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1 Introduction

Since the seminal work of Pardoux-Peng [19], there have been numerous publica-

tions on Backward Stochastic Differential Equations (BSDEs) and Forward-Backward

SDEs (FBSDEs). We refer the readers to the book Ma-Yong [17] and the reference

therein for the details on the subject. In particular, FBSDEs of the following type

are studied extensively:















Xt = x+
∫ t

0
b(s,Xs, Ys, Zs)ds+

∫ t

0
σ(s,Xs, Ys)dWs;

Yt = g(XT ) +
∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs;

(1.1)

where W is a standard Brownian Motion, T > 0 is a deterministic terminal time,

and b, σ, f, g are deterministic functions. Here for notational simplicity we assume

all processes are 1-dimensional. It is well known that FBSDE (1.1) is related to the

following parabolic PDE on [0, T ]× IR (see, e.g., [13], [20], and [7])

{

ut +
1
2
σ2(t, x, u)uxx + b(t, x, u, σ(t, x, u)ux)ux + f(t, x, u, σ(t, x, u)ux) = 0;

u(T, x) = g(x);
(1.2)

in the sense that (if a smooth solution u exists)

Yt = u(t,Xt), Zt = ux(t,Xt)σ(t,Xt, u(t,Xt)). (1.3)

Due to its importance in applications, numerical methods for BSDEs have re-

ceived strong attention in recent years. Bally [1] proposed an algorithm by using

a random time discretization. Based on a new notion of L2-regularity, Zhang [21]

obtained rate of convergence for deterministic time discretization and transformed

the problem to computing a sequence of conditional expectations. In Markovian set-

ting, significant progress has been made in computing the conditional expectations.

The following methods are of particular interest: the quantization method (see, e.g.,

Bally-Pagès-Printems [2]), the Malliavin calculus approach (see Bouchard-Touzi [4]),

the linear regression method or the Longstaff-Schwartz algorithm (see Gobet-Lemor-

Waxin [10]), and the Picard iteration approach (see Bender-Denk [3]). These methods

work well in reasonably high dimensions. There are also lots of publications on nu-

merical methods for non-Markovian BSDEs (see, e.g., [5], [6], [12], [15], [24]). But in

general these methods do not work when the dimension is high.

Numerical approximations for FBSDEs, however, are much more difficult. To our

knowledge, there are only very few works in the literature. The first one was Douglas-

Ma-Protter [9], based on the four step scheme. Their main idea is to numerically

solve the PDE (1.2). Milstein-Tretyakov [16] and Makarov [14] also proposed some
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numerical schemes for (1.2). Recently Delarue-Menozzi [8] proposed a probabilistic

algorithm. Note that all these methods essentially need to discretize the space over

regular Cartesian grids, and thus are not practical in high dimensions.

In this paper we aim to open a door to truly Monte-Carlo methods for FBSDEs,

without computing over all Cartesian grids. Our main idea is to transform the FBSDE

to a stochastic control problem and propose the steepest descent method to solve the

latter one. We show that the original (coupled) FBSDE can be approximated by

solving a certain number of decoupled FBSDEs. We then discretize the approximating

decoupled FBSDEs in time and thus the problem boils down to computing a sequence

of conditional expectations. The rate of convergence is obtained.

We note that the idea to approximate with a corresponding stochastic control

problem is somewhat similar to the approximating solvability of FBSDEs in Ma-

Yong [18] and the near-optimal control in Zhou [25]. However, in those works the

original problem may have no exact solution and the authors try to find a so called

approximating solution. In our case the exact solution exists and we want to approx-

imate it with numerically computable terms. More importantly, in those works one

only cares for the existence of the approximating solutions, while here for practical

reasons we need explicit construction of the approximations as well as the rate of

convergence.

The key to the proof is a new well-posedness result for FBSDEs. In order to

obtain the rate of convergence of our approximations, we need the well-posedness of

some adjoint FBSDEs, which are linear but with random coefficients. It turns out

that all the existing methods in the literature do not work in our case.

At this point we should point out that, unfortunately, our approximating decou-

pled FBSDEs are non-Markovian (that is, the coefficients are random), and thus we

cannot apply directly the existing methods for Markovian BSDEs. In order to make

our algorithm efficiently implementable, some further modification of Markovian type

is needed.

Although in the long term we aim to solve high dimensional FBSDEs, as a first

attempt and for technical reasons (in order to apply Theorem 1.2 below), in this

paper we assume all the processes are one dimensional. We also assume that b = 0

and f is independent of Z. That is, we will study the following FBSDE:














Xt = x+
∫ t

0
σ(s,Xs, Ys)dWs;

Yt = g(XT ) +
∫ T

t
f(s,Xs, Ys)ds−

∫ T

t
ZsdWs.

(1.4)

In this case, PDE (1.2) becomes
{

ut +
1
2
σ2(t, x, u)uxx + f(t, x, u) = 0;

u(T, x) = g(x);
(1.5)
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Moreover, in order to simplify the presentation and to focus on the main idea, through-

out the paper we assume

Assumption 1.1 All the coefficients σ, f, g are bounded, smooth enough with bounded

derivatives, and σ is uniformly nondegenerate.

Under Assumption 1.1, it is well known that PDE (1.5) has a unique solution u

which is bounded and smooth with bounded derivatives (see [11]), that FBSDE (1.4)

has a unique solution (X,Y, Z), and that (1.3) holds true (see [13]). Unless otherwise

specified, throughout the paper we use (X,Y, Z) and u to denote these solutions, and

C, c > 0 to denote generic constants depending only on T , the upper bounds of the

derivatives of the coefficients, and the uniform nondegeneracy of σ. We allow C, c to

vary from line to line.

Finally, we cite a well-posedness result from Zhang [23] (or [22] for a weaker result)

which will play an important role in our proofs.

Theorem 1.2 Consider the following FBSDE














Xt = x+
∫ t

0
b(ω, s,Xs, Ys, Zs)ds+

∫ t

0
σ(ω, s,Xs, Ys)dWs;

Yt = g(ω,XT ) +
∫ T

t
f(ω, s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs;

(1.6)

Assume that b, σ, f, g are uniformly Lipschitz continuous with respect to (x, y, z); that

there exists a constant c > 0 such that

σybz ≤ −c|by + σxbz + σyfz|; (1.7)

and that

I2
0
4
= E

{

x2 + |g(ω, 0)|2 +
∫ T

0
[|b|2 + |σ|2 + |f |2](ω, t, 0, 0, 0)dt

}

<∞.

Then FBSDE (1.6) has a unique solution (X,Y, Z) such that

E
{

sup
0≤t≤T

[|Xt|2 + |Yt|2] +
∫ T

0
|Zt|2dt

}

≤ CI2
0 ,

where C is a constant depending only on T, c and the Lipschitz constants of the coef-

ficients.

The rest of the paper is organized as follows. In the next section we transform FB-

SDE (1.4) to a stochastic control problem and propose the steepest descent method;

in §3 we discretize the decoupled FBSDEs introduced in §2; and in §4 we transform

the discrete FBSDEs to a sequence of conditional expectations.
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2 The Steepest Descent Method

Let (Ω,F , P ) be a complete probability space, W a standard Brownian motion, T > 0

a fixed terminal time, F
4
= {Ft}0≤t≤T the filtration generated by W and augmented

by the P -null sets. Let L2(F) denote square integrable F-adapted processes. From

now on we always assume Assumption 1.1 is in force.

2.1 The Control Problem

In order to numerically solve (1.4), we first formulate a related stochastic control prob-

lem. Given y0 ∈ IR and z0 ∈ L2(F), consider the following 2-dimensional (forward)

SDE with random coefficients (z0 being considered as a coefficient):















X0
t = x+

∫ t

0
σ(s,X0

s , Y
0
s )dWs;

Y 0
t = y0 −

∫ t

0
f(s,X0

s , Y
0
s )ds+

∫ t

0
z0
sdWs;

(2.1)

and denote

V (y0, z
0)

4
=

1

2
E
{

|Y 0
T − g(X0

T )|2
}

. (2.2)

Our first result is

Theorem 2.1 We have

E
{

sup
0≤t≤T

[|Xt −X0
t |2 + |Yt − Y 0

t |2] +
∫ T

0
|Zt − z0

t |2dt
}

≤ CV (y0, z
0).

Proof. The idea is similar to the four step scheme (see [13]).

Step 1. Denote

∆Yt
4
= Y 0

t − u(t,X0
t ); ∆Zt

4
= z0

t − ux(t,X
0
t )σ(t,X

0
t , Y

0
t ).

Recalling (1.5) we have

d(∆Yt) = z0
t dWt − f(t,X0

t , Y
0
t )dt− ux(t,X

0
t )σ(t,X

0
t , Y

0
t )dWt

−
[

ut(t,X
0
t ) +

1

2
uxx(t,X

0
t )σ

2(t,X0
t , Y

0
t )
]

dt

= ∆ZtdWt −
[1

2
uxx(t,X

0
t )σ

2(t,X0
t , Y

0
t ) + f(t,X0

t , Y
0
t )
]

dt

+
[1

2
uxx(t,X

0
t )σ

2(t,X0
t , u(t,X

0
t )) + f(t,X0

t , u(t,X
0
t ))

]

dt

= ∆ZtdWt − αt∆Ytdt,

1472



where

αt
4
=

1

2∆Yt
uxx(t,X

0
t )[σ

2(t,X0
t , Y

0
t )− σ2(t,X0

t , u(t,X
0
t ))]

+
1

∆Yt
[f(t,X0

t , Y
0
t )− f(t,X0

t , u(t,X
0
t ))]

is bounded. Note that ∆YT = Y 0
T −g(X0

T ). By standard arguments one can easily get

E
{

sup
0≤t≤T

|∆Yt|2 +
∫ T

0
|∆Zt|2dt

}

≤ CE{|∆YT |2} = CV (y0, z
0). (2.3)

Step 2. Denote ∆Xt
4
= Xt −X0

t . We show that

E
{

sup
0≤t≤T

|∆Xt|2
}

≤ CV (y0, z
0). (2.4)

In fact,

d(∆Xt) =
[

σ(t,Xt, u(t,Xt))− σ(t,X0
t , Y

0
t )

]

dWt.

Note that

u(t,Xt)− Y 0
t = u(t,Xt)− u(t,X0

t )−∆Yt.

One has

d(∆Xt) = [α1
t∆Xt + α2

t∆Yt]dWt,

where αit are defined in an obvious way and are uniformly bounded. Note that ∆X0 =

0. Then by standard arguments we get

E
{

sup
0≤t≤T

|∆Xt|2
}

≤ CE
{

∫ T

0
|∆Yt|2dt

}

,

which, together with (2.3), implies (2.4).

Step 3. We now prove the theorem. Recall (1.3), we have

E
{

sup
0≤t≤T

|Yt − Y 0
t |2 +

∫ T

0
|Zt − z0

t |2dt
}

= E
{

sup
0≤t≤T

|u(t,Xt)− u(t,X0
t )−∆Yt|2

+
∫ T

0

∣

∣

∣ux(t,Xt)σ(t,Xt, u(t,Xt))− ux(t,X
0
t )σ(t,X

0
t , u(t,X

0
t ))

+ux(t,X
0
t )σ(t,X

0
t , u(t,X

0
t ))− ux(t,X

0
t )σ(t,X

0
t , Y

0
t )−∆Zt

∣

∣

∣

2
dt
}

≤ CE
{

sup
0≤t≤T

[|∆Xt|2 + |∆Yt|2] +
∫ T

0

[

|∆Xt|2 + |∆Yt|2 + |∆Zt|2
]

dt
}

≤ CV (y0, z
0),

which, together with (2.4), ends the proof.
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2.2 The Steepest Descent Direction

Our idea is to modify (y0, z
0) along the steepest descent direction so as to decrease

V as fast as possible. First we need to find the Fréchet derivative of V along some

direction (∆y,∆z), where ∆y ∈ IR,∆z ∈ L2(F). For δ ≥ 0, denote

yδ0
4
= y0 + δ∆y; z

0,δ
t

4
= z0

t + δ∆zt;

and let X0,δ, Y 0,δ be the solution to (2.1) corresponding to (yδ0, z
0,δ). Denote:



























∇X0
t =

∫ t

0
[σ0

x∇X0
s + σ0

y∇Y 0
s ]dWs;

∇Y 0
t = ∆y −

∫ t

0
[f 0
x∇X0

s + f 0
y∇Y 0

s ]ds+
∫ t

0
∆zsdWs;

∇V (y0, z
0) = E

{

[Y 0
T − g(X0

T )][∇Y 0
T − g′(X0

T )∇X0
T ]
}

;

where ϕ0
s

4
= ϕ(s,X0

s , Y
0
s ) for any function ϕ. By standard arguments, one can easily

show that

lim
δ→0

1

δ
[X0,δ

t −X0
t ] = ∇X0

t ; lim
δ→0

1

δ
[Y 0,δ

t − Y 0
t ] = ∇Y 0

t ;

lim
δ→0

1

δ
[V (yδ0, z

0,δ)− V (y0, z
0)] = ∇V (y0, z

0);

where the two limits in the first line are in the L2(F) sense.

To investigate ∇V (y0, z
0) further, we define some adjoint processes. Consider

(X0, Y 0) as random coefficients and let (Ȳ 0, Ỹ 0, Z̄0, Z̃0) be the solution to the follow-

ing 2-dimensional BSDE:














Ȳ 0
t = [Y 0

T − g(X0
T )]−

∫ T

t
[f 0
y Ȳ

0
s + σ0

yZ̃
0
s ]ds−

∫ T

t
Z̄0
sdWs;

Ỹ 0
t = g′(X0

T )[Y
0
T − g(X0

T )] +
∫ T

t
[f 0
x Ȳ

0
s + σ0

xZ̃
0
s ]ds−

∫ T

t
Z̃0
sdWs.

(2.5)

We note that (2.5) depends only on (y0, z
0), but not on (∆y,∆z).

Lemma 2.2 For any (∆y,∆z), we have

∇V (y0, z
0) = E

{

Ȳ 0
0 ∆y +

∫ T

0
Z̄0
t∆ztdt

}

.

Proof. Note that

∇V (y0, z
0) = E

{

Ȳ 0
T∇Y 0

T − Ỹ 0
T∇X0

T

}

.

Applying Ito’s formula one can easily check that

d(Ȳ 0
t ∇Y 0

t − Ỹ 0
t ∇X0

t ) = Z̄0
t∆ztdt+ (· · ·)dWt.
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Then

∇V (y0, z
0) = E

{

Ȳ 0
0 ∇Y 0

0 − Ỹ 0
0 ∇X0

0 +
∫ T

0
Z̄0
t∆ztdt

}

= E
{

Ȳ 0
0 ∆y +

∫ T

0
Z̄0
t∆ztdt

}

.

That proves the lemma.

Recall that our goal is to decrease V (y0, z
0). Very naturally one would like to

choose the following steepest descent direction:

∆y
4
= −Ȳ 0

0 ; ∆zt
4
= −Z̄0

t . (2.6)

Then

∇V (y0, z
0) = −E

{

|Ȳ 0
0 |2 +

∫ T

0
|Z̄0

t |2dt
}

, (2.7)

which depends only on (y0, z
0) (not on (∆y,∆z)).

Note that if ∇V (y0, z
0) = 0, then we gain nothing on decreasing V (y0, z

0). For-

tunately this is not the case.

Lemma 2.3 Assume (2.6). Then ∇V (y0, z
0) ≤ −cV (y0, z

0).

Proof. Rewrite (2.5) as















Ȳ 0
t = Ȳ 0

0 +
∫ t

0
[f 0
y Ȳ

0
s + σ0

yZ̃
0
s ]ds+

∫ t

0
Z̄0
sdWs;

Ỹ 0
t = g′(X0

T )Ȳ
0
T +

∫ T

t
[f 0
x Ȳ

0
s + σ0

xZ̃
0
s ]ds−

∫ T

t
Z̃0
sdWs.

(2.8)

One may consider (2.8) as an FBSDE with solution triple (Ȳt, Ỹt, Z̃t), where Ȳt is the

forward component and (Ỹt, Z̃t) are the backward components. Then (Ȳ 0
0 , Z̄

0
t ) are

considered as (random) coefficients of the FBSDE. One can easily check that FBSDE

(2.8) satisfies condition (1.7) (with both sides equal to 0). Applying Theorem 1.2 we

get

E
{

sup
0≤t≤T

[|Ȳ 0
t |2 + |Ỹ 0

t |2] +
∫ T

0
|Z̃0

t |dt
}

≤ CI2
0 = CE

{

|Ȳ 0
0 |2 +

∫ T

0
|Z̄0

t |2dt
}

.

In particular,

V (y0, z
0) =

1

2
E{|Ȳ 0

T |2} ≤ CE
{

|Ȳ 0
0 |2 +

∫ T

0
|Z̄0

t |2dt
}

, (2.9)

which, combined with (2.7), implies the lemma.
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2.3 Iterative Modifications

We now fix a desired error level ε and pick an (y0, z
0). If we are extremely lucky that

V (y0, z
0) ≤ ε2, then we may use (X0, Y 0, z0) defined by (2.1) as an approximation of

(X,Y, Z). In other cases we want to modify (y0, z
0). From now on we assume

V (y0, z
0) > ε2; E{|Y 0

T − g(X0
T )|4} ≤ K4

0 ; (2.10)

where K0 ≥ 1 is a constant. We note that one can always assume the existence of K0

by letting, for example, y0 = 0, z0
t = 0.

Lemma 2.4 Assume (2.10). There exist constants C0, c0, c1 > 0, which are indepen-

dent of K0 and ε, such that

∆V (y0, z
0)

4
= V (y1, z

1)− V (y0, z
0) ≤ −c0ε

K2
0

V (y0, z
0), (2.11)

and

E{|Y 1
T − g(X1

T )|4} ≤ K4
1
4
= K4

0 + 2C0εK
2
0 , (2.12)

where, by denoting λ
4
= c1ε

K2
0

,

y1
4
= y0 − λȲ 0

0 ; z1
t

4
= z0

t − λZ̄0
t ; (2.13)

and, for 0 ≤ θ ≤ 1,














Xθ
t = x+

∫ t

0
σ(s,Xθ

s , Y
θ
s )dWs;

Y θ
t = y0 − θλȲ 0

0 −
∫ t

0
f(s,Xθ

s , Y
θ
s )ds+

∫ t

0
[z0
s − θλZ̄0

s ]dWs;
(2.14)

Proof. We proceed in four steps.

Step 1. For 0 ≤ θ ≤ 1, denote














































Ȳ θ
t = [Y θ

T − g(Xθ
T )]−

∫ T

t
[f θy Ȳ

θ
s + σθyZ̃

θ
s ]ds−

∫ T

t
Z̄θ
sdWs;

Ỹ θ
t = g′(Xθ

T )[Y
θ
T − g(Xθ

T )] +
∫ T

t
[f θx Ȳ

θ
s + σθxZ̃

θ
s ]ds−

∫ T

t
Z̃θ
sdWs;

∇Xθ
t =

∫ t

0
[σθx∇Xθ

s + σθy∇Y θ
s ]dWs;

∇Y θ
t = −Ȳ 0

0 −
∫ t

0
[f θx∇Xθ

s + f θy∇Y θ
s ]ds−

∫ t

0
Z̄0
sdWs;

where ϕθt
4
= ϕ(t,Xθ

t , Y
θ
t ) for any function ϕ. Then

∆V (y0, z
0) =

1

2
E
{

[Y 1
T − g(X1

T )]
2 − [Y 0

T − g(X0
T )]

2
}

= λ

∫ 1

0
E
{

[Y θ
T − g(Xθ

T )][∇Y θ
T − g′(Xθ

T )∇Xθ
T ]
}

dθ.
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Following the proof of Lemma 2.2, we have

∆V (y0, z
0) = −λ

∫ 1

0
E
{

Ȳ θ
0 Ȳ

0
0 +

∫ T

0
Z̄θ
t Z̄

0
t dt

}

dθ. (2.15)

Step 2. First, one can easily show that

E
{

sup
0≤t≤T

[|Ȳ 0
t |4 + |Ỹ 0

t |4] +
(

∫ T

0
[|Z̄0

t |2 + |Z̃0
t |2]dt

)2} ≤ CK4
0 . (2.16)

Denote

∆Xθ
t

4
= Xθ

t −X0
t ; ∆Y θ

t

4
= Y θ

t − Y 0
t .

Then














∆Xθ
t =

∫ t

0
[α1,θ

s ∆Xθ
s + β1,θ

s ∆Y θ
s ]dWs;

∆Y θ
t = −θλȲ 0

0 −
∫ t

0
[α2,θ

s ∆Xθ
s + β2,θ

s ∆Y θ
s ]ds− θλ

∫ t

0
Z̄0
sdWs;

where αi,θ, βi,θ are defined in an obvious way and are bounded. Thus, by (2.16),

E
{

sup
0≤t≤T

[|∆Xθ
t |4 + |∆Y θ

t |4]
}

≤ θ4λ4E
{

|Ȳ 0
0 |4 +

(

∫ T

0
|Z̄0

t |2dt
)2} ≤ CK4

0λ
4. (2.17)

Denote

αθT
4
=

1

∆Xθ
T

[g(Xθ
T )− g(X0

T )],

which is bounded. For any constants a, b > 0 and 0 < λ < 1, applying the Young’s

Inequality we have

(a+ b)4 = a4 + 4(λ
1

4a)3(λ−
3

4 b) + 6(λ
1

4a)2(λ−
1

4 b)2 + 4(λ
1

4a)(λ−
1

12 b)3 + b4

≤ [1 + Cλ]a4 + C[λ−3 + λ−1 + λ−
1

3 + 1]b4 ≤ [1 + Cλ]a4 + Cλ−3b4.

Noting that the value of λ we will choose is less than 1, we have

E
{

|Y θ
T − g(Xθ

T )|4
}

= E
{

|Y 0
T − g(X0

T ) + ∆Y θ
T − αθT∆X

θ
T |4

}

≤ [1 + Cλ]E
{

|Y 0
T − g(X0

T )|4
}

+ Cλ−3E
{

|∆Y θ
T |4 + |∆Xθ

T |4
}

≤ [1 + Cλ]K4
0 . (2.18)

Step 3. Denote

∆Ȳ θ
t

4
= Ȳ θ

t − Ȳ 0
t ; ∆Ỹ θ

t

4
= Ỹ θ

t − Ỹ 0
t ; ∆Z̄θ

t

4
= Z̄θ

t − Z̄0
t ; ∆Z̃θ

t

4
= Z̃θ

t − Z̃0
t .

Then














































∆Ȳ θ
t = [∆Y θ

T − αθT∆X
θ
T ]−

∫ T

t
[f θy∆Ȳ

θ
s + σθy∆Z̃

θ
s ]ds−

∫ T

t
∆Z̄θ

sdWs

−
∫ T

t
[Ȳ 0

s ∆f
θ
y + Z̃0

s∆σ
θ
y]ds;

∆Ỹ θ
t = g′(Xθ

T )[∆Y
θ
T − αθT∆X

θ
T ] +

∫ T

t
[f θx∆Ȳ

θ
s + σθx∆Z̃

θ
s ]ds−

∫ T

t
∆Z̃θ

sdWs

+[Y 0
T − g(X0

T )]∆g
′(θ) +

∫ T

t
[Ȳ 0

s ∆f
θ
x + Z̃0

s∆σ
θ
x]ds,
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where

∆fy(θ)
4
= fy(t,X

θ
t , Y

θ
t )− fy(t,X

0
t , Y

0
t );

and all other terms are defined in a similar way. By standard arguments one has

E
{

sup
0≤t≤T

[|∆Ȳ θ
t |2 + |∆Ỹ θ

t |2] +
∫ T

0
[|∆Z̄θ

t |2 + |∆Z̃θ
t |2]dt}

≤ CE
{

|∆Y θ
T |2 + |∆Xθ

T |2 + |Y 0
T − g(X0

T )|2|∆g′(θ)|2

+
∫ T

0

[

|Ȳ 0
t |2|[∆f θx |2 + |∆f θy |2] + |Z̃0

t |2[|∆σθx|2 + |∆σθy|2]
]

dt
}

≤ CE
{

|∆Y θ
T |2 + |∆Xθ

T |2 + |Y 0
T − g(X0

T )|2|∆Xθ
T |2

+
∫ T

0
[|Ȳ 0

t |2 + |Z̃0
t |2][|∆Xθ

t |2 + |∆Y θ
t |2]dt

}

≤ CE
1

2

{

sup
0≤t≤T

[|∆Xθ
t |4 + |∆Y θ

t |4]
}

×

E
1

2

{

1 + |Y 0
T − g(X0

T )|4 +
(

∫ T

0
[|Ȳ 0

t |2 + |Z̃0
t |2]dt

)2}

≤ CK2
0λ

2[1 +K2
0 ] ≤ CK4

0λ
2,

thanks to (2.17), (2.10), and (2.16). In particular,

E
{

|∆Ȳ θ
0 |2 +

∫ T

0
|∆Z̄θ

t |2dt
}

≤ CK4
0λ

2. (2.19)

Step 4. Note that

∣

∣

∣E
{

Ȳ θ
0 Ȳ

0
0 +

∫ T

0
Z̄θ
t Z̄

0
t dt

}

− E
{

|Ȳ 0
0 |2 +

∫ T

0
|Z̄0

t |2dt
}
∣

∣

∣

≤ E
{

|∆Ȳ θ
0 Ȳ

0
0 |+

∫ T

0
|∆Z̄θ

t Z̄
0
t |dt

}

≤ CE
{

|∆Ȳ θ
0 |2 +

∫ T

0
|∆Z̄θ

t |2dt
}

+
1

2
E
{

|Ȳ 0
0 |2 +

∫ T

0
|Z̄0

t |2dt
}

≤ CK4
0λ

2 +
1

2
E
{

|Ȳ 0
0 |2 +

∫ T

0
|Z̄0

t |2dt
}

.

Then, by (2.9) we have

E
{

Ȳ θ
0 Ȳ

0
0 +

∫ T

0
Z̄θ
t Z̄

0
t dt

}

≥ 1

2
E
{

|Ȳ 0
0 |2 +

∫ T

0
|Z̄0

t |2dt
}

− CK4
0λ

2

≥ cV (y0, z
0)− CK4

0λ
2.

Choose c1
4
=

√

c
2C

for the constants c, C as above, and λ
4
= c1ε

K2
0

. Then by (2.10) we

get

E
{

Ȳ θ
0 Ȳ

0
0 +

∫ T

0
Z̄θ
t Z̄

0
t dt

}

≥ cV (y0, z
0)− c

2
ε2 ≥ c

2
V (y0, z

0). (2.20)
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Then (2.11) follows directly from (2.15).

Finally, plug λ into (2.18) and let θ = 1 we get (2.12) for some C0.

Now we are ready to approximate FBSDE (1.4) iteratively. Set

y0
4
= 0, z0

t

4
= 0, K0

4
= E

1

4{|Y 0
T − g(X0

T )|4}. (2.21)

For k = 0, 1, · · · , let (Xk, Y k, Ȳ k, Ỹ k, Z̄k, Z̃k) be the solution to the following FBSDE:















































Xk
t = x+

∫ t

0
σ(s,Xk

s , Y
k
s )dWs;

Y k
t = yk −

∫ t

0
f(s,Xk

s , Y
k
s )ds+

∫ t

0
zksdWs;

Ȳ k
t = [Y k

T − g(Xk
T )]−

∫ T

t
[fky Ȳ

k
s + σky Z̃

k
s ]ds−

∫ T

t
Z̄k
s dWs;

Ỹ k
t = g′(Xk

T )[Y
k
T − g(Xk

T )] +
∫ T

t
[fkx Ȳ

k
s + σkxZ̃

k
s ]ds−

∫ T

t
Z̃k
s dWs.

(2.22)

We note that (2.22) is decoupled, with forward components (Xk, Y k) and backward

components (Ȳ k, Ỹ k, Z̄k, Z̃k). Denote

λk
4
=

c1ε

K2
k

, yk+1
4
= yk − λkȲ

k
0 , zk+1

t

4
= zkt − λkZ̄

k
t , K4

k+1
4
= K4

k + 2C0εK
2
k , (2.23)

where c1, C0 are the constants in Lemma 2.4.

Theorem 2.5 There exist constants C1, C2 and N ≤ C1ε
−C2 such that

V (yN , z
N ) ≤ ε2.

Proof. Assume V (yk, z
k) > ε2 for k = 0, · · · , N − 1. Note that K4

k+1 ≤ (K2
k + C0ε)

2.

Then K2
k+1 ≤ K2

k + C0ε, which implies that

K2
k ≤ K2

0 + C0kε.

Thus by Lemma 2.4 we have

V (yk+1, z
k+1) ≤

[

1− c0ε

K2
0 + C0kε

]

V (yk, z
k).

Note that log(1− x) ≤ −x for x ∈ [0, 1). For ε small enough, we get

log(V (yN , z
N )) ≤ log(V (0, 0)) +

N−1
∑

k=0

log
(

1− c0ε

K2
0 + C0kε

)

≤ C − c
N−1
∑

k=0

1

k + ε−1
≤ C − c

∫ N−1

0

dx

x+ ε−1

= C − c
[

log(N − 1 + ε−1)− log(ε−1)
]

= C − c log(1 + ε(N − 1)).
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For c, C as above, choose N to be the smallest integer such that

N ≥ 1 + ε−1[e
C
c ε−

2

c − 1].

We get

log(V (yN , z
N )) ≤ C − c[

C

c
− 2

c
log(ε)] = log(ε2),

which obviously proves the theorem.

3 Time Discretization

We now investigate the time discretization of FBSDEs (2.22). Fix n and denote

ti
4
=

i

n
T ; ∆t

4
=

T

n
; i = 0, · · · , n.

3.1 Discretization of the FSDEs

Given y0 ∈ IR and z0 ∈ L2(F), denote























X
n,0
t0

4
= x; Y

n,0
t0

4
= y0;

X
n,0
t

4
= X

n,0
ti + σ(ti, X

n,0
ti , Y

n,0
ti )[Wt −Wti ], t ∈ (ti, ti+1];

Y
n,0
t

4
= Y

n,0
ti − f(ti, X

n,0
ti , Y

n,0
ti )[t− ti] +

∫ t

ti

z0
sdWs, t ∈ (ti, ti+1].

(3.1)

Note that we do not discretize z0 here. For notational simplicity, we denote

X
n,0
i

4
= X

n,0
ti ; Y

n,0
i

4
= Y

n,0
ti ; i = 0, · · · , n.

Define

Vn(y0, z
0)

4
=

1

2
E{|Y n,0

n − g(Xn,0
n )|2}. (3.2)

First we have

Theorem 3.1 Denote

In,0
4
= E

{

max
0≤i≤n

[|Xti −X
n,0
i |2 + |Yti − Y

n,0
i |2] +

∫ T

0
|Zt − z0

t |2dt
}

. (3.3)

Then

In,0 ≤ CVn(y0, z
0) +

C

n
. (3.4)
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We note that (see, e.g. Zhang [21]),

max
0≤i≤n−1

E
{

sup
ti≤t≤ti+1

[|Xt −Xti |2 + |Yt − Yti |2]
}

≤ C

n
;

E
{

max
0≤i≤n−1

sup
ti≤t≤ti+1

[|Xt −Xti |2 + |Yt − Yti |2]
}

≤ C log n

n
;

E
{

n−1
∑

i=0

∫ ti+1

ti

|Zt −
1

∆t
Ei{

∫ ti+1

ti

Zsds}|2dt
}

≤ C

n
;

where Ei{·} 4= E{·|Fti}. Then one can easily show the following estimates:

Corollary 3.2 We have

max
0≤i≤n−1

E
{

sup
ti≤t≤ti+1

[|Xt −X
n,0
i |2 + |Yt − Y

n,0
i |2]

}

≤ CVn(y0, z
0) +

C

n
;

E
{

max
0≤i≤n−1

sup
ti≤t≤ti+1

[|Xt −X
n,0
i |2 + |Yt − Y

n,0
i |2]

}

≤ CVn(y0, z
0) +

C log n

n
;

E
{

n−1
∑

i=0

∫ ti+1

ti

|Zt −
1

∆t
Ei{

∫ ti+1

ti

z0
sds}|2dt

}

≤ CVn(y0, z
0) +

C

n
.

Proof of Theorem 3.1. Recall (2.1). For i = 0, · · · , n, denote

∆Xi
4
= X0

ti
−X

n,0
i ; ∆Yi

4
= Y 0

ti
− Y

n,0
i .

Then


























∆X0 = 0; ∆Y0 = 0;

∆Xi+1 = ∆Xi +
∫ ti+1

ti

[

[α1
i∆Xi + β1

i∆Yi] + [σ(t,X0
t , Y

0
t )− σ(ti, X

0
ti
, Y 0

ti
)]
]

dWt;

∆Yi+1 = ∆Yi −
∫ ti+1

ti

[

[α2
i∆Xi + β2

i∆Yi] + [f(t,X0
t , Y

0
t )− f(ti, X

0
ti
, Y 0

ti
)]
]

dt;

where αji , β
j
i ∈ Fti are defined in an obvious way and are uniformly bounded. Then

E{|∆Xi+1|2}

= E
{

|∆Xi|2 +
∫ ti+1

ti

[

[α1
i∆Xi + β1

i∆Yi] + [σ(t,X0
t , Y

0
t )− σ(ti, X

0
ti
, Y 0

ti
)]
]2
dt
}

≤ E
{

|∆Xi|2 +
C

n
[|∆Xi|2 + |∆Yi|2] + C

∫ ti+1

ti

[|X0
t −X0

ti
|2 + |Y 0

t − Y 0
ti
|2]dt

}

;

and, similarly,

E{|∆Yi+1|2}

≤ E
{

|∆Yi|2 +
C

n
[|∆Xi|2 + |∆Yi|2] + C

∫ ti+1

ti

[|X0
t −X0

ti
|2 + |Y 0

t − Y 0
ti
|2]dt

}

.
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Denote

Ai
4
= E{|∆Xi|2 + |∆Yi|2}.

Then A0 = 0, and

Ai+1 ≤ [1 +
C

n
]Ai + CE

{

∫ ti+1

ti

[|X0
t −X0

ti
|2 + |Y 0

t − Y 0
ti
|2]dt

}

.

By the discrete Gronwall inequality we get

max
0≤i≤n

Ai ≤ C
n−1
∑

i=0

E
{

∫ ti+1

ti

[|X0
t −X0

ti
|2 + |Y 0

t − Y 0
ti
|2]dt

}

≤ C
n−1
∑

i=0

E
{

∫ ti+1

ti

[

∫ t

ti

|σ(s,X0
s , Y

0
s )|2ds+ |

∫ t

ti

f(s,X0
s , Y

0
s )ds|2 +

∫ t

ti

|z0
s |2ds

]

dt
}

≤ C
n−1
∑

i=0

E
{

|∆t|2 + |∆t|3 +∆t
∫ ti+1

ti

|z0
t |2dt

}

≤ C

n
+
C

n
E
{

∫ T

0
|z0
t |2dt

}

. (3.5)

Next, note that

∆Xi =
i−1
∑

j=0

∫ tj+1

tj

[

[α1
j∆Xj + β1

j∆Yj] + [σ(t,X0
t , Y

0
t )− σ(tj, X

0
tj
, Y 0

tj
)]
]

dWt;

∆Yi =
i−1
∑

j=0

∫ tj+1

tj

[

[α2
j∆Xj + β2

j∆Yj]− [f(t,X0
t , Y

0
t )− f(tj, X

0
tj
, Y 0

tj
)]
]

dt.

Applying the Burkholder-Davis-Gundy Inequality and by (3.5) we get

E
{

max
0≤i≤n

[|∆Xi|2 + |∆Yi|2]
}

≤ C

n
+
C

n
E
{

∫ T

0
|z0
t |2dt

}

,

which, together with Theorem 2.1, implies that

In,0 ≤ CV (y0, z
0) +

C

n
+
C

n
E
{

∫ T

0
|z0
t |2dt

}

.

Finally, note that

V (y0, z
0) ≤ CVn(y0, z

0) + CE
{

|∆Xn|2 + |∆Yn|2
}

= CVn(y0, z
0) + CAn.

We get

In,0 ≤ CVn(y0, z
0) +

C

n
+
C

n
E
{

∫ T

0
|z0
t |2dt

}

.
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Moreover, noting that Zt = ux(t,Xt)σ(t,Xt, Yt) is bounded, we have

E
{

∫ T

0
|z0
t |2dt

}

≤ CE
{

∫ T

0
|Zt − z0

t |2dt
}

+ CE
{

∫ T

0
|Zt|2dt

}

≤ CE
{

∫ T

0
|Zt − z0

t |2dt
}

+ C.

Thus

In,0 ≤ CVn(y0, z
0) +

C

n
+
C

n
E
{

∫ T

0
|Zt − z0

t |2dt
}

.

Choose n ≥ 2C for C as above, by (3.3) we prove (3.4) immediately.

3.2 Discretization of the BSDEs

Define the adjoint processes (or say, discretize BSDE (2.5)) as follows.






























Ȳ n,0
n

4
= Y n,0

n − g(Xn,0
n ); Ỹ n,0

n

4
= g′(Xn,0

n )[Y n,0
n − g(Xn,0

n )];

Ȳ
n,0
i−1 = Ȳ

n,0
i − f

n,0
y,i−1Ȳ

n,0
i−1∆t− σ

n,0
y,i−1

∫ ti

ti−1

Z̃
n,0
t dt−

∫ ti

ti−1

Z̄
n,0
t dWt;

Ỹ
n,0
i−1 = Ỹ

n,0
i + f

n,0
x,i−1Ȳ

n,0
i−1∆t+ σ

n,0
x,i−1

∫ ti

ti−1

Z̃
n,0
t dt−

∫ ti

ti−1

Z̃
n,0
t dWt;

(3.6)

where ϕn,0i

4
= ϕ(ti, X

n,0
i , Y

n,0
i ) for any function ϕ. We note again that Z̄n,0, Z̃n,0 are

not discretized. Denote ∆Wi+1
4
= Wti+1

−Wti , i = 0, · · · , n−1. Following the direction

(∆y,∆z), by (3.1) we have the following gradients:


































∇Xn,0
0 = 0, ∇Y n,0

0 = ∆y;

∇Xn,0
i+1 = ∇Xn,0

i +
[

σ
n,0
x,i∇Xn,0

i + σ
n,0
y,i∇Y n,0

i

]

∆Wi+1;

∇Y n,0
i+1 = ∇Y n,0

i −
[

f
n,0
x,i ∇Xn,0

i + f
n,0
y,i ∇Y n,0

i

]

∆t+
∫ ti+1

ti

∆ztdWt;

∇Vn(y0, z
0) = E

{

[Y n,0
n − g(Xn,0

n )][∇Y n,0
n − g′(Xn,0

n )∇Xn,0
n ]

}

.

Then

∇Vn(y0, z
0) = E

{

Ȳ n,0
n ∇Y n,0

n − Ỹ n,0
n ∇Xn,0

n

}

= E
{[

Ȳ
n,0
n−1 + f

n,0
y,n−1Ȳ

n,0
n−1∆t+ σ

n,0
y,n−1

∫ tn

tn−1

Z̃
n,0
t dt+

∫ tn

tn−1

Z̄
n,0
t dWt

]

×
[

∇Y n,0
n−1 − [fn,0x,n−1∇Xn,0

n−1 + f
n,0
y,n−1∇Y n,0

n−1]∆t+
∫ tn

tn−1

∆ztdWt

]

−
[

Ỹ
n,0
n−1 − f

n,0
x,n−1Ȳ

n,0
n−1∆t− σ

n,0
x,n−1

∫ tn

tn−1

Z̃
n,0
t dt+

∫ tn

tn−1

Z̃
n,0
t dWt

]

×
[

∇Xn,0
n−1 + [σn,0x,n−1∇Xn,0

n−1 + σ
n,0
y,n−1∇Y n,0

n−1]∆Wn

]

}

= E
{

Ȳ
n,0
n−1∇Y n,0

n−1 − Ỹ
n,0
n−1∇Xn,0

n−1 +
∫ tn

tn−1

Z̄
n,0
t ∆ztdt+ In,0n

}

,
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where

I
n,0
i

4
= σ

n,0
y,i−1

∫ ti

ti−1

Z̃
n,0
t dt

∫ ti

ti−1

∆ztdWt

+σn,0x,i−1[σ
n,0
x,i−1∇Xn,0

i−1 + σ
n,0
y,i−1∇Y n,0

i−1 ]∆Wi

∫ ti

ti−1

Z̃
n,0
t dt

−σn,0y,i−1[f
n,0
x,i−1∇Xn,0

i−1 + f
n,0
y,i−1∇Y n,0

i−1 ]∆t
∫ ti

ti−1

Z̃
n,0
t dt (3.7)

−fn,0y,i−1Ȳ
n,0
i−1 [f

n,0
x,i−1∇Xn,0

i−1 + f
n,0
y,i−1∇Y n,0

i−1 ]|∆t|2.

Repeating the same arguments and by induction we get

∇Vn(y0, z
0) = E

{

Ȳ
n,0
0 ∆y +

∫ T

0
Z̄
n,0
t ∆ztdt+

n
∑

i=1

I
n,0
i

}

. (3.8)

¿From now on, we choose the following “almost” steepest descent direction:

∆y
4
= −Ȳ n,0

0 ;
∫ ti

ti−1

∆ztdWt
4
= Ei−1{Ȳ n,0

i } − Ȳ
n,0
i . (3.9)

We note that ∆z is well defined here. Then we have

Lemma 3.3 Assume (3.9). Then for n large, we have

∇Vn(y0, z
0) ≤ −cVn(y0, z

0).

Proof. We proceed in several steps.

Step 1. We show that

E
{

max
0≤i≤n

[|Ȳ n,0
i |2 + |Ỹ n,0

i |2] +
∫ T

0
[|Z̄n,0

t |2 + |Z̃n,0
t |2]dt

}

≤ CVn(y0, z
0). (3.10)

In fact, for any i,

E
{

|Ȳ n,0
i−1 |2 + |Ỹ n,0

i−1 |2 +
∫ ti

ti−1

[|Z̄n,0
t |2 + |Z̃n,0

t |2]dt
}

= E
{∣

∣

∣Ȳ
n,0
i − f

n,0
y,i−1Ȳ

n,0
i−1∆t− σ

n,0
y,i−1

∫ ti

ti−1

Z̃
n,0
t dt

∣

∣

∣

2

+
∣

∣

∣Ỹ
n,0
i + f

n,0
x,i−1Ȳ

n,0
i−1∆t+ σ

n,0
x,i−1

∫ ti

ti−1

Z̃
n,0
t dt

∣

∣

∣

2}

≤ [1 +
C

n
]E

{

|Ȳ n,0
i |2 + |Ỹ n,0

i |2}+ C

n
E{|Ȳ n,0

i−1 |2}+
1

2
E
{

∫ ti

ti−1

[|Z̄n,0
t |2 + |Z̃n,0

t |2]dt
}

.

Then

E
{

|Ȳ n,0
i−1 |2 + |Ỹ n,0

i−1 |2 +
1

2

∫ ti

ti−1

[|Z̄n,0
t |2 + |Z̃n,0

t |2]dt
}

≤ [1 +
C

n
]E

{

|Ȳ n,0
i |2 + |Ỹ n,0

i |2
}

.

1484



By standard arguments we get

max
0≤i≤n

E
{

|Ȳ n,0
i |2 + |Ỹ n,0

i |2
}

+ E
{

∫ T

0
[|Z̄n,0

t |2 + |Z̃n,0
t |2]dt

}

≤ CE
{

|Ȳ n,0
n |2 + |Ỹ n,0

n |2
}

≤ CVn(y0, z
0).

Then (3.10) follows from the Burkholder-Davis-Gundy Inequality.

Step 2. We show that

Vn(y0, z
0) ≤ CE

{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt
}

. (3.11)

In fact, for t ∈ (ti, ti+1], let

Ȳ
n,0
t

4
= Ȳ

n,0
i + f

n,0
y,i Ȳ

n,0
i [t− ti] + σ

n,0
y,i

∫ t

ti

Z̃n,0
s ds+

∫ t

ti

Z̄n,0
s dWs;

Ỹ
n,0
t = Ỹ

n,0
i − f

n,0
x,i Ȳ

n,0
i [t− ti]− σ

n,0
x,i

∫ t

ti

Z̃n,0
s ds+

∫ t

ti

Z̃n,0
s dWs;

Denote π(t)
4
= ti for ti ∈ [ti, ti+1). Then one can write them as

Ȳ
n,0
t = Ȳ

n,0
0 +

∫ t

0
fn,0y (π(s))[Ȳ n,0

π(s) − Ȳ n,0
s ]ds

+
∫ t

0
[fn,0y (π(s))Ȳ n,0

s + σn,0y (π(s))Z̃n,0
s ]ds+

∫ t

0
Z̄n,0
s dWs;

Ỹ
n,0
t = g′(Xn,0

n )Ȳ n,0
T +

∫ T

t
fn,0x (π(s))[Ȳ n,0

π(s) − Ȳ n,0
s ]ds

+
∫ T

t
[fn,0x (π(s))Ȳ n,0

s + σn,0x (π(s))Z̃n,0
s ]ds−

∫ T

t
Z̃n,0
s dWs.

Applying Theorem 1.2, we get

Vn(y0, z
0) =

1

2
E{|Ȳ n,0

n |2}

≤ CE
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt+
∫ T

0
|Ȳ n,0

t − Ȳ
n,0
π(t)|2dt

}

= CE
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt+
n−1
∑

i=0

∫ ti+1

ti

|Ȳ n,0
t − Ȳ

n,0
ti |2dt

}

≤ CE
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt

+C∆t
n−1
∑

i=0

[

|Ȳ n,0
i |2|∆t|2 +∆t

∫ ti+1

ti

|Z̃n,0
t |2dt+

∫ ti+1

ti

|Z̄n,0
t |2dt

]}

≤ CE
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt
}

+
C

n
Vn(y0, z

0),
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thanks to (3.10). Choosing n ≥ 2C, we get (3.11) immediately.

Step 3. By (3.9) we have

E
{

∫ T

0
|∆zt + Z̄

n,0
t |2dt

}

=
n−1
∑

i=0

E
{∣

∣

∣

∫ ti+1

ti

∆ztdWt +
∫ ti+1

ti

Z̄
n,0
t dWt

∣

∣

∣

2}

=
n−1
∑

i=0

E
{∣

∣

∣Ȳ
n,0
i + f

n,0
y,i Ȳ

n,0
i ∆t+ σ

n,0
y,i Ei{

∫ ti+1

ti

Z̃
n,0
t dt} − Ȳ

n,0
i+1 +

∫ ti+1

ti

Z̄
n,0
t dWt

∣

∣

∣

2}

=
n−1
∑

i=0

E
{

|σn,0y,i |2
∣

∣

∣

∫ ti+1

ti

Z̃
n,0
t dt− Ei{

∫ ti+1

ti

Z̃
n,0
t dt}

∣

∣

∣

2}

≤ C∆t
n−1
∑

i=0

E
{

∫ ti+1

ti

|Z̃n,0
t |2dt

}

≤ C

n
Vn(y0, z

0), (3.12)

where we used (3.10) for the last inequality. Then,

∣

∣

∣E
{

Ȳ
n,0
0 ∆y +

∫ T

0
Z̄
n,0
t ∆ztdt

}

+ E
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt
}∣

∣

∣

=
∣

∣

∣E
{

∫ T

0
Z̄
n,0
t [∆zt + Z̄

n,0
t ]dt

}∣

∣

∣

≤ CE
1

2

{

∫ T

0
|Z̄n,0

t |2dt
}

E
1

2

{

∫ T

0
|∆zt + Z̄

n,0
t |2dt

}

≤ C
√

Vn(y0, z0)

√

C

n
Vn(y0, z0) =

C√
n
Vn(y0, z

0).

Assume n is large. By (3.11) we get

E
{

Ȳ
n,0
0 ∆y +

∫ T

0
Z̄
n,0
t ∆ztdt

}

≤ −1

2
E
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt
}

≤ −cVn(y0, z
0). (3.13)

Step 4. It remains to estimate In,0i . First, by standard arguments and recalling

(3.9), (3.12), and (3.10), we have

E
{

max
0≤i≤n

[|∇Xn,0
i |2 + |∇Y n,0

i |2]
}

≤ CE
{

|∆y|2 +
∫ T

0
|∆zt|2dt

}

≤ CE
{

|Ȳ n,0
0 |2 +

∫ T

0
[|∆zt + Z̄

n,0
t |2 + |Z̄n,0

t |2]dt
}

≤ CVn(y0, z
0). (3.14)

Then

∣

∣

∣

n
∑

i=1

E{In,0i }
∣

∣

∣ ≤ C√
n

n−1
∑

i=0

E
{

∫ ti+1

ti

|Z̃n,0
t |2dt+

∫ ti+1

ti

|∆zt|2dt

+[|∇Xn,0
i |2 + |∇Y n,0

i |2][Eti{|∆Wi+1|2}+ |∆t|2] + |Ȳ n,0
i |2∆t

}

≤ C√
n
E
{

∫ T

0
[|Z̃n,0

t |2 + |Z̄n,0
t |2 + |∆zt + Z̄

n,0
t |2]dt

}
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+
C√
n

max
0≤i≤n

E
{

|∇Xn,0
i |2 + |∇Y n,0

i |2 + |Ȳ n,0
i |2

}

≤ C√
n
Vn(y0, z

0). (3.15)

Recall (3.8). Combining the above inequality with (3.13) we prove the lemma for

large n.

3.3 Iterative Modifications

We now fix a desired error level ε. In light of Theorem 3.1, we set n = ε−2. So it

suffices to find (y, z) such that Vn(y, z) ≤ ε2. As in §2.3, we assume

Vn(y0, z
0) > ε2; E

{

|Y n,0
n − g(Xn,0

n )|4
}

≤ K4
0 . (3.16)

Lemma 3.4 Assume (3.16). There exist constants C0, c0, c1 > 0, which are indepen-

dent of K0 and ε, such that

∆Vn(y0, z
0)

4
= Vn(y1, z

1)− Vn(y0, z
0) ≤ −c0ε

K2
0

Vn(y0, z
0), (3.17)

and

E{|Y n,1
n − g(Xn,1

T )|4} ≤ K4
1
4
= K4

0 + 2C0εK
2
0 , (3.18)

where, recalling (3.9) and denoting λ
4
= c1ε

K2
0

,

y1
4
= y0 + λ∆y; z1

t

4
= z0

t + λ∆zt; (3.19)

and, for 0 ≤ θ ≤ 1,























X
n,θ
0

4
= x; Y

n,θ
0

4
= y0 + θλ∆y;

X
n,θ
i+1

4
= X

n,θ
i + σ(ti, X

n,θ
i , Y

n,θ
i )∆Wi+1;

Y
n,θ
i+1

4
= Y

n,θ
i − f(ti, X

n,θ
i , Y

n,θ
i )∆t+

∫ ti+1

ti

[zt + θλ∆zt]dWt.

(3.20)

Proof. We shall follow the proof for Lemma 2.4.

Step 1. For 0 ≤ θ ≤ 1, denote































Ȳ n,θ
n

4
= Y n,θ

n − g(Xn,θ
n ); Ỹ n,θ

n

4
= g′(Xn,θ

n )[Y n,θ
n − g(Xn,θ

n )];

Ȳ
n,θ
i−1 = Ȳ

n,θ
i − f

n,θ
y,i−1Ȳ

n,θ
i−1∆t− σ

n,θ
y,i−1

∫ ti

ti−1

Z̃
n,θ
t dt−

∫ ti

ti−1

Z̄
n,θ
t dWt;

Ỹ
n,θ
i−1 = Ỹ

n,θ
i + f

n,θ
x,i−1Ȳ

n,θ
i−1∆t+ σ

n,θ
x,i−1

∫ ti

ti−1

Z̃
n,θ
t dt−

∫ ti

ti−1

Z̃
n,θ
t dWt,
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and






















∇Xn,θ
0 = 0, ∇Y n,θ

0 = ∆y;

∇Xn,θ
i+1 = ∇Xn,θ

i +
[

σ
n,θ
x,i∇Xn,θ

i + σ
n,θ
y,i∇Y n,θ

i

]

∆Wi+1;

∇Y n,θ
i+1 = ∇Y n,θ

i −
[

f
n,θ
x,i ∇Xn,θ

i + f
n,θ
y,i ∇Y n,θ

i

]

∆t+
∫ ti+1

ti

∆ztdWt;

where ϕn,θi

4
= ϕ(ti, X

n,θ
i , Y

n,θ
i ) for any function ϕ. Then

∆Vn(y0, z
0) = E

{

[Y n,1
n − g(Xn,1

n )]2 − [Y n,0
n − g(Xn,0

n ]2
}

= λ

∫ 1

0
E
{

[Y n,θ
n − g(Xn,θ

n )][∇Y n,θ
n − g′(Xn,θ

n )∇Xn,θ
n ]

}

dθ.

By (3.8) we have

∆Vn(y0, z
0) = λ

∫ 1

0
E
{

Ȳ
n,θ
0 ∆y +

∫ T

0
Z̄
n,θ
t ∆ztdt+

n
∑

i=1

I
n,θ
i

}

dθ; (3.21)

where

I
n,θ
i

4
= σ

n,θ
y,i−1

∫ ti

ti−1

Z̃
n,θ
t dt

∫ ti

ti−1

∆ztdWt

+σn,θx,i−1[σ
n,θ
x,i−1∇Xn,θ

i−1 + σ
n,θ
y,i−1∇Y n,θ

i−1 ]∆Wi

∫ ti

ti−1

Z̃
n,θ
t dt

−σn,θy,i−1[f
n,θ
x,i−1∇Xn,θ

i−1 + f
n,θ
y,i−1∇Y n,θ

i−1 ]∆t
∫ ti

ti−1

Z̃
n,θ
t dt (3.22)

−fn,θy,i−1Ȳ
n,θ
i−1 [f

n,θ
x,i−1∇Xn,θ

i−1 + f
n,θ
y,i−1∇Y n,θ

i−1 ]|∆t|2.

Step 2. First, similarly to (3.10) and (3.12) one can show that

E
{

max
0≤i≤n

[|Ȳ n,0
i |4 + |Ỹ n,0

i |4] +
(

∫ T

0
[|Z̄n,0

t |2 + |Z̃n,0
t |2 + |∆zt|2]dt

)2} ≤ CK4
0 . (3.23)

Denote

∆Xn,θ
i

4
= X

n,θ
i −X

n,0
i ; ∆Y n,θ

i

4
= Y

n,θ
i − Y

n,0
i .

Then


















∆Xn,θ
0 = 0; ∆Y n,θ

0 = θλ∆y;

∆Xn,θ
i+1 = ∆Xn,θ

i + [α1,θ
i ∆Xn,θ

i + β
1,θ
i ∆Y n,θ

i ]∆Wi+1;

∆Y n,θ
i+1 = ∆Y n,θ

i − [α2,θ
i ∆Xn,θ

i + β
2,θ
i ∆Y n,θ

i ]∆t− θλ

∫ ti+1

ti

∆ztdWt;

where αj,θi , β
j,θ
i are defined in an obvious way and are bounded. Thus, by (3.23),

E
{

max
0≤i≤n

[|∆Xn,θ
i |4 + |∆Y n,θ

i |4]
}

≤ Cθ4λ4E
{

|∆y|4 +
(

∫ T

0
|∆zt|2dt

)2} ≤ CK4
0λ

4.

(3.24)
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Therefore, similarly to (2.18) one can show that

E
{

|Y n,θ
n − g(Xn,θ

n )|4
}

≤ [1 + Cλ]K4
0 . (3.25)

Step 3. Denote

∆Ȳ n,θ
i

4
= Ȳ

n,θ
i − Ȳ

n,0
i ; ∆Ỹ n,θ

i

4
= Ỹ

n,θ
i − Ỹ

n,0
i ;

∆Z̄n,θ
t

4
= Z̄

n,θ
t − Z̄

n,0
t ; ∆Z̃n,θ

t

4
= Z̃

n,θ
t − Z̃

n,0
t .

Then










































































∆Ȳ n,θ
n = ∆Y n,θ

n − αn,θn ∆Xn,θ
n ;

∆Ỹ n,θ
n = g′(Xn,θ

n )[∆Y n,θ
n − αn,θn ∆Xn,θ

n ] + [Y n,0
n − g(Xn,0

n )]∆g′(n, θ);

∆Ȳ n,θ
i−1 = ∆Ȳ n,θ

i − f
n,θ
y,i−1∆Ȳ

n,θ
i−1∆t− σ

n,θ
y,i−1

∫ ti

ti−1

∆Z̃n,θ
t dt−

∫ ti

ti−1

∆Z̄n,θ
t dWt

−Ȳ n,0
i−1∆f

n,θ
y,i−1∆t−

∫ ti

ti−1

Z̃
n,0
t dt∆σn,θy,i−1;

∆Ỹ n,θ
i−1 = ∆Ỹ n,θ

i + f
n,θ
x,i−1∆Ȳ

n,θ
i−1∆t+ σ

n,θ
x,i−1

∫ ti

ti−1

∆Z̃n,θ
t dt−

∫ ti

ti−1

∆Z̃n,θ
t dWt

+Ȳ n,0
i−1∆f

n,θ
x,i−1∆t+

∫ ti

ti−1

Z̃
n,0
t dt∆σn,θx,i−1,

where

αn,θn

4
=

g(Xn,θ
n )− g(Xn,0

n )

∆Xn,θ
n

; ∆ϕn,θi

4
= ϕ(ti, X

n,θ
i , Y

n,θ
i )− ϕ(ti, X

n,0
i , Y

n,0
i );

and all other terms are defined in a similar way. By standard arguments one has

E
{

max
0≤i≤n

[|∆Ȳ
n,θ
i |2 + |∆Ỹ

n,θ
i |2] +

∫ T

0
[|∆Z̄

n,θ
t |2 + |∆Z̃

n,θ
t |2]dt

}

≤ CE
{

|∆Y n,θ
n |2 + |∆Xn,θ

n |2 + |Y n,0
n − g(Xn,0

n )|2|∆g′(n, θ)|2

+
n−1
∑

i=0

[

|Ȳ n,0
i |2[|∆fn,θy,i |2 + |∆fn,θx,i |2]∆t+

∫ ti+1

ti

|Z̃n,0
t |2dt[|∆σn,θy,i |2 + |∆σn,θx,i |2]

]}

≤ CE
{

|∆Y n,θ
n |2 + |∆Xn,θ

n |2 + |Y n,0
n − g(Xn,0

n )|2|∆Xn,θ
n |2

+
n−1
∑

i=0

[|Ȳ n,0
i |2∆t+

∫ ti+1

ti

|Z̃n,0
t |2dt][|∆Xn,θ

i |2 + |∆Y n,θ
i |2]

}

≤ CE
1

2

{

max
0≤i≤n

[|∆Xn,θ
i |4 + |∆Y n,θ

i |4]
}

×

E
1

2

{

1 + |Y n,0
n − g(Xn,0

n )|4 + max
0≤i≤n

|Ȳ n,0
i |4 +

(

∫ T

0
|Z̃n,0

t |2dt
)2}

≤ CK2
0λ

2[1 +K2
0 ] ≤ CK4

0λ
2,
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thanks to (3.24), (3.16), and (3.23). In particular,

E
{

|∆Ȳ n,θ
0 |2 +

∫ T

0
|∆Z̄n,θ

t |2dt
}

≤ CK4
0λ

2. (3.26)

Step 4. Recall (3.12). Note that

∣

∣

∣E
{

Ȳ
n,θ
0 ∆y +

∫ T

0
Z̄
n,θ
t ∆ztdt

}

+ E
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt
}∣

∣

∣

≤ E
{

|∆Ȳ n,θ
0 Ȳ

n,0
0 |+

∫ T

0

[

|∆Z̄n,θ
t ||Z̄n,0

t |+ (|∆Z̄
n,θ
t |+ |Z̄n,0

t |)|∆zt + Z̄
n,0
t |

]

dt
}

≤ CE
{

|∆Ȳ n,θ
0 |2 +

∫ T

0
[|∆Z̄

n,θ
t |2 + |∆zt + Z̄

n,0
t |2]dt

}

+
1

2
E
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt
}

≤ CK4
0λ

2 +
C

n
Vn(y0, z

0) +
1

2
E
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt
}

.

Then

E
{

Ȳ
n,θ
0 ∆y+

∫ T

0
Z̄
n,θ
t ∆ztdt

}

≤ −1

2
E
{

|Ȳ n,0
0 |2 +

∫ T

0
|Z̄n,0

t |2dt
}

+CK4
0λ

2 +
C

n
Vn(y0, z

0).

Choose n large and by (3.11) we get

E
{

Ȳ
n,θ
0 ∆y +

∫ T

0
Z̄
n,θ
t ∆ztdt

}

≤ −cVn(y0, z
0) + CK4

0λ
2. (3.27)

Moreover, similarly to (3.14) and (3.15) we have

E
{

max
0≤i≤n

[|∇Xn,θ
i |2 + |∇Y n,θ

i |2]
}

≤ CVn(y0, z
0); |

n
∑

i=1

E{In,θi }| ≤ C√
n
Vn(y0, z

0).

Then by (3.27) and choosing n large, we get

E
{

Ȳ
n,θ
0 ∆y +

∫ T

0
Z̄
n,θ
t ∆ztdt+

n
∑

i=1

I
n,θ
i

}

≤ −cVn(y0, z
0) + CK4

0λ
2.

Choose c1
4
=

√

c
2C

for the constants c, C as above, and λ
4
= c1ε

K2
0

. Then by (3.8) and

(3.16), we have

∆Vn(y0, z
0) ≤ λ[− c

2
Vn(y0, z

0)] = −c0ε

K2
0

Vn(y0, z
0).

Finally, plug λ into (3.25) and let θ = 1 to get (3.18) for some C0.

We now iteratively modify the approximations. Set

y0
4
= 0, z0 4= 0, K0

4
= E

1

4{|Y n,0
n − g(Xn,0

n )|4}. (3.28)
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For k = 0, 1, · · · , define (Xn,k, Y n,k, Ȳ n,k, Ỹ n,k, Z̄n,k, Z̃n,k) as follows:























X
n,k
0

4
= x; Y

n,k
0

4
= yk;

X
n,k
i+1

4
= X

n,k
i + σ(ti, X

n,k
i , Y

n,k
i )∆Wi+1;

Y
n,k
i+1

4
= Y

n,k
i − f(ti, X

n,k
i , Y

n,k
i )∆t+

∫ ti+1

ti

zkt dWt;

(3.29)

and






























Ȳ n,k
n

4
= Y n,k

n − g(Xn,k
n ); Ỹ n,k

n

4
= g′(Xn,k

n )[Y n,k
n − g(Xn,k

n )];

Ȳ
n,k
i−1 = Ȳ

n,k
i − f

n,k
y,i−1Ȳ

n,k
i−1∆t− σ

n,k
y,i−1

∫ ti

ti−1

Z̃
n,k
t dt−

∫ ti

ti−1

Z̄
n,k
t dWt;

Ỹ
n,k
i−1 = Ỹ

n,k
i + f

n,k
x,i−1Ȳ

n,k
i−1∆t+ σ

n,k
x,i−1

∫ ti

ti−1

Z̃
n,k
t dt−

∫ ti

ti−1

Z̃
n,k
t dWt,

(3.30)

Denote

∆yk
4
= −Ȳ n,k

0 ;
∫ ti

ti−1

∆zkt dWt
4
= Ei−1{Ȳ n,k

i } − Ȳ
n,k
i ; (3.31)

and

λk
4
=

c1ε

K2
k

; yk+1
4
= yk+λk∆yk; zk+1

t

4
= zkt +λk∆z

k
t ; K4

k+1
4
= K4

k+2C0εK
2
k , (3.32)

where c1, C0 are the constants in Lemma 3.4. Then following exactly the same argu-

ments as in Theorem 2.5, we can prove

Theorem 3.5 Set n = ε−2. There exist constants C1, C2 and N ≤ C1ε
−C2 such that

Vn(yN , z
N) ≤ ε2.

4 Further Simplification

We now transform (3.30) into conditional expectations. First,

z
n,k
i

4
=

1

∆t
Ei

{

∫ ti+1

ti

zkt dt
}

=
1

∆t
Ei{Y n,k

i+1∆Wi+1}.

Second, denote

M
n,k
i

4
= exp

(

σ
n,k
x,i−1∆Wi −

1

2
|σn,kx,i−1|2∆t). (4.1)

Then

Ỹ
n,k
i−1 = Ei−1

{

M
n,k
i Ỹ

n,k
i

}

+ f
n,k
x,i−1Ȳ

n,k
i−1∆t;

σ
n,k
x,i−1Ȳ

n,k
i−1 + σ

n,k
y,i−1Ỹ

n,k
i−1 = σ

n,k
x,i−1Ei−1{Ȳ n,k

i }+ σ
n,k
y,i−1Ei−1{Ỹ n,k

i }
+[σn,ky,i−1f

n,k
x,i−1 − σ

n,k
x,i−1f

n,k
y,i−1]Ȳ

n,k
i−1∆t.
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Thus

Ȳ
n,k
i−1 =

1

1 + f
n,k
y,i−1∆t

[

Ei−1{Ȳ n,k
i } − σ

n,k
y,i−1

σ
n,k
x,i−1

Ei−1{Ỹ n,k
i [Mn,k

i − 1]}
]

;

Ỹ
n,k
i−1 = Ei−1{Mn,k

i Ỹ
n,k
i }+ f

n,k
x,i−1Ȳ

n,k
i−1∆t.

(4.2)

When σ
n,k
x,i−1 = 0, by solving (3.30) directly, we see that (4.2) becomes

Ȳ
n,k
i−1 =

1

1 + f
n,k
y,i−1∆t

[

Ei−1{Ȳ n,k
i } − σ

n,k
y,i−1Ei−1{Ỹ n,k

i ∆Wi}
]

;

Ỹ
n,0
i−1 = Ei−1{Ỹ n,k

i }+ fxȲ
n,k
i−1∆t.

(4.3)

Now fix ε and, in light of (3.4), set n
4
= ε−2. Let c1, C0 be the constants in Lemma

3.4. We have the following algorithm.

First, set


















X
n,0
0

4
= x; Y

n,0
0

4
= 0;

X
n,0
i+1

4
= X

n,0
i + σ(ti, X

n,0
i , Y

n,0
i )∆Wi+1;

Y
n,0
i+1

4
= Y

n,0
i − f(ti, X

n,0
i , Y

n,0
i )∆t;

and

z
n,0
i

4
= 0; K0

4
= E

1

4

{

|Y n,0
n − g(Xn,0

n )|4
}

.

For k = 0, 1, · · ·, if E{|Y k
n −g(Xk

n)|2} ≤ ε2, we quit the loop and by Theorems 3.1,

3.4, and Corollary 3.2, we have

E
{

max
0≤i≤n

[|Xti −X
n,k
i |2 + |Yti − Y

n,k
i |2] +

n−1
∑

i=0

∫ ti+1

ti

|Zt − z
n,k
i |2dt

}

≤ Cε2.

Otherwise, we proceed the loop as follows:

Step 1. Define (Ȳ n,k
n , Ỹ n,k

n ) by the first line of (3.30); and for i = n, · · · , 1, define
(Ȳ n,k

i−1 , Ỹ
n,k
i−1 ) by (4.2) or (4.3).

Step 2. Let λk
4
=

c1ε

K2
k

, K4
k+1

4
= K4

k + 2C0εK
2
k . Define (Xn,k+1, Y n,k+1, zn,k+1) by































X
n,k+1
0

4
= x; Y

n,k+1
0

4
= Y

n,k
0 − λkȲ

n,k
0 ;

X
n,k+1
i+1

4
= X

n,k+1
i + σ(ti, X

n,k+1
i , Y

n,k+1
i )∆Wi+1;

Y
n,k+1
i+1

4
= Y

n,k+1
i − f(ti, X

n,k+1
i , Y

n,k+1
i )∆t

+
[

Y
n,k
i+1 − Y

n,k
i + f(ti, X

n,k
i , Y

n,k
i )∆t

]

+ λk
[

Ei{Ȳ n,k
i+1} − Ȳ

n,k
i+1

]

;

(4.4)
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and

z
n,k+1
i

4
=

1

∆t
Ei

{

Y
n,k+1
i+1 ∆Wi+1

}

. (4.5)

We note that in the last line of (4.4), the two terms stand for
∫ ti+1

ti zkt dWt and
∫ ti+1

ti ∆zkt dWt, respectively.

By Theorem 3.4, the above loop should stop after at most C1ε
−C2 steps.

We note that in the above algorithm the only costly terms are the conditional

expectations:

Ei{Ȳ n,k
i+1}, Ei{Ỹ n,k

i+1}, Ei{∆Wi+1Y
n,k
i+1}, Ei{Mn,k

i+1Ỹ
n,k
i+1} or Ei{∆Wi+1Ỹ

n,k
i+1}.

(4.6)

By induction, one can easily show that

Y
n,k
i = u

n,k
i (Xn,k

0 , · · · , Xn,k
i ),

for some deterministic function u
n,k
i . Similar properties hold true for (Ȳ n,k

i , Ỹ
n,k
i ).

However, they are not Markovian in the sense that one cannot write Y n,k
i , Ȳ

n,k
i , Ỹ

n,k
i

as functions of Xn,k
i only. In order to use Monte-Carlo methods to compute the

conditional expectations in (4.6) efficiently, some Markovian type modification of our

algorithm is needed.
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[15] J. Mémin, S. Peng, and M. Xu, Convergence of solutions of discrete reflected

BSDEs and simulations, preprint.

[16] G. Milstein and M. Tretyakov, Numerical algorithms for semilinear parabolic

equations with small parameter based on approximation of stochastic equations,

Math. Comp., 69 (2000), no. 229, 237–267.

[17] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and

Their Applications, Lecture Notes in Math., 1702, Springer, 1999.

[18] J. Ma and J. Yong, Approximate solvability of forward-backward stochastic dif-

ferential equations, Appl. Math. Optim., 45 (2002), no. 1, 1–22.

1494



[19] E. Pardoux and S. Peng S., Adapted solutions of backward stochastic equations,

System and Control Letters, 14 (1990), 55-61.

[20] E. Pardoux and S. Tang, Forward-backward stochastic differential equations and

quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999), no. 2,

123–150.

[21] J. Zhang, A numerical scheme for BSDEs, Ann. Appl. Probab., 14 (2004), no.

1, 459–488.

[22] J. Zhang, The well-posedness of FBSDEs, Discrete and Continuous Dynamical

Systems (B), to appear.

[23] J. Zhang, The well-posedness of FBSDEs (II), submitted.

[24] Y. Zhang and W. Zheng, Discretizing a backward stochastic differential equation,

Int. J. Math. Math. Sci., 32 (2002), no. 2, 103–116.

[25] X. Zhou, Stochastic near-optimal controls: necessary and sufficient conditions for

near-optimality, SIAM J. Control Optim., 36 (1998), no. 3, 929–947 (electronic).

1495


