)

∫ ∞
0

da
∑

v∈G(f,a)

(
max(ẽf,v)

)2
=

π
5
2

24
√

2
.

Proof. (i) By the remarks prior the statement of the proposition, the quantity in the first claim
is

1
2
√

2π

∫
[t,1]

dr

√
1− r
r3

,

and a straightforward integration shows that this has the stated value. The second claim follows
by an equally straightforward integration by parts.
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(ii) Again by the remarks prior the statement of the proposition, the quantity in the first claim
is

1
2
√

2π

∫
[0,1]

dr

√
1− r
r3

P++

{
e ∈ Ω1

++ : max(e) >
x√
r

}
.

From Theorem 5.2.10 in (Kni81), we have that

P++

{
e ∈ Ω1

++ : max(e) > y
}

= 2
∞∑
n=1

(4n2y2 − 1) exp(−2n2y2),

and an integration establishes the claim.

An integration by parts shows that the quantity in the second claim is√
π

32

∞∑
n=1

1
n2

=
√

π

32
π2

6
,

as required.

7 A Dirichlet form

Recall that any f ∈ Ω1
+ is associated with a R-tree (Tf , dTf

) that arises as a quotient of [0, 1]
under an equivalence relation defined by f . Moreover, we may equip this R-tree with the root
ρTf

that is the image of 0 under the quotient and the weight νTf
that is the push-forward of

Lebesgue measure on [0, 1] by the quotient map.

Definition 7.1. Define the probability measure P on Twr to be the push-forward of the prob-
ability measure P+ on Ω1

+ by the map

f 7→ (T2f , dT2f
, ρT2f

, νT2f
).

Define the measure J on Twr ×Twr to be twice the push-forward of J+ by the map

(f ′, f ′′) 7→ ((T2f ′ , dT2f ′ , ρT2f ′ , νT2f ′ ), (T2f ′′ , dT2f ′′ , ρT2f ′′ , νT2f ′′ )).

Proposition 7.2. (i) The measure J is symmetric.

(ii) For each compact subset K ⊂ Twr and open subset U such that K ⊂ U ⊆ Twr,

J(K × (Twr \ U)) <∞.

(iii) The function ∆GHwr is square-integrable with respect to J , that is,∫
J(dT ′, dT ′′) ∆2

GHwr(T ′, T ′′) <∞.
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Proof. (i) This is immediate from Proposition 6.3.

(ii) By construction, the measure J has the following description. Firstly, a weighted rooted
compact R-tree T ′ ∈ Twr is chosen according to P. A point v ∈ T ′ is chosen according to the
length measure µT ′ and another point w ∈ T ′ is chosen according to the renormalization of
the weight νT ′ outside of the subtree ST

′,v of points “above” v (that is, of points x such that v
belongs to the segment [ρT ′ , x[). The subtree ST

′,v is then pruned off and re-attached at w to
form a new R-tree T ′′. More formally, the R-tree T ′′ can be identified as the set T ′ equipped
with new metric dT ′′ given by

dT ′′(x, y) :=


d(x, y), x, y ∈ ST ′,v,
d(x, y), x, y ∈ T ′ \ ST ′,v,
d(x, v) + d(w, y), x ∈ ST ′,v, y ∈ T ′ \ ST ′,v,
d(y, v) + d(w, x), y ∈ ST ′,v, x ∈ T ′ \ ST ′,v.

With this identification, ρT ′′ = ρT ′ and νT ′′ = νT ′ .

We claim that if, for some ε > 0,
max
x∈ST ′,v

dT ′(v, x) ≤ ε

and
νT ′(ST

′,v) ≤ ε,

then ∆GHwr(T ′, T ′′) ≤ ε. Firstly, the map f : T ′ → T ′′ defined by

f(x) :=

{
x, x ∈ T ′ \ ST ′,v,
u, x ∈ ST ′,v,

is such that f(ρT ′) = ρT ′′ and

sup{|dT ′(x, y)− dT ′′(f(x), f(y))| : x, y ∈ T ′} ≤ ε.

Moreover, it is immediate that
dP (f∗νT ′ , νT ′′) ≤ ε,

and so f ∈ F εT ′,T ′′ . Note also that ST
′′,w = ST

′,v as sets,

max
x∈ST ′′,w

dT ′′(w, x) = max
x∈ST ′,v

dT ′(v, x),

and
νT ′′(ST

′′,w) = νT ′(ST
′,v),

and so a similar argument shows that the map g : T ′′ → T ′ defined by

g(x) :=

{
x, x ∈ T ′′ \ ST ′′,w,
w, x ∈ ST ′′,w

belongs to F εT ′′,T ′ . Thus, ∆GHwr(T ′, T ′′) ≤ ε as required.
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Now let K and U be as in the statement of part (ii). The result is trivial if K = ∅, so we assume
that K 6= ∅. Since Twr \ U and K are disjoint closed sets and K is compact, we have that

c := inf
T ′∈K,T ′′∈U

∆GHwr(T ′, T ′′) > 0.

From what we have just observed, if 0 < ε < c, then, by Proposition 6.4,

J(K × (Twr \ U)) ≤ J
{

(T ′, T ′′) : ∆GHwr(T ′, T ′′) > ε
}

≤
∫

P(dT ′)
∫
T ′
µT ′(dv) 1

(
max
x∈ST ′,v

dT ′(v, x) > ε

)
+
∫

P(dT ′)
∫
T ′
µT ′(dv) 1

(
ν(ST

′,v) > ε
)

=
∫

P+(df) 2
∫ ∞

0
da

∑
v∈G(f,a)

1
(

max(ẽf,v) > ε/2
)

+
∫

P+(df) 2
∫ ∞

0
da

∑
v∈G(f,a)

1
(
ζ
(
ẽf,v
)
> ε
)

<∞,

as required.

(iii) By an argument similar to that in part (ii) and Proposition 6.4, we have∫
J(dT ′,dT ′′) ∆2

GHwr(T ′, T ′′)

=
∫ ∞

0
dε 2εJ

{
(T ′, T ′′) : ∆GHwr(T ′, T ′′) > ε

}
≤
∫ ∞

0
dε 2ε

∫
P(dT ′)

∫
T ′
µT ′(dv) 1

(
max
x∈ST ′,v

dT ′(v, x) > ε

)
+
∫ ∞

0
dε 2ε

∫
P(dT ′)

∫ ′
T
µT ′(dv) 1

(
ν(ST

′,v) > ε
)

=
∫ ∞

0
dε 2ε

∫
P+(df) 2

∫ ∞
0

da
∑

v∈G(f,a)

1
(

max(ẽf,v) > ε/2
)

+
∫ ∞

0
dε 2ε

∫
P+(df) 2

∫ ∞
0

da
∑

v∈G(f,a)

1(ζ(ẽf,v) > ε)

=
∫

P+(df) 8
∫ ∞

0
da

∑
v∈G(f,a)

(
max(ẽf,v)

)2

+
∫

P+(df) 2
∫ ∞

0
da

∑
v∈G(f,a)

(ζ(ẽf,v))2

<∞,

as required.

Definition 7.3. Define a bilinear form

E(f, g) :=
∫

J(dT ′, dT ′′)
(
f(T ′′)− f(T ′)

) (
g(T ′′)− g(T ′)

)
,
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for f, g in the domain

D∗(E) := {f ∈ L2(Twr,P) : f is Borel and E(f, f) <∞}.

Here, as usual, L2(Twr,P) is equipped with the inner product

(f, g)P :=
∫

P(dx) f(x)g(x).

Definition 7.4. Let L denote the collection of functions f : Twr → R such that

sup
T∈Twr

|f(T )| <∞

and

sup
T ′,T ′′∈Twr, T ′ 6=T ′′

|f(T ′)− f(T ′′)|
∆GHwr(T ′, T ′′)

<∞.

Part (i) (respectively, parts (ii) and (iii)) of the following result may be proved in the same man-
ner as Lemma 7.1 (respectively, Lemma 7.2 and Theorem 7.3) of (EW06), with Proposition 7.2
above playing the role played in (EW06) by Lemma 6.2 of that paper. Our setting is slightly
different, in that we are working with weighted rooted compact R-trees rather than just weighted
compact R-trees, but this doesn’t require any significant changes in the arguments. In particu-
lar, the analogues of Lemmas 7.5, 7.6 and 7.7 of (EW06) go through quite straightforwardly to
establish the tightness property required for part (iii) to hold.

Theorem 7.5. (i) The form (E ,D∗(E)) is Dirichlet (that is, it is symmetric, non-negative
definite, Markovian, and closed).

(ii) The set L is a vector lattice and an algebra, and L ⊆ D∗(E). Hence, if D(E) denotes the
closure of L in D∗(E)), then (E ,D(E)) is also a Dirichlet form.

(iii) There is a recurrent P-symmetric Hunt process X = (Xt,PT ) on Twr with Dirichlet form
(E ,D(E)).
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