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Abstract

Consider reinforced random walk on a graph that looks like a doubly infinite ladder. All
edges have initial weight 1, and the reinforcement convention is to add δ > 0 to the weight of
an edge upon first crossing, with no reinforcement thereafter. This paper proves recurrence
for all δ > 0. In so doing, we introduce a more general class of processes, termed multiple-
level reinforced random walks.

Editor’s Note

A draft of this paper was written in 1994. The paper is one of the first to make any
progress on this type of reinforcement problem. It has motivated a substantial number
of new and sometimes quite difficult studies of reinforcement models in pure and applied
probability. The persistence of interest in models related to this has caused the original
unpublished manuscript to be frequently cited, despite its lack of availability and the presence
of errors. The opportunity to rectify this situation has led us to the somewhat unusual step
of publishing a result that may have already entered the mathematical folklore.
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1 Introduction and summary

Coppersmith and Diaconis (1987) have initiated the study of a class of processes called reinforced
random walks; see also Diaconis (1988). Take a graph with initial weights assigned to the edges.
Then define a discrete-time, nearest-neighbor random walk on the vertices of this graph as
follows. At each stage, the (conditional, given the past) probability of transition from the current
vertex to an adjacent vertex is proportional to the weight currently assigned to the connecting
edge. The random walk always jumps, so these conditional transition probabilities sum to 1.
The weight of an edge can increase when the edge is crossed, with the amounts of increase
depending on the reinforcement convention. The convention most studied by Coppersmith and
Diaconis (1987) is to always add +1 to the weight of an edge each time it is crossed. In this
setting, they show that a reinforced random walk on a finite graph is a mixture of stationary
Markov random walks. The mixing measure is given explicitly in terms of the “loops” of the
graph.

Pemantle (1988) has studied reinforced random walks with the Coppersmith-Diaconis reinforcing
convention on infinite acyclic graphs. Davis (1989) obtained results for nearest-neighbor
reinforced random walks on the integers Z with very general reinforcement schemes.

Consider nearest-neighbor reinforced random walk on the lattice Z2 of points in R2 with integer
coordinates. All edges between neighboring points are assigned initial weight 1. It seems
plausible (perhaps even “obvious”) that any spatially homogeneous reinforcement scheme for
which the process cannot get stuck forever on a finite set of points will be recurrent, that is,
will visit each point of the lattice infinitely often. However, determining whether any such
reinforcement scheme leads to recurrence of reinforced random walk on Z2 has remained open
for fifteen years.

Michael Keane (2002) has proposed the following simpler variant: consider nearest-neighbor
reinforced random walk on the points of Z2 with y coordinate 1 or 2 (and starting at (0, 1), say).
If one draws in the edges between nearest neighbors, one of course gets an infinite horizontal
ladder. Again, all initial weights are taken to be +1. For the reinforcement scheme, Keane
suggested that edges be reinforced by δ = 1 the first time they are crossed and then never again.
This kind of reinforcement is now known as once-reinforced random walk; see, e.g., Durrett,
Kesten and Limic (2002). This main result of this paper is that Keane’s one-time reinforced
random walk on a ladder is recurrent for any positive reinforcement parameter δ.
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2 Notation and results

Let (Ω, {Fn}n≥0, P) be a standard filtration. Let d ≥ 2 be an integer and let {(Xn, Yn)}n≥0 be
random variables in Z× {1, . . . , d} that are adapted (that is, (Xn, Yn) ∈ Fn) and satisfy

(i) (X0, Y0) = (0, 1).

(ii) {Xn}∞n=0 is a nearest neighbor random motion on Z, i.e., P{|Xn+1 −Xn| = 1} = 1 ∀ n.

(iii) P{Xn+1 = Xn + 1|Fn} = Wn(Xn,Yn)
Wn(Xn,Yn)+Wn(Xn−1,Yn) .

Here Wn(x, y) ∈ Fn is the weight at time n of the horizontal edge to the right of (x, y), and is
defined in our model by Wn = 1 + δ · R(x, y, n) and R(x, y, n) is the indicator function of the
event that the edge to the right of (x, y) has been crossed by time n:

R(x, y, n) = I {∃j < n : {Xj , Xj+1} = {x, x + 1} and Yj = y} . (2.1)

For lack of a better name, the process just described will be called MLRRW, standing for
multiple-level reinforcing random walk. The way to think about it is that we first move
horizontally from (Xn, Yn) according to the rules of reinforced random walk, and then we can
move vertically in an arbitrary way before the next horizontal move. To make Keane’s reinforced
random walk on a ladder into an MLRRW, take Fn to be the σ-field generated by the process
up to just before the (n + 1)st horizontal step, together with the knowledge that the next step
will be horizontal. It is easy to show that the conditions for MLRRW are satisfied by this choice
of {Fn}∞n=0.

Let p = (1 + δ)/(2 + δ) and q = 1− p = 1/(2 + δ). Note that p is the probability of crossing the
reinforced edge when the choice is between one reinforced edge and one unreinforced edge. The

notation I(A) is used for the indicator function of the event A as in (2.1) above. A sum
m∑

i=j
ai

will be taken to equal 0 when m < j. The main result of the paper is:

Theorem 2.1 For an MLRRW with d = 2, one has Xn = 0 infinitely often, almost surely.
Consequently, Keane’s once-reinforced random walk on a ladder is recurrent.

3 Outline of the argument and an easy weaker result

The idea of the argument is this. If {Xn} were a martingale, it would be forced to return to zero
infinitely often. While it is not a martingale, we may get an upper bound on the total amount
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of compensation per horizontal distance that can be required to make it into a martingale. The
following result, while not strong enough to imply Theorem 2.1, is a useful preliminary result
and gives a flavor of the argument. Define

Cn = E(Xn+1 −Xn | Fn) =
δ

2 + δ
sgn (R(Xn, Yn, n)−R(Xn − 1, Yn, n)) (3.2)

to be the compensator of the increment Xn+1−Xn so that Xn−
∑n−1

i=1 Ci is an Fn-martingale.

Proposition 3.1 For any x and y, and any stopping times σ1, σ2,

E
σ2−1∑
n=σ1

CnI{(Xn, Yn) = (x, y)} ≤ δ .

PROOF: Let τ0 ≤ ∞ denote the least time n ≥ σ1 that (Xn, Yn) = (x, y) and R(x− 1, y, n) = 1,
let τj be the least n > τj−1 for which (Xn, Yn) = (x, y), and let T ′ be the least n for which
R(x, y, n) = 1. When n ≥ σ1, we may bound CnI{(Xn, Yn) = (x, y)} above by zero unless
n = τj < T ′ for some j, in which case Cn ≤ δ/(2 + δ). Evidently,

P(τj+1 < T ′) ≤ E
[
P(τj < T ′)P(Xτj+1 = x− 1 | Fτj )

]
≤ 1 + δ

2 + δ
P(τj < T ′)

so we see inductively that

P(τj < T ′) ≤
(

1 + δ

2 + δ

)j

.

Then

E
σ2−1∑
n=σ1

CnI{(Xn, Yn) = (x, y)} ≤ δ

2 + δ

∞∑
j=0

P(τj < T ′ ∧ σ2)

≤ δ

2 + δ

∞∑
j=0

(
1 + δ

2 + δ

)j

= δ ,

proving the proposition. �

Corollary 3.2 Define

C = C(x, σ1, σ2) =
σ2−1∑
n=σ1

CnI{Xn = x} (3.3)

to be the total compensation occurring at sites (x, y), summed over y. Then for all x > 0,

EC ≤ (d− 1)δ .
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PROOF: Condition on the first time τ ≥ σ1 that Xn = x. If τ = ∞ then of course C(x) = 0. If
not, then

σ2−1∑
n=σ1

CnI{(Xn, Yn) = (x, Yτ )} ≤ 0

while for every y 6= Yτ , the previous lemma with σ1 = τ gives

E

[
σ2−1∑
n=σ1

CnI{(Xn, Yn) = (x, y)} |Fτ

]
≤ δ

and taking expectations with respect to Fσ1 then proves the corollary. �.

This already allows us to prove the following weaker recurrence result.

Theorem 3.3 In a MLRRW with d levels, the condition δ < (d − 1)−1 is sufficient for
recurrence.

PROOF: Fix any M > 0 and any stopping time τ and let T = T (τ,M) be the least n ≥ τ for
which |Xn| = 0 or |Xn| = M . We first show

P(|XT | = M | Fτ ) ≤
|Xτ |
M

+ (d− 1)δ (3.4)

on the event that τ is finite and |Xτ | < M . Assume without loss of generality that Xτ > 0 (the
argument for Xτ < 0 is similar and the case Xτ = 0 is automatic). Since{

Xn∧T −
n∧T−1∑

i=τ

Ci

}
n≥τ

is an L2-bounded martingale,

E(XT −Xτ | Fτ ) = E

(
T−1∑
i=τ

Ci | Fτ

)

=
M−1∑
x=1

E

(
T−1∑
i=τ

CiI{Xi = x} |Fτ

)
≤ (M − 1)(d− 1)δ

by Corollary 3.2, proving (3.4).

The theorem now follows directly. Take τ = τ (k) to be the least time n that |Xn| = 2k and
take M = A2k with A sufficiently large so that (d − 1)δ + A−1 = 1 − ε < 1. The conditional
probability given Fτ (k) of returning to zero between times τ (k) and τ (k+1) is at least ε, so the
theorem follows from the conditional Borel-Cantelli lemma. �
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4 Recurrence when d = 2 and improvements for d > 2

The key lemma will be the following strengthening of Corollary 3.2.

Lemma 4.1 Let 2 ≤ x < M and 0 ≤ k < d be fixed. Let τ = τ(x) be the least n for which
Xn = x, and define T to be the least n ≥ τ for which XT = 0 or XT = x + 1. Then, on the
event that

∑d
y=1 R(x− 1, y, τ) = d− k,

E(C | Fτ ) ≤ δ · (k − 1 + P(XT = 0 | Fτ )) ,

where C(x, τ, T ) is defined as in (3.3). In other words, the accumulation of compensation at
horizontal position x, from the time x is hit until the time x + 1 or zero is hit, can be no more
than −1, plus the number of unreinforced edges immediately to the left of position x when x was
hit, plus the probability that the walk will return to zero before ever reaching x + 1.

PROOF: The proof is by induction on k. First assume k = 0. Let T ′ be the least n > τ for
which Xn = x + 1 or Xn = 0. Define τ0 = τ and τj = inf{n > τj : Xn = x}. We may compute

1− P(XT = 0 | Fτ ) ≤ P(XT ′ = x + 1 | Fτ )

=
∑
j≥0

P(τj < T ′ = τj + 1 | Fτ )

=
1

2 + δ

∑
j≥0

P(τj < T ′ | Fτ ) .

On the other hand,

E(C | Fτ ) =
∑
j≥0

− δ

2 + δ
P(τj < T ′ | Fτ )

and these two together yield

E(C | Fτ ) ≤ −δ(1− P(XT = 0 | Fτ ))

which proves the lemma in the case k = 0.

Now assume for induction that the lemma is true when k is replaced by k−1. There are two cases
in the induction step. The first case is when at time τ , the random walker sees an unreinforced
edge to the left, that is, R(Xτ − 1, Yτ , τ) = 0. The next paragraph refers to inequalities holding
on this event.

We may split C into three components, depending on whether the next move is to the right or
the next move is to the left and the walk does or does not return to horizontal position x before
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zero. Formally, write C = C(I1 + I2 + I3) where

I1 = I{Xτ+1 = x + 1} ;

I2 = I{Xτ+1 = x− 1, τ1 < T ′} ;

I3 = I{Xτ+1 = x− 1, τ1 > T ′} .

Clearly CI3 = 0 since then the walk is at x only once before time T , at which time the
compensator is zero. For the first piece, let I4 = I{Xτ+1 = x + 1, τ1 < T}, and observe
that I4 ∈ Fτ1 while, by Corollary 3.2, E(C | Fτ1) ≤ δk. Thus

E(CI1 | Fτ ) = E(CI4 | Fτ )

= E [E (CI4 | Fτ1) | Fτ ]

≤ E [I4δk | Fτ ]

≤ 1
2
δk .

Finally, on the event I2 there are at most k − 1 unreinforced edges just to the left of x at time
τ1 so that the induction hypothesis implies that

E(CI2 | Fτ ) = E [E (CI2 | Fτ1) | Fτ ]

≤ E [I2δ (k − 1 + P(XT = 0 | Fτ1)) | Fτ ]

≤ 1
2
δ(k − 2) + E [P(XT = 0 | Fτ1) | Fτ ]

=
1
2
δ(k − 2) + P(XT = 0 | Fτ ) .

Putting together the three estimates gives

E(C | Fτ )δ (k − 1 + P(XT = 0 | Fτ )) ,

finishing the case where the walker sees an unreinforced edge to the left.

Finally, we remove the assumption of an unreinforced edge to the left. Let τ ′ ≥ τ be the least
n for which Xn = x + 1 or Xn = x and R(x− 1, Yn, n) = 0. Then CnI{Xn = x} ≤ 0 for n < τ ′,
whence

E(C(x, τ) | Fτ ) ≤ E(C(x, τ ′) | Fτ ) .

But E(C(x, τ ′) | Fτ ′) is bounded above by δ(k − 1 + P(XT = 0 | Fτ ′)) on the event {Xτ ′ = x}
(this is the case in the previous paragraph), and by (k − 1)δ if Xτ ′ = x + 1 (Corollary 3.2).
Removing the conditioning on Fτ ′ , we see that E(C | Fτ ) ≤ δ(k − 1 + P(XT = 0 | Fτ )) in either
case, which completes the induction and the proof of the lemma. �

As a Corollary we get the following strengthening of (3.4):
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Corollary 4.2 For 2 ≤ m < M , let τ be the least n for which Xn = m and let T be the least
n > τ for which Xn = 0 or Xn = M . Then

P(|XT | = M | Fτ ) ≤ 1− (M −m)(1− (d− 2)δ)−m(d− 1)δ
M + (M −m)δ

.

PROOF: As in the proof of (3.4), the quantity{
Xn∧T −

n∧T−1∑
i=τ

Ci

}
n≥τ

is a martingale, and XT is either 0 or M , so

P(XT = M | Fτ ) =
1
M

E(XT | Fτ ) =
1
M

[
m + E

(
T−1∑
n=τ

Cn | Fτ

)]
.

But

E

(
T−1∑
n=τ

Ci | Fτ

)
=

m∑
x=1

E

(
T−1∑
n=τ

CnI{Xn = x} |Fτ

)
+

M−1∑
x=m+1

E

(
T−1∑
n=τ

CnI{Xn = x} |Fτ

)
≤ δ [m(d− 1) + (M −m)(d− 2 + P(XT = 0 | Fτ ))]

where Corollary 3.2 and Lemma 4.1 were used to bound the two summations. Thus

P(XT = M | Fτ ) ≤
1
M

[m + δ(m(d− 1) + (M −m)(d− 2 + P(XT = 0 | Fτ )))] . (4.5)

Letting r = P(XT = 0 | Fτ ) = 1− P(Xt = M | Fτ )

M −Mr ≤ m + δ[m(d− 1) + (M −m)(d− 2 + r)]

and solving for r gives

r ≥ M −m− δ(m(d− 1) + (M −m)(d− 2))
M + δ(M −m)

which is equivalent to the conclusion of the corollary. �

PROOF OF THEOREM 2.1 The argument is exactly the same as the derivation of Theorem 3.3
from (3.4). �

Another immediate consequence of Lemma 4.1 is that when d > 2, we may strengthen
Theorem 3.3 replacing (d− 1)−1 by (d− 2)−1:

Theorem 4.3 If δ < (d− 2)−1 then MLRRW with d levels is recurrent. �
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5 Further remarks

It is expected that Keane’s once edge-reinforced walk on a ladder is recurrent for any d and δ.
However, Theorem 4.3 is sharp in the sense that a MLRRW with d levels can be transient for any
δ > (d− 2)−1; thus the freedom to take arbitrary vertical jumps does seem to alter the critical
value of δ. To see that Theorem 4.3 is sharp, define an MLRRW by choosing Yi at each stage to
make Ci positive whenever possible. If Ci cannot be made positive, then let it be zero if possible,
giving preference to sites where the edges to either side are already reinforced. The proof of
transience is similar to arguments to be found in Sellke (1993). The gist is as follows. First of
all, it is easy to show that Xn is transient if and only if X+

n , the positive part of Xn, is transient.
(Note that Ci is never negative when Xi is negative.) So consider the process X+

n . A zero-one
law argument shows that X+

n is either almost surely transient or almost surely recurrent. If X+
n

were almost surely recurrent, we could find an M large enough so that, for the overwhelming
majority of x values between 0 and M , the probability is near 1 that all horizontal edges at x

are reinforced before X+
n hits M . One then shows that, for the randomized enlightened greedy

algorithm, the expected cumulative bias at a positive x is (d− 2)δ if X+
n visits x often enough.

Consequently, the expected cumulative bias accumulated by X+
n by the time TM that M is

finally hit can be shown to be greater than M . But this would imply E(XTM
) > M , which

contradicts XTM
≡ M .

In the critical case δ = (d− 2)−1, this algorithm can be shown to produce recurrence, again by
arguments similar to those in Sellke (1993).
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