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Abstract

In this paper, we develop a new“robust mixing” framework for reasoning about adversarially
modified Markov Chains (AMMC). Let P be the transition matrix of an irreducible Markov
Chain with stationary distribution π. An adversary announces a sequence of stochastic ma-
trices {At}t>0 satisfying πAt = π. An AMMC process involves an application of P followed
by At at time t. The robust mixing time of an ergodic Markov Chain P is the supremum
over all adversarial strategies of the mixing time of the corresponding AMMC process. Ap-
plications include estimating the mixing times for certain non-Markovian processes and for
reversible liftings of Markov Chains.
Non-Markovian card shuffling processes: The random-to-cyclic transposition process
is a non-Markovian card shuffling process, which at time t, exchanges the card at position
Lt := t (mod n) with a random card. Mossel, Peres and Sinclair (2004) showed a lower
bound of (0.0345 + o(1))n log n for the mixing time of the random-to-cyclic transposition
process. They also considered a generalization of this process where the choice of Lt is ad-
versarial, and proved an upper bound of Cn log n + O(n) (with C ≈ 4× 105) on the mixing
time. We reduce the constant to 1 by showing that the random-to-top transposition chain (a
Markov Chain) has robust mixing time ≤ n log n + O(n) when the adversarial strategies are
limited to holomorphic strategies, i.e. those strategies which preserve the symmetry of the
underlying Markov Chain. We also show a O(n log2 n) bound on the robust mixing time of
the lazy random-to-top transposition chain when the adversary is not limited to holomorphic
strategies.
Reversible liftings: Chen, Lovász and Pak showed that for a reversible ergodic Markov
Chain P, any reversible lifting Q of P must satisfy T (P) ≤ T (Q) log(1/π∗) where π∗ is the
minimum stationary probability. Looking at a specific adversarial strategy allows us to show
that T (Q) ≥ r(P) where r(P) is the relaxation time of P. This gives an alternate proof of
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the reversible lifting result and helps identify cases where reversible liftings cannot improve
the mixing time by more than a constant factor.

Key words: Markov Chains, Robust mixing time, Reversible lifting, random-to-cyclic trans-
position, non-Markovian processes.
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1 Introduction

In this paper, we develop a “robust mixing” framework which allows us to reason about adver-
sarially modified Markov Chains (AMMC). This framework can be used to bound mixing times
of some non-Markovian processes in terms of the robust mixing time of related Markov Chains.
Another type of application is to estimate mixing times of complex Markov Chains in terms of
that of simpler Markov Chains. Finally, we also use this framework to give an alternate proof
of a reversible lifting result due to Chen et al. (4).

1.1 Robust Mixing

All stochastic processes considered in this paper have finite state space and run in discrete time.
Let M be an irreducible Markov chain on state space X with transition probability matrix P

and stationary distribution π. When the context is clear, we use P to denote the Markov Chain
as well as its transition probability matrix.

Markov Chains we consider here are not assumed to be reversible, unless otherwise specified.
All logarithms are taken to the base e unless otherwise specified.

Definition 1.1. Let P be the transition matrix of a Markov Chain. Its mixing time and L2-
mixing time are defined by the equations

T (P, ǫ) = max
µ

min
t
{||µPt − π||TV ≤ ǫ} and T2(P, ǫ) = max

µ
min

t
{||µPt − π||2,π ≤ ǫ}

respectively. Here ||µ−π||TV =
∑

x |µ(x)−π(x)|/2 is the total variation norm and ||µ−π||22,π =
∑

x(µ(x) − π(x))2/π(x) is the L2(π) norm. When ǫ is not specified, we take it to be 1/4 for T
and 1/2 for T2.

Note that for ǫ < 1/2, the inequalities 2|| · ||TV ≤ || · ||2,π ≤ 2|| · ||TV

√

1
π∗

together with

submultiplicativity of T (ǫ/2) give

T (P, ǫ) ≤ T2(P, 2ǫ) ≤ T (P, ǫ) log1/2ǫ(1/π∗), (1)

where π∗ = minx π(x) is the minimum stationary probability.

Definition 1.2. Let P be an irreducible Markov Chain with stationary distribution π. A
stochastic matrix A (not necessarily irreducible) is said to be compatible with P if πA = π.

Note that the notion of compatibility depends only on the stationary distribution of P.

Definition 1.3. An adversarially modified Markov Chain (AMMC) P is a pair (P, {At}t>0),
where P is the transition matrix of an irreducible Markov Chain and At is a sequence of stochastic
matrices compatible with P. Given an AMMC and an initial distribution µ0, the AMMC process
evolves as follows:

• At time t = 0, pick X0 ∈ X according to µ0,

• Given Xt, pick Yt according to the distribution P(Xt, ·),
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• Given Yt, pick Xt+1 according to the distribution At(Yt, ·)

An application of P followed by At is called a round. Let µt and νt denote the distribution of
Xt and Yt respectively. Then µt is the distribution after t-rounds. Also

νt = µtP and µt+1 = νtAt (2)

Definition 1.4. Let P be an AMMC. Its mixing time and L2-mixing time are defined by the
equations

T (P, ǫ) = max
µ0

min
t
{||µt − π||TV ≤ ǫ} and T2(P, ǫ) = max

µ0

min
t
{||µt − π||2,π ≤ ǫ}

respectively. When ǫ is not specified, we take it to be 1/4 for T and 1/2 for T2.

The proof of (1) together with submultiplicativity of T (P) (Theorem 1.8) shows that for ǫ < 1/2,

T (P, ǫ) ≤ T2(P, 2ǫ) ≤ T (P, ǫ) log 1
2ǫ

(1/π∗) (3)

Definition 1.5. Let P be an irreducible Markov Chain. An adversarially modified version of P

is an AMMC (P, {At}t>0).

Definition 1.6. Let P be an ergodic Markov Chain. The robust mixing time and robust L2-
mixing time of P are defined by the equations

R(P, ǫ) = sup
P
T (P, ǫ) and R2(P, ǫ) = sup

P
T2(P, ǫ)

respectively, where the suprema are taken over adversarially modified versions P of P. When P

is clear from context, we drop it and when ǫ is not specified we take it to be 1/4 for R and 1/2
for R2.

The set of stochastic matrices compatible with P is a bounded polytope and hence the convex
hull of its vertices. Since the distances used to measure the mixing time are convex, it follows
that the worst case for robust mixing time is achieved when each At is a vertex of the polytope.
If the stationary distribution is uniform, the polytope is called the assignment polytope and its
vertices are permutation matrices.

When we need to distinguish between the standard notion of mixing time and robust mixing
time, we refer to the standard notion as “standard mixing time.”

One can think of the standard mixing time of a Markov Chain as the number of (contiguous)
applications of P required to get close to stationarity. In the same vein, the robust mixing
time is the number of not necessarily contiguous applications of P required to get close to
stationarity under reasonable assumptions on the intervening steps. Our adversary is oblivious.
See Section 1.7 for related discussion. If π is the uniform distribution then compatibility is
equivalent to requiring that the At are doubly stochastic.

Definition 1.7. LetR = {Rt}t>0 be a stochastic process on a state space X and P an irreducible
Markov Chain. We say that R can be simulated by an adversarially modified P, if there is an
adversarially modified version P of P such that for every initial distribution ν0 of R0, there is
an initial distribution µ0 of P such that the distribution νt of Rt and µt are equal.

We give two examples in the card shuffling context of simulating a non-Markovian process by
an adversarially modified Markov Chain in Section 1.5.
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1.2 Properties of robust mixing time

Like standard mixing time, robust mixing time is also submultiplicative.

Theorem 1.8. (Submultiplicativity) Let P be an ergodic Markov Chain. For ǫ, δ > 0,

R(P, ǫδ/2) ≤ R(P, ǫ/2) + R(P, δ/2) and R2(P, ǫδ) ≤ R2(P, ǫ) + R2(P, δ)

This will be proved in Section 2.1. A useful property enjoyed by robust mixing time not shared
by the standard mixing time is the following convexity property.

Theorem 1.9. (Convexity) Let P be an ergodic Markov Chain with stationary distribution π
and Q any Markov Chain compatible with P. Let 0 < a = 1− b < 1 and π∗ = minx π(x). Then
R(PQ, 1/4) ≤ R(P, 1/4) and R2(PQ, 1/2) ≤ R2P, 1/2). Also,

R(aP + bQ, 1/4) ≤ R(P, 1/4) + R(Q, 1/4) − 1

R2(aP + bQ, 1/2) ≤ R2(P, 1/2) + R2(Q, 1/2) − 1

Moreover,

• if R(P, 1/4) ≥ 11, then R(aP + bQ, 1/4) ≤ 3R(P, 1/4)/a

• If π∗ ≤ 1/16 and R2(P, 1/2) ≥ log(1/π∗)/2 then R2(aP + bQ) ≤ 7R(P)/a

Theorem 1.9 is proved in Section 2.3. Convex combinations of Markov Chains are considered in
(3) to sample linear orderings. For reversible chains P and Q, using standard results, one can
show that a convex combination of P and Q mixes in time O(min(T (P),T (Q)) log(1/π∗)). Our
result allows us to eliminate the log(1/π∗) factor under some conditions.

1.3 Relation to classical parameters of Markov Chains

We now relate the robust mixing time of Markov chains to classical mixing parameters.

Definition 1.10. Let P be an ergodic chain with stationary distribution π.

• Denote by π∗ the smallest entry of π, i.e. π∗ = minx π(x),

• Let Π denote a diagonal matrix with entries π, i.e. Π(x, x) = π(x),

• S(P) =
√

Π−1P
√

Π,

• ←−P = Π−1PT Π denotes the reverse of the Markov Chain P, where PT denotes the transpose
of the matrix P.

Definition 1.11. Let A be any N ×N real matrix. By a singular value decomposition of A, we
mean two orthonormal bases {x0, . . . ,xN−1} and {y0, . . . ,yN−1} and scalars σ0 ≥ σ1 ≥ · · · ≥
σN−1 ≥ 0 which satisfy

xiA = σiyi yiA
T = σixi (4)

The σi are called the singular values and the xi and yi are called the left and right singular
vectors respectively.
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See Horn and Johnson (14, Chapter 3) for results about singular values. If A is the transition
matrix of a reversible chain or a real symmetric matrix, let λ0(A) ≥ λ1(A) ≥ · · · ≥ λN−1(A)
denote its eigenvalues and put λ∗(A) = max(|λ1(A)|, |λN−1(A)|).

Definition 1.12. Let P be an ergodic reversible Markov Chain. Its relaxation time is defined
by

r(P) =
−1

log λ∗(P)

Note that for any ergodic reversible Markov Chain P, r(P) ≤ T (P) ≤ r(P)(log(1/π∗)/2 + 1).

Just like how the mixing time of a reversible chain is determined by the largest eigenvalue (in
modulus) up to a log(1/π∗) factor, the robust mixing time of a Markov Chain (not necessarily
reversible) is determined by its second largest singular value of S(P) up to a log(1/π∗) factor.
More specifically, we have

Theorem 1.13. Let P be an ergodic Markov Chain with stationary distribution π. Then

r(P
←−
P ) ≤ max(T (P

←−
P ),T (P)) ≤ R(P) ≤ 2r(P

←−
P )(log(1/π∗)/2 + 1)

In particular if P is reversible, we have

r(P) ≤ T (P) ≤ R(P) ≤ r(P)

(

log(1/π∗)

2
+ 1

)

In Section 4, we show that many of the techniques used to prove upper bounds on mixing
time actually give bounds on the robust mixing time. These include eigenvalue estimation,
conductance methods, log-Sobolev inequalities and most analytical methods. The most notable
exception is coupling. Mixing time bounds established via coupling do not automatically lead to
bounds on robust mixing time. However in certain cases, they lead to bounds on robust mixing
time against certain types of restricted adversaries.

1.4 Cayley walks with restricted adversaries

We now turn to Markov Chains induced by walks on groups.

Definition 1.14. Let G be a finite group and P a probability distribution over G. By a Cayley
walk on G induced by P we mean a Markov Chain on G with transition probability matrix P

given by P(h, h · s) = P (s) for all h, s ∈ G. By a Cayley walk on G, we mean a Cayley walk on
G induced by P for some probability distribution P over G.

In case of a Cayley walk, one can look at the robust mixing time when the adversary’s strategies
are limited to those preserving the symmetries of the group. We consider two natural restrictions.

Definition 1.15. Let P denote a Cayley walk on a group G. A Cayley strategy is a doubly
stochastic matrix A such that it is the transition probability matrix of some Cayley walk (not
necessarily irreducible) on G. Denote by C the set of all Cayley strategies for the group G (G
will be clear from context). A Cayley adversary is an adversary whose strategies are limited to
Cayley strategies.
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Note that a Cayley adversary at time t, is only allowed to right multiply the current group
element g by a group element s chosen from the distribution Pt on G. See Section 5.2 for more
discussion on the power of a Cayley adversary.

Definition 1.16. Let G be a group. A permutation J on G is said to be a holomorphism if it
can be written as the composition of

• right/left multiplication by elements of G, and

• automorphisms of G.

Definition 1.17. Let P be a Cayley walk on a group G. A holomorphic strategy is a doubly
stochastic matrix A which can be written as a convex combination of holomorphisms of G.
Denote by H the set of all holomorphic strategies of G (G will be clear from the context). A
holomorphic adversary is one who is limited to holomorphic strategies.

We now turn to defining the robust mixing time against restricted adversaries.

Definition 1.18. Let P be an irreducible Markov Chain. A set S of stochastic matrices is said
to be a valid set of strategies against P if it satisfies the following:

• I ∈ S,

• A ∈ S =⇒ A is compatible with P,

• S is closed under products and convex combinations.

Definition 1.19. Let P be an irreducible Markov Chain and S a valid set of strategies against
P. The S-robust mixing time and S-robust L2-mixing time are defined by the equations

RS(P, ǫ) = sup
P
T (P, ǫ) and RS

2 (P, ǫ) = sup
P
T2(P, ǫ)

where P = (P, {At}t>0) ranges over adversarially modified versions of P where At ∈ S for all t.

In case P is a Cayley walk on a group G, define the holomorphic robust mixing time and holo-
morphic robust L2-mixing time by taking S = H. Similarly taking S = C define Cayley robust
mixing time and Cayley robust L2-mixing time.

Theorem 1.8 as well as Theorem 1.9 can be extended to work with any valid set of strategies
against P. Hence we also have the following

Theorem 1.20. (Submultiplicativity for Cayley walks) Let P be an ergodic Cayley walk
on a group G and Q any Cayley walk on G. For ǫ, δ > 0 and R′ ∈ {RC , RH}, we have

R′(P, ǫδ/2) ≤ R′(P, ǫ/2) + R′(P, δ/2) and R′
2(P, ǫδ) ≤ R′

2(P, ǫ) + R2(P, δ)

Theorem 1.21. (Convexity for Cayley walks) Let P be an ergodic Cayley walk on a group
G and Q any Cayley walk on G. Let 0 < a = 1−b < 1 and R′ ∈ {RC , RH}. Then R′(PQ, 1/4) ≤
R′(P, 1/4) and R′

2(PQ, 1/2) ≤ R′
2P, 1/2). Also,

R′(aP + bQ, 1/4) ≤ R′(P, 1/4) + R′(Q, 1/4) − 1

R′
2(aP + bQ, 1/2) ≤ R′

2(P, 1/2) + R′
2(Q, 1/2) − 1

Moreover,
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• if R′(P, 1/4) ≥ 11, then R′(aP + bQ, 1/4) ≤ 3R′(P, 1/4)/a

• If |G| ≥ 16 and R′
2(P, 1/2) ≥ log(|G|)/2 then R′

2(aP + bQ) ≤ 7R′(P)/a

Submultiplicativity and Convexity for Cayley walks are proved in Section 2.1 and Section 2.3
respectively.

Example 1. Suppose G is a finite group generated by S ⊆ G. Let T ⊆ G be arbitrary. Let PS

and PS∪T denote the Cayley walks on G driven by the uniform distributions on S and S ∪ T ,
respectively. Assume also that for R′ ∈ {R,RH, RC} we have R′(PS) ≥ 11. Then writing

PS∪T =
|S|

|S|+ |T |PS +
|T |

|S|+ |T |PT

allows us to apply Theorem 1.21 to infer

R′(PS∪T , 1/4) ≤ 3
|S|+ |T |
|S| R′(PS , 1/4) = 3

(

1 +
|T |
|S|

)

R′(PS , 1/4)

Thus we can remove some problematic generators while estimating the robust mixing time.

Definition 1.22. Let X be a connected undirected graph and s a special vertex, called the sink.

• A configuration f consists of a non-negative integer f(u) associated with each non-sink
vertex u of X. Vertex u is said to have f(u) grains.

• A configuration f is said to be stable iff f(u) < d(u) for all vertices u 6= s, where d(u) is
the degree of u.

• Suppose f is an unstable configuration and u 6= s is such that f(u) ≥ d(u). By toppling

f at u we mean removing d(u) grains from u and adding one grain to each non-sink

neighbor v of u.

Note that the total number of grains in the system reduces exactly when a neighbor of the sink
topples. (5) shows that by repeatedly toppling an unstable configuration one can reach a stable
configuration (since X is connected). More over the final stable configuration is independent of
the order in which vertices were toppled.

• Given two stable configurations f and g, define f ◦g to be the stable configuration obtained
after toppling the configuration with f(u) + g(u) grains at vertex u.

• A stable configuration f is said to be recurrent if for any configuration g there exists a
configuration h for which f = g ◦ h.

• The set of all stable recurrent configurations form an abelian group, called the Sand-

pile group of X.

For details and proof of these facts see (5).
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Example 2. The natural Markov Chain on the Sandpile group G of a graph X with sink s, is
the following: Given a stable recurrent configuration f , pick a vertex u 6= s and move to the
configuration f ◦ eu, where eu is the configuration with exactly one grain at u.

If we take Xn = Kn+2 (with one of the vertices being the sink), the Sandpile group Gn = ⊕nCn

is the product of n-copies of the cyclic group Cn.

The n + 1 generators of the natural Markov Chain on Gn are e1, . . . , en and f = −(e1 + e2 +
· · · + en), where ei is 1 at the i’th coordinate and zero elsewhere. Here taking S = {e1, . . . , en}
and T = {f}, allows us to estimate the mixing time of this Markov Chain by eliminating the
generator f .

Theorem 1.13 shows that R(P) and R2(P) are determined up to a log(1/π∗) factor by the singular

values of S(P). However, it turns out that RC
2 and RH

2 are within a factor of 2 of T2(P
←−
P ). In

fact we have,

Theorem 1.23. Let P denote an irreducible Cayley walk on a group G. Then

max(T2(P),T2(P
←−
P )) ≤ RC

2 (P) ≤ RH
2 (P) ≤ 2T2(P

←−
P )

In particular if P is a reversible ergodic Cayley walk on a group G, we have

T2(P) ≤ RC
2 (P) ≤ RH

2 (P) ≤ 2T2(P2) ≤ T2(P) + 1

Thus for a reversible ergodic Cayley walk, a holomorphic adversary cannot change the L2-mixing
time. Theorem 1.23 will be proved in Section 5.

1.5 Applications: Card Shuffling

In this section we give some applications of the foregoing results in this paper.

Definition 1.24. By the chain Pαβ;θ we mean the card shuffling process on Sn where we choose
two positions i and j according to the rules α and β respectively and apply the operation θ to the
cards at positions i and j. Possible values for α and β are R (for random); A (for adversarial); C
(for cyclic) i.e. t (mod n); k (for some fixed value), T (for top, same as 1). A rule (γ/δ) implies
that we choose according to γ and δ with prespecified probabilities (or equal if not specified).

Possible values for the operation θ are I (insertion) to move the card at position i to position j;
T (transpose) to exchange the cards at positions i and j. Similarly an operation (γ/δ) implies
apply the two operations with prespecified probabilities (or equal if not specified).

Note that the Pαβ;θ process is not necessarily Markovian as the rules and the operation may
depend on the time t. We start with an example of simulating a non-Markovian process by an
adversarially modified Markov Chain.

Proposition 1.25. Let PRT ;I denote the random-to-top move chain i. e., we pick a position
r uniformly at random and move the card in position r to the top. Also let PRC;I denote the
random-to-cyclic insertion process, where we move a random card to position t (mod n). Then
PRC;I process can be simulated by an adversarially modified PRT ;I chain.
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Proof. Suppose k and r are arbitrary positions. Moving the card in position r to position k
is equivalent to moving it to the top and then moving the top card to position k. Hence it
follows that an adversarially modified PRT ;I chain can simulate a PRC;I chain. Also note that
the adversary involved in the simulation is a Cayley adversary.

The non-Markovian process we are mainly interested in this section is the random-to-cyclic
transposition process PRC;T . The problem of estimating the mixing time of PRC;T was raised
by Aldous and Diaconis (1) in 1986. Recently Mironov (16) used this shuffle to analyze a
cryptographic system known as RC4 and showed that PRC;T mixes in time O(n log n) without
an estimate on the hidden constant. Mossel et al. (19) showed that T (PRC;T ) = Θ(n log n).
They showed a lower bound of (0.0345 + o(1))n log n. They also generalized PRC;T to PRA;T

(random-to-adversarial transposition) and showed that T (PRA;T ) ≤ Cn log n + O(n) giving the
first explicit bound of C = 32ϑ3 + ϑ ≈ 4 × 105 where ϑ = 2e3/(e − 1). They also observe that
since PRA;T can simulate PRT ;T the constant C ≥ 1. We are able to reduce the upper bound on
the mixing time of PRA;T to C = 1.

Theorem 1.26. Let PRC;T denote the random-to-cyclic transposition chain, i.e. at time t we
exchange the cards at positions r and t (mod n) where r ∈ {1, . . . , n} is chosen uniformly at
random. Then T2(PRC;T ) ≤ T2(PRT ;T ) + 1 ≤ n log n + O(n)

Proof. In fact, we prove the following chain of inequalities: T2(PRC;T ) ≤ T2(PRA;T ) ≤
RC

2 (PRT ;T ) ≤ RH
2 (PRT ;T ) ≤ T2(PRT ;T ) + 1 ≤ n log n + O(n).

For a particular choice of adversarial moves the PRA;T process can simulate the PRC;T process.
Hence T2(PRC;T ) ≤ T2(PRA;T ).

By convexity arguments, it is enough to consider the case that the adversary’s choice is de-
terministic to estimate the mixing time of PRA;T . Let αt ∈ {1, . . . , n} denote an adversarial
choice for time t (fixed before the process begins). We first observe that an adversarial version
of PRT ;T can simulate PRA;T . For k, r ∈ {1, . . . , n}, (k r) = (1 k)(1 r)(1 k). Hence if we let At

correspond to right multiplication by (1αt)(1αt+1), it follows that the given adversarial modifi-
cation of PRT ;T simulates PRA;T . Since the simulation was done by a Cayley adversary, we have
T2(PRA;T ) ≤ RC

2(PRT ;T ) ≤ RH
2 (PRT ;T ).

From Theorem 1.23 it follows that RH
2 (PRT ;T ) ≤ T2(PRT ;T ) + 1 since PRT ;T is reversible. But

T2(PRT ;T ) ≤ n log n + O(n) ((7; 20)).

Another application is in estimating the mixing time of a mixture of two reversible Cayley walks
on a group G.

Theorem 1.27. Let P1 and P2 be two reversible ergodic Cayley walks on a group G and put
Q = a1P1 + a2P2 where 0 < a1 = 1 − a2 < 1. Then assuming T2(Pi) ≥ log(|G|)/2 for i = 1, 2
and |G| ≥ 16, we have

T2(Q) ≤ 1 + min

(

7T2(P1)

a1
,
7T2(P2)

a2
,T2(P1) + T2(P2)

)

Proof. Since the Pi are reversible, Theorem 1.23 implies T2(Pi) ≤ RH
2 (Pi) ≤ 2T2(P2

i ) ≤ T2(Pi)+1.
Similarly, we have T2(Q) ≤ RH

2 (Q) ≤ T2(Q) + 1. From Theorem 1.21, we have

RH
2 (Q) ≤ min

(

RH
2 (P1) + RH

2 (P2)− 1, 7RH
2 (P1)/p, 7RH

2 (P2)/q
)
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Note that using standard results, one can only show T2(Q) ≤ min(T2(P),T2(Q))O(log(|G|)).
Thus we have eliminated the pesky log |G| factor, which can be significant since usually |G| is
exponential.

We finish this section with a few examples of estimating the mixing time of complex card shuffling
chains in terms of that of simpler ones. Given card positions i and j, moving the card at position
j to position i corresponds to right multiplying by the cycle Cij = (i, i + 1, . . . , j) if i < j and
Cij = C−1

ji if i > j. If i = j, Cij is the identity permutation.

Example 3. “Move a or b chain” Fix 1 ≤ a, b ≤ n and 0 ≤ q = 1 − p ≤ 1. Let R′ ∈
{R,R2, R

H, RH
2 , RC , RC

2}. Consider the following random-to-a-or-b move chain given by

PR(a/b);I = pPRa;I + qPRb;I

i.e. we either choose a random card and move it to either position a with probability p or
position b with the remaining probability.

Observe that R′(Pa) = R′(Pb) because an adversary for one can simulate that for the other.
Hence R′(Pa) = R′(P1) = R′(PRT ;I). Hence Theorem 1.9 implies R′(PR(a/b);I ) is bounded by

2R′(PRT ;I)− 1. Also R′(PRT ;I) ≤ RH
2 (PRT ;I) and PRT ;I

←−−−
PRT ;I = PRR;I . Hence by Theorem 1.23,

we have RH
2 (PR(a/b);I ) ≤ 4T2(PRR;I). Corollary A.4 shows T2(PRR;I) ≤ 1.5n log n + O(n), giving

a bound of 6n log n + O(n) for RH
2 (PR(a/b);I ).

Example 4. “Transpose or Move chain” Let PRR;(T/M) be the transpose or move chain,
i.e. we pick two positions i and j at random. We transpose the selected cards with probability
1/2 and move card at position i to position j with probability 1/2. Note that T2(PRR;T ) ≤
0.5n log n+O(n) (10), T2(PRR;I) ≤ 1.5n log n+O(n) (Corollary A.4), and that both are reversible
chains. Hence we have have T2(PRR;(T/M)) ≤ 2n log n + O(n).

1.6 Applications: Reversible lifting

Definition 1.28. Let P and Q be Markov Chains on state spaces X and Y with stationary
distributions π and µ respectively. P is said to be a collapsing of Q if there exists a mapping
f : Y → X such that the following hold:

• π(x) = µ(Yx) for all x ∈ X where Yx = f−1(x)

• For all x1, x2 ∈ X ,

P(x1, x2) =
∑

y1∈Yx1

∑

y2∈Yx2

µx1(y1)Q(y1, y2) (5)

where µx is the conditional distribution of y ∈ Y given f(y) = x, i.e. µx(y) = µ(y)/π(x).

A lifting of P is a chain Q such that P is the collapsing of Q.

Chen et al. (4) showed that if Q is a reversible lifting of a Markov chain P, then T (Q) ≥
T (P)/ log(1/π∗). We give an alternate proof of the same result which is motivated by adversarial
strategies. The crucial observation is the following
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



1− υ υ 0 . . . 0
1 0 0 . . . 0
0 0 I



 (6)

The states are indexed starting with y = argmaxxπ(x) and the current state z 6= y. Here
υ = π(z)/π(y).

Figure 1: An adaptive adversary is unreasonably powerful

Theorem 1.29. Let Q be a lifting of P. Then R(Q) ≥ T (P).

If Q is reversible, Theorem 1.13 implies that R(Q) ≤ T (Q)(1 + log(1/µ∗)/2), where µ∗ =
miny µ(y). This immediately gives

Corollary 1.30. Let Q be a reversible Markov Chain with stationary distribution µ and P a
collapsing of Q with stationary distribution π. Then T (Q) log(1/µ∗) ≥ T (P).

When µ∗ is only polynomially smaller than π∗, we have an alternate proof of the reversible lifting
result. In order to fine tune the result, we look at the adversarial strategy used in the proof of
Theorem 1.29 more closely and prove

Theorem 1.31. Let Q be a reversible lifting of P. Then T (Q) ≥ r(P)

This not only gives an alternate proof of the reversible lifting result of (4), it also shows that
when T (P) = O(r(P)) no reversible lifting Q of P can mix faster than P (ignoring constant
factors).

1.7 Discussion: The power of the adversary

We discuss the necessity of our restrictions on the adversary.

Our definition of robust mixing time, requires that the adversary be oblivious, i. e., announce all
his moves in advance. An adaptive adversary would be unreasonably powerful as shown below.

Let y be the state with maximum stationary probability and suppose we allow an adaptive
adversary. The adversary can ensure that the chain is always at state y at the end of its turn
as follows: Suppose the current state of the chain in z. If z = y the adversary does not do any
anything. Otherwise the adversary applies the stochastic matrix given in Figure 1. It is easily
checked that this matrix is compatible with P and sends z to y with probability 1. For this
reason we do not consider an adaptive adversary.

The requirement that the adversary’s choices are compatible with P ensures that an AMMC
process has a hope to have a limit.

2 Basic Properties

2.1 Submultiplicativity

In this section we establish some basic properties of R. We start by proving sub-multiplicativity
of R(ǫ/2). Since this is a basic property we give two different proofs. Both proofs work for the
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standard mixing time as well. The second proof is new as far as we know, and simplifies the
proof for standard mixing time as well. Apart from these two proofs, the argument based on
coupling can also be extended to handle the robust case.

Theorem 2.1. Let P be an ergodic Markov Chain and ǫ, δ > 0. Let S be a valid set of strategies
against P. Then RS(ǫδ/2) ≤ RS(ǫ/2) + RS(δ/2).

Proof. This proof is based on the standard proof using the triangle inequality. Let S = RS(ǫ/2)
and T = RS(δ/2). Let As,t denote a sequence of t− s + 1 stochastic matrices in S.

By convexity it is enough to consider initial distribution concentrated on a single point. For
x ∈ X , let δx denote the distribution concentrated on x. Define the following quantities:

∆(x, t, A1,t) = ||µt − π||TV

∆(x, t, ·) = max
A≤t

∆(x, t, A1,t)

∆(·, t, A1,t) = max
x∈X

∆(x, t, A1,t)

∆(t) = ∆(·, t, ·) = max
x

∆(x, t, ·)

where µt is the t-step distribution using the adversarial strategy A1,t and initial distribution
δx. Now fix some adversarial strategy {At}t from S. Define C = PA1PA2 . . . PAS and D =
PAS+1PAS+2 . . . PAS+T . Then

2∆(x, S + T, A1,S+T ) =
∑

y

|(CD)(x, y)− π(y)|

=
∑

y

∣

∣

∣

∣

∣

∑

z

[C(x, z)D(z, y) − π(z)D(z, y)]

∣

∣

∣

∣

∣

=
∑

y

∣

∣

∣

∣

∣

∑

z

[C(x, z)− π(z)] [D(z, y) − π(y)]

∣

∣

∣

∣

∣

≤
∑

z

∑

y

|C(x, z)− π(z)| |D(z, y)− π(y)|

=
∑

z

|C(x, z)− π(z)| 2∆(z, T, BS+1,S+T )

≤ 2∆(·, T, AS+1,S+T )
∑

z

|C(x, z)− π(z)|

≤ 2∆(·, T, AS+1,S+T )2∆(x, S, A1,S)

≤ 2∆(·, T, ·)2∆(x, S, ·)

Taking the maximum over all strategies {At}t we have ∆(x, S +T, ·) ≤ 2∆(x, S, ·)∆(·, T, ·). Now
taking maximum over all x we have 2∆(S + T ) ≤ (2∆(S))(2∆(T )). Using R(ǫ/2) ≤ T ⇐⇒
2∆(T ) ≤ ǫ gives the result.
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Before we get to the new proof we need the following

Lemma 2.2. Let Q be a stochastic matrix for which πQ = π. Suppose we know that for all
initial distributions µ, ||µQ− π||TV < ǫ. Then for all initial distribution µ,

||µQ − π||TV ≤ ǫmin(1, 2||µ − π||TV ) (7)

Proof. Let η = ||µ − π||TV . It follows that we can write µ − π = η(ν1 − ν2) for appropriate
distributions ν1, ν2. Then

||µQ− π||TV = ||(µ− π)Q||TV ≤ η||ν1Q− π||TV + η||ν2Q− π||TV ≤ 2ηǫ = 2ǫ||µ− π||TV

The same proof using || · ||2,π instead of || · ||TV gives

Corollary 2.3. Let Q be a stochastic matrix for which πQ = π. Suppose we know that for all
initial distributions µ, ||µQ− π||2,π < ǫ. Then for all initial distributions µ,

||µQ− π||2,π ≤ ǫmin(1, 2||µ − π||TV ) ≤ ǫmin(1, ||µ− π||2,π) (8)

Alternate proof of Theorem 2.1. Let S = RS(ǫ/2) and T = RS(δ/2). Let
A1, . . . , AS , AS+1, . . . , AS+T be a sequence of stochastic matrices from S. Let
C = PA1PA2 . . . PAS and D = PAS+1PAS+2 . . . PAS+T .

From the lemma above, we have

||µCD− π||TV ≤ (δ/2)2||µC − π||TV ≤ δǫ/2 (9)

Since Ai were arbitrary we have the result.

Theorem 2.4. Let P be an ergodic Markov Chain and ǫ > 0. Let S be a valid set of stochastic
matrices compatible with P. Then the following are sub-multiplicative: RS

2 (ǫ), RS(ǫ/2). Moreover
for k > 1, we also have RS

2 (ǫk) ≤ RS
2 (ǫ) + (k − 1)RS(ǫ/2).

Proof. Theorem 2.1 shows that RS(ǫ/2) is sub multiplicative. Replacing application of
Lemma 2.2 with Corollary 2.3, in the proof of Theorem 2.1 shows that RS

2 (ǫ) is sub multi-
plicative.

For the last part: Let T1 = RS(ǫ/2) and T2 = RS
2 (ǫ). Then for any initial distribution µ0, we have

||µ(k−1)T1
− π||TV ≤ ǫk−1/2 (by submultiplicativity for total variation distance). Now using the

tighter inequality in Corollary 2.3, we have ||µ(k−1)T1+T2
−π||2,π ≤ 2ǫ||µ(k−1)T −π||TV ≤ ǫk.

The second part can be useful in obtaining better non-asymptotic bounds for L2 mixing when
the total variation mixing time is a lot smaller than the L2 mixing time.
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2.2 Finiteness

Now we characterize chains with finite robust mixing time. First we observe that ergodicity is
not enough to guarantee finiteness of R as shown by the following examples.

Example 5. “walk on directed edges”: Let X be a connected d-regular undirected graph.
Assume that the usual random walk on X is ergodic. Consider the same walk except that this
time we also keep track of the previous vertex. Thus the states of this walk are directed edges
(u, v) of X. If at time t we are at (u, v) we move to (v,w) where w is a uniformly chosen neighbor
of v.

Since the transition rule doesn’t care which vertex we came from, it follows that the new walk
is ergodic exactly when the usual random walk on X is. Also the mixing time of the new walk
is bounded by one more than that of the usual walk. This is because picking a random neighbor
of a random vertex of a regular graph is equivalent to picking a random directed edge.

Consider the following adversarial strategy A: A((u, v)) = (v, u). The adversary simply reverses
the direction of the edge. Let v be any vertex of X and let µ0 be the uniform distribution on all
edges coming into v. Then ν1 is the uniform distribution of all edges going out of v. Applying
the adversary’s strategy we get µ1 = µ0. Thus R(P) =∞.

Example 6. “Bottom k to top shuffles”: Let Pk denote the following Markov Chain on Sn.
Given a pack of n cards, we pick a random card among the bottom k cards (where 1 ≤ k ≤ n)
and move it to the top. Unless k = n, R(Pk) =∞. The adversarial strategy of exchanging the
top two cards, ensures that the top card of the deck stays fixed (if k < n).

(12) defined“Bottom k to top shuffles”and showed that it mixes in time between O(n log n) and
O(n3 log n) as k varies from n down to 2. Note that k = n is the Random to Top transposition
shuffle and k = 2 is related to the Rudvalis shuffle.

Theorem 2.5. Let P be an ergodic Markov Chain with stationary distribution π.

• R(ǫ) is finite for all ǫ > 0 iff σ1(S(P)) < 1.

• if P has all holding probabilities positive, then σ1(S(P)) < 1.

• If σ1(S(P)) < 1, then 2||µt − π||TV ≤ σ1(S(P))t
√

1
π∗

Proof. It is easy to see that
←−
P is also a Markov Chain with same stationary distribution as P.

Hence if we put At =
←−
P , we see that R(P, ǫ) ≥ T (P

←−
P , ǫ).

Suppose σ1(S(P)) = 1. Observe that the singular values of S(P) are just the eigenvalues of

S(P)S(P)T = S(P
←−
P ). But S(P

←−
P ) and P

←−
P are similar matrices. Hence it follows that P

←−
P is not

ergodic and hence R(P) ≥ T (P
←−
P ) =∞.

On the other hand if σ1(S(P)) < 1, it follows that

||µPA− π||2,π = ||(µ− π)PA||2,π ≤ ||(µ− π)P||2,π ≤ σ1||µ− π||2,π (10)

for an arbitrary distribution µ and an arbitrary P compatible A and ||x||2,π =
∑

i x2
i /πi. Since

the worst case initial distribution is a point distribution, one can check that ||µ − π||2,π ≤
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√

1/π∗ for any distribution µ. Finally using the fact that 2||µ − π||TV ≤ ||µ − π||2,π, we have
2||µt − π||TV ≤ σ1(S(P))t

√

1/π∗.

If P has all holding probabilities positive, write P = aI + (1 − a)Q for some a > 0 and observe
that

||xS(P)||2 ≤ a||x||2 + (1− a)||xS(Q)||2 ≤ ||x||2 (11)

Thus ||xS(P)||2 = ||x||2 =⇒ xS(P) = x and hence ergodicity of P implies
√

Πx is a multiple of
π. Hence σ1(S(P)) < 1.

In case P has uniform distribution (hence S(P) = P) and σ1(P) = 1, we can easily construct an
adversarial strategy as follows. Let α denote the left singular vector corresponding to σ1(P) and
β = αP. Since P is a convex combination of permutation matrices and ||β||2 = ||α||2 it follows
that β is a permutation of α. Let I = {x ∈ X : α(x) ≥ α(y)∀y ∈ X}, i. e., states x where
α(x) attains its maximum. Similarly let J ⊆ X be the set of states x where β(x) attains its
maximum. Since β is a permutation of α it follows that P maps the uniform distribution on I
to the uniform distribution of J (consider the initial distribution π + ǫα for a small enough ǫ).
Since α is not the constant vector, I and J are non-trivial subsets of X . Hence the adversary
can choose a permutation on X which maps J to I and the initial distribution is taken to be
uniform on I.

We now prove Theorem 1.13.

Proof of Theorem 1.13. Let σ = σ1(S(P)). The case σ = 1 is easy, so we assume σ < 1. By

considering the constant adversarial strategies I and
←−
P , we have max(T (P

←−
P ),T (P)) ≤ R(P).

Consider the reversible Markov chain Q = P
←−
P with second largest eigenvalue σ2. Since Q is

reversible, standard results imply r(Q) ≤ T (Q). By definition of relaxation time, we have

σ2r(Q) = (σ2)r(Q) ≤ 1/e

Taking t = 2kr(Q) in Theorem 2.5, gives

2||µ2kr(Q) − π||TV ≤
e−k

√
π∗

Put k = log(1/π∗)/2 + 1 to ensure 2||µkr(P) − π||TV ≤ 1/e < 1/2. This gives the first half of the
result.

If P is reversible then S(P) is symmetric and hence σ1(S(P)) = λ∗(S(P)) = λ∗(P). Clearly R(P) ≥
T (P) ≥ r(P). By definition of r(P), we have λ

r(P)
∗ ≤ 1/e. Now substitute t = r(P)(log(1/π∗)/2+

1) in Theorem 2.5 to conclude that R(P) ≤ r(P)(log(1/π∗)/2 + 1).

The tightness of this inequality is discussed at the end of Section 3.

2.3 Convexity

We now prove Theorem 1.9 and Theorem 1.21.
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Lemma 2.6. Let P be an irreducible Markov Chain and S a valid set of strategies against P. If
Q ∈ S, then R′(PQ) ≤ R′(P) for R′ ∈ {RS , RS

2 }. In particular, if P is an irreducible Cayley walk
on a group G and Q any random walk on G (not necessarily irreducible). Then R′(PQ) ≤ R′(P)
for R′ ∈ {RC , RH, RC

2 , RH
2 }.

Proof. Let P = (PQ, {At}t>0) be any adversarially modified version of PQ where At ∈ S. Then
P ′ = (P, {QAt}t>0) is an adversarially modified version of P where QAt ∈ S since Q ∈ S and S
is closed under products. Moreover the mixing times of P and P ′ are equal. Taking supremum
over P we have the result.

For the case of Cayley walks, we just observe that the transition matrices of all Cayley walks
belong to C ⊆ H.

We now show that the robust mixing time of a convex combination of Markov Chains can be
bounded in terms of that of the participating chains.

Let P and Q be two irreducible Markov Chains with same stationary distribution π. Suppose S
is valid set of strategies against P and Q. Also assume P ∈ S and Q ∈ S. Fix 0 < a = 1− b < 1
and consider the chain aP + bQ. Let P = (aP + bQ, {At}t>0) be any adversarially modified
version of aP + bQ. Fix S > 0 and ǫ = (ǫ1, . . . , ǫS) where ǫi ∈ {0, 1}. Define the following
quantities:

• P(0) = Q, P(1) = P

• ξ(ǫ) =
∏S

i=1 P(ǫi)Ai

• H(ǫ) =
∑S

i=1 ǫi

• w(ǫ) =
∏S

i=1 aǫib1−ǫi = aH(ǫ)bS−H(ǫ)

If µ0 is any initial distribution, and µS is the distribution after S rounds, we have

µS − π =
∑

ǫ

w(ǫ) (µ0ξ(ǫ)− π)

where the sum ranges over all 2S choices for ǫ = (ǫ1, . . . , ǫS).

Lemma 2.7. Let P and Q be ergodic Markov Chains with the same stationary distribution. Let
S be a valid set of strategies against both P and Q and assume that P ∈ S and Q ∈ S. Let
0 < a = 1− b < 1. Then for R′ ∈ {RS , RS

2 }, R′(aP + bQ) ≤ R′(P) + R′(Q)− 1. In particular, if
P and Q are ergodic Cayley walks on a group G, then we have R′(aP + bQ) ≤ R′(P) + R′(Q)− 1
for R′ ∈ {RH, RC , RH

2 , RC
2}.

Proof. Choose S = RS(P) + RS(Q)− 1. Then we have

||µS − π||TV ≤
∑

ǫ

w(ǫ)||µ0ξ(ǫ)− π||TV

Now for each ǫ, ξ(ǫ) either contains ≥ RS(P) occurrences of P or contains ≥ RS(Q) occurrences
of Q. The remaining matrices can be considered as an adversarial choice. Hence we have
||µ0ξ(ǫ)− π||TV ≤ 1/4 for all ǫ. Hence ||µS − π||TV ≤ 1/4.
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Similarly, taking S = RS
2 (P)+RS

2 (Q)− 1, and looking at the ||µS −π||2,π we get RS
2 (aP + bQ) ≤

RS
2 (P) + RS

2 (Q)− 1.

In case P and Q are Cayley walks on G, we just observe that P and Q are valid choices for a
Cayley adversary and hence also for a holomorphic adversary.

Now we consider the case when P has finite robust mixing time and Q may not. We start with
a concentration inequality.

Lemma 2.8. Let S = CT/p for C > 1 and 0 < p < 1. Let Z1, . . . , ZS be independent Bernoulli
random variables with Pr{Zi = 1} = p. Let Z =

∑

i Zi. Then we have

log Pr{Z < T} ≤ −T ((C − 1)− log C) (12)

Proof. We use Hoeffding’s inequality (13, Theorem 1), for S − Z to conclude

Pr{Z < T} ≤
{

(

q

q + a

)q+a( p

p− a

)p−a
}S

where q = 1− p, a = p− p/C. After algebraic simplifications we get,

Pr{Z < T} ≤
{

(

q

1− p
C

)
C
p
−1

C

}T

Taking logarithms, and using log(1− x) ≤ −x for 0 < x < 1 gives the result.

Lemma 2.9. Let P be an ergodic Markov Chain and S a valid set of strategies against P. Fix
Q ∈ S. Let 0 < a = 1− b < 1. Let S = (1 + δ)RS(P, γ)/a, where γ > 0 and δ > 0 are arbitrary.
Then

||µS − π||TV ≤ γ + exp
(

−RS(P, γ) · (δ − log(1 + δ))
)

Proof. Let S = (1 + δ)T/a, where T = RS(P, γ). Write

µS − π =
∑

ǫ

w(ǫ) (µ0ξ(ǫ)− π)

Put D = {ǫ : H(ǫ) ≥ T}, i.e. all choices of ǫ which resulted in P being used at least T times.
For ǫ ∈ D, we have ||µ0ξ(ǫ)− π||TV ≤ γ. For ǫ 6∈ D, ||µ0ξ(ǫ)− π||TV ≤ 1.

We now estimate
∑

ǫ 6∈A w(ǫ). This is precisely Pr{H(ǫ) < T} where ǫ is chosen at random
with each coordinate taking a value 1 with probability a and 0 with probability b. Note that
m = E[H(ǫ)] = (1 + δ)T . Applying Lemma 2.8 we have

∑

ǫ 6∈D
w(ǫ) = Pr{H(ǫ) < m/(1 + δ)} ≤ exp (−T (δ − log(1 + δ)))

Combining we have

||µS − π||TV ≤
∑

ǫ∈D
w(ǫ)||µ0ξ(ǫ)− π||TV +

∑

ǫ 6∈D
w(ǫ)||µ0ξ(ǫ)− π||TV

≤
∑

ǫ∈D
w(ǫ) ∗ γ +

∑

ǫ6∈D
w(ǫ) ∗ 1

≤ γ + exp (−T (δ − log(1 + δ)))
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Corollary 2.10. Let P be an ergodic Markov Chain and Q be compatible with P. Let S be a
valid set of strategies against P. Assume Q ∈ S. Let 0 < a = 1 − b < 1. Then RS(aP + bQ) ≤
2(1+ δ)RS (P)/a, as long as 2RS(P)(δ− log(1+ δ)) ≥ log 8. If RS(P) ≥ 11, then δ may be taken
to be 1/2.

In particular, if P is an ergodic Cayley walk on the group G and Q is any Cayley walk on G, the
same conclusion holds with RS replaced by RH and RC.

Proof. Let T = RS(P) and S = 2T (1 + δ)/a. By submultiplicativity, we have RS(P, γ) ≤ 2T for
γ = 1/8. Lemma 2.9 now gives

||µS − π||TV ≤ 1/8 + exp (−2T (δ − log(1 + δ)))

If 2T (δ − log(1 + δ)) ≥ log 8, we have ||µS − π||TV ≤ 1/8 + 1/8 = 1/4 as required.

Similarly for the S-robust L2-mixing time we get,

Lemma 2.11. Let P be an ergodic Markov Chain and S a valid set of strategies against P. Fix
Q ∈ S. Let 0 < a = 1− b < 1. Let S = (1 + δ)RS

2 (P, γ)/a, where γ > 0 and δ > 0 are arbitrary.
Then

||µS − π||2,π ≤ γ + exp
(

−RS
2 (P, γ) · (δ − log(1 + δ))

)

·
√

1

π∗

Proof. This proof is similar to that of Lemma 2.9 except for a slightly different choice of pa-
rameters. Put T = RS

2 (P, γ) and S = T (1 + δ)/a. Put D = {ǫ : H(ǫ) ≥ T}. If ǫ ∈ D,
||µ0ξ(ǫ) − π||2,π ≤ γ. For ǫ 6∈ D, ||µ0ξ(ǫ) − π||2,π ≤

√

1/π∗. Going along the same lines as
Lemma 2.9, we have

||µS − π||2,π ≤ γ + exp (−T (δ − log(1 + δ))) · 1√
π∗

Corollary 2.12. Let P be an ergodic Markov Chain and S a valid set of strategies against P. Let
Q be compatible with P and Q ∈ S. Let 0 < a = 1−b < 1. Assume that RS

2 (P) ≥ log(1/π∗)/2 and
π∗ ≤ 1/16. Then RS

2 (aP+bQ) ≤ 2(1+δ)RS
2 (P)/a, as long as RS

2 (P)(δ−log(1+δ)) ≥ log(1/π∗)/2.
In particular δ may be taken to be 5/2. In particular, if P and Q are Cayley walks on a group
G, the conclusion holds with S = C and S = H.

Proof. Let T = RS
2 (P) and S = 2T (1 + δ)/a. By submultiplicativity, we have RS(P, γ) ≤ 2T for

γ = 1/4. Lemma 2.11 now gives

||µS − π||2,π ≤ 1/4 + exp (−2T (δ − log(1 + δ))) ·
√

1

π∗

Now put T = α log(1/π∗)/2 for α > 1. Then we have

||µS − π||2,π ≤ 1/4 + π
(2α(δ−log(1+δ))−1)
∗

The second term is bounded by 1/4 if δ − log(1 + δ) ≥ 1/α.

Proof of Theorem 1.9 and Theorem 1.21. Follows from Lemma 2.6, Corollary 2.10 and
Corollary 2.12.
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3 Reversible liftings

In this section we reprove a result due to Chen et al. (4) on reversible liftings of Markov Chains.
The proof is inspired by considering the Robust mixing time of a Markov Chain and looking at
a particular adversarial strategy. We start with a proof of Theorem 1.29.

Proof of Theorem 1.29. We prove R(Q) ≥ T (P) by exhibiting an adversarial strategy which
allows the adversary to simulate the evolution of P.

Consider the following adversarial strategy A: Given y ∈ Y, the adversary picks a state y′ ∈ Y
according to the distribution µx where x = f(y). Recall that µx is the conditional distribution
of µ given that f(y) = x.

Since µ =
∑

x∈X π(x)µx, it follows that this strategy fixes the stationary distribution µ of Q.
We now claim that with this strategy the adversary can simulate the evolution of P on Y.

For a distribution ν on X , consider the distribution F (ν) =
∑

x∈X ν(x)µx on Y. Then

2||F (ν) − µ||TV =
∑

x∈X

∑

y∈Yx

|ν(x)µx(y)− π(x)µx(y)|

=
∑

x∈X



|ν(x)− π(x)|
∑

y∈Yx

µx(y)





=
∑

x∈X
|ν(x)− π(x)| = 2||ν − π||TV

Hence for a distribution ν on X and x2 ∈ X we have

(F (ν)Q)(Yx2
) =

∑

y1∈Y

∑

y2∈Yx2

ν ′(y1)Q(y1, y2)

=
∑

x1∈X

∑

y1∈Yx1

∑

y2∈Yx2

ν(x1)µ
x1(y1)Q(y1, y2)

=
∑

x1∈X
ν(x1)P(x1, x2)

= (νP)(x2)

Hence we have F (ν)QA = F (νP). This shows that alternating Q with the adversary’s strategy
ensures that this adversarially modified Q cannot mix faster than P. Hence R(Q) ≥ T (P).

Now if Q were reversible, Theorem 1.13 implies R(Q) ≤ T (Q)(1 + log(1/µ∗)/2). Hence

T (Q) ≥ T (P)

log(1/µ∗)

When µ∗ is only polynomially smaller than π∗, this gives our result. We now improve the result
by looking at the adversarial strategy in more detail and show T (Q) ≥ r(P).
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Proof of Theorem 1.31. Let A denote the stochastic matrix representing the adversarial strategy.
Note that A is reducible, but on each irreducible component, it reaches stationarity in one step.
It follows that A is reversible.

Let α denote the eigenvector (of length |X |) corresponding to λ∗(P) and define β (of length |Y|)
via β(y) = α(x)µx(y) where x = F (y). From our analysis before, it follows that for all x ∈ X ,

∑

y∈Yx

(βQ)(y) = λ∗(P)α(x)

Since A redistributes the probability in each Yx according to µx, we have for y ∈ Y,

β(QA)(y) = λ∗(P)α(x)µx(y) = λ∗(P)β(y)

where x = F (y). Thus λ∗(QA) ≥ λ∗(P). Since A is a contraction (it is stochastic), we have

|λ∗(Q)| ≥ |λ∗(QA)| ≥ |λ∗(P)|

Hence T (Q) ≥ r(Q) ≥ r(P).

As a consequence, it follows that for many natural reversible chains where T (P) = O(r(P)), one
cannot gain more than a constant factor improvement by considering a reversible lifting.

(4) also gives an example Q of a reversible random walk on a tree (with π∗ exponentially small)
and its collapsing P for which

T (Q) = Θ

(

T (P)
log log(1/π∗)

log(1/π∗)

)

Since we know that R(Q) ≥ T (P) it shows that Theorem 1.13 is almost tight, even for reversible
chains.

4 Upper bounds on Robust mixing time

In this section we observe that many proof techniques which establish bounds on mixing time
in fact give us bounds on the Robust mixing time.

Definition 4.1. Let P be the transition matrix of an ergodic Markov Chain with stationary
distribution π. For vectors α,β, put 〈α,β〉π =

∑

x∈X α(x)β(x)π(x). Associate the following
bilinear forms with P

EP(α,β) = 〈(I − P)α,β〉π
FP(α,β) = 〈(I + P)α,β〉π

EP is the Dirichlet form associated with P and FP is used to bound the negative eigenvalues of
P.
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Definition 4.2. Let π be a distributions on X and π(x) > 0 for all x ∈ X . For any function
f : X → R+, define the entropy of f via

Ent(f) = Eπ [f log f ] (13)

and for a distribution µ on X , put Ent(µ) = D(µ||π) = Ent(f), where f(x) = µ(x)/π(x) is the
density function of µ w.r.t. π.

Ent(µ) measures the entropy of µ relative to π. It is easy to see that Ent(·) is convex non-negative
and vanishes exactly when µ = π. The log-Sobolev constant is defined as follows

Definition 4.3. Let P be a Markov Chain satisfying πP = π. The log-Sobolev constant α(P) is
defined as

α(P) = min
f

EP(f, f)

Ent(f2)
(14)

where the minimum is taken over all real valued functions f on X for which 〈f, f〉π = 1.

Lemma 4.4. Let P be an ergodic Markov Chain with stationary distribution π. Let µ be any
distribution and A any stochastic matrix compatible with P. Then for any p ≥ 1,

(a) ||µA − π||p,π ≤ ||µ− π||p,π

(b) V arπ(µA) ≤ V arπ(µ)

(c) ||µA − π||TV ≤ ||µ− π||TV

(d) D(µA||π) ≤ D(µ||π)

Proof. Since A is stochastic and compatible with P, it follows that A is a contraction on Lp(π)
for p ≥ 1. This proves (a). (b) and (c) are special cases of (a).

A is a contraction on L2(π) implies σ1(S(A)) ≤ 1. Hence the log-Sobolev constant α(A
←−
A ) ≥ 0.

(15, Prop 6) shows that D(µA||π) ≤ D(µ||π), when α(A
←−
A ) ≥ 0.

As observed in (18, Chapter 3), many upper bounds on mixing time can be described via the
following approach:

• Let V (η) be a scalar associated with the distribution η which satisfies the following

– V (η) ≥ 0 for all distributions η,

– V (ηt)→ 0 ⇐⇒ ηt → π, for any sequence of distributions ηt and

– V (ηP) ≤ V (η).

• Let I(t) = V (µt) where µt is the t-step distribution. Note that I(t) is a non-increasing
function,

• Show that there is some non-decreasing function G : R+ → R+ which satisfies I(t)− I(t +
1) ≥ G(I(t))
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• Using V (0) = I(0), solve for T by which V (T ) ≤ 1/4 (or some appropriate constant < 1
depending on choice of V )

In case of an AMMC P = (P, {At}) we can do the following

• V will usually also satisfy V (µA) ≤ V (µ) for all A compatible with P.

• Let I(t) = V (µt) and J(t) = V (νt) where νt = µtP and µt+1 = νtAt.

• I(t)− J(t) ≥ G(I(t)) and I(t + 1) ≤ J(t) imply I(t)− I(t + 1) ≥ G(I(t)) as before.

Hence bounds on mixing time given by methods following the above approach also apply to
Robust mixing time. This includes most analytical methods used to establish upper bounds
on mixing time including log-Sobolev inequality based bounds, conductance based bounds and
congestion based bounds (17). Bounds using Entropy constant (a.k.a Modified log-Sobolev
constant) do not lead to a Robust mixing upper bound as they are not known to work in
discrete time.

Unlike standard mixing time, establishing a bound on R(P2) does not automatically imply any
bound on R(P).

Example 7. Let P be the walk on directed edges on a “good enough” undirected regular
expander X. We have already seen that R(P) = ∞ and T (P) < ∞. One can also show that
R(P2) <∞, thus showing that if the adversary is only allowed to intervene every alternate step,
any adversarially modified version of P will still converge. A heuristic argument for that is that
since the chain P remembers only the previous step of the usual random walk on X, when we
run two steps of the chain in succession, the adversary does not gain any extra knowledge. A
formal proof of R(P2) <∞ is given in Theorem 4.11.

However, techniques similar to those used in Theorem 1.9 can be used to show

Lemma 4.5. Let P, Q be compatible Markov Chains and k > 1. Then for 0 < a = 1 − b < 1,
T (aP + bQ) ≤ C · kR(Pk)/ak for some absolute constant C.

Proof. Consider t = CkR(Pk)/ak for C to be chosen later. Condition the run on the result of
the initial coin toss (to decide if we run P or Q). Break run of aP + bQ into t/k blocks of length
k. The expected number of all P blocks is CR(Pk). For large enough C we have at least 2R(Pk)
all P blocks. This together with an application of Chernoff type concentration inequality gives
the result.

Coupling is one common approach to estimate mixing time of many Markov Chains. A coupling
proof does not automatically give bounds on the robust mixing time. Many coupling proofs
start by defining some notion of distance and show that it decreases in expectation after each
step. Such coupling proofs lead to a bound on robust mixing time if one restricts to adversaries
who cannot increase the distance.

Example 8. Consider the lazy random walk on the hypercube. The coupling proof showing a
n log n + O(n) mixing time bound starts with two copies of the chain and couples them so that
the Hamming distance between the two copies never increases and decreases in expectation.
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Moves of a Cayley adversary in this case, amounts to flipping a subset of coordinates. Flipping
the same subset in the other copy of the chain, ensures that the Hamming distance is not
changed. Thus we have a coupling based proof of the n log n + O(n) mixing time bound for the
lazy random walk against a Cayley adversary.

This also works against a holomorphic adversary, as automorphisms of the hypercube correspond
to a combination of permutation of the coordinates and flipping a subset of the coordinates.

Example 9. Consider the random to top move chain, where we pick a random card and move
it to the top position. The coupling proof starts with two copies of the chain and couples them
so that after the move the two copies have the same top card. Thus we have created a pairing
of cards in the two copies. The proof that we have not destroyed any existing pairing, depends
on the fact that the paired cards are always continguous.

A Cayley adversary can easily destroy the continguous nature of the paired cards and thus in
the next step, one may actually see a decrease in the number of paired cards.

Thus the näıve extension of the coupling based proof does not work in the robust setting.

The log-Sobolev constant as originally introduced by Diaconis works only in continuous time and
needs to be adapted for the discrete time case. Miclo (15) adapted the result to discrete time

and showed that Ent(µ) − Ent(µP) ≥ α(P
←−
P ) Ent(µ), where α(P

←−
P ) is the log-Sobolev constant

of the reversible chain P
←−
P . This immediately translates to Robust mixing time bound as well.

Lemma 4.6. Let P be an ergodic Markov Chain with stationary distribution π. Let α = α(P
←−
P )

denote the log-Sobolev constant for the chain P
←−
P . Then R(P) = O(log log(1/π∗)/α).

Proof. (15, Proposition 6) shows that after each application of P, the entropy of the resulting

distribution falls by a factor 1−α(P
←−
P ). Clearly adversarial moves cannot increase the entropy.

Since the initial entropy is ≤ log(1/π∗), the result follows.

Lemma 4.7. Let P be a reversible Markov Chain. Then

α

(

(

I + P

2

)2
)

≥ α(P)

2
(15)

If P has non-negative eigenvalues, then α(P2) ≥ α(P).

Proof. Suppose P has non-negative eigenvalues. Let 1 = λ0 > λ1 ≥ · · · ≥ λN−1 ≥ 0 be the
eigenvalues of P and let xi be the corresponding eigenvectors which form an orthonormal basis
of L2(π). Write f =

∑

i cixi for appropriate scalars ci. Then

EP2(f, f) = 〈(I − P2)f, f〉π =
∑

i

c2
i (1− λ2

i ) ≥
∑

i

c2
i (1− λi) = 〈(I − P)f, f〉π = EP(f, f) (16)

Since Ent(f) is independent of P it follows α(P2) ≤ α(P). In the general case, apply the previous
result to (I +P)/2 and use the fact that α((I +P)/2) = α(P)/2 which follows from the definition
of the log-Sobolev constant.
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Example 10. Lazy Random walk on hypercube Let P denote the (reversible) lazy random
walk on the n-dimensional hypercube. All the eigenvalues of P are of the form k/n for k ∈
{0, . . . , n}. (6) shows that the log-Sobolev constant for the hypercube is Θ(1/n), and hence we
have R(P) = O(n log log(2n)) = O(n log n) = Θ(T (P)).

Theorem 4.8. Let PRT ;T denote the Random-Top transposition chain. Then R((I+PRT ;T )/2) =
O(n log2 n).

Proof. We start by estimating the log-Sobolev constant of PRT ;T . Lemma A.2 shows that
EPRR;T

≤ 18EPRT ;T
. (2) shows that α(PRR;T ) ≥ 1

2n log n . Hence by the definition of the log-

Sobolev constant, it follows that α(PRT ;T ) ≥ 1
36n log n . Lemma 4.7 now implies

α

(

(

I + PRT ;T

2

)2
)

≥ 1

72n log n
(17)

The result now follows from Lemma 4.6.

If we try to estimate the robust mixing time of PRT ;T via log-Sobolev methods directly via
Lemma 4.6, one would need to estimate the log-Sobolev constant of P2

RT ;T . The bound in
Theorem 4.8 is against an adversary who is not required to respect the group structure. Later
we show the optimal O(n log n) bound if we require the adversary to respect the group structure.

4.1 A spectral result

In this subsection, we prove a new rapid mixing result based on spectral machinery, which can
be applied to chains whose top singular values are equal to or very close to 1. We use this to
show that R(P2) < ∞ where P is the walk on directed edges considered before. For simplicity,
we assume that P has uniform stationary distribution through out the rest of this section. The
general case follows by considering S(P) instead of P.

The approach of this spectral result is the following: Call a subspace M “bad” if any vector in
M does not contract too much when P is applied to it. Similarly call a subspace “good” if every
vector in M contracts a lot when P is applied to it.

In case of a reversible Markov chain P, the “bad” subspace is usually invariant under P (e.g.
eigenvector corresponding to eigenvalue λ∗). However, if P is non-reversible, P may map “bad”
subspaces to a “good” subspace. In such a case, two applications of P should contract a vector.

Let P be a Markov chain on N states with uniform stationary distribution π. Consider the
Singular Value Decomposition of P and let x0, . . . ,xN−1 and y0, . . . ,yN−1 denote the left and
right singular vectors of P. Since π is uniform we may assume x0 = y0 = constant vector. Let
X(P) (respy. Y (P)) denote the matrix whose columns are xi (respy. yi) and Σ(P) the diagonal
matrix consisting of the singular values σi of P so that the following equation holds

P = X(P)Σ(P)Y (P)T

Note that X(P) and Y (P) are both unitary.
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Definition 4.9. Let P be a Markov chain with uniform stationary distribution and X(P), Y (P)
be as above. Define the inner product matrix IP (P) via

IP (P) = Σ(P)Y (P)T X(P)

Note that IP (P)ij = 〈xiP,xj〉 and that IP (P) is just P written in the xi basis. For k =
1, . . . , N − 1, denote by

• Ek, the linear span of x1, . . . ,xk,

• E′
k, the linear span of xk+1, . . . ,xN−1,

• Lk, the orthogonal projection (of the N dimensional vector space) onto Ek,

• ck, the euclidean norm of the Ek → Ek operator

z 7→ zPLk

Note that ck is the norm of (k − 1) × (k − 1)-minor of IP (P ) consisting of rows and columns
2, . . . , k.

Note that in terms of our earlier discussion the subspace Ek is “bad” as it corresponds to high
singular values and the subspace E′

k is “good” as it corresponds to vectors of low singular values.

Theorem 4.10. Let P be a doubly stochastic matrix with SVD (xi,yi, σi). Then for any initial
distribution µ and t > 0 and 1 ≤ k ≤ N , we have

||µP2t − π||2 ≤ (σ1(ck + 2σk))
t||µ− π||2

where π is the uniform stationary distribution. When k = N , we take cN = σ1 and σN = 0.

Proof. Let (xi,yi, σi)
N−1
i=0 be the Singular Value Decomposition of P. Let E = Ek be the subspace

spanned by x1, . . . ,xk−1 and E′ = E′
k be the subspace spanned by xk, . . . ,xN−1. Also, denote

by L, the orthogonal projection onto E and by L′ the orthogonal projection onto E′.

Since xiP = σiyi and we see that P maps E and E′ to orthogonal subspaces. By definition ck

is the Euclidean norm of the operator LPL on E ⊕ E′. We now show that the Euclidean norm
of L′P on E ⊕ E′ is σk. Also note that the Euclidean norm of the operator P on E ⊕E′ is σ1.

Let z′ ∈ E′ be arbitrary. Then

z′ =
∑

i≥k

αixi

for some scalars αi, since E′ is spanned by xk, . . . ,xN−1. Since xiP = σiyi, we have

||z′P||22 =
∑

i≥k

α2
i ||σiyi||2 ≤ σ2

k

∑

i≥k

α2
i = σ2

k||z′||22 (18)

since the yi’s are orthonormal.
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Let z be any vector orthogonal to π. Then

zP2 = zLP2 + zL′P2

= zLPLP + zLPL′P + zL′P2
(19)

Estimating the individual norms, we get

||zLPLP||2 ≤ σ1||zLPL||2 ≤ σ1ck||z||2 (20)

||zLPL′P||2 ≤ σk||zLP||2 ≤ σkσ1||z||2 (21)

||zL′P2||2 ≤ σ1||zL′P||2 ≤ σ1σk||z||2 (22)

Combining we get
||zP2||2 ≤ σ1(ck + 2σk)z

If µ is any initial distribution, µ− π is orthogonal to π and hence we have for t > 0,

||µP2t − π||2 = ||(µ− π)P2t||2 ≤ (σ1(ck + 2σk))
t||µ− π||2

The assumption that π is uniform is only for notational convenience. In the general case, we
consider S(P) whose left and right singular vectors corresponding to σ0 = 1 are equal.

Theorem 4.11. Let P denote the walk on directed edges of a undirected d-regular graph X
considered before. Let Q denote the standard random walk on X and r(Q) its relaxation time.
Then

R2(P
2) ≤ r(Q)(2 + log(nd))

where n denotes the number of vertices of X and d ≥ 2.

Proof. This is an application of Theorem 4.10. We calculate the Singular Value Decomposition
of P and show that for a suitable k, σ1 = 1, ck = λ∗, σk = 0, where λ∗ = λ∗(Q). Thus after every
two applications of P the Euclidean distance to stationarity contracts by λ∗. Adversarial moves
cannot increase the distance.

Since the stationary distribution is uniform, the Euclidean distance is proportional to the L2(π)
distance and the same conclusion holds for the L2(π) distance as well. Thus after 2r(Q) the
distance to stationarity reduces by a factor of 1/e. Since the worst initial value is

√
nd, we have

the result.

For each vertex u of X, let L−
u denote the span of vectors corresponding to edges coming into u

and L+
u denote the span of vectors corresponding to edges leaving u. Also, let x−

u ∈ L−
u denote

the vector which is 1 for edges coming into u and 0 elsewhere. Similarly define x+
u ∈ L+

u .

Observe that the nd-dimensional space has the decomposition

⊕uL−
u = ⊕vL

+
v

and also that P maps L−
u to L+

u . The matrix for P as a map from L−
u to L+

u is given by Jd/d,
where Jd is the d × d matrix with all entries equal to 1. Jd/d is a symmetric matrix with
eigenvalues 1 and 0 (multiplicity d− 1).
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Since this holds for every vertex u, it follows that P has singular values 1 with multiplicity n,
and 0 with multiplicity n(d− 1).

Let E denote the span of the n left singular vectors corresponding to the singular value 1. Note

that E has orthonormal basis {x−
u√
d
}u and includes the stationary distribution. Note that image

of E under P has orthonormal basis {x
+
u√
d
}u.

For arbitrary vertices u, v of X, we have

〈x
−
u√
d

P,
x−

v√
d
〉 = 〈x

+
u ,x−

v 〉
d

= Q(u, v) =

{

1/d if (u, v) is an edge

0 otherwise
(23)

Thus P considered as an operator on E behaves exactly like Q. Now take k = n in Theorem 4.10
and observe that E = En⊕ < π >, where < π > denotes the linear span of the uniform stationary
distribution of Q. Since < π > is invariant under P, it follows that cn = λ∗(Q).

Thus Theorem 4.10 implies that for any initial distribution µ, two successive applications of P

reduces the euclidean norm of µ− π by a factor σ1(cn + 2σn) = λ∗(Q).

We conclude this section, with another example similar to the “walk on directed edges” example.

Example 11. “walk without immediate reversal”: Let X be a connected d-regular undi-
rected graph. Assume that the usual random walk on X is ergodic. Define a walk P as follows:
If we are currently at vertex u, we pick a neighbor uniformly at random, except the vertex from
which we came.

Like the “walk on directed edges” example, the states of this walk are directed edges (u, v) of X.
From (u, v) we move to (v,w) where w is a uniformly chosen neighbor of v except u.

The adversarial strategy of reversing the orientation of an edge, ensures that this walk has
R(P) = ∞, since as before P maps the uniform distribution on edges into a vertex u to the
uniform distribution on edges out of u.

The singular vectors of P are the same as that for the walk on directed edges, although the
singular values are different. As in the “walk on directed edges” example, define subspaces L−

u

and Lv+. The matrix for P as an map from L−
u to L+

u is the d × d-matrix (Jd − I)/(d − 1),
where Jd is the all ones matrix. As before, (Jd− I)/(d− 1) is symmetric with eigenvalues 1 and
−1/(d − 1) (multiplicity d− 1).

Since this holds for all vertices u, P has singular values 1 with multiplicity n and 1/(d − 1)
with multiplicity nd− d. A proof similar to Theorem 4.11 allows us to prove a decay factor of
λ∗(Q) + 2/(d − 1) where Q corresponds to the natural walk on X. Thus if X is a sufficiently
good expander and the degree is large enough, in the sense that λ∗(Q)+2/(d− 1) < 1, the walk
without immediate reversal is also rapidly mixing.

5 Cayley walks on groups

In this section, we specialize to Cayley walks driven by a probability measure P over a group
G. The chain is irreducible iff the support of P generates G and aperiodic if P (id) > 0 where
id is the identity element of G.
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5.1 Walks against restricted adversaries

It is well known that the knowledge of all the singular values of the transition matrix P can
give better bounds on the standard mixing time than those obtained just from the knowledge
of σ1(P). In this section we show that the same conclusion holds for the robust mixing time
against holomorphic adversaries.

Definition 5.1. For a group G, the holomorph of G, denoted Hol(G) is the semi-direct product
of G with Aut(G), where Aut(G) acts naturally on G.

Hol(G) = G ⋊ Aut(G) (24)

Elements of Hol(G) are called holomorphisms of G.

Holomorphisms of G can be identified with permutations of G as follows: Elements of G act on
G by right translation and those of Aut(G) act naturally, i.e.

(h, τ) · g = τ(g)h (25)

Lemma 5.2. The permutation representation of Hol(G) is faithful and transitive.

Proof. Transitivity is easily established by by setting τ to be the identity automorphism and
choosing h appropriately. To see that this representation is faithful, suppose that for some
(h, τ) ∈ Hol(G), we have

τ(g)h = g ∀g ∈ G (26)

Choosing g = id, we see that h = id which in turn implies τ is the identity automorphism.

Hence we can identify holomorphisms of G by the permutations they induce on G (which was
how we defined them in the introduction).

Definition 5.3. A permutation J : G → G is said to be G-respecting if for some permutation
K : G→ G, and all g, h ∈ G,

J(h)−1J(g) = K(h−1g)

Note that if K = J , then we get the definition of an automorphism of G.

Lemma 5.4. A permutation J of G is G-respecting iff it is a holomorphism of G.

Proof. Let G denote the set of all G-respecting permutations on G. Hol(G) is closed under
composition. Observe that G is also closed under composition, since

J1(J2(h))−1J1(J2(g)) = K1(J2(h)−1J2(g)) = K1(K2(h
−1g)

where K1,K2 correspond to J1 and J2.

All automorphisms and right translations are G-respecting. Since, Hol(G) is generated by right
translations and automorphisms, it follows that Hol(G) ≤ G.
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For a G-respecting permutation J , define J ′(g) = g · (J(id))−1. Then J ′ ∈ Hol(G) since it is
a right translation. Since J and J ′ are G-respecting, J ′′(g) = J ′(J(g)) is also a G-respecting
permutation, as G-respecting permutations are closed under composition. But

J ′′(id) = J ′(J(id)) = J(id) · J(id)−1 = id (27)

Hence J ′′ is a G-respecting permutation which fixes the identity. Hence from the definition of
G-respecting, substituting h = id, there is a permutation K ′′ of G for which

J ′′(id)−1J ′′(g) = K ′′(id−1g) (28)

Since J ′′(id) = id, we have K ′′(g) = J ′′(g). Substituting this back in the definition of G-
respecting, we have for all g, h ∈ G,

J ′′(h)−1J ′′(g) = J ′′(h−1g) (29)

i.e. J ′′ is an automorphism of G. For all g ∈ G, we now have

J(g) = J ′′(g) · J(id) = (J(id), J ′′) · g (30)

Hence J ∈ Hol(G) and G ≤ Hol(G).

Note that the holomorphic strategies H are precisely convex combinations of Hol(G) (viewed
as permutations on G) and Cayley strategies C are precisely the convex combinations of the
subgroup G of Hol(G) viewed as permutations on G.

We now look at the holomorphic robust mixing time of the Cayley walk on G. We identify a
permutation on G with the |G| × |G| permutation matrix representing it.

Let P be the transition probability matrix of the Cayley walk on a group G. Fix a sequence
{At}t>0 of holomorphic strategies and define

Q0 = I Qk+1 = QkPAk+1

If µt denotes the distribution after t rounds we have µt = µ0Qt, where µ0 is the initial distribu-
tion.

Lemma 5.5. If µ0 is supported only at g ∈ G then ||µt − π||22 = (QtQt
T )(g, g) − 1/N , where

N = |G| and || · ||2 denotes the Euclidean norm.

Proof.

||Qt(g, ·) − π||22 =
∑

h

(Qt(g, h) − 1/N)2

=
∑

h

(

Qt(g, h)Qt(g, h) − 2Qt(g, h)/N + 1/N2
)

=
∑

h

(Qt(g, h)Qt(g, h)) − 1/N

= (QtQt
T )(g, g) − 1/N
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Definition 5.6. A matrix B whose rows and columns are indexed by elements of G is said to
be a G-circulant if B(g, h) = P (g−1h) for some function P : G→ R.

Lemma 5.7. The following are true:

(a) The transition matrix P of a Cayley walk on G is G-circulant,

(b) G-circulant matrices are closed under multiplication, linear combinations and taking trans-
pose,

(c) If J is a holomorphism of G and B is G-circulant, then so is J−1BJ .

Proof of (c). Let B(g, h) = P (g−1h) for P : G→ R. Let Q : G→ G be such that J(x)−1J(y) =
Q(x−1y). Finally, put C = J−1BJ Then

C(g, h) = B(J(g), J(h)) = P ((J(g))−1J(h)) = P (Q(g−1h))

For the standard L2-mixing time the following result is now folklore.

Theorem 5.8. Let P be the transition matrix of an ergodic Cayley walk on a finite group G
with N = |G|. Let 1 = σ0 ≥ σ1 ≥ · · · ≥ σN−1 ≥ 0 denote the singular values of P. If vt denotes
the distribution of the Markov Chain after t-steps starting from any initial distribution v0,

||vt − π||22,π ≤
N−1
∑

i=1

σ2t
i

where π is the (uniform) stationary distribution of P.

We now show that the same conclusion holds in the presence of holomorphic adversary as well.

Theorem 5.9. Let P denote the transition matrix of a Cayley walk on a finite group G. Assume
that P is ergodic and let 1 = σ0 ≥ σ1 ≥ . . . σN−1 ≥ 0 denote the singular values of P. Also assume
that the adversary is holomorphic. Then

||µt − π||22,π ≤
N−1
∑

i=1

σ2t
i

where µt denotes the distribution after t-rounds and µ0 is any initial distribution.

Proof. By convexity the worst case happens when all the Ai are holomorphisms of G. Having
fixed such an adversarial strategy, it is enough to consider the case when the initial distribution
µ0 is supported on one element of G.

Assume that µ0 puts all its weight on g ∈ G. Let Qt = PA1PA2 . . . PAt. By Lemma 5.5, and the
relation || · ||22,π = |G||| · ||2, we have

||µt − π||22,π ≤ N(QtQt
T )(g, g) − 1

We first establish that QtQt
T is G-circulant and hence has equal diagonal entries. In case of

a Cayley adversary this follows from the fact that Qt is a product of G-circulant matrices. In
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the holomorphic case, Qt need not be G-circulant. However, QtQt
T is G-circulant. To see this,

consider evaluating QtQt
T inside out, i.e. put

Ct+1 = I and for k ≤ t Ck = PAkCk+1Ak
T PT

Clearly Ct+1 is G-circulant. If Ck+1 is G-circulant, then Lemma 5.7 implies AkCk+1Ak
T =

AkCk+1(Ak)
−1 is also G-circulant since Ak is a holomorphism. Since G-circulant matrices are

closed under multiplication and taking transposes it follows that Ck is G-circulant. Hence
C1 = QtQt

T is G-circulant and has equal diagonal entries. Hence we have

||µt − π||22,π ≤ tr(QtQt
T )− 1

Since the trace is just the sum of the eigenvalues and the eigenvalues of DDT are just the squares
of the singular values of D, we have

||µt − π||22,π ≤
N−1
∑

i=0

σi(Qt)
2 − 1

But
∑N−1

i=0 σ2
i (D1D2 . . . D2t) ≤

∑N−1
i=0

∏2t
j=1 σ2

i (Dj) (see (14, Chapter 3) for a proof). Using
σi(Ak) = 1 for all i, k and σ0(P) = σ0(Ak) = 1, we have the result.

Now we prove Theorem 1.23 and show that that holomorphic robust L2-mixing time of P is

within a factor 2 of the standard mixing time of P
←−
P .

Proof of Theorem 1.23. Let P be the transition matrix of a random walk on G. Considering the

adversarial strategy where At = I and the one where At =
←−
P , we have that

max(T2(P),T2(P
←−
P )) ≤ RC

2 (P) ≤ RH
2 (P)

Let σi denote the singular values of P. Let vt denote the t-step distribution without any adversary

for the chain Q = P
←−
P starting from v0. Hence the eigenvalues of Q are {σ2

i }. From Lemma 5.5,
the fact that || · ||22,π = |G||| · ||22 we have

||vt − π||22,π = |G|Q2t(g, g) − 1

if the initial distribution v0 is concentrated on g. Since Q2t has equal diagonal entries (it is a
G-circulant),

||vt − π||22,π =
∑

g∈G

Q2t(g, g) − 1

Note that the right hand side is independent of v0. Since the trace equals the sum of the
eigenvalues we have for t = T2(Q),

∑

i>0

σ4t
i = ||vt − π||22,π ≤ (1/2)2

Now consider a run of an adversarially modified version of P for s-steps. Let µs be the distribution
after s rounds starting from µ0. Then from Theorem 5.9, we now have for s = 2t,

||µs − π||22,π ≤
∑

i>0

σ2s
i ≤ (1/2)2

Hence RH
2 (P) ≤ 2T2(P

←−
P ).
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5.2 Discussion: Adversarial strategies for Cayley walks

We now discuss the differences between permitted adversarial strategies for Cayley walks. Let
P be the transition probability matrix of a Cayley walk on a group G. Let D denote the set of
all doubly stochastic matrices. In the definition of R(P) the adversary chooses each At from D,
while for RC and RH the adversary chooses At from C (Cayley strategies) and H (holomorphic
strategies) respectively. Note that Cayley strategies only allowed the adversary to right multiply
the current state in G with a group element of the adversary’s choosing. One could also consider
the set of strategies LR where we allow the adversary to left and right multiply the current state
with group elements of the adversary’s choosing.

Proposition 5.10. Let P be an ergodic Cayley walk on a group G. Then RLR = RC, RLR
2 = RC

2 .

Proof. Let PLR be an adversarially modified version of P using LR-strategies. By convexity,
we may assume that the adversaries choices are deterministic. Suppose the LR adversary’s
choices are {ℓt, rt}t>0. Consider PC , the adversarially modified version of P, where at time t the
adversary applies a right translation by rt.

Then the distribution µLR
t of PLR and µC

t of PC are related. More specifically, we have

(∀h ∈ G), µLR
t (ℓ(t)h) = µC

t (h)

where ℓ(t) = ℓtℓt−1 . . . ℓ1. In particular the two distributions are just permutations of each
other and hence PLR and PC have the same mixing time under total variation as well as L2-
distance.

Corollary 5.11. If G has no proper outer-automorphisms, i. e., all automorphisms are induced
by conjugations, then for any Cayley walk P on G, RC(P) = RH(P) and RC

2 (P) = RH
2 (P).

In particular, this is the case for the symmetric groups Sn, n ≥ 5, n 6= 6.

Hence an LR-adversary is not more powerful than a Cayley adversary. Clearly a holomorphic
adversary is at least as powerful as a Cayley adversary. However it is not clear if the holomorphic
adversary is strictly more powerful.

6 Questions

(4, Example 3.5) constructs a reversible chain P and a lifting Q of P for which

T (Q) = Θ

(

T (P)
log log(1/π∗)

log(1/π∗)

)

(31)

where π is the stationary distribution of P. Also, each state of P lifted to atmost 2 states in Q.
So, if µ denotes the stationary distribution of Q, we have µ∗ ≥ π∗/2.

Theorem 1.29 now implies that

R(Q) ≥ T (P) = Θ

(

T (Q)
log(1/π∗)

log log(1/π∗)

)

= Θ

(

T (Q)
log(1/µ∗)

log log(1/µ∗)

)

(32)

Thus even for reversible Q, R(Q) and T (Q) can differ by more than a constant factor. However
this example had π∗ exponentially small in the number of vertices of the graph under lying Q.
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Question 1. Is it true that for all natural examples of reversible chains P, the robust mixing
time differs from standard mixing time by no more than a constant factor? Specifically,

(a) If π∗ is polynomially small, is R(P) = O(T (P))?

(b) If P is a reversible Cayley walk on a group G, then is R(P) = Θ(T (P))?

Theorem 1.23 shows that for reversible ergodic Cayley walks on a group G, T2(P) ≤ RC
2 (P) ≤

RH
2 (P) ≤ T2(P) + 1. Does something similar hold of robust mixing in variation distance?

Question 2. Let P denote a reversible ergodic random walk on a group G. Is it true that
RH(P) = Θ(T (P))? RC(P) = Θ(T (P))?

We were able to show that RH(PRT ;T ) = O(n log n) but only R((PRT ;T + I)/2) = O(n log2 n).
One approach to proving R(PRT ;T ) = O(n log n) is via the modified log-Sobolev constant ap-
proach. Gao and Quastel (11) show that the modified log-sobolev constant (also called entropy
constant) is Ω(1/n). Currently it is not known whether modified log-Sobolev constant inequali-
ties imply bounds on mixing time in discrete time (without any adversary).

Question 3. Is is true that R(PRT ;T ) = O(n log n)?

What is the difference in power between a holomorphic and a Cayley adversary? For robust
L2-mixing times, Theorem 1.23 shows the difference is at most a constant factor.

Question 4. Is it true that RH(P) = O(RC(P)) when P is a Cayley walk?

In all the examples we have seen, the adversarial strategy which achieves the robust mixing time
can be taken to be homogenous. Is this always the case?

Question 5. Is it true that R(P) = maxA T (PA) where the maximum is taken over all A

compatible with P?

In Example 11, we saw that if X is a sufficiently good expander and the degree is large enough,
then the random walk on X without immediate reversal is rapidly mixing. Can the degree
requirement be removed?

Question 6. Let X be an undirected d-regular expander on n vertices with d ≥ 3. Is it always
the case, that the random walk on X without immediate reversal mixes in O(log n) time?
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[3] Ivona Bezáková and Daniel Štefankovič. Convex combinations of markov chains and sam-
pling linear orderings. In preperation.
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A Comparing Dirichlet forms

Diaconis and Saloff-Coste (8) developed techniques to compare the Dirichlet forms of two re-
versible random walks on the same finite group G and later extended it to reversible Markov
Chains in (9). We restate their results.

Theorem A.1 (Theorem 1,3 in (8)). Let G be a finite group and |G| = N . Let p and p̃ denote
two measures on G with support E and Ẽ both of which generate G.

Suppose each σ̃ ∈ Ẽ is represented as a product of elements τ1τ2 . . . τk of E. Denote |σ̃| = k,
N(σ̃, τ) as the number of times τ occurs in the representation of σ̃. Then

E
P̃
(α,α) ≤ AEP(α,α)

where

A = max
τ∈E

A(τ) and A(τ) =
1

p(τ)

∑

σ̃∈Ẽ

|σ̃|N(σ̃, τ)p̃(σ̃) (33)

In addition if all representations are chosen to have odd length, we also have

F
P̃
(α,α) ≤ AFP(α,α)

Lemma A.2. Let PRT ;T and PRR;T denote the transition probability matrices for the random-top
and random-random transposition chains. Then

EPRR;T
≤ 18EPRT ;T

FPRR;T
≤ 18FPRT ;T

Proof. Let G = Sn and p̃ to correspond to the random to random transposition chain, i.e. p̃(σ̃) =
2/n2 for a non-trivial transposition and 1/n for the identity permutation. Let p correspond
to random to top transposition chain, i.e. p(τ) = 1/n if τ = (1k) for some k = 1, . . . , n.
Then Ẽ = {(i j)|i ≤ j} ∪ {e} and E = {(1 k)|1 ≤ k ≤ n}. are the supports for p̃ and p
respectively. Every non-trivial transposition (i j) ∈ Ẽ can be written as (1 i)(1 j)(1 i). The
identity permutation can be written as itself. Thus all representations have odd length.

We now apply Theorem A.1. To compute A via (33), note that A(id) = 1 and A((1 i)) =
2
n

∑n
j=1 F (i, j) where

F (i, j) = |(i j)|N ((i j), (1, i)) + |(j i)|N ((j i), (1, i)) = 3 ∗ 2 + 3 ∗ 1 = 9

giving A = 18.

Lemma A.3. Let PRR;I denote the transition probability matrix of the random-to-random move
chain, i.e. we pick i,j at random and move the card at position i to position j. Then

EPRR;T
≤ 3EPRR;I
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Proof. This is another application of Theorem A.1. For i 6= j, let ci→j denote the permutation
corresponding to moving the card at position i to position j. Note that ci→jcj→i = id. Each
ci→j is chosen with probability 1/n2 if |i − j| > 1 ci→i+1 = ci+1→i is chosen with probability
2/n2 and id is chosen with probability 1/n.

Fix 1 ≤ i < j ≤ n and write (i j) as a product of permutations of the form ci→j as follows:

(i j) =

{

ci→i+1 if j = i + 1

cj→i · ci+1→j if j > i + 1

Note that each ci→j appears in a representation at most once, i.e. N(·, ·) ≤ 1. We now calculate
A(ci→j) for various values of i and j. Note that ci→j = cj→i when j = i + 1.

• A(id) = 1 as both chains have the same probability of choosing id and id is written as
itself

• (j = i+1) put k = i+2. ci→i+1 is used only in the representations of (ij) and (i k). Hence

A(ci→j) =
2

n2

(

|(i j)|n
2

2
+ |(i k)|n

2

2

)

= 3

• (j > i + 1) put k = i− 1. Then ci→j is only used for the representation of (k j) and hence

A(ci→j) =
1

n2
· 2 · n

2

2
= 1

• (j = i− 1) ci→j = cj→i

• (j < i− 1) ci→j is only used in the representation of (j i). Hence

A(ci→j) =
1

n2
· 2 · n

2

2
= 1

Hence we have A = 3.

Corollary A.4. Let PRR;I denote the random-to-random insertion chain. Then T2(PRR;I) ≤
1.5n log n + O(n) and RH

2 (PRT ;I) ≤ 3n log n + O(n).

Proof. Follows from Lemma A.3 and the fact that PRR;I is reversible and that the L2 mixing
time of PRR;T is ≤ 1.5n log n + O(n).

From Theorem 1.23, we have RH
2 (PRT ;I) ≤ 2T2(Q) where Q = PRT ;I

←−−−
PRT ;I = PRT ;IPTR;I =

PRR;I . Hence the result.
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