
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 12 (2007), Paper no. 33, pages 951–965.

Journal URL
http://www.math.washington.edu/~ejpecp/

The Yamada-Watanabe-Engelbert theorem for

general stochastic equations and inequalities∗

Thomas G. Kurtz

Departments of Mathematics and Statistics

University of Wisconsin-Madison

Madison, WI 53706-1388

kurtz@math.wisc.edu

http://www.math.wisc.edu/~kurtz/

Abstract

A general version of the Yamada-Watanabe and Engelbert results relating existence and
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1 Introduction

In the study of stochastic equations, it is common to distinguish between “strong” solutions
and “weak” or distributional solutions. Roughly, a strong solution is one that exists for a given
probability space and given stochastic inputs while existence of a weak solution simply ensures
that a solution exists on some probability space for some stochastic inputs having the specified
distributional properties. For example, given a Brownian motion W defined on a probability
space (Ω,F , P ), for X to be a strong solution of the Itô equation

X(t) = X(0) +

∫ t

0
σ(X(s))dW (s) +

∫ t

0
b(X(s))ds, (1.1)

X must be defined on (Ω,F , P ), be adapted to the filtration generated by W , and satisfy the
identity (1.1) almost surely.

Similarly, strong uniqueness asserts that two solutions on the same probability space with the
same stochastic inputs agree almost surely while weak uniqueness asserts that two solutions
agree in distribution. (Precise definitions will be given later.)

For Itô equations, Yamada and Watanabe (20) proved that weak existence and strong uniqueness
imply strong existence and weak uniqueness. Engelbert (7) extended this result to a somewhat
more general class of equations and gave a converse in which the roles of existence and uniqueness
are reversed, that is, weak uniqueness, in the sense that the joint distribution of X and W is
uniquely determined, and strong existence imply strong uniqueness. Barlow (2) gave examples
in which weak uniqueness holds, but there is no strong solution.

The issues addressed in these results arise naturally for any stochastic equation and extensions
to other settings occur frequently in the literature (1; 12; 13; 18; 21). The goal of the present
paper is to give general results that cover all these cases as well as other settings in which these
questions have not yet been addressed.

The notion of weak uniqueness requiring that the joint distribution of the solution and the
stochastic inputs be uniquely determined used by Engelbert and also by Jacod (12) is required
in our extension of Engelbert’s result as well, except in the simple setting of Section 2. For Itô
equations, however, Cherny (6) has shown that it is sufficient to assume uniqueness in distribu-
tion for the solution X. In particular, uniqueness of the distribution of X implies uniqueness
of the joint distribution of X and W . That result appears to depend heavily on the explicit
construction of W from the solution X.

In Section 2, we consider simple equations of the form Γ(X, Y ) = 0, where Y represents the
stochastic inputs and X is the solution. In this setting, strong existence is essentially existence
of a measurable selection and the results are straightforward; however, considering the problem
in this simple setting helps clarify the definitions and leads to further insight into what is really
“going on.” In particular, we see that the result has little to do with equations, but is really a
simple consequence of the convexity of the collection of joint distributions of solutions.

The Yamada-Watanabe and Engelbert results do not follow from the results in Section 2, because
measurability issues are key to the notion of strong uniqueness that is useful for stochastic
differential equations. In Section 3, we introduce compatibility restrictions that enforce the
necessary measurability and give results that cover stochastic differential equations of the usual
form, as well as stochastic partial differential equations and other equations involving infinite
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dimensional semimartingales. We discover again in this more structured setting that convexity
of the collection of joint distributions of solutions is still the foundation of the result and hence
the result extends to problems involving inequalities or any other conditions that determine
convex subsets of the collection of joint distributions.

For a Polish space S, M(S) will denote the collection of Borel measurable functions, B(S) the
bounded, Borel measurable functions, and P(S) the Borel probability measures on S. For an
S-valued random variable Y , µY ∈ P(S) will denote its distribution.

The author would like to thank Philip Protter for helpful comments on an earlier version of the
paper and the referee for pointing out an error in the original proof of Proposition 2.10.

2 Simple stochastic equations

Let S1and S2 be Polish spaces, and let Γ : S1 × S2 → R be a Borel measurable function. Let
Y be an S2-valued random variable with distribution ν. We are interested in solutions of the
equation

Γ(X, Y ) = 0. (2.2)

Stochastic equations, at least equivalent to an equation of the form (2.2), arise in many contexts.
Ordinarily one is attempting to use the stochastic equation to specify a stochastic model and
it is really the distribution of X or the joint distribution of (X, Y ) that is of primary interest.
Consequently, it is both natural and useful to think of the primary data of the problem to be Γ
and ν rather than Γ and Y , and we define a solution of (2.2) to be any pair of random variables
(X, Y ) with values in S1 × S2 such that

Γ(X, Y ) = 0 a.s. and µY = ν. (2.3)

We will say that (X, Y ) is a solution for (Γ, ν) if (2.3) holds.

Clearly, (X, Y ) being a solution is a property of the joint distribution of (X, Y ), and following
the terminology of Engelbert (7) and Jacod (12), we refer to the joint distribution of (X, Y ) as
a joint solution measure. In particular, µ is a joint solution measure if µ(S1 × ·) = ν and

∫

S1×S2

|Γ(x, y)|µ(dx × dy) = 0.

Without loss of generality, we can assume that Γ is bounded, so integrability is not an issue.
Let SΓ,ν ⊂ P(S1 × S2) denote the collection of joint solution measures. Clearly, SΓ,ν is convex,
and if Γ is continuous, then SΓ,ν is closed in the weak topology.

It is natural to hope that a solution for (Γ, ν) will have the property that X = F (Y ) for some
measurable F : S2 → S1, that is, Y completely characterizes the randomness in the problem.
However, it is easy to see from simple examples that X will not be of this form in general.

Definition 2.1. A solution (X, Y ) for (Γ, ν) is a strong solution if there exists a Borel mea-
surable function F : S2 → S1 such that X = F (Y ) a.s.

Existence of a strong solution is essentially the existence of a measurable selection from Γ0
y =

{x : Γ(x, y) = 0}. In particular, if {(x, y) : Γ(x, y) = 0} is closed and ν{y : Γ0
y 6= ∅} = 1, there

exists a strong solution. See Wagner (19).
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Note that (X, Y ) being a strong solution is a property of the distribution of (X, Y ) but that the
collection of joint solution measures corresponding to strong solutions need not be convex. In
fact, it is convex only if there is at most one strong solution.

Lemma 2.2. If µ ∈ P(S1×S2) and µ(S1×·) = ν, then there exists a transition function η such
that µ(dx×dy) = η(y, dx)ν(dy). If µ ∈ SΓ,ν , then µ corresponds to a strong solution if and only
if there exists a Borel measurable F : S2 → S1, such that η(y, dx) = δF (y)(dx) a.s. ν.

Proof. The first statement is essentially just the existence of a regular conditional distribution.
Since P{X ∈ B|Y } = η(Y, B), if η(y, dx) = δF (y)(dx), X = F (Y ) a.s. Conversely, if X = F (Y )
a.s., then P{X ∈ B|Y } = P{F (Y ) ∈ B|Y } = δF (Y )(B).

There are several notions of uniqueness that are useful. The strongest notion is pointwise unique-
ness (or pathwise uniqueness if S1 and S2 are function spaces).

Definition 2.3. Pointwise uniqueness holds for (2.3) if X1, X2, and Y defined on the same
probability space with µX1,Y , µX2,Y ∈ SΓ,ν implies X1 = X2 a.s.

Engelbert (7) introduces a slightly weaker notion which in our present context is analogous to
the following:

Definition 2.4. For µ ∈ SΓ,ν , µ-pointwise uniqueness holds if X1, X2, and Y defined on the
same probability space with µX1,Y = µX2,Y = µ implies X1 = X2 a.s.

Remark 2.5. If µ ∈ SΓ,ν corresponds to a strong solution, then µ-pointwise uniqueness holds.

Lemma 2.6. If every solution is a strong solution, then pointwise uniqueness holds.

Proof. Let G1 and G2 be functions corresponding to strong solutions and define

G3(y, u) =

{
G1(y) u > 1/2
G2(y) u ≤ 1/2.

Then for Y and ξ independent, µY = ν and ξ uniform on [0, 1],

Γ(G3(Y, ξ), Y ) = Γ(G1(Y ), Y )1{ξ>1/2} + Γ(G2(Y ), Y )1{ξ≤1/2} = 0,

and hence G3(Y, ξ) is a solution. Alternatively, we could simply observe that µ defined by

µ(D) = P{(G3(Y, ξ), Y ) ∈ D} =
1

2
P{(G1(Y ), Y ) ∈ D} +

1

2
P{(G2(Y ), Y ) ∈ D}

must be a solution by the convexity of SΓ,ν . Since every solution is a strong solution, it follows
that G1 = G2, ν-almost everywhere, and hence pointwise uniqueness holds.

Lemma 2.7. If µ ∈ SΓ,ν and µ-pointwise uniqueness holds, then µ is the joint distribution for
a strong solution, and hence, if there is a µ ∈ SΓ,ν that does not correspond to a strong solution,
then pointwise uniqueness does not hold.
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Proof. Let Y , ξ1, and ξ2 be independent with µY = ν and ξ1 and ξ2 uniformly distributed on
[0, 1]. By Lemma A.1, there exists F : S2× [0, 1] → S1, such that (F (Y, ξ1), Y ) and (F (Y, ξ2), Y )
have distribution µ. By µ-pointwise uniqueness, F (Y, ξ1) = F (Y, ξ2) a.s. By Lemma A.2, there
exists G(y) such that F (Y, ξ1) = G(Y ) a.s. implying that µ corresponds to a strong solution.

Corollary 2.8. If SΓ,ν 6= ∅ and pointwise uniqueness holds, then on any probability space
supporting a random variable Y with distribution ν, there exists a unique solution for (Γ, ν)
given by a measurable function of Y .

Two notions of uniqueness in law or weak uniqueness are useful.

Definition 2.9. Joint uniqueness in law (or weak joint uniqueness) holds for (2.3) if SΓ,ν

contains at most one measure. Uniqueness in law (or weak uniqueness) holds if all µ ∈ SΓ,ν

have the same marginal distribution on S1.

Proposition 2.10. The following are equivalent:

a) Pointwise uniqueness.

b) µ-pointwise uniqueness for every µ ∈ SΓ,ν .

c) Joint uniqueness in law.

d) Uniqueness in law.

Proof. Clearly, pointwise uniqueness implies µ-pointwise uniqueness for every µ ∈ SΓ,ν . If µ-
pointwise uniqueness holds for every µ ∈ SΓ,ν , then every solution is strong by Lemma 2.7 and
pointwise uniqueness follows by Lemma 2.6.

To see that pointwise uniqueness implies joint uniqueness in law, let µ, γ ∈ SΓ,ν and let Y , ξ1, and
ξ2 be independent, µY = ν, and ξ1 and ξ2 uniform on [0, 1]. Then there exist Fµ : S2×[0, 1] → S1

and Fγ : S2 × [0, 1] → S1 such that (Fµ(Y, ξ1), Y ) has distribution µ and (Fγ(Y, ξ2), Y ) has
distribution γ. By pointwise uniqueness Fµ(Y, ξ1) = Fγ(Y, ξ2) a.s., so µ = γ.

The fact that (c) implies (d) is immediate.

Finally, we show that (d) implies (a). Suppose pointwise uniqueness does not hold. Then there
exist X1, X2, Y defined on the same probability space such that µX1,Y , µX2,Y ∈ SΓ,ν , that is
Γ(X1, Y ) = Γ(X2, Y ) = 0 a.s., and P{X1 6= X2} > 0. There must exist f : S1 → R such that
P{f(X1) 6= f(X2)} > 0. Define

X =

{
X1 f(X1) > f(X2)
X2 f(X2) ≥ f(X1).

Then
Γ(X, Y ) = Γ(X1, Y )1{f(X1)>f(X2)} + Γ(X2, Y )1{f(X2)≥f(X1)} = 0 a.s.,

so (X, Y ) is a solution, but since f(X) = f(X1) ∨ f(X2), X cannot have the same distribution
as X1 or X2 and hence uniqueness in law does not hold.
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We close this section with the observation that if we drop any mention of the equation (2.3) and
simply require that SΓ,ν be a convex subset of P(S1×S2) such that µ ∈ SΓ,ν implies µ(S1×·) = ν
and say that (X, Y ) is a solution for (Γ, ν) if µXY ∈ SΓ,ν , then all of the definitions continue to
make sense and all of the results continue to hold, except for Proposition 2.10. In Proposition
2.10, the equivalence of (a) and (b) continues to hold, (a) implies (c), and (c) implies (d).

3 Stochastic equations with compatibility restrictions

Let E1 and E2 be Polish spaces and let DEi
[0,∞), be the Skorohod space of cadlag Ei-valued

functions. Let Y be a process in DE2
[0,∞). By FY

t , we mean σ(Y (s), s ≤ t).

Definition 3.1. A process X in DE1
[0,∞) is compatible with Y if for each t ≥ 0 and h ∈

B(DE2
[0,∞)),

E[h(Y )|FX,Y
t ] = E[h(Y )|FY

t ] a.s. (3.4)

The notion of compatibility is essentially (4.5) of Jacod (12). It is central to the extension of
the results in Section 2 to stochastic differential equations and other, more general, stochas-
tic equations. Buckdahn, Engelbert, and Răşcanu (5) state an equivalent condition in terms
of martingales. If Y has independent increments, then compatibility can be restated as an
independence condition. Proof of the following lemma is straightforward.

Lemma 3.2. X is compatible with Y if and only if every {FY
t }-martingale, is an {FX,Y

t }-
martingale.

If Y has independent increments, then X is compatible with Y if and only if for each t ≥ 0,
(Y (t + ·) − Y (t)) is independent of FX,Y

t .

We generalize the notion of compatibility in order to allow for stochastic equations involving
processes with index sets other than [0,∞). Note that if BS1

α is a sub-σ-algebra of B(S1) and X
is an S1-valued random variable on (Ω,F , P ), then FX

α ≡ {{X ∈ D} : D ∈ BS1

α } is the sub-σ-
algebra of F generated by {h(X) : h ∈ B(BS1

α )}, where B(BS1

α ) is the collection of h ∈ B(S1)
that are BS1

α -measurable.

Definition 3.3. Let A be an index set and for each α ∈ A, let BS1

α be a sub-σ-algebra of B(S1)
and BS2

α be a sub-σ-algebra of B(S2). Let Y be an S2-valued random variable. An S1-valued
random variable X is compatible with Y if for each α ∈ A and each h ∈ B(S2),

E[h(Y )|FX
α ∨ FY

α ] = E[h(Y )|FY
α ] a.s., (3.5)

where FX
α ≡ {{X ∈ D} : D ∈ BS1

α } and FY
α ≡ {{Y ∈ D} : D ∈ BS2

α }. The collection
C ≡ {(BS1

α ,BS2

α ) : α ∈ A} will be referred to as a compatibility structure and we will say X is
C-compatible with Y when we want to emphasize the particular choice of C.

Definition 3.4. X is adapted to Y if for each α ∈ A, FX
α ⊂ FY

α .
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Remark 3.5. Clearly, if X is adapted to Y it is compatible with Y . If S1 = DE1
[0,∞),

S2 = DE2
[0,∞), A = [0,∞) and BSi

t is the σ-algebra generated by the coordinate maps πi
s : z ∈

Si → z(s) ∈ Ei for s ≤ t, then Definitions 3.1 and 3.3 are the same.

Note that (3.5) is equivalent to requiring that for each h ∈ B(S2),

inf
f∈B(B

S1
α ×B

S2
α )

E[(h(Y ) − f(X, Y ))2] = inf
f∈B(B

S2
α )

E[(h(Y ) − f(Y ))2], (3.6)

so compatibility is a property of the joint distribution of (X, Y ).

Definition 3.6. Let C be a compatibility structure for S1, S2 and µ ∈ P(S1 × S2). µ is C-
compatible with Y , if (X, Y ) having distribution µ implies X is C-compatible with Y .

Lemma 3.7. X is compatible with Y if and only if for each α ∈ A and each g ∈ B(BS1

α ),

E[g(X)|Y ] = E[g(X)|FY
α ] a.s. (3.7)

Proof. Suppose that X is compatible with Y . Then for f ∈ B(S2) and g ∈ B(BS1

α ),

E[f(Y )g(X)] = E[E[f(Y )|FX
α ∨ FY

α ]g(X)]

= E[E[f(Y )|FY
α ]g(X)]

= E[E[f(Y )|FY
α ]E[g(X)|FY

α ]]

= E[f(Y )E[g(X)|FY
α ]],

and (3.7) follows.

Conversely, suppose (3.7) holds. For f ∈ B(S2), g ∈ B(BS1

α ), and h ∈ B(BS2

α ) we have

E[E[f(Y )|FY
α ]g(X)h(Y )] = E[E[f(Y )|FY

α ]E[g(X)|FY
α ]h(Y )]

= E[f(Y )E[g(X)|Y ]h(Y )]

= E[f(Y )g(X)h(Y )],

and compatibility follows.

Lemma 3.8. Let C be a compatibility structure and ν ∈ P(S2). Let SC,ν be the collection of
µ ∈ P(S1 × S2) with the following properties:

a) µ(S1 × ·) = ν

b) If (X, Y ) has distribution µ, then X is C-compatible with Y .

Then SC,ν is convex.

Proof. Note that the right side of (3.6) is determined by ν, so µ ∈ SC,ν if µ(S1 × ·) = ν and

∫

S1×S2

(h(y) − f(x, y)2µ(dx × dy) ≥ inf
g∈B(B

S2
α )

∫

S2

(h(y) − g(y))2ν(dy),

for each h ∈ B(S2), each α ∈ A, and each f ∈ B(BS1

α × BS2

α ). Each of these inequalities is
preserved under convex combinations.

957



In what follows, Γ will denote a collection of constraints that determine convex subsets of
P(S1 × S2), and SΓ,C,ν will denote the convex subset of µ ∈ P(S1 × S2) such that µ fulfills the
constraints in Γ, µ is C-compatible, and µ(S1 × ·) = ν.

Examples of convex constraints include finiteness conditions

h(X, Y ) < ∞ a.s.,

moment conditions
E[|h(X, Y )|] < ∞,

inequalities
h(X, Y ) ≤ g(X, Y ) or E[h(X, Y )] ≤ E[g(X, Y )],

equations
h(X, Y ) = 0,

and limit requirements
lim

n→∞
E[|hn(X, Y )|] = 0. (3.8)

Example 3.9. (Stochastic differential equations.) Suppose U is a process in DRd [0,∞),
V is an R

m-valued semimartingale with respect to the filtration {FU,V
t }, and H : DRd [0,∞) →

DMd×m [0,∞), M
d×m the d × m dimensional matrices, is Borel measurable satisfying H(x, t) =

H(x(· ∧ t), t). Then X is a solution of

X(t) = U(t) +

∫ t

0
H(X, s−)dV (s)

if X is compatible with Y = (U, V ) and

lim
n→∞

E[1 ∧ |X(t) − U(t) −
∑

k

H(X,
k

n
)(V (

k + 1

n
∧ t) − V (

k

n
∧ t))|] = 0, t ≥ 0,

giving a collection of conditions of the form of (3.8).

Similarly, equations involving the quadratic variation [X] of X can be handled by including the
constraint

lim
n→∞

E[1 ∧ |[X]t −
∑

k

(X(
k + 1

n
) − X(

k

n
))2|] = 0.

Equations involving local times LX(t, y) as, for example, in Engelbert and Schmidt (8), Barlow
and Perkins (3), and Le Gall (16) can be handled by including constraints of the form

lim
n→∞

E[1 ∧ |LX(t, y) − ǫ−1

∫ t

0
1[y,y+ǫ](X(s))d[Xs]|] = 0

or ∫ ∞

−∞
f(y)LX(t, y)dy =

∫ t

0
f(X(s))d[X]s.

Stochastic differential equations driven by Poisson random measures, infinite systems of stochas-
tic differential equations, and stochastic partial differential equations can be formulated in a
similar manner.
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Remark 3.10. For Example 3.9, we could avoid the limit in (3.8) by applying results of
Karandikar (14) that give a Borel measurable mapping Λ : DMd×m [0,∞) × DRm [0,∞) →
DRd [0,∞) such that ∫ t

0
H(X, s−)dV (s) = Λ(H(X, ·), V, t).

Definition 2.1 continues to apply in the current setting. In the context of stochastic differential
equations, a strong solution is sometimes defined to be a solution X that is {FY

t }-adapted.
The following lemma shows that under the compatibility restriction, the two definitions are
equivalent.

Lemma 3.11. Suppose that X is compatible with Y . If X = F (Y ) for some measurable F :
S2 → S1, then X is adapted to Y .

Proof. For f ∈ B(BS1

α ), Lemma 3.7 gives

f(X) = E[f(F (Y ))|Y ] = E[f(F (Y ))|FY
α ],

and the adaptedness follows.

In order to take into account the compatibility requirement, we must change the definition of
pointwise uniqueness.

Definition 3.12. Let X1, X2, and Y be defined on the same probability space. Let X1 and X2

be S1-valued and Y be S2-valued. (X1, X2) are jointly compatible with Y if

E[f(Y )|FX1

α ∨ FX2

α ∨ FY
α ] = E[f(Y )|FY

α ], α ∈ A, f ∈ B(S2).

Pointwise uniqueness holds for compatible solutions of (Γ, ν), if for every triple of processes
(X1, X2, Y ) defined on the same sample space such that µX1,Y , µX2,Y ∈ SΓ,C,ν and (X1, X2) is
jointly compatible with Y , X1 = X2 a.s.

The modification of the definition for µ-pointwise uniqueness is similar.

Lemma 3.13. If every µ ∈ SΓ,C,ν corresponds to a strong solution, then pointwise uniqueness
holds.

Proof. Using the convexity of SΓ,C,ν , the proof is the same as for Lemma 2.6.

The following theorem extends Proposition 1 and Corollary 1 of Yamada and Watanabe (20),
Theorem 3 of Engelbert (7), and Theorem 8.3 of Jacod (12).

Theorem 3.14. Suppose SΓ,C,ν 6= ∅. The following are equivalent:

a) Pointwise uniqueness holds for compatible solutions.

b) Joint uniqueness in law holds for compatible solutions and there exists a strong, compatible
solution.
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Proof. Assume (a). As in the proof of Proposition 2.10, let µ, γ ∈ SΓ,C,ν and let Y , ξ1, and ξ2 be
independent, µY = ν, and ξ1 and ξ2 uniform on [0, 1]. Then there exist Fµ : S2 × [0, 1] → S1 and
Fγ : S2×[0, 1] → S1 such that (Fµ(Y, ξ1), Y ) has distribution µ and (Fγ(Y, ξ2), Y ) has distribution
γ. We claim that X1 = Fµ(Y, ξ1) and X2 = Fγ(Y, ξ2) are jointly compatible. Recalling that
compatibility is a distributional assumption, by Lemma 3.7, for f ∈ B(BS1

α )

E[f(Fµ(Y, ξ1))|Y, ξ2] = E[f(Fµ(Y, ξ1))|Y ] = E[f(Fµ(Y, ξ1))|F
Y
α ].

Consequently, for f ∈ B(S2), g1, g2 ∈ B(BS1

α ), and h ∈ B(BS2

α ),

E[f(Y )g1(X1)g2(X2)h(Y )]

= E[f(Y )E[g1(X1)|Y, ξ2]g2(X2)h(Y )]

= E[f(Y )E[g1(X1)|F
Y
α ]g2(X2)h(Y )]

= E[E[f(Y )|FX2

α ∨ FY
α ]E[g1(X1)|F

Y
α ]g2(X2)h(Y )]

= E[E[f(Y )|FY
α ]E[g1(X1)|Y, ξ2]g2(X2)h(Y )]

= E[E[f(Y )|FY
α ]g1(X1)g2(X2)h(Y )],

giving the joint compatibility. By pointwise uniqueness, Fµ(Y, ξ1) = Fγ(Y, ξ2) a.s., so µ = γ,
and the solution is strong by Lemma A.2.

Conversely, the strong solution must give the unique µ ∈ SΓ,C,ν . Consequently, by Lemma 2.2,
there exists F : S2 → S1 such that µXY = µ implies X = F (Y ) almost surely, and pointwise
uniqueness follows.

The proof of the following generalization of Theorem 2 of Engelbert (7) is similar.

Theorem 3.15. Let µ ∈ SΓ,C,ν . Then µ-pointwise uniqueness holds if and only if the solution
corresponding to µ is strong.

If µ-pointwise uniqueness holds for every µ ∈ SΓ,C,ν , then every solution is strong and pointwise
uniqueness holds.

Example 3.16. (Spatial birth and death processes.) Equations for birth and death pro-
cesses of the following form are studied in (10). For t ≥ 0, ηt is a counting measure on R

d giving
the locations of the particles that are alive at time t. λ(x, ηt) denotes the birth rate of a new
particle at location x at time t and δ(x, ηt) denotes the death rate of an existing particle located
at x, that is, the probability of a new particle being born in the set K in the time interval
(t, t+∆t] is approximately

∫
K λ(x, ηt)dx∆t for small ∆t and if there is a particle at x at time t,

then the probability that it dies in (t, t+∆t] is approximately δ(x, ηt)∆t. For simplicity, assume
δ and λ are bounded.

To formulate the corresponding stochastic equation, let ξ be a Poisson random measure on
R

d × [0,∞)3 with mean measure dx × ds × e−rdr × du, where dx denotes Lebesgue measure on
R

d, ds, Lebesgue measure on [0,∞), etc. Let η0 =
∑∞

i=1 δxi
be a counting measure on R

d, where
the xi denote the locations of the initial population. Define

η̂0 =
∞∑

i=1

δ(xi,τi),
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where the {τi} are independent unit exponentials, independent of η0 and ξ. The birth and death
process η = {ηt, t ≥ 0} should satisfy

ηt(D) =

∫

D×[0,t]×[0,∞)2
1[0,λ(x,ηs−)](u)1(

R
t

s
δ(x,ηv) dv,∞)(r)ξ(dx × ds × dr × du)

+

∫

D×[0,∞)
1(

R
t

0
δ(x,ηs) ds,∞)(r)η̂0(dx, dr), (3.9)

for every Borel set D with finite Lebesgue measure. η should be compatible with Y = (ξ, η̂0),
where we take A = [0,∞) and

FY
t ≡ Fξ,bη0

t = σ(ξ(D × [0, s] × [0, r] × [0, u]) : |D| < ∞, 0 ≤ s ≤ t, r ≥ 0, u ≥ 0) ∨ σ(η̂0).

Compatibility then becomes

E[h(ξ, η̂0)|F
η,ξ,bη0

t ] = E[h(ξ, η̂0)|F
ξ,bη0

t ].

This identity is simply the requirement that ξ(D × (t, t + s] × [0, r] × [0, u]) is independent of

Fη,ξ,bη0

t for all D satisfying |D| < ∞ and t, s, r, u ≥ 0.

Example 3.17. (Backward stochastic differential equations.) Let Y be a stochastic
process with sample paths in DE2

[0, T ]. Let H : DE2
[0, T ] → R

d and f : [0, T ] × DRd [0, T ] ×
DE2

[0, T ] → R
d. Require X to be compatible with Y , E[|H(Y )|] < ∞,

E[

∫ T

0
|f(s, X(s), Y (s))|ds] < ∞,

and for each 0 ≤ t ≤ T ,

X(t) = E[H(Y ) +

∫ T

t
f(s, X(s), Y (s))ds|FX,Y

t ]. (3.10)

Note that (3.10) is equivalent to

E[(X(t) − H(Y ) −

∫ T

t
f(s, X(s), Y (s))ds)h(X(· ∧ t), Y (· ∧ t))] = 0

for all h ∈ B(DRd [0, T ] × DE2
[0, T ]), so (3.10) is a convex constraint. Theorem 3.15 then gives

Proposition 5.3 of (5).

Example 3.18. (Forward-backward stochastic differential equations.) Consider

U(t) = U(0) +

∫ t

0
σ(s, U(s), V (s))dW (s) +

∫ t

0
b(s, U(s), V (s))ds,

V (t) = E[g(U(T )) +

∫ T

t
h(s, U(s), V (s))ds|Ft],

where U and V are required to be {Ft}-adapted and W is required to be an {Ft}-Brownian
motion. Assume that U takes values in R

k, V in R
l, and W in R

m. Any solution of the system
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will also satisfy the system with Ft replaced by FU,V,W
t and the requirement then becomes that

X = (U, V ) be compatible with Y = (W, U(0)).

Translating the problems into our setting, ν is the joint distribution of (W, U(0)), and the
requirements that give the convex constraints are

∫ t

0
|σ(s, U(s), V (s))|2ds +

∫ t

0
|b(s, U(s), V (s))|ds < ∞ a.s.,

U(t) = lim
h→0+

(U(0) +

∫ t

0

1

h

∫ s

s−h
σ(r, U(r), V (r))drdW (s) +

∫ t

0
b(s, U(s), V (s))ds) (3.11)

in probability, for each 0 < t ≤ T , and

E[(V (t) − g(U(T )) −

∫ T

t
h(s, U(s), V (s))ds)h(U(· ∧ t), V (· ∧ t), W (· ∧ t))] = 0

for each 0 ≤ t ≤ T and each h ∈ B(DRk×Rl×Rm [0,∞)). Note that the expression on the right of
(3.11) is a Borel measurable function on DRk×Rl×Rm [0,∞) and the limit will exist (that is, the
stochastic integral will exist) provided (U, V ) is compatible with W .

Proposition 4.2 of (1) follows from Theorem 3.15. See also (17).

Example 3.19. (Multiparameter stochastic differential equations.) Yeh (21) considers
stochastic differential equations that can be written in the form

X(t, s) = U(t, s) +

∫

[0,t]×[0,s]
α(u, v, X)W (du × dv) +

∫

[0,t]×[0,s]
β(u, v, X)dudv,

where W is Gaussian white noise on [0,∞)2 with E[W (A)W (B)] = m(A ∩ B), for Lebesgue
measure m, and α and β are nonanticipating in the sense that

α(u, v, X) = α(u, v, X(· ∧ u, · ∧ v)).

A = [0,∞)2 and FX
α = σ(X(t, s), t ≤ α1, s ≤ α2) and similarly for FY

α , where Y (t, s) =
W ([0, t] × [0, s]). The theorem of (21) then follows from Theorem 3.15.

Example 3.20. (Time-change equations.) Kurtz (15) and Holly and Stroock (11) (see
Chapters 6 and 11 of (9)) characterize processes as solutions of systems of the form

Xk(t) = Yk(

∫ t

0
βk(s, X)ds), (3.12)

where X = (X1, X2, . . .), βk(t, X) = βk(t, X(· ∧ t)) ≥ 0, and the Yk are independent Markov
processes. Set τk(t) =

∫ t
0 βk(s, X)ds, and for α ∈ [0,∞)∞, define

FY
α = σ(Yk(sk) : sk ≤ αk, k = 1, 2, . . .)

and
FX

α = σ({τ1(t) ≤ s1, τ2(t) ≤ s2, . . .} : si ≤ αi, i = 1, 2, . . . , t ≥ 0).

Let Ak ⊂ B(Ek)×B(Ek) be a linear operator with (1, 0) ∈ Ak, let ν0
k denote the distribution of

Yk(0), and assume that the distribution of Yk is uniquely determined by the requirement that Yk
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be a solution of the martingale problem for (Ak, ν
0
k). Define D(Hk) = {fk ∈ D(Ak) : infy fk(y) >

0} and Hkfk = Akfk/fk. Then for fi ∈ D(Hi), i = 1, . . . , k,

Mf1,...,fk
(α) =

k∏

i=1

fi(Yi(α)) exp{−

∫ αi

0
Hifi(Yi(s))ds}

is a martingale with respect to the filtration {FY
α } and compatibility is equivalent to the re-

quirement that Mf1,...,fk
be a martingale with respect to {FX

α ∨FY
α } for all k and all fi ∈ D(Hi).

τ(t) = (τ1(t), τ2(t), . . .) is a stopping time with respect to {FX
α ∨ FY

α } in the sense that

{τ(t) ≤ α} = {τ1(t) ≤ α1, τ2(t) ≤ α2, . . .} ∈ FX
α ∨ FY

α , α ∈ [0,∞)∞,

and it follows that a compatible solution of (3.12) is a solution of the multiple random time
change problem as defined in Section 3 of (15).

A Appendix

Lemma A.1. If µ ∈ P(S1 × S2) has S2-marginal ν, then there exists F : S2 × [0, 1] → S1

such that if Y and ξ are independent, µY = ν and ξ uniform on [0, 1], then (F (Y, ξ), Y ) has
distribution µ.

Proof. There exists Borel measurable H : P(S1)× [0, 1] → S1 such that H(ζ, ξ) has distribution
ζ for each ζ ∈ P(S1). (See Blackwell and Dubins (4) for a construction with particularly nice
topological properties.) Let η be the transition function satisfying µ(dx × dy) = η(y, dx)ν(dy),
and define F (y, u) = H(η(y, ·), u). Then (F (Y, ξ), Y ) has distribution µ.

Lemma A.2. Let Y , ξ1, and ξ2 be independent with values in S2, S3, and S4. Suppose F1 :
S2 × S3 → S1 and F2 : S2 × S4 → S1 are Borel measurable. If

F1(Y, ξ1) = F2(Y, ξ2) a.s.,

then there exists a Borel measurable F : S2 → S1 such that F1(Y, ξ1) = F2(Y, ξ2) = F (Y ) almost
surely.

Proof. For f ∈ B(S1)

f(F1(Y, ξ1)) = E[f(F2(Y, ξ2))|Y, ξ1] =

∫

S4

f(F2(Y, u))µξ2(du) a.s.

Taking f = 1D, we see that P{µξ2{u : F2(Y, u) ∈ D} ∈ {0, 1}} = 1, and if {Ai} is a partition of
S1, then

P{max
i

µξ2{u : F2(Y, u) ∈ Ai} = 1} = 1. (A.1)

Let d1 be a metric for S1, and for x ∈ S1, let Bǫ(x) = {y : d1(x, y) ≤ ǫ}. Let {xi} be dense in
S1, and define τn(y) = min{i : µξ2{u : F2(y, u) ∈ B1/n(xi)} = 1}, with min ∅ = ∞. Define

Fn(y) =

{
xτn(y) τn(y) < ∞

x0 τn(y) = ∞.
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If n < m and τm(y) < ∞, then τn(y) < ∞ and d1(Fn(y), Fm(y)) ≤ n−1 + m−1. If τn(y) = ∞,
then τm(y) = ∞ and Fn(y) = Fm(y) = x0. It follows that {Fn(y)} is Cauchy for every y, and
hence, F (y) = limn→∞ Fn(y) exists. By (A.1), τn(Y ) < ∞ and d1(F2(Y, ξ2), Fn(Y )) ≤ n−1

almost surely. It follows that F2(Y, ξ2) = F (Y ) almost surely.
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[5] Buckdahn, R., Engelbert, H.-J., and Răşcanu, A. (2004). On weak solutions of back-
ward stochastic differential equations. Teor. Veroyatn. Primen. 49, 1, 70–108. MR2141331

[6] A. S. Cherny. On the uniqueness in law and the pathwise uniqueness for stochastic differ-
ential equations. Theory Probab. Appl., 46(3):406–419, 2003.

[7] Engelbert, H. J. (1991). On the theorem of T. Yamada and S. Watanabe. Stochastics
Stochastics Rep. 36, 3-4, 205–216. MR1128494

[8] Engelbert, H. J. and Schmidt, W. (1985). On one-dimensional stochastic differen-
tial equations with generalized drift. In Stochastic differential systems (Marseille-Luminy,
1984). Lecture Notes in Control and Inform. Sci., Vol. 69. Springer, Berlin, 143–155.
MR0798317

[9] Ethier, S. N. and Kurtz, T. G. (1986). Markov processes. Wiley Series in Probability
and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons
Inc., New York. Characterization and convergence. MR0838085

[10] Garcia, N. L. and Kurtz, T. G. (2006). Spatial birth and death processes as solutions
of stochastic equations. ALEA Lat. Am. J. Probab. Math. Stat. 1, 281–303 (electronic).
MR2249658

[11] Holley, R. A. and Stroock, D. W. (1976). A martingale approach to infinite systems
of interacting processes. Ann. Probability 4, 2, 195–228. MR0397927

[12] Jacod, J. (1980). Weak and strong solutions of stochastic differential equations. Stochas-
tics 3, 3, 171–191. MR0573202

964

http://www.ams.org/mathscinet-getitem?mr=1978231
http://www.ams.org/mathscinet-getitem?mr=0675177
http://www.ams.org/mathscinet-getitem?mr=0770394
http://www.ams.org/mathscinet-getitem?mr=0718998
http://www.ams.org/mathscinet-getitem?mr=2141331
http://www.ams.org/mathscinet-getitem?mr=1128494
http://www.ams.org/mathscinet-getitem?mr=0798317
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=2249658
http://www.ams.org/mathscinet-getitem?mr=0397927
http://www.ams.org/mathscinet-getitem?mr=0573202
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