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Abstract

Let Xt be a d-dimensional symmetric stable process with parameter α ∈ (0, 2). Consider τD
the first exit time ofXt from the domainD =

{

(x, y) ∈ R × Rd−1 : 0 < x, |y| < φ(x)
}

, where
φ is concave and limx→∞ φ(x) = ∞. We obtain upper and lower bounds for P z {τD > t} and
for the harmonic measure of Xt killed upon leaving D ∩B(0, r). These estimates are, under
some mild assumptions on φ, asymptotically sharp as t → ∞. In particular, we determine
the critical exponents of integrability of τD for domains given by φ(x) = xβ [ ln(x + 1) ]γ ,
where 0 ≤ β < 1, and γ ∈ R. These results extend the work of R. Bañuelos and R. Bogdan
(2).
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1 Introduction

Let Xt be a d-dimensional symmetric α-stable process of order α ∈ (0, 2]. The process Xt

has stationary independent increments and its transition density pα(t, z, w) = fα
t (z − w) is

determined by its Fourier transform

exp(−t|z|α) =

∫

Rd

eiz·wfα
t (w)dw.

These processes have right continuous sample paths and their transition densities satisfy the
scaling property

pα(t, x, y) = t−d/α pα(1, t−1/αx, t−1/αy) .

When α = 2, the process Xt is a d-dimensional Brownian motion running at twice the usual
speed.

Let D be a domain in R
d, and let XD

t be the symmetric α-stable process killed upon leaving D. If
α ∈ (0, 2), Hα the self-adjoint positive operator associated to XD

t is non-local. Analytically this
operator is obtained by imposing Dirichlet boundary conditions on D to the pseudo-differential
operator (−∆)α/2, where ∆ is the Laplace operator in R

d. The transition density of XD
t is

denoted by pα
D(t, x, y) and

τD = inf {t > 0 : Xt /∈ D} ,

is the first exit time of Xt from D.

It is well known, see (7), that if D has finite Lebesgue measure then the spectrum of Hα is
discrete and

lim
t→∞

P x [τD > t]

exp[−tλα
1 ]ϕα

1 (x)
∫

D ϕ
α
1 (y)dy

= 1, (1.1)

where λα
1 is the smallest eigenvalue of Hα and ϕα

1 (x) is its associated eigenfunction.

On the other hand, if the domain is the cone given by

C = {x ∈ R
d : x 6= 0, π − θ < ϕ(x) ≤ π},

where 0 < θ < π and ϕ(x) is the angle between x, and the point (0, . . . , 0, 1). Then there exists
0 < a such that

Ex
[

τp
C

]

<∞, if and only if p < a, (1.2)

see (2), (14), (18), and (20). T. Kulczycki (18) also proved, for α ∈ (0, 2), that a < 1 and a
converges to one as θ approaches zero. The behavior of the critical exponent of integrability a
is significantly different for α = 2. D. Burkholder (9) proved that a goes to infinity as θ goes to
zero. These results were extended, for α ∈ (0, 2], to cones generated by a domain Ω of S

n with
vertex at the origin in (1),(6), (13), and (19).

In the Brownian motion case, it is known there are domains such that the distribution of the
exit time has sub exponential behavior. As a matter of fact, consider the domain D = Dp given
by

Dp =
{

(x1, x) ∈ R × R
d−1 : x1 > 0, xp

1 > |x|
}

, (1.3)
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where p < 1 and |x| is the euclidean norm in R
d−1. R. Bañuelos et al. (4), W. Li (23), and Z.

Shi et al. (21) prove

lim
t→∞

− ln
(

P x
[

τDp > t
] )

t
1−p
1+p

= c, (1.4)

for some c > 0. Similar results were obtained by M. van den Berg (22) for the asymptotic
behavior of p2

D(t, x, y).

Notice Dp is obtained by moving B(0, xp
1), the ball centered at the origin 0 ∈ R

d−1 of radius xp
1,

along the straight line lx1 = (x1, 0, . . . , 0). R. D. DeBlassie and R. Smits (15) extend (1.4) to
domains generated in a similar way by a curve γ. We should also mentioned the work of Collet
et al. ((10),(11)) where the authors study domains of the form D = R

d \K, for K a compact
subset of R

d. In this case, there exits c > 0 such that

lim
t→∞

− ln ( t P x [τD > t] ) = c. (1.5)

It is then natural to ask if, for α ∈ (0, 2), there are domains in R
d such that

P x (τD > t) , (1.6)

has subexponential behavior as t→ ∞.

In this paper we will study the behavior of (1.6) and the behavior of the harmonic measure for
unbounded domains of the form

D =
{

(x, y) ∈ R × R
d−1 : 0 < x, |y| < φ(x)

}

, (1.7)

where φ is an increasing concave function, such that

lim
r→∞

φ(r)

r
= 0 , and

∫ ∞

1

(

φ(ρ)

ρ

)d−1 1

ρ
dρ < ∞. (1.8)

As shown in §5, for φ(x) = [ ln(x+ 1) ]µ, µ ∈ R, (1.6) has sub exponential behavior.

We will denote the ball of radius r centered at the origin, 0 of R
n, by B(0, r). The following

result, which we believe is of independent interest, will be fundamental in the study of (1.6).

Theorem 1.1. Let 0 < x, and Dr = D ∩ B(0, r) where D is given by (1.7). Then there exists
M > 0 and cαd > 0 such that for all r ≥M

1

cαd
[φ(x) ]α

∫ ∞

2r

(

φ(ρ)

ρ

)d−1 1

ρ1+α
dρ

≤ P z
[

XτDr
∈ D

]

(1.9)

≤ cαd |z|α
∫ ∞

r

(

φ(ρ)

ρ

)d−1 1

(ρ− r)α/2ρ1+α/2
dρ,

where z = (x, 0, . . . , 0).
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This theorem can be combined with the results of (19) to obtain upper and lower bounds on
(1.6). For instance one can show that there exist cαd > 0 and M > 0

1

cαd
exp

(

−λ1t

[φ(r) ]α

)
∫ ∞

2r

(

φ(ρ)

ρ

)d−1 1

ρ1+α
dρ

≤ P z (τD > t)

≤ cαd

[

exp

(

−λ1t

[φ(r) ]α

)

+

∫ ∞

r

(

φ(ρ)

ρ

)d−1 1

(ρ− r)α/2ρ1+α/2
dρ

]

,

for all z ∈ D and all t, r > M . Our bounds on (1.6) will imply the following result.

Theorem 1.2. Let D be the domain given by (1.7) with

φ(x) = xβ [ ln(x+ 1) ]µ . (1.10)

(i) If 0 < β < 1 and µ ∈ R, or β = 1 and µ < −1. Then there exist M > 0 and c > 0, depending
only on d, α, β and µ, such that for all t ≥M and all z ∈ D

1

c

[ ln t ]q

tp
≤ P z ( τD > t )

≤ c
[ ln t ]q

tp
[ ln ( ln t )p ]p , (1.11)

where p = (1−β)(d−1)+α
αβ , and q = pαµ+ (d− 1)µ. In particular

Ez [ τ r
D [ ln (1 + τD) ]s ] <∞, (1.12)

if and only if either r < p, or r = p and s < −1 − q.

(ii) If β = 0 and µ ∈ R. Then there exist M > 0 and c > 0, depending only on d, α and µ, such
that for all t ≥M and all z ∈ D

1

c
t

µ(d−1)
1+µα exp

[

−2η t
1

µα+1

]

≤ P z ( τD > t )

≤ c t
µ(d−1)
1+µα exp

[

−η t
1

µα+1

]

, (1.13)

where

η = (d− 1 + α)

(

λ1

d− 1 + α

)
1

d−1+α

.
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In particular, if we take µ = 0 and 0 < β < 1 in (1.10), then

Ez
[

τp
D

]

<∞, (1.14)

if and only if p < (1−β)(d−1)+α
αβ . This result was first obtained by R. Bañuelos and K. Bogdan in

(2).

The paper is organized as follows. In §2 we setup more notation and give some preliminary
lemmas. Theorem 1.1 is proved in §3. We obtained bounds on the asymptotic behavior of (1.6)
in §4, and finish by proving Theorem 1.2 in §5.

Throughout the paper, the letters c,C, will be used to denote constants which may change from
line to line but which do not depend on the variables x, y, z, etc. To indicate the dependence of
c on α, or any other parameter, we will write c = c(α), cα or cα.

2 Preliminary results.

Throughout this paper the norm in the Euclidean space, regardless of dimension, will be denote
by | · |, and φ : R

+ → R
+ will be an increasing concave function such that

φ(0) = 0 and lim
x→∞

φ(x)

x
= 0. (2.1)

Notice that the concavity of φ implies

φ′(x) ≤
φ(x)

x
. (2.2)

Thus

lim
x→∞

φ′(x) = 0, and
φ(x)

x
is decreasing. (2.3)

For any domain D ⊂ R
d, we denote by dD(z) to the distance from z to the boundary ∂D.

Lemma 2.1. Let D be the domain given by (1.7). If u > 0 and z = (u, 0, . . . , 0). Then

lim
u→∞

φ(u)

dD(u)
= 1.

Proof. Let u > 0. A simple computation shows that there exists x0 > 0 such that

u = x0 + φ(x0)φ
′(x0),

and
dD(z) =

√

(u− x0)2 + [φ(x0) ]2 = φ(x0)
√

1 + [φ′(x0) ]2 .

Then the monotonicity of φ and (2.3) imply

dD(z) = φ(x0) [ 1 + o(1) ] ≤ φ(u) [ 1 + o(1) ]. (2.4)
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On the other hand, thanks to (2.3)

u = x0 ( 1 + o(1) ),

and
φ(u) ≤

u

x0
φ(x0) = [ 1 + o(1) ] φ(x0).

Thus
dD(z) = φ(x0) [ 1 + o(1) ] ≥ φ(u) [ 1 + o(1) ] , (2.5)

the desired result immediately follows.

In the next section we will approximate certain integrals over D using spherical coordinates. For
this we will need to study the behavior of the cross section angles.

For r > 0, let xr be the solution of

[xr ]2 + [φ(xr) ]2 = r2, (2.6)

and

θ(r) = arctan

(

φ(xr)

xr

)

≥ arctan

(

φ(r)

r

)

, (2.7)

the angle between the x-axis and (xr, 0, . . . , 0, φ(xr)).

One easily sees that (2.1) and (2.6) imply

lim
r→∞

xr

r
= 1. (2.8)

Thus

lim
r→∞

φ(xr)

xr
= 0,

and there exists M > 0 such that

1
2

φ(r)
r ≤ θ(r) ≤ 2φ(r)

r

1
2 ϕ ≤ sin(ϕ) ≤ ϕ,

(2.9)

for all r ≥M and 0 ≤ ϕ ≤ θ(r).

105



3 Harmonic measure estimates

In this section we study the harmonic measure of the domain

Dr = D ∩B( 0, r ),

for D given by (1.7). Our arguments follow the ideas of T. Kulczycki in (18). As a matter of
fact, we are interested in the behavior of

P z
[

XτDr
∈ B

]

,

as r → ∞, where z ∈ D, and B is a borelian subset of D. For m ∈ Z, we define

Dm = Dr2m , Am = Dm \Dm−1, (3.1)

and B(Am) to be the Borel subsets of Am.

To simplify the notation we set
τm = τDm.

If x ∈ Am the probability thatX jumps directly to B, B\Dm+1 6= ∅, when leaving the subdomain
Dm+1 is

qm(x,B) = P x
(

Xτm+1 ∈ B
)

=

∫

B
pm(x, y)dy, (3.2)

where pm is the Poisson kernel of Xt killed upon leaving the domain Dm+1.

However the process Xt, starting at x ∈ Am, could also jump out of Dm+1 and reach B ⊂ An

after precisely k successive jumps to Ai1 , . . . , Aik , m < i1 < i2 < . . . < ik = n. Thus we are
interested in the behavior of

qi1,...,ik(x,B) (3.3)

= P z
{

Xτi0+1 ∈ Ai1 , . . . ,Xτik−2+1 ∈ Aik−1
,Xτik−1+1 ∈ B

}

,

where i0 = m. The Markov property implies that

qi1,...,ik(x,B) =

∫

Ai1

. . .

∫

Aik−1

∫

B

k−1
∏

i=0

pik(yi, yi+1) dy1 . . . dyk, (3.4)

where i0 = m. Notice that the event

{

Xτk+1
∈ Al

}

,

is not empty if and only if k ≤ l − 2. Thus
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qi1,...,ik(x,Bn) = 0

for all borelian sets Bn ⊂ An, unless (i1, . . . , ik) ∈ Jk(m,n) where

Jk(m,n) =
{

(i1, . . . , ik) ∈ Z
k : i1 ≥ m+ 2, ik = n, ij+1 − ij ≥ 2

}

, (3.5)

for m,n ∈ Z and k ∈ N with m < n.

Therefore the probability that X starts at x ∈ D and goes to B ∩D after k jumps, of the type
(3.3), is

Pk(x,B) =
∑

(i1,...,ik)∈Zk

qi1,...,ik(x,B) (3.6)

=
∑

(i1,...,ik)∈Jk(m,n)

qi1,...,ik(x,B).

Let

σ(x,B) =

n−m
2

∑

k=1

Pk(x,B). (3.7)

T. Kulzcycki prove that if x ∈ D−1 and B1 ⊂ A1, then

P x (XτD
∈ B1) = σ(x,B1) +

∫

A0

P y (XτD
∈ B1) dσ(x, y). (3.8)

Thus to estimate the harmonic measure it is enough to have good estimates of σ(x, ·). We will
start by estimating the function qm(x, ·).

Lemma 3.1. Let m,n ∈ Z with n ≥ m + 2. If x ∈ Am and Bn ∈ B(An). Then there exists
cαd > 0 such that

qm(x,Bn) ≤
cαd

2(n−m)α

∫

Bn

ψm(y)

|y|d
dy, (3.9)

where

ψm(|y|) =

{

1 if |y| ≥ 2m+2

(

2m+1r
|y|−2m+1r

)α/2
if 2m+1 ≤ |y| < 2m+2

.

In particular

qm(x,An) ≤
cαd

2(n−m)α

∫ 2n

2n−1

(

φ(ρ)

ρ

)d−1 ψm(ρ)

ρ
dρ. (3.10)

Proof. Since x ∈ Am ⊂ Dm+1
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qm(x,Bn) ≤ P x
(

Xτ
B(0,r2m+1)

∈ Bn

)

= cαd

∫

Bn

(

22m+2r2 − |x|2
)α/2

(|y|2 − 22m+2r2)α/2 |x− y|d
dy. (3.11)

If n−m ≥ 2, and y ∈ Bn we have

|x− y| ≥ 2n−1r − 2mr ≥ 2n−2r ≥ |y|/4.

Besides, if n > m+ 2, then

|y|2 − 22m+2r2 ≥ 22nr2 − 22m+2r2 ≥ 22n−3r2.

Thus

P (x,Bn) ≤ cαd

∫

Bn

2(m+1)α

|y|d2(n−1)α
dy =

cαd
2(n−m)α

∫

Bn

1

|y|d
dy.

On the other hand, if n = m+ 2, we have

2m+1r + |x|

|y| + 2m+1r
≤ 1.

Then

P (x,Bn) ≤
cαd

2(n−m)α

∫

Bn

2(m+1)α/2

|y|d (y − 2m+1r)α/2
dy.

Finally if Bn = An. Using spherical coordinates we obtain from (2.9)

∫

Bn

ψm(y)

|y|d
dy ≤ cαd

∫ 2nr

2n−1r

∫ θ(ρ)

0

ψm(ρ)

ρ
sind−2(ϕ) dϕdρ (3.12)

≤ cαd

∫ 2nr

2n−1r

∫ θ(ρ)

0

ψm(ρ)

ρ
ϕd−2 dϕdρ

≤ cαd

∫ 2nr

2n−1r

∫ 2
φ(ρ)

ρ

0

ψm(ρ)

ρ
ϕd−2 dϕdρ

≤ cαd

∫ 2nr

2n−1r

ψm(ρ)

ρ

(

φ(ρ)

ρ

)d−1

dρ,

and (3.10) follows.

The following corollary is an immediate consequence of the definition of qi1,...,ik(x, ·).

Corollary 3.2. Let m,n ∈ Z be such that n ≥ m+ 2. If x ∈ Am and Bn ∈ B(An). Then there
exists cαd > 0 such that

qi1,...,ik(x,Bn) ≤
[ cαd ]k

2(n−m)α
I(ik−1, Bn)

k−1
∏

j=0

I(ij−1, Aij ), (3.13)
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where

I(l, Bk) =

∫

Bk

ψl(y)

|y|d
dy, (3.14)

for all l, k ∈ Z and all borelian sets Bk contained in Ak.

In order to estimate σ(·, ·), we will need the following monotonicity result.

Lemma 3.3. Let k,m ∈ Z be such that k ≥ m. Then

I(k,Ak+2) ≤ 2I(m,Am+2). (3.15)

Proof. Recall that the function φ(x)/x is decreasing. Following the arguments of Lemma 3.1,
we obtained a constant cdα such that

I(k,Ak+2) (3.16)

≤ cdα

∫ 2k+2r

2k+1r

[

φ(ρ)

ρ

]d−1 [

2k+1r

(ρ− 2k+1r)

]α/2
1

ρ
dρ

≤ cdα

[

φ(2k+1r)

2k+1r

]d−1
1

2k+1r

∫ 2k+2r

2k+1r

[

2k+1r

ρ− 2k+1r

]α/2

dρ

= cdα

[

φ(2k+1r)

2k+1r

]d−1
1

1 − α/2
.

On the other hand, using spherical coordinates and (2.9)

I(m,Bm+2) (3.17)

≥ cdα

∫ 2m+2r

2m+1r

∫ θ(ρ)

0

ψm(ρ)

ρ
sind−2(ϕ1) dϕ1dρ

≥ cdα

∫ 2m+2r

2m+1r

[

φ(ρ)

ρ

]d−1 [

2m+1r

(ρ− 2m+1r)

]α/2
1

ρ
dρ

≥ cdα

[

φ(2m+2r)

2m+2r

]d−1
1

2m+2r

∫ 2m+2r

2m+1r

[

2m+1r

ρ− 2m+1r

]α/2

dρ

= cdα

[

φ(2m+2r)

2m+2r

]d−1
1

2 − α
,

and the result follows.

Let (i1, . . . , ik) ∈ J(m,n), and 1 ≤ s < k − 1. By the definition of J(m,n) we have

m+ 2s ≤ is.

Now if is + 2 = is+1, Lemma 3.3 implies that

∫ r2is+2

r2is+1

ψis(ρ)

|ρ|d
dρ = I(is, Ais+1)

≤ 2 I(m + 2s,Am+2s+1) (3.18)

= 2

∫ r2m+2s+2

r2m+2s+1

ψm+2s(ρ)

|ρ|d
dρ.
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In addition, if ik−1 < n− 2, then for all ρ ≤ 2nr

2n−1r

ρ− 2n−1r
≥ 1.

Thus

I(ik−1, Bn) =

∫

Bn

1

|y|d
dy

≤ cαd

∫

Bn

[

2(n−1)r

|y| − 2n−1r

]α/2
1

|y|d
dy.

= µn(Bn).

Since this inequality also holds when ik−1 = n− 2, we conclude that

I(ik−1, Bn) ≤ µn(Bn). (3.19)

In order to obtain and upper bound on σ(x,B), we need to estimate

Pk(x,Bn) =
∑

(i1,...,ik)∈Jk(m,n)

qi1,...,ik(x,Bn).

Lemma 3.4. Let m,n ∈ Z be such that n ≥ m + 2. If x ∈ Am and Bn ∈ B(An). Then there
exists cαd > 0 such that for k ≥ 2

Pk(x,Bn) ≤
[cαd ]k

2(n−m)α
µn(Bn)

k−2
∏

i=0

∫ r2n−2(k−i)

r2m+2i+1

ψm+2i(ρ)

|ρ|d
dρ. (3.20)

Proof. Thanks to Corollary 3.2 it is enough to prove that

∑

(i1,...,ik)∈Jk(m,n)

I(ik−1, Bn)

k−1
∏

j=1

I(ij−1, Aij ) (3.21)

≤ µn(Bn)
k−2
∏

i=0

∫ r2n−2(k−i)

r2m+2i+1

ψm+2i(ρ)

|ρ|d
dρ.

We will prove (3.21) by induction in k. Notice that

J2(m,n) = {(i, n) : m+ 2 ≤ i ≤ n− 2} .

Then (3.14) and (3.19) imply that

n−2
∑

i=m+2

I(m,Ai) I(i, Bn)

≤
[cαd ]2

2(n−m)α
µn(Bn)

n−2
∑

i=m+2

∫ r2i

r2i−1

ψm(ρ)

|ρ|d
dρ,
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and the result follows for k = 2.

On the other hand, Lemma 3.3, and (3.18) imply

∑

(i1,...,ik)∈Jk(m,n)

I(ik−1, Bn)

k−1
∏

j=1

I(ij−1, Aij )

=

n−2(k−1)
∑

i1=m+2

I(m,Ai1)







∑

(i2,...,ik)∈Jk−1(i1,n)

I(ik−1, Bn)

k−1
∏

j=2

I(ij−1, Aij )







≤

n−2(k−1)
∑

i1=m+2

I(m,Ai1)







µn(Bn)
k−3
∏

j=0

∫ r2n−2(k−1−j)

r2i1+2j+1

ψi1+2j(ρ)

|ρ|d
dρ







≤

n−2(k−1)
∑

i1=m+2

∫ r2i1

r2i1−1

ψm(ρ)

|ρ|d
dρ







µn(Bn)

k−3
∏

j=0

∫ r2n−2(k−(j+1))

r2m+2+2j+1

ψm+2+2j+1(ρ)

|ρ|d
dρ







≤

n−2(k−1)
∑

i1=m+2

∫ r2i

r2i−1

ψm(ρ)

|ρ|d
dρ







µn(Bn)
k−3
∏

j=0

∫ r2n−2(k−(j+1))

r2m+2+2j+1

ψm+2+2j(ρ)

|ρ|d
dρ







≤

∫ r2n−2(k−1)

r2m+1

ψm(ρ)

|ρ|d
dρ







µn(Bn)

k−3
∏

j=0

∫ r2n−2(k−(j+1))

r2m+2+2j+1

ψm+2+2j(ρ)

|ρ|d
dρ







,

and the result follows.

We finally obtain an upper bound on σ(x,B).

Lemma 3.5. Let m,n ∈ Z be such that n ≥ m+ 2. If x ∈ Am, Bn ∈ B(An), and

∫ ∞

1

(

φ(ρ)

ρ

)d−1 1

ρ
dρ <∞. (3.22)

Then there exists a constant cαd such that

σ(x,Bn) ≤ cαd |x|α
∫

Bn

[

1

|y| − 2n−1r

]α/2 1

|y|d+α/2
dy. (3.23)

Proof. The previous result implies that

σ(x,Bn) =

n−m
2

∑

k=1

Pk(x,Bn)

≤
cαd µn(Bn)

2(n−m)α



1 +

n−m
2

∑

k=2

k−2
∏

i=0

{

cαd

∫ r2n−2(k−i)

r2m+2i+1

ψm+2i(ρ)

|ρ|d
dρ

}



 . (3.24)

Let y ∈ Bn, since x ∈ Am we have

2mαrα ≤ 2|x|α, and |y|α/2 ≤ 2nα/2rα/2.
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Then

1

2(n−m)α
µn(Bn) =

2mαrα

2nαrα

∫

Bn

(

2n−1r

|y| − 2n−1r

)α/2
1

|y|d
dy

≤ |x|α
∫

Bn

1

(|y| − 2n−1r)α/2

1

|y|d+α/2
dy.

On the other hand

n−m
2

∑

k=2

k−2
∏

i=0

{

cαd

∫ r2n−2(k−i)

r2m+2i+1

ψm+2i+1(ρ)

|ρ|
dρ

}

≤
∞
∑

k=2

k−2
∏

i=0

{

cαd

∫ ∞

r2m+2i+1

ψm+2i+1(ρ)

|ρ|d
dρ

}

,

one easily sees that (3.22) implies the converges of this series.

The proof of Lemma 3.8, Lemma 3.9 and Lemma 3.10 of (18) can be followed step by step to
obtain the following result, which is the upper bound on Theorem 1.1.

Proposition 3.6. Let x ∈ Dr/2 and B a Borelian subset of D \Dr. Then there exists cαd > 0
such that

P z
[

XτDr
∈ B

]

≤ cαd |x|α
∫

B

(

1

|y| − r

)α/2 1

|y|d+α/2
dy, (3.25)

In particular
P z

[

XτDr
∈ D

]

≤ cαd |x|α Λ(r). (3.26)

We shall now obtain the lower bound in (1.10) of Theorem 1.1.

Notice that Dr is a bounded domain that satisfies the exterior cone condition. It is well know
that, see (17),

P x
[

XτDr
∈ D \Dr

]

=

∫

Dr

GDr(x, y)

∫

D\Dr

cαd
|y − z|d+α

dz dy

≥

∫

Dr

GDr(x, y)

∫

D\D2r

cαd
|y − z|d+α

dz dy.

Notice that for all y ∈ Dr and all z ∈ D2r,

|z|

2
≤ |z| − |y| ≤ |z − y| ≤ 2|z|.

Then

P x
[

XτDr
∈ D \Dr

]

≥

∫

Dr

GDr(x, y)

∫

D\D2r

cαd
|z|d+α

dz dy. (3.27)
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We will estimate the integral on z using polar coordinates. Thanks to (2.9) there exists M ∈ R

such that for all r ≥M ,

∫

D\D2r

cαd
|z|

dz =

∫ ∞

2r

∫ θ(ρ)

0
sind−2(ϕ)

1

ρ1+α
dϕdρ (3.28)

≥ cαd

∫ ∞

2r
[ θ(ρ) ]d−1 1

ρ1+α
dρ

≥ cαd

∫ ∞

2r

[

φ(ρ)

ρ

]d−1 1

ρ1+α
dρ.

Finally

∫

Dr

GDr(x, y)dy = Ex [ τDr ]

≥ E0
[

τB( 0,dDr (x) )

]

(3.29)

= cαd [ dDr(x) ]α .

Combining (3.28) and (3.29) we obtain the desired inequality.

4 Exit time estimates

T. Kulczycki proved the semigroup associated to the killed symmetric α-stable process on any
bounded domain is intrinsic ultracontractive. Thus there exists cαd > 0 such that

1

cαd
exp

[

−
tλd

rα

]

≤ P 0
[

τB(0,r) > t
]

≤ cαd exp

[

−
tλd

rα

]

, (4.1)

for all t > 1, where λd is the principal eigenvalue of Xt killed upon leaving B(0, 1) ⊂ R
d.

We now use the results of §4 to obtained estimates for the distribution of the exit time.

Lemma 4.1. Let r > 0 and Dr = D ∩ B(0, r). If λ1 is the principal eigenvalue of the one
dimensional symmetric α-stable process killed upon leaving (−1, 1). Then there exists c = c(d, α)
such that

P z [ τDr > t] ≤ c exp

[

−
[λ1 + o(1) ] t

[φ(r) ]α

]

, (4.2)

for all z ∈ D and all t > 1.

Proof. Notice Dr is a convex domain in R
d. Let r(Dr) be the inradius of Dr and

Ir = (−r(Dr), r(Dr) ).

Then Theorem 5.1 in (19) and (4.1) imply

P z [ τDr > t ] ≤ P 0 [ τIr > t] ≤ cα1 exp

[

−λ1 t

rα(Dr)

]

. (4.3)

113



One easily proves that for all z ∈ Dr

dDr(z) = min{dD(z), r − |z|},

and that there exists u = (x, 0, . . . , 0) such that

r(Dr) = dDr(u) = dD(u) = r − |x| ≤ φ(r).

Since dD(u) ≤ φ(x), then

lim
r→∞

(

1 −
|x|

r

)

= lim
r→∞

dD(u)

r
≤ lim

r→∞

φ(x)

r
≤ lim

r→∞

φ(r)

r
= 0.

On the other hand, Lemma 2.1 implies that

φ(r) ≤
r

x
φ(x) = [ 1 + o(1) ] dD(u) = [ 1 + o(1) ] r(Dr).

Hence

lim
r→∞

r(Dr)

φ(r)
= 1,

and (4.2) follows from (4.3).

We now obtained our lower bound on the asymptotic behavior of P z ( τD > t ).

Proposition 4.2. Let z = (x, 0, . . . , 0) ∈ D and Dr = D∩B(0, r). Then there exist M > 0 and
c > 0, depending only on d and α, such that

P z [ τD > t ] ≥ c exp

[

−
λ1 t

[φ(r) ]α

]

[ dDr(z) ]α
∫ ∞

2r

[φ(ρ) ]d−1

ρd+α
dρ,

for all r ≥M and all t > 1.

Proof. Let η < 1. The strong Markov property implies

P z [ τD > t ] ≥ P z
[

τD > t, XτDr
∈ D

]

≥ P z
[

XτDr
∈ D ,PXτDr ( τD > t )

]

(4.4)

≥ P z
[

XτDr
∈ D̂ \Dr , P

XτDr ( τD > t )
]

,

where

D̂ =
{

(x, y) ∈ R × R
d−1 : 0 < x, |y| < η φ(x)

}

.

Let w ∈ D̂ \Dr. Then Lemma 2.1 implies that there exists M > 0 such that for all r ≥M
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B = B (w,φ(r) [1 − 2η] ) ⊂ D.

Thus, thanks to (4.1), we have

Pw ( τD > t ) ≥ Pw ( τB > t ) ≥ cαd exp

[

−
λd t

[φ(r) (1 − 2η) ]α

]

,

for some c > 0. Now equation (58) in (19) implies

λd < λ1.

Take 0 < η = η(α, d) < 1 such that
λd

(1 − 2η)α
= λ1.

Hence for all w ∈ D̂ \Dr

Pw ( τD > t ) ≥ cαd exp

[

−
λ1 t

[φ(r) ]α

]

.

We conclude

P z [ τD > t, τDr < τD ] ≥ c exp

[

−λ1 t

[φ(r) ]α

]

P z
[

XτDr
∈ D̂ \Dr

]

,

where c depends only on d and α.

On the other hand, following the arguments used to prove Proposition 3.7 one easily shows

P z
[

XτDr
∈ D̂ \Dr

]

≥ c [ dDr(z) ]α
∫ ∞

2r

[φ(ρ) ]d−1

ρd+α
dρ,

for some c depending only on d and α.

We end this section with an upper bound for the distribution of the exit time.

Proposition 4.3. Let z = (x, 0, . . . , 0) ∈ D. Then there exist M > 0 and c > 0, depending only
on d and α, such that

P z [ τD > t ] ≤ c exp

[

−
[λ1 + o(1)] t

2[φ(r1) ]α

]

+ c |x|α Λ(r2) (4.5)

+ c |x|α Λ(r1) exp

[

−
[λ1 + o(1)] t

2[φ(r2) ]α

]

,

for all r2 > r1 ≥M and all t > 1.
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Proof. Let 0 < r1 < r2, then

P z [ τD > t ] = P z
[

τD > t, τDr2
< τD

]

+ P z
[

τD > t, τDr1
= τD

]

+ P z
[

τD > t, τDr1
< τD ≤ τDr2

]

≤ P z
[

XτDr2
∈ D \Dr2

]

+ P z
[

τDr1
> t

]

(4.6)

+ P z
[

τDr2
> t, τDr1

< τD ≤ τDr2

]

.

Besides

P z
[

τDr2
> t, τDr1

< τD ≤ τDr2

]

= P z

[

τDr1
>
t

2
, τDr2

> t, τDr1
< τD ≤ τDr2

]

+ P z

[

τDr1
≤
t

2
, τDr2

> t, τDr1
< τD ≤ τDr2

]

≤ P z

[

τDr1
>
t

2

]

+ P z

[

τDr2
− τDr1

>
t

2
, τDr1

< τD

]

.

The strong Markov property and Theorem 5.1 in (19) imply

P z

[

τDr2
− τDr1

>
t

2
, τDr1

< τD

]

= Ez

[

PXτr1

[

τDr2
>
t

2

]

, τDr1
< τD

]

≤ P z
[

τDr1
< τD

]

P 0

[

τDr2
>
t

2

]

.

The result follows from Lemma 4.1 and Proposition 3.6.

5 Applications and examples

In this section we will apply the results of the previous section to the function

φ(x) = xβ [ ln(x+ 1) ]µ .

A straight forward computation shows that φ satisfies the assumptions of Theorem 1.1 and §4,
if either

0 ≤ β < 1, and µ ∈ R,

or
β = 1, and µ < −1.

Case I: Let us first assume that 0 < β < 1, and µ ∈ R, or β = 1 and µ < −1. First we obtain
a lower bound for P z ( τD > t ). Let

r + 1 =
t

1
βα

[ ln t ]
µ
β

.

Then
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lim
t→∞

exp

[

−
λ1 t

[φ(r) ]αβ

]

= lim
t→∞

exp



−
λ1 [ ln t ]µα

[

1
βα ln t− µ

α ln (ln t)
]µα





= exp [−λ1 (βα )µα ] .

On the other hand, if p = (1−β)(d−1)+α
αβ , then

∫ ∞

2r

[φ(ρ) ]d−1

ρd+α
dρ =

∫ ∞

2r

[ ln(ρ+ 1) ]µ(d−1)

ρpβα+1
dρ

=
[ ln(r + 1) ]µ(d−1)

rpβα

∫ ∞

2

(

1 + ln(t+1)
ln(r+1)

)µ(d−1)

tpβα+1
dt.

One easily proves that the function

∫ ∞

2

(

1 +
ln(t+ 1)

ln(r + 1)

)µ(d−1) 1

tpβα+1
dt,

is bounded in r. Then there exists c = c(d, α) > 0 such that

P z ( τD > t) ≥ c

[

1

βα
ln t−

µ

β
ln (ln t)

]µ(d−1) [ ln t ]µpα

tp

= c

[

1

βα
−
µ

β

ln (ln t)

ln t

]µ(d−1) [ ln t ]q

tp

≥ c
[ ln t ]q

tp
,

where q = pαµ+ (d− 1)µ.

We now obtain the upper bound. A simple computation shows that there exists c = c(d, α) such
that

Λ(r) =

∫ ∞

r

[

[ ln(ρ+ 1) ]µ

ρβ+1

]d−1 1

(ρ− r)α/2 ρ1+α/2
dρ.

≤ c
[ ln(r + 1) ]µ(d−1)

rpβα
.

Consider r1 and r2 given by

r1 + 1 =

[

tλ1

2 ( ln tp − ln ( ln t)q )

]
1

βα 1
[

1
βα ln t− 1

βα ln ( ln tp − ln[ ln t ]q )
]

µ
β

,
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r2 + 1 =

[

λ1 t

2

]
1

αβ 1

[ ln t ]
µ
β [ ln(ln t)p ]

1
αβ

.

Then there exists c = c(d, α, β, µ) such that

exp

[

−
λ1 t

[φ(r1) ]α

]

≤ c
[ ln t ]q

tp
,

Λ(r1) ≤ c
1

tp
[ ln t ]q+p ,

exp

[

−
λ1 t

[φ(r2) ]α

]

≤ c
1

[ ln t ]p
,

and

Λ(r2) ≤ c
[ ln t ]q

tp
[ ln ( ln t)p ]p .

Proposition 4.3 immediately implies that

P z ( τD > t) ≤ c
[ ln t ]q

tp
[ ln ( ln t)p ]p ,

which is the desired result.

The case µ = 0 was first study by R. Bañuelos and K. Bogdan in (1), where the authors obtain
(1.12).

As mention in (23) the asymptotic behavior of P z( τD > t ) is not known for α = 2, β = 1 and
µ < −1. However using the well known behavior of the exit times from cones and a suitable
approximation of the domain D we can prove that there exists M > 0, c1 > 0 and c2 > 0 such
that

1

c1
exp

[

−
1

c2
(ln t)1−µ

]

≤ P z ( τD > t)

≤ c1 exp
[

−c2(ln t)
1−µ

]

,

for all t ≥M .

Case II: We now study the case β = 0 and µ ∈ R. That is we now consider

φ(x) = ( ln[x+ 1] )µ ,

where µ ∈ R. In this case we will have subexponential behavior of (1.6).

Let
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r + 1 = exp
[

η1 t
1

(1+µα)

]

, where η1 =

(

λ1

d− 1 + α

)
1

d−1+α

.

Consider z = (x, 0, . . . , 0) with 0 < x ≤ r/2, and η = (d− 1 + α)η1, then

exp

[

−
λ1 t

[ ln(r + 1) ]αµ

]

= exp
[

−η t
1

µα+1

]

,

and

∫ ∞

2r

[φ(ρ) ]d−1

ρd+α
dρ =

∫ ∞

2r

[ ln(ρ+ 1) ]µ(d−1)

ρd+α
dρ

≥ c
[ ln(r + 1) ]µ(d−1)

rd−1+α
,

for some c > 0. Proposition 4.2 implies that there exists M > 0 and c > 0 such that

c t
µ(d−1)
1+µα exp

[

−2η t
1

µα+1

]

≤ P z ( τD > t ) ,

for all t > M .

An argument similar to the one used to prove Proposition 4.3 shows that there exists M > 0
and c > 0 such that

P z ( τD > t ) ≤ c

[

Λ(r) + exp

(

−
λ1t

[φ(r) ]α

)]

,

and

Λ(r) ≤ c
[ ln(r + 1) ]µ(d−1)

rd−1+α
≤ c t

µ(d−1)
1+µα exp

[

−η t
1

µα+1

]

,

for all r > M and all t > M . Then

P z ( τD > t ) ≤ c t
µ(d−1)
1+µα exp

[

−η t
1

µα+1

]

,

which is the upper bound of (1.13).
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