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Abstract

We bound the probability that a continuous time simple random walk on the infinite

percolation cluster on Zd returns to the origin at time t. We use this result to show that

in dimensions 5 and higher the uniform spanning forest on infinite percolation clusters

supported on graphs with infinitely many connected components a.s.
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1 Introduction

Consider Bernoulli bond percolation on Zd with parameter p. Recall that this is the

independent process on Zd which retains an edge with probability p and deletes an edge

with probability 1 − p. For all d > 1, there exists a critical parameter 0 < pc < 1 that

depends on d, such that if p > pc, then a.s. there is a unique connected component with

infinitely many edges [1]. This component is called the infinite cluster. The phase where

p > pc is called supercritical Bernoulli percolation. Supercritical Bernoulli percolation

can be viewed as a random perturbation of the original graph. For more on this, see

[15]. It is then natural to ask what properties persist through this random perturbation.

In particular, we focus on the properties of a simple random walk on the infinite cluster.

Rayleigh’s monotonicity principle says that if a simple random walk on a graph

G is recurrent then a simple random walk on any subgraph of G is recurrent. This

implies that a simple random walk on the infinite percolation cluster in Z2 is recurrent.

Grimmett, Kesten, and Zhang proved that in Zd, d ≥ 3 a simple random walk on the

infinite percolation cluster, C∞(Zd, p), is a.s. transient [16]. Häggström and Mossel used

a method of Benjamini, Pemantle, and Peres to show that a large class of subgraphs of Zd

have transient percolation clusters [19] [8]. Although on subgraphs transient percolation

clusters corresponds well with transience, the methods in these papers tell us nothing

about the probability that a simple random walk on the percolation cluster returns to

the origin at time t. They also do not answer the question of whether two independent

simple random walks on the percolation cluster will intersect infinitely often a.s.

The probability that a simple random walk on Zd returns to the origin at time t

decays on the order of Ct−d/2. The method of Varopoulos and Carne proves that the

probability that a simple random walk returns to the origin at time t is greater than or

equal to Ct−d/2/(log t) [28] [10]. In this paper we get a bound in the other direction. We

show that this probability is bounded above by C ′t−d/2(log t)6d+14.

After this paper was written Mathieu and Remy [24] and then Barlow [3] obtained

more refined results on the return probabilities of simple random walk on C∞(Zd, p). We

mention the beautiful results of Barlow here. For a fixed graph ω and two vertices v and

w in the same connected component of ω let pωt (v, w) be the probability that continuous

time simple random walk on ω which is started at v at time 0 is at w at time t.
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Theorem 1.1 [3] There exists constants ci = ci(p, d) and a function S : {0, 1}Edges(Zd) →
R which is finite a.s. with the following property. For all w ∈ Zd and t ∈ R if

0, w ∈ C∞(Zd, p) t ≥ S(ω), and t ≥ |w| =∑d |wi| then

c1t
−d/2e−c2|w|

2/t < pωt (0, w) < c3t
−d/2e−c4|w|

2/t.

Our result allows us to show that another property of the simple random walk persists

after supercritical Bernoulli percolation. Namely, in Zd, d ≥ 5, two simple random walks

intersect finitely often a.s. [23]. In Section 9 we use the bound on the return probability

to show that this property also holds on the infinite percolation cluster in Zd, d ≥ 5.

Together with results of [7], [6] and [21], this in turn shows that for Zd, d ≥ 5, the

uniform spanning forest (USF) on percolation clusters is supported on infinitely many

components. We define the wired, free and uniform spanning forests in Section 9. This

corresponds with a result of Pemantle that the USF in Zd, d ≤ 4, is supported on trees,

while in Zd, d ≥ 5 the USF is supported on graphs that have infinitely many connected

components [25]. The lower bound proves that two independent simple random walks

on C∞(Zd, p), d ≤ 4, have infinite expected number of intersections. If this could be

extended to show that two simple random walks have infinite intersections almost surely

then this would prove that the USF on C∞(Zd, p), d ≤ 4, is supported on a tree a.s.

2 Outline

The outline of the proof is as follows. Most of this paper is devoted to showing that with

high probability there exist subgraphs of C∞(Zd, p) where we can calculate the return

probabilities. We use a result of Benjamini and Schramm (Theorem 3.1) to show that

we can bound the average return probabilities on C∞(Zd, p) by the return probabilities

on these subgraphs.

Now we will introduce some notation to help us describe the subgraphs that we

find embedded in C∞(Zd, p). For any positive integers j and d we write [−j, j]d for the

subgraph of Zd that includes all vertices (v1, ..., vd) such that −j ≤ vi ≤ j for all i. The

edges of this graph are those that have both their endpoints in this set of vertices. For

any graph G and any positive integer n we write nG for the graph that is generated by
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replacing each edge of G with n edges in series. We say a distinguished vertex of nG

is a vertex that corresponds with one in G. For any graph G we write V (G) for the

vertices of G.

In particular we will show that for some α > 0 with high probability there exists a

embedding of n[−2αn, 2αn]d in C∞(Zd, p) “centered around the origin”. It is easy to bound

the return probabilities of a simple random walk on an embedding of n[−2αn, 2αn]d. How-
ever we can not use these subgraphs with Theorem 3.1 to bound the return probabilities

on C∞(Zd, p). In order to use Theorem 3.1 we will extend the embedding of n[−2αn, 2αn]d

to get a graph that spans the percolation cluster in some finite ball. This subgraph will

be the embedding with “bushes” attached to various vertices in the grid. The following

is a picture of an embedding of 9[−1, 1]2 with bushes.

The bushes ensure that the subgraph spans the finite section of the percolation clus-

ter. They also do not increase the return probabilities significantly. With bounds for

the return probabilities on these graphs we can invoke Theorem 3.1 and obtain bounds

for the return probabilities on the percolation cluster.
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The remainder of the paper is organized as follows. In Section 3 we present the result

which allows us to estimate the return probabilities on C∞(Zd, p) by studying return

probabilities on subgraphs. Then we turn our attention to constructing the subgraphs of

C∞(Zd, p). In order to show that embeddings of n[−2αn, 2αn]d exist with high density we

need to do two main things, to identify potential distinguished vertices and to show that

the distinguished vertices can be connected by disjoint paths of the appropriate length.

We do the second task first. In particular we show that there exists an odd integer γ

such that given that x and y are connected, the conditional probability that there exists

a path P that connects x and y such that |P | = γ|x − y| is approaching 1 as |x − y|
approaches ∞. This is done in sections 4 and 5.

Then in Section 6 we show that there are lots of candidates for distinguished vertices

of an embedding of n[−2αn, 2αn]d. Also in this section we combine this with the results

of the previous section to show that the probability that there exists a embedding of

n[−2αn, 2αn]d centered near the origin inside C∞(Zd, p) is increasing to 1 exponentially

in n.

Then in Section 7 we show how to extend this grid to a spanning subgraph. Then

we bound the return probabilities on the spanning subgraphs. Unfortunately it is rather

cumbersome to do so. Our method is as follows. First we place a measure on such

spanning subgraphs. Then in Section 8 we prove that with high probability the spanning

subgraph has low return probabilities. Finally we use Theorem 3.1 to bound the return

probabilities on the percolation cluster.

We conclude the paper with Section 9, where we show that the bounds on the return

probabilities are sufficient to prove that the USF on C∞(Zd, p), d ≥ 5 is supported on

graphs with infinitely many connected components.

3 Monotonicity of average return probability

This section is due to Itai Benjamini and Oded Schramm. Let F be a finite graph where

each edge (i, j) has a conductance ai,j ≥ 0. (If the conductances are not specified then

they are assumed to be one across every edge of F .) Let Z be the nearest neighbor
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process on V (F ) where the rate of moving from i to j is ai,j . Define

pFt (v, w) = P (Zt = w | Z0 = v).

Theorem 3.1 Fix any t > 0.
∑

v p
F
t (v, v) is monotone non-increasing in the conduc-

tances.

Proof: Fix some time t > 0, and let z =
∑

v p
F
t (v, v). Observe that z = trace (exp(tA))

where A = (ai,j) and ai,j is the conductance of the edge {i, j} if i 6= j and ai,i =

−∑k 6=i ai,k.

Now let tr = trace. It follows from tr(AB) = tr(BA) and the linearity of tr that

dz = dtr(exp(tA)) = tr(exp(tA)dA).

Without loss of generality we may take dA to be of the form a11 = a22 = −1, a12 = a21 = 1

(that is, we increase the conductance of the edge {1, 2}). Let B := exp(tA). Then

tr(exp(tA)dA) = b12 + b21 − b11 − b22. Let C = exp((t/2)A). Then B = C ∗ C, and

b11 + b22 − b12 − b21 = c1c1 + c2c2 − 2c1c2 = |c1 − c2|2,

where c1 is first row of C and the first column of C and c2 is the second row of C and

the second column of C. Consequently, dz < 0. ¤

Corollary 3.1 Let µ be a shift invariant measure on spanning subgraphs of Zd, then for

any v ∈ Zd
∫

pXt (v, v)dµ(X) ≥ pZd
t (v, v) = Θ(t−d/2).

Note that Barlow and Perkins [4], constructed a subgraph S of Zd, such that there

exists a vertex v ∈ Zd, a constant C > 0 and a sequence tn such that tn →∞ and

pSt (v, v) >
Ct

−d/2
n

log tn
,

for all n.
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4 Approximate Pathlengths in the Cluster

In this section we show that if two points x and y are connected in the infinite cluster

and far apart, then with high probability there exists a path between them in the cluster

of approximately any length in a certain interval. Namely, for any length q̃ ∈ [1.5, 36],

there is a path of length q̃ρ|x − y| ± ερ|x − y|. These paths are a first approximation

for the sides of the grid we construct in Section 6. In Section 5 we construct paths of

length exactly 5ρ|x − y|. These will be the sides of the grid. First we introduce some

notation. Let ω ∈ {0, 1}Zd be a realization of percolation. An open edge e is one such

that ω(e) = 1. An open path P is a connected set of open edges with no cycles such that

two vertices have degree 1. These are the endpoints of P . An open path P connects

x and y if x and y are endpoints of edges in P . We also say P is a path from x to y.

We write x ∼ y if there exists an open path from x to y. We write x ∼ ∞ if x is part

of the unique infinite cluster. If x ∼ y then we let D(x, y) be the length of the shortest

open path from x to y. A path P is in a set of vertices V if the endpoints of every edge

in P are in V . We write V (G) for the vertices of a graph. We say that G′ spans G if

V (G) ⊂ V (G′).

Throughout the next two sections we prove that there exists an odd integer ρ, such

that if x ∼ y and |x− y| is large, then with high probability there exists a path P which

connects x and y such that |P | = 5ρ|x − y|. We show that conditioned on x ∼ y, the

probability that there does not exist such a path decreases exponentially in |x− y|.
We use the taxicab metric on Zd, |(x1, ..., xd), (y1, ..., yd)| = |x1 − y1|+ ...+ |xd − yd|.

Define L(u, v) to be the elements in Zd which are within d/2 of the line segment joining

u and v. Let Bk be all (x1, ..., xd) ∈ Zd such that |x1|+ ...+ |xd| ≤ k and Bk(x) = x+Bk.

Also let Bµ(x, y) = Bµ|x−y|(x)∪Bµ|x−y|(y). All constants Ai and Ci may depend on d and

p. There are a number of places in the following sections where in order to be precise in

choosing our parameters, it is necessary to use the greatest integer function. However in

the sake of readability we have omitted the greatest integer function from some of our

definitions. It is easy to check that this causes no essential difficulties.

We will show that for any q̃ ∈ (1.5ρ|x − y|, 36ρ|x − y|) there exists a path P from

x to y, lying in a certain region called the wedge between x and y, such that |P | is
approximately q̃. Then in the next section we will use an inductive argument to show
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that there exists a path of exactly length 5ρ|x− y|.
There are three main tools that we will use to get a path of approximately the right

length. The first is the following result of Antal and Pisztora.

Theorem 4.1 [2] Let p > pc(Z
d). Then there exists ρ = ρ(p, d) ∈ [1,∞), and constant

C1 such that for all y

P(D(0, y) > ρ|y| | 0 ∼ y) < e−C1|y|.

The second is the method of Grimmett, Kesten, and Zhang [16]. This method was

used to show the existence of a tree in C∞(Zd, p) with certain branching properties. This

tree was used to show that for d ≥ 3, a simple random walk on C∞(Zd, p) is transient a.s.

The method works just as well for Z2 [20]. This method requires the following standard

facts about the infinite percolation cluster.

Lemma 4.1 Given p > pc(Z
d) there exists C2 so that P(Bk 6∼ ∞) < e−C2k.

Proof: For d ≥ 3 a proof of this can be found in [17]. For d = 2 this follows from the

work of Seymour and Welsh, and Russo [27] [26]. ¤

The third is a combination two theorems, one of Chayes, Chayes and Newman, and

the other of Barsky, Grimmett and Newman, which gives the following result.

Theorem 4.2 [11], [5] Given p > pc(Z
d) there exists C3 so that

P(0 6∼ ∞ | 0 ∼ ∂Bk) < e−C3k.

Applying the last theorem we get the following lemma.

Lemma 4.2 Let S be a connected set with diam(S) = n. Then there exists C4 such that

P(S 6∼ ∞) ≤ e−C4n.

Proof: This argument was given to us by Y. Zhang. For d = 2 the result follows easily

from the arguments in [15] on pages 194 and 195. Let d ≥ 3 and p > pc(Z
d). Then there

exists k such that for any fixed i, p > pc({(x1, ..., xd) | 0 ≤ xi ≤ k}). There also exists a

C > 0 such that for any w = (w1, ...wd), any i and any j such that j ≤ wi ≤ j + k,
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P(∃ an ∞ path P, w ∈ P, P ⊂ {(x1, ..., xd) | j ≤ xi ≤ j + k}) > C.

Since diam(S) = n there exists i and y, y′ ∈ S such that y′i − yi ≥ n
d
. Let α = b n

dk
c.

Then there exists w1, ...wα ∈ S such that (wj)i ∈ [yi + (j − 1)k, yi + jk). Then

P(S 6∼ ∞) ≤ P(w1, ...wα 6∼ ∞)

≤
α
∏

j=1

P(6 ∃ an ∞ path Pj, wj ∈ P,

Pj ⊂ {(x1, ..., xd) | xi ∈ [yi + (j − 1)k, yi + jk)})
≤ (1− C)α

≤ (e−C
′/dk)n

≤ e−C4n

¤

Now we will use a method similar to the one introduced by Grimmett, Kesten, and

Zhang to show that infinite percolation clusters in Zd, d ≥ 3 are a.s. transient. We will

use this method to show that for any two points x, y ∈ Zd the probability that there

exists a reasonably short and direct path from near x to near y is going to 1 exponentially

in |x− y|.

Define Er(z) to be the event that there exists w ∈ Br(z)

1. such that w ∼ ∞ and

2. any point w′ ∈ (B2r(z))
C such that w′ ∼ w satisfies D(w,w′) ≤ ρ|w − w′|.

Remember that the constant ρ was defined in Theorem 4.1 Notice that Er(z) is not an

increasing event. This makes some of the future arguments more technical since the

FKG inequality will not apply.

Lemma 4.3 There exists A4, C5 > 0 such that for all r

P(Er(z)) > 1− A4e
−C5r.
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Proof: By Lemma 4.1 the probability that line 1 in the definition of Er(z) does not

hold is less than e−C2r. Theorem 4.1 implies that

P (∃ z2 ∼ w such that |z2 − w| = j , D(z2, w) ≥ ρ|z2 − w|) < 2djd−1e−C1j.

Thus

P(Er(z)) > 1− e−C2r − (2r + 1)d
∑

j≥2r

2djd−1e−C1j

> 1− A4e
−C5r

for an appropriate choice of A4 and C5. ¤

Define Fr(z) to be the event that

1. z ∼ ∞ and

2. any point w′ ∈ B2r(z)
C such that z ∼ w′ satisfies D(z, w′) ≤ ρ|z − w|.

Let K = 1000 and ε = 1/2K2. Remember that ρ > 1 is an odd integer from Theorem

4.1. We define sets in Zd, called wedges, around x and y in which the various constructed

paths from x to y will lie. The wedges allow enough room to construct paths of many

different lengths, while ensuring that when the paths are concatenated, they do not

intersect except near x or y. Define ∠xz, xy to be the angle between the line segments

xz and xy. Define

W (x, y) = {z ∈ Zd| z ∈ B.1/K2(x, y) or (∠xz, xy ≤ 15◦ and ∠yz, yx ≤ 15◦)}

and

W ′(x, y) = {z ∈ Zd| z ∈ B.1/K2(x, y) or (∠xz, xy ≤ 30◦ and ∠yz, yx ≤ 30◦)}. (1)

The following is a picture of the wedge W between x and y.
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x y

. . ..

the wedge W between x and y

detour

Definition 4.4 A pair of points x and y in Zd is (ε, ρ, ω) good, written x ' y, if there

exists an open path P0 from x to y such that for all q̃ ∈ [1.5, 36], there exists open path

P ⊂ ω such that

1. |P | ∈ [(q̃ − ε)ρ|x− y|, (q̃ + ε)ρ|x− y|],

2. P ⊂ W (x, y),

3. P |B1/4(x,y) = P0|B1/4(x,y).

Now we show that most pairs of vertices that are connected and far apart are good

pairs.

Lemma 4.5 There exists A5, C6 > 0 such that

P(x ' y | x ∼ y) > 1− A5e
−C6|x−y|.

Proof: The idea is as follows. By Lemma 4.1, if x ∼ y, then it is likely that there is

a path in the percolation cluster whose length is bounded above by ρ|x − y|. We show

that it is possible to pick a path, P0 inside the wedge from x to y with length less than

1.5ρ|x− y|. This is done as follows.

We lay down a series of evenly spaced points, called markers, on the line segment

between x and y. These markers will be labelled z1
i,0. These markers lie in a straight
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line from x to y and are evenly spaced. (In the picture above all of the markers z1
i,0 will

lie in the thin strip between z and y. The path P0 will pass close to all of these markers

and is also located in the strip.) In particular we will show that with high probability

there exists a point in a small ball around each marker such that for any two adjacent

markers w and w′, there is a path between the points corresponding to w and w′ whose

length is bounded by ρ|w − w′|. This follows from Lemma 4.3. We construct P0 by

concatenating the paths between the points in the balls around the markers on the line

segment between x and y and removing any loops. This constructs us a path between x

and y that is not too long and lies fairly close to the line segment between x and y.

Moreover we need to show it is possible to pick a different path so that the length

falls within any specified range. To do this, we create a disjoint collection of possible

detours. Each detour is a path that intersects P0 on both ends. Thus for each subset of

detours we are able to construct a path from x to y by either including the portion of

P0 or the detour. By varying the number of detours we add we can control the length

of the path from x to y.

We create the detours in a similar manner to the way we create P0. First we lay

down a series of markers outlining the detours. All of the detours have (roughly) the

shape of three sides of a rectangle. (The piece of P0 which is bypassed makes up the

fourth side of the rectangle.) For the jth detour these markers will be labelled z2
i,j , z

3
i,j

and z4
i,j . The labels 2,3 and 4 indicate on which side of the rectangle the markers lie. (In

the picture the markers z2
i,1, z

3
i,1 and z4

i,1 lie on the left hand side, top, and right hand

side, respectively, of the object labelled detour.) The index i indicates where along the

side the marker lies. The jth detour will roughly follow the points z2
i,j then the points

z3
i,j and z4

i,j before returning to P0.

We will choose our parameters so that if we add all of the detours to P0 then the

resulting path is long enough (≥ 36ρ|x − y|). On the other hand adding each detour

increases the length of the path by a small amount. Hence it is possible to add the right

number of detours so that the length of the path falls within the specified range.

Let m = 4ρ be the number of markers on the short side of each rectangle and M =

300ρ2 be the number of markers on the long side of each rectangle. Define # = 60ρ/ε to

be the total number of possible detours. Let n = 1000ρ2/ε be the number of markers on

the line segment between x and y, η = |x − y|/n be the size of the increments between
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the markers and v = (y − x)/|y − x|. Finally let v′ be a unit vector perpendicular to v.

We define the markers equally spaced throughout the region in which the path is

permitted. Let

z1
i,0 = x+ iηv 0 ≤ i ≤ n,

z2
i,j = x+ (n/4 + 2mj)ηv + iηv′ 0 ≤ i ≤M, 0 ≤ j ≤ #,

z3
i,j = x+ (n/4 + 2mj + i)ηv +Mηv 0 ≤ i ≤ m, 0 ≤ j ≤ #,

z4
i,j = x+ (n/4 + (2m+ 1)j)ηv + iηv′ 0 ≤ i ≤M, 0 ≤ j ≤ #.

We will show that if Eη/4(z
l
i,j) holds for all i, j and l then x and y are a good pair.

First we show that if the events Eη/4(z
1
i,0) hold for all i then there is a path P0 from

Bη/4(x) to Bη/4(y) inside L(x, y) + Bρη that has |P0| < 1.5ρ|x − y|. To see this, let

wi ∈ Bη/4(z
1
i,0) be the point in the definition of Eη/4(z

1
i,0). Then

|P0| =
∑

i

D(wi, wi−1)

≤
∑

i

ρ|wi − wi−1|

≤
∑

i

2ρ(η/4) +
∑

i

ρ|z1
i,0 − z1

i−1,0|

≤ ρ/2|x− y|+ ρ|x− y|.

Furthermore P0 lies inside L(x, y) + Bρη. This is because the maximum that P0 can

travel away from the line between x and y is bounded by

max
i

D(wi, wi−1)

2
+ η/4 ≤ ρη.

If Fη/4(x) and Fη/4(y) also hold then there is a path P0 from x to y inside W (x, y) such

that |P0| < 1.5ρ|x− y|.
Now we show that if in addition the events Eη/4(z

l
i,j) hold for all i, j, l then there are

paths from near x to near y inside L(x, y) +B(ρ+M)η of many different lengths. Suppose

in addition to the events Eη/4(z
1
i,0), Fη/4(x), and Fη/4(y) holding that for a fixed j the

events Eη/4(z
2
i,j), Eη/4(z

3
i,j), and Eη/4(z

4
i,j) hold for all i. Then there is a path P j such

that 2ηM < |P j| < 3ρηM , P j ∩ P0 = ∅ and the only vertices shared by P j and P0 are

the endpoints of P j. We can form a new path from x to y by cutting out a piece of P0
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and attaching P j. We say this path takes detour j. By this construction, the possible

detours occur in the middle half of the line segment between x and y. This is because

2m# ≤ 2(4ρ)(60ρ/ε) < n/2. Furthermore, the maximum height of the detour marker

points is Mη ≤ ε|x− y| < |x−y|
4

tan 15. This implies that

P j ⊂ Bρη + (L(z2
0,j , z

2
Mη,j) ∪ L(z3

0,j , z
3
m,j) ∪ L(z4

0,j , z
4
Mη,j)) ⊂ W (x, y).

These containment conditions imply that the P j are all disjoint.

Now suppose Eη/4(z
l
i,j) holds for all i, j, l and Fη/4(x) and Fη/4(y) also hold. Then

for any i ∈ [0, ...,#] we can form a path that takes exactly i detours. Since 2ηM < |P t|
for each t a path that takes i detours has length at least 2ηiM . Thus there is a path

that takes # detours which has length at least

2ηM# ≥ 2|x− y|ε(300ρ2)(60ρ)

1000ρ2ε
≥ 36ρ|x− y|.

Adding one extra detour adds at most length

4ρηM ≤ 4ρ|x− y|ε300ρ2

1000ρ2
≤ 2ερ|x− y|.

to the length of a path. Thus if Eη/4(z
l
i,j) holds for all i, j, l and Fη/4(x) and Fη/4(y) also

hold then x and y are a good pair.

Now we calculate the probability that all of this happens. Notice that n + 3#M is

the total number of markers. Also notice that P(x ∼ y) ≥ P(x ∼ ∞)2.

P (x 6' y | x ∼ y) < P
(

∪i,j,l(Eη/4(z
l
i,j))

c | x ∼ y
)

+ 2P
(

(Fη/4(x))
c | x ∼ y

)

< (n+ 3#M)P
(

(Eη/4(0))
c
)

/P(x ∼ y) + 2P(x 6∼ ∞ | x ∼ y) +

2P(x ∼ ∞, (Fη/4(x))
c | x ∼ y)

< (n+ 3#M)A4e
−C5η/4/P(x ∼ ∞)2 + 2e−C3|x−y|

+2A4e
−C5η/4/P (x ∼ ∞)2

< (n+ 3#M + 2)A4/P(x ∼ ∞)2e−C5η/4 + 2e−C3|x−y|

< (n+ 3#M + 2)A4/P(x ∼ ∞)2e−C5|x−y|/4n + 2e−C3|x−y|

< A5e
−C6|x−y|.

Thus the lemma is true for some appropriately chosen A5 and C6. ¤
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Corollary 4.6 There exists A6 and C7 so that

P(∃y ∈ Br(x)
Csuch that x ∼ y, x 6' y) < A6e

−C7r

and

P(∃y, z ∈ Br(x)such that y ∼ z, y 6' z, |y − z| > r/2K2) < A6e
−C7r.

5 Exact Pathlengths in the Cluster

This section is devoted to showing that with high probability we can find a path in the

percolation cluster from x to y of length exactly 5ρ|x− y|. We do this so that the sides

of the constructed grid in Section 6 are all of the same length. Now we give an overview

of this section.

First we define a pair of points (x, y) to be very good if there exists many paths

of specific lengths in the percolation cluster connecting x and y (Definition 5.1). The

main result of this section is Lemma 5.8 which shows that conditioned on x and y being

connected, with high probability, (x, y) is a very good pair. The proof is by induction.

We need to establish the existence of many paths between x and y because the existence

of 1 path of a certain length does not yield a strong enough induction hypothesis.

The main idea of the induction in Lemma 5.2 is the following. At the nth stage we

construct an approximate pathlength path between x and y (we can do this because

of the results in Section 4). The path passes through points x′ and y′ which are close

enough to each other to apply the induction hypothesis. The relative distances of x, y,

x′ and y′ are important and are laid out in Lemma 5.2. Since (x′, y′) is a very good pair,

we can modify the path between x′ and y′ so that we know the exact length of the entire

path. We choose the distances between x and y and x′ and y′ so that if (x, y) is a good

pair and (x′, y′) is a very good pair then (x, y) is also a very good pair. The main idea

for the induction step in Lemma 5.8 is encompassed in Lemma 5.2, which we outline in

the following paragraph.

In Lemma 5.2 we want to construct a path P from x to y which is exactly some linear

multiple of |x− y|. We assume that we have points x′ and y′, with paths P1 between x

and x′ and P2 between y and y′ such that |P1|+ |P2| is approximately the desired linear
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multiple of |x − y|. We further assume that we can find a path P3 from x′ to y′ that is

exactly the difference between the linear multiple of |x− y| and |P1|+ |P2|. We want to

construct |P | by simple concatenation. The problem is that P may have loops. Hence

we replace P1, P2 and P3 with paths P ′1, P
′
2 and P ′3 which yields a path with no loops

when concatenated and such that the new path is the desired length.

After we prove the main part of the induction step in Lemma 5.2 we give a Corollary

5.3 that is more technical but is actually the version we need. It weakens the hypothesis

on x′ and y′ to ensure that with high probability we can fulfill the hypotheses by possible

replacing x′ and y′ with nearby points x′′ and y′′ lying on the path between x′ and y′.

The three lemmas after Corollary 5.3 are devoted to proving the base case of the

induction. We now give an idea for the structure of this. In Definition 5.4 we define a

very good n-ball around x to be one which contains a very good pair (y, z) such that

|y−z| = Kn. In Lemma 5.5 we show that if there exists very good balls of large diameter

around x and x ∼ y, then the probability that (x, y) is a very good pair does not decay

exponentially to 0 in |x − y|. Lemma 5.6 shows that with high probability there exists

very good balls around a generic point x in the cluster. In Lemma 5.7 we show that the

probability that (x, y) is a very good pair, given that the points are connected and a fixed

distance apart is bounded away from 0. This lemma is the base case of the induction.

Once we prove Corollary 5.3 and Lemma 5.7, we are ready to prove the main lemma,

Lemma 5.8. Remember that ρ is an odd integer from Lemma 4.1.

Definition 5.1 A pair x and y in Zd is said to be (ρ, ω) very good, written x ∼= y,

if there exists a path P0 from x to y satisfying the following property. For all q̃ ∈
(3ρ|x− y|, 10ρ|x− y|) such that q̃ + |x− y| = 0 mod 2 there exists P ⊂ ω such that

1. |P | = q̃,

2. P ⊂ W ′(x, y), and

3. P |B1/16(x,y) = P0|B1/16(x,y).

The proof that most pairs that are connected are very good is inductive. The main

idea in the inductive step is contained in this next lemma. The three lemmas after that

will allow us to get the induction started.
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Lemma 5.2 Suppose x′, y′ ∈ W (x, y) such that 3
8
|x − y| < |x − x′|, |y − y′| < 5

8
|x − y|.

Suppose 1
K2 |x − y| < |x′ − y′| < 1

20
|x − x′| and similarly for |y − y′|. If x ' x′, y ' y′

and x′ ∼= y′, then x ∼= y.

Proof: The basic idea is that given q̃ we find paths P1, P2, and P3 as follows. The

definition of a good pair will allow us to choose P1 so that P1 connects x and x′, P1 ∈
W (x, x′), and |P1| a little less than .5q̃. It also allows us to choose P2 so that P2 connects

y and y′, P2 ∈W (y, y′), and |P2| a little less than .5q̃. Then since x′ ∼= y′ we can choose

P3 so that P3 connects x′ and y′, P3 ∈ W (x′, y′), and |P3| = q̃ − |P1| − |P2|. Then form

a path P by concatenating P1, P3 and P2 we get a path from x to y of length q̃.

The problem is that P may have loops. These can only occur in

B|x−x′|/10K2(x′) ∪B|x′−y′|/10K2(x′) ⊂ B|x′−y′|/16(x
′)

or

B|y−y′|/10K2(y′) ∪B|x′−y′|/10K2(y′) ⊂ B|x′−y′|/16(y
′).

Let q̃1 be the length of the loops near x′ and q̃2 be the length of the loops near y′. Notice

that q̃1 + q̃2 < 2ρ|x− y|. Now modify P1 to find P ′1 with

|P ′1| ∈ (.5(q̃+ q̃1 + q̃2)− 1.6ρ|x′− y′| − ερ|x− y|, .5(q̃+ q̃1 + q̃2)− 1.6ρ|x′− y′|+ ερ|x− y|).

This is possible because

.5(q̃ + q̃1 + q̃2)− 1.6ρ|x′ − y′| − ερ|x− y| > (1.5− ε)ρ|x− y| − .1ρ|x− x′|
> 2.4ρ|x− x′| − 1.6ερ|x− x′| − .1ρ|x− x′|
> 1.5ρ|x− x′|

and

.5(q̃ + q̃1 + q̃2)− 1.6|x′ − y′|+ ερ|x− y| < 6ρ|x− y|+ ερ|x− y| < 36ρ|x− x′|.

Modify P2 to find P ′2 with |P2| in the same interval. Choose P3 so that it connects x′

and y′, P3 ∈ W (x′, y′). Finally find |P ′3| = q̃ + q̃1 + q̃2 − |P ′1| − |P ′2|. This can be done

because

q̃ + q̃1 + q̃2 − |P ′1| − |P ′2| ∈ (3.2|x′ − y′| − 2ερ|x− y|, 3.2|x′ − y′|+ 2ερ|x− y|)
⊂ (3ρ|x′ − y′|, 10ρ|x′ − y′|).
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Since both ends of P1, P2, and P3 are the same as the ends of P ′1, P
′
2, and P ′3 this

modification does not change the concatenation in B1/10(x, y) or change the loops. Thus

concatenating P ′1, P
′
3, and P ′2 and then removing the loops near x′ and y′ gives a path P

from x to y of length q̃. Finally P ⊂ W (x, x′) ∪W ′(x′, y′) ∪W (y, y′) ⊂ W ′(x, y). ¤

The same argument gives us the following.

Corollary 5.3 Suppose x′, y′ ∈ W (x, y) such that 3
8
|x− y| < |x−x′|, |y− y′| < 5

8
|x− y|,

x′ ∼= y′ and P0 is a path between them that satisfies the definition of very good. Also

suppose 1
K2 |x − y| < |x′ − y′| < 1

20
|x − x′| and similarly for |y − y′|. If there exists

x′′ ∈ V (P0) ∩ B.01|x′−y′|(x
′) and y′′ ∈ V (P0) ∩ B.01|x′−y′|(y

′) such that x ' x′′ and y ' y′′

then x ∼= y.

The main result of this section is that P(x ∼= y | x ∼ y) is converging to 1 exponen-

tially in |x − y|. Before we show this, we show in the next two lemmas that it is not

converging to 0 exponentially in |x− y|. This step is necessary to prove the base case of

the induction.

Definition 5.4 B2Kn(x) is very good if there exists y, z ∈ B2Kn(x) such that y, z ∼ ∞,

y ∼= z and |y − z| = Kn.

Lemma 5.5 If there exists an C8 and a A7 such that

P(B2Kn+1(x) is very good | B2Kn(x) is very good) > 1− C8e
−A7Kn

,

then there exist an N and A10 such that if |x− y| = Kn for n ≥ N then

P(x ∼= y | x ∼ y) > A10|x− y|−2d.

Proof: Notice that

∑

|w−w′|=Kn,w,w′∈B2Kn

P(w ∼= w′) ≥ P(B2Kn is very good ).

Since P(w ∼= w′) is the same for each of these pairs, this implies that P(w ∼= w′) ≥
P(B2Kn is very good )/(2Knd)2. Since

P(B2Kn+1(x) is very good | B2Kn(x) is very good) > 1− C8e
−A7Kn

,
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there exist N and C so that

P(B2Kn(x) is very good for all n > N) > C.

By the previous remark, this implies there exists N such that if |x − y| = Kn for some

n > N

P(x ∼= y | x ∼ y) ≥ P(x ∼= y)

≥ P(B2Kn is very good)/(2Knd)2

≥ A10|x− y|−2d.

¤

Lemma 5.6 There exist A10 such that if |x− y| = Kn for some n then

P(x ∼= y | x ∼ y) > A10|x− y|−2d.

Proof: To prove this we show that there are C8 and A7 such that

P(B2Kn+1(x) is very good | B2Kn(x) is very good) > 1− C8e
−A7Kn

.

This implies the result by the previous lemma.

The idea of the proof is as follows. It suffices to find a pair of points y, z ∈ B2Kn+1(x)

such that |y − z| = Kn+1 and y ∼= z. Since B2Kn(x) is very good, we first find points y′

and z′ in B2Kn(x) such that |y′ − z′| = Kn and y′ ∼= z′. Now we need to find points y

and z that are the right distance from y′, z′ and each other, and such that y′ ' y, z′ ' z.

This would allow us to apply Lemma 5.2.

Technical considerations force us to add another step to the process. We replace y ′

and z′ with points y′′ and z′′ near y′ and z′ respectively, which lie on a path between

y′ and z′ and such that y ' y′′ and z ' z′′. Once we choose y, we need to choose z

satisfying the hypotheses of Lemma 5.2 and such that |y − z| = Kn+1. Thus we choose

z lying on ∂BKn+1(y) and so that it is roughly colinear with y, y′ and z′. In order to do

this, we find z1 and z2 near this area, but on either side of BKn+1(y) such that z1 ' z2.

The path joining them will intersect BKn+1(y). Let the intersection point be z. Once we

find z, we now choose y′′ and z′′ to satisfy the hypotheses in Lemma 5.2.
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If B2Kn(x) is very good then there exist y′, z′ ∈ B2Kn(x) such that y′, z′ ∼ ∞, y′ ∼= z′

and |y′−z′| = Kn. Let P be a path connecting y′ and z′. Let v be a unit vector pointing

from y′ to z′. If there exist y, y′′, z, z′′ such that

1. y ∈ BKn(y′ − (Kn+1/2)v),

2. z ∈ B6Kn(y + (Kn+1)v),

3. |y − z| = Kn+1,

4. y′′ ∈ V (P ) ∩B.01|y′−z′|(y
′),

5. z′′ ∈ V (P ) ∩B.01|y′−z′|(z
′),

6. y ' y′′, and

7. z ' z′′.

then Corollary 5.3 shows that y ∼= z. Since y, z ∼ ∞ we have that B2Kn+1(x) is very

good. Thus by the FKG inequality

P(B2Kn+1(x) is not very good | B2Kn(x) is very good)

≤ P(6 ∃y, y′′ such that y ∈ BKn(y′ − (Kn+1/2)v), y′′ ∈ V (P ) ∩B.01|y′−z′|(y
′), y ' y′′,

and y, y′′ ∼ ∞ | B2Kn(x) is very good) +

P(6 ∃z, z′′ such that z ∈ B6Kn(y + (Kn+1)v), z′′ ∈ V (P ) ∩B.01|y′−z′|(z
′), z ' z′′

|z − y| = Kn+1 and z, z′′ ∼ ∞ | B2Kn(x) is very good)

≤ P(6 ∃y, y′′ such that y ∈ BKn(y′ − (Kn+1/2)v), y′′ ∈ V (P ) ∩B.01|y′−z′|(y
′), y ' y′′,

and y, y′′ ∼ ∞) +

P(6 ∃z, z′′ such that z ∈ B6Kn(y + (Kn+1)v), z′′ ∈ V (P ) ∩B.01|y′−z′|(z
′), z ' z′′

|z − y| = Kn+1 and z, z′′ ∼ ∞)

Suppose there exists y ∈ BKn(y′ − (Kn+1/2)v) and such that y ∼ ∞. If there

exists y′′ ∈ V (P ) ∩ B.01|y′−z′|(y
′) such that y′′ ∼ ∞ then y ∼ y′′. If there do not exist

a, b ∈ B2Kn+1(x) such that a ∼ b, a 6' b and |a− b| > Kn−1 then y ' y′′.
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Additionally suppose there exist z1 ∈ BKn/ρ(y+(Kn+1−2Kn/ρ)v) and z2 ∈ BKn/ρ(y+

(Kn+1 + 2Kn/ρ)v) such that z1, z2 ∼ ∞. Then z1 ∼ z2 and z1 ' z2. Thus there is a

z such that |y − z| = Kn+1, z ∼ ∞ and |z − (y + (Kn+1)v)| < 6Kn. If there exists

z′′ ∈ V (P ) ∩ B.01|y′−z′|(z
′) such that z′′ ∼ ∞ then z ∼ z′′ and z ' z′′. Thus if all this

holds then there exists y, y′′, z and z′′.

Now we bound the probability that this happens.

P(B2Kn+1(x) is not very good | B2Kn(x) is very good)

< 3P(BKn/ρ 6∼ ∞) + 2P(V (P ) ∩B|y′−z′|/100(y
′) ∼ ∞) +

P(∃a, b ∈ B2Kn+1(x) such that a ∼ b, a 6' b and |a− b| > Kn−1)

< 3e−C2Kn/ρ + 2e−C4Kn/2/100 + e−C7Kn−1/ρ

< C8e
−A7Kn/2

.

¤

The base case of the induction is proved in the next lemma.

Lemma 5.7 For any d there exists an N = N(d) and C9(N) such that for all n ≥ N

and all 0 ≤ α ≤ 1

e−C3Kn+1

+
2e−C7Kn+1

P(x ∼ ∞)2
+ (e−C2Kn

+ e−C9Kn

+ e−C3Kn

).0016K
2+α

< e−C9Kn+1+α

.

Furthermore for all x and y such that |x− y| = KN

P(x 6∼= y | x ∼ y) < e−C9KN

.

Proof: Fix d. By Lemma 5.6 the last equation is satisfied if e−C9KN
= 1−C/KNd. This

defines C9 in terms of N . Notice as N →∞, C9 → 0. By choosing N sufficiently large,

we can force C9 to be much smaller than the other constants in the first equation. This

implies that the terms with C9 in them are the dominant terms of the inequality. Since

e−.0016C9Kn+2+α
= e−1.6C9Kn+1+α

< e−C9Kn+1+α
the inequality is true for N sufficiently

large. ¤

Now we are ready to prove the main lemma of this section. The first half of the

proof in this lemma is constructing a list of events which ensure that the conditions in
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Corollary 5.3 are satisfied. The second half of the proof establishes the corresponding

estimates on the probabilities that each of these events occurring.

Lemma 5.8 There exist A8 and C9 such that

P(x ∼= y | x ∼ y) > 1− A8e
−C9|x−y|.

Proof: The proof is by induction. We will show that this is true with A8 = 1 if |x− y|
is sufficiently large. This implies the result. The previous lemma establishes the base

case, which is n = N . Given that the induction hypothesis is true for Kn we will show

that it is true for all x, y such that Kn+1 ≤ |x− y| ≤ Kn+2. This implies the result for

all |x− y| ≥ KN+1. The idea for the proof is as follows. We start with two points x and

y that are connected and |x− y| is approximately Kn+1. We lay down about K disjoint

copies of B2Kn in the middle of W ′(x, y). Using the induction hypothesis, we show that

with high probability at least one of these balls contains a pair satisfying the hypotheses

of Lemma 5.2. By applying this lemma to the pairs x, x′, x′, y′, and y′, y, we obtain that

with high probability x ∼= y.

We claim that if there exist x′ and y′ satisfying the following conditions then x and

y are a very good pair.

1. x′, y′ ∈ W (x, y)

2. 5
8
|x− y| > |x− x′| > 1

4
|x− y|,

3. 5
8
|x− y| > |y − y′| > 1

4
|x− y|,

4. |x′ − y′| = Kn,

5. x′ ∼= y′,

6. x′, y′ ∼ ∞,

7. x, y ∼ ∞,

8. all w such that |x− w| > 1
4
|x− y| either w 6∼ x or x ' w, and

9. all w such that |y − w| > 1
4
|x− y| either w 6∼ y or y ' w.
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Conditions 6 and 7 imply that x, y, x′ and y′ are all connected. Combining this with

conditions 2 and 8 shows that x ' x′. Similarly conditions 3 and 9 show that y ' y′.

Thus we have satisfied the hypothesises of Lemma 5.2 and x and y are a very good pair.

First we bound the conditional probabilities given x ∼ y that conditions 1 - 6 are not

satisfied. Then we bound the conditional probabilities that the final three conditions are

not satisfied .

To make the first bound let v be the unit vector parallel to x−y and v ′ be a unit vector

perpendicular to x− y. Let α = logK(|x− y|/Kn+1). Define xi,j = (x+ y)/2 + 5Kniv +

5Knjv′ for |i|, |j| ≤ .04K1+α/2. This implies that xi,j ∈ W (x, y), 5
8
|x − y| > |xi,j − x| >

.25|x− y|, and 5
8
|x− y| > |xi,j − y| > .25|x− y| for all i, j and |xi,j − xi′,j′ | > 4Kn for all

i, j 6= i′, j′. Now the events that there exist x′ and y′ in B2Kn(xi,j) satisfying conditions

1 - 5 are independent.

P(6 ∃x′, y′ satisfying conditions 1 through 6 | x ∼ y)

≤ P(6 ∃x′, y′ satisfying conditions 1 - 6) (2)

≤
∏

i,j

P(6 ∃x′, y′ ∈ B2KN (xi,j) satisfying conditions 1 - 6) (3)

≤ inf
i,j

(P(6 ∃x′, y′ ∈ B2KN (xi,j) satisfying conditions 1 - 6))
.0016K2+α

(4)

≤ [inf
i,j

(P(6 ∃x′, y′ ∈ B2KN (xi,j) such that |x− y| = Kn and x′ ∼ y′) + (5)

P(x′ 6∼= y′ | x′ ∼ y′) +P(x′ 6∼ ∞ | x′ ∼ y′))].0016K
2+α

(6)

≤ [P(BKN (xi,j) 6∼ ∞) + e−C9Kn

+ e−C3Kn

].0016K
2+α

(7)

≤ [e−C2Kn

+ e−C9Kn

+ e−C3Kn

].0016K
2+α

(8)

Line 2 follows from the FKG inequality. Line 4 follows from Lemma 4.1, the induction

hypothesis, and Lemma 4.2.

P(condition 7 does not hold | x ∼ y) = P(x, y 6∼ ∞ | x ∼ y) ≤ e−C3Kn+1

by Lemma 4.2. Corollary 4.6 tells us that

P(conditions 8 or 9 do not hold | x ∼ y) ≤ 2P(condition 8 does not hold)/P(x ∼ y)

≤ 2e−C7Kn+1

(A6e
−C7Kn

)

P(x ∼ ∞)2
.

272



Putting this all together gives

P(lines 1 - 9 hold | x ∼ y)

> 1− (e−C2Kn

+ e−C9Kn

+ e−C3Kn

).0016K
2+α − e−C3Kn+1 − 2e−C7Kn+1

(A6e
−C7Kn

)

P(x ∼ ∞)2

> 1− e−C9Kn+1+α

(9)

> 1− e−C9|x−y|. (10)

Line 9 is by Lemma 5.7 and line 10 is by the choice of α. ¤

6 Building the grid

In this section we first show that with high probability there exists corner points, called

n hubs, in the percolation cluster. Each corner point has 2d paths emanating from it.

Then we show that we can glue these points together with paths of exactly the right

length to form a large finite grid centered near 0. This is possible because with high

probability, the points at the end of adjacent paths of two respective n hubs form a very

good pair. Remember we write [−j, j]d for the subgraph of Zd that includes all vertices

(v1, ..., vd) such that −j ≤ vi ≤ j for all i. We will show that with high probability there

exists a copy of n[−2αn, 2αn]d in ω with center near the origin. Let u1, ..., u2d be the unit

vectors in each of the 2d directions in Zd

Definition 6.1 Given ω and ρ. A point x ∈ Zd is an n hub if there exists paths

P1, ..., P2d such that

1. Pi connects x to ∂Bn(x),

2. V (Pi) ∩ V (Pj) = x if i 6= j,

3. |Pi| ≤ 2ρn, and

4. V (Pi) \Bn/2(x) ⊂ {z | ∠ui, xz ≤ 20}.

Lemma 6.2 There exists A9 > 0 and J

P(x is a Kj hub for all j > J ) > A9.
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Proof: We prove the lemma by showing that there exists A,C > 0 so that

P(x is a Kj+1 hub | x is a Kj hub and x ∼ ∞) ≥ 1− Ae−CKj/2

.

(The true rate of decay is exponential in K j. This will be implicit in a later lemma.)

Suppose x is a Kj hub and x ∼ ∞. If there exist a disjoint collection of paths P ′i

such that

1. P ′i ⊂ {z | ∠ui, xz ≤ 30} \BKj/2(x),

2. V (P ′i ) ∩ V (Pi) 6= ∅,

3. |P ′i | ≤ 1.6ρKj+1,

4. V (P ′i ) \BKj+1/2(x) ⊂ {z | ∠ui, xz ≤ 20}, and

5. V (P ′i ) ∩ ∂BKj+1(x) 6= ∅

then x is a Kj+1 hub. Conditions 2 and 5 above and condition 1 from the definition of

an n hub show that a subset of Pi ∪ P ′i satisfies condition 1 in the definition of an K j+1

hub. Condition 1 above and condition 2 in the definition of n hub imply condition 2 in

the definition of n+ 1 hub. Condition 3 above and condition 3 from the definition of an

n hub show it satisfies condition 3 in the definition. Condition 4 above shows it satisfies

condition 4 in the definition.

If for a given x and ω there are many possible choices of the Pi, then we adopt some

procedure for making a canonical choice of the Pi. If there exists yi ∈ BKj(x+Kj+1ui)\
BKj+1(x) and zi ∈ Pi \ B2Kj/3(x) such that yi, zi ∼ ∞ and yi ' zi then there exists

an appropriate P ′i . Conditions 1,2, and 4 are satisfied because yi ' zi. Condition 3 is

satisfied because yi ' zi and |yi − zi| < (1 + 1/K)Kj+1. Condition 5 is satisfied because

yi ∈ (BKj+1(x))c, zi ∈ Pi, and yi ' zi.

P(6 ∃P ′i satisfying conditions 2 and 5 | x is a Kj hub and x ∼ ∞)
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< P(6 ∃yi ∈ BKj(x+Kj+1ui) \BKj+1(x), zi ∈ Pi \B2Kj/3(x) | x is a Kj hub and x ∼ ∞)

< P(6 ∃yi ∈ BKj(x+Kj+1ui) \BKj+1(x), zi ∈ Pi \B2Kj/3(x))

< P((BKj(x+Kj+1ui) \BKj+1(x)) 6∼ ∞) +P(Pi \B2Kj/3(x) 6∼ ∞) +

P(∃y, z ∈ B2Kj+1(x) with y ∼ z, |y − z| ≥ Kj−2/2, y 6' z)

< e−C2Kj/2 + e−C42Kj/3 + A6e
−C7Kj

(11)

< Ae−CKj/2

.

Line 11 is true by Lemmas 4.1 and 4.2 and Corollary 4.6. This completes the proof of

the lemma. ¤

Lemma 6.3 There exists C11 > 0 such that

P(∃x ∈ Bn such that x is an n hub) ≥ 1− e−C11n.

Proof: The proof is by induction. For the base case we will choose a J and C11 such

that for all n ≤ KJ+1,

P(∃x ∈ Bn such that x is an n hub) ≥ 1− e−C11n.

This is possible by the previous lemma, which states that there exists A9 and J such

that

P(x is a Kj hub for all j > J) > A9.

The ergodic theorem implies that for any j as J →∞

P(∃x ∈ BKJ such that x is a Kj hub for all j > J)→ 1.

Choose J so that for all j > J

P(6 ∃x ∈ BKJ such that x is a Kj hub for all j > J)K < .5. (12)

Choose C11 so that

1. for all n ≤ KJ+1, P( ∃ an n hub in Bn) ≥ 1− e−C11n, and

2. e−C3Kj
/P(0 is a Kj hub) + 2de−.5C2Kj

+ A6e
−C7Kj ≤ .5e−C11Kj+2
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for all j > J .

The first condition ensures that the base case of the induction is true. The second

can be satisfied because by line 12

P(0 is a Kj hub) > .5(Kj)d.

Suppose the induction hypothesis has been proven for K j. We will now show that it

is true for all Kj+1 ≤ n ≤ Kj+2. If there is an h ∈ Bn which is a Kj hub, h ∼ ∞,

BKj(h + uin) \ Bn(h) ∼ ∞ for all i, and there are no y, z ∈ B2n with y ∼ z, y 6' z,

and |y − z| > n/K2 then h is an n hub. This follows from the argument in the previous

lemma.

Let β = logK(n/K
j). Notice that n = Kj+β, and 1 ≤ β ≤ 2. Find x1, ..., x2Kβ so

that BKj(xi) ⊂ Bn/3 for each i and BKj(xi)∩BKj(xl) = ∅ for all i 6= l. This can be done

like in Lemma 5.8.

The events that there exists a Kj hub in BKj(xi) are independent. So

P(6 ∃h ∈ Bn such that h is a Kj hub) ≤ P(6 ∃h ∈ BKj such that h is a Kj hub)2K
β

≤ P(6 ∃h ∈ BKj such that h is a Kj hub)K
β

(e−C11Kj

)K
β

≤ .5(e−C11Kj+β

).

If there are multiple choices of h such that h is a K j hub then we employ some

procedure for picking a canonical one. By Lemma 4.2 we have that

P(h 6∼ ∞ | h is a Kj hub) ≤ e−C3Kj

/P(0 is a Kj hub).

Thus

P(6 ∃h ∈ Bn such that h is an n hub)

< P(6 ∃h ∈ Bn such that h is an Kj hub) +P(h 6∼ ∞ | h is an Kj hub) +

2dP((BKj(h+ uin) \Bn(h)) 6∼ ∞) +

P(∃y, z ∈ B2n such that y ∼ z, |y − z| > Kj and y 6' z)

< .5(e−C11Kj+β

) + e−C3Kj

/P(0 is a Kj hub) + 2de−.5C2Kj

+ A6e
−C7Kj

< .5(e−C11n) + .5(e−C11Kj+2

)

< e−C11n.
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¤

For an α = α(d) which will be fixed later define the graph

S(α, d, n) = [−2αn, 2αn]d.

Then we define the n grid to be nS(α, d, n). Remember that nG is the graph derived

from G by replacing each edge of G with n edges in series. Also remember that a

distinguished vertex of nS(α, d, n) is a vertex that corresponds with one in S(α, d, n). In

this case, they are the corner points of the n grid.

We say that a copy of the n grid is any graph which is isomorphic to the n grid.

We say there exists a copy of the n grid around 0 in ω if there exists an embedding

of any copy of the n grid in ω with the distinguished vertex corresponding to (v1, ..., vd)

in Bn/100ρ((n/5ρ)(v1, ..., vd)).

Lemma 6.4 If

1. for each v = (v1, ..., vd) ∈ S(α, d, n) there exists an xv ∈ Bn/100ρ((n/5ρ)v) which is

an n/100ρ hub and xv ∼ ∞ and

2. each pair z, z′ ∈ nS(α, d, n) such that |z − z ′| > n/6ρ and z ∼ z′ is a very good

pair

then there is a copy of the n grid around 0 in ω.

Proof: Given a v pick the distinguished vertex corresponding to v to be an n/100ρ hub

in Bn/100ρ((n/5ρ)v). The fact that distinguished vertices are n/100ρ hubs gives us the

start and end of the path between any two neighboring distinguished vertices. The ends

of these two paths form a very good pair. Thus we can connect them with a path of the

right length so that when we remove loops the distance between any two distinguished

vertices is n. It is easy to check that these paths are disjoint. ¤

Lemma 6.5 There exist α,C12 > 0 and A11 such that for all n

P(∃ an n grid around 0 in ω) > 1− A11e
−C12n.
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Proof: By Lemma 6.3 the probability that there are not the desired n/100ρ hubs is less

than (2αn+1 + 1)d(e−C11n/100ρ). The probability that they are not all connected to the

infinite cluster is less than (2αn+1 + 1)de−C3n/100ρ/P (x ∼ ∞)2. As n hubs are separated

by at least n/6ρ, Lemma 5.8 implies that the probability that the desired pairs are not

very good is less than (2n2αn)2d(A8e
−C9n/6ρ). Thus the constants can be chosen. ¤

This fixes α for the rest of the paper.

7 Constructing the spanning subgraph

Now we want to show how to extend the n grid to a subgraph that spans C∞(Zd, p) in a

finite region. The subgraph that we will construct (which we call a good n graph) has

the property that if we remove the n grid then we will be left with a collection of trees.

For a random walk on such a graph this ensures that whenever we leave the n grid we

will return to it in exactly the same spot. This allows us to keep control on the return

probabilities.

A connected graph Q is a good n graph around 0 if

1. there is a subgraph G of Q which is a copy of the n grid around 0

2. each v which is connected to G is connected by a path (in Q) of length at most

4nd, and

3. for no v does there exist disjoint paths in Q that connect v to G.

Notice that the third condition implies that any walk in Q which leaves the n grid at

vertex x must return to the n grid at vertex x. Given a vertex v in the n grid we define

the bush attached to v as follows. It contains any vertex v ′ in Q such that all paths

from the n grid to v′ go through v. It also contains all vertices which are connected to

v by a single edge.

Any walk in Q generates a unique walk in the n grid. Thus it generates a unique

nearest neighbor walk in Zd. This property will be used heavily in the next section.

Define C(x) to be the open cluster containing x. Define

Cn(x) = C(x) ∩ [−(n/5ρ)2αn, (n/5ρ)2αn]d.
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Lemma 7.1 If

1. 0 ∈ C∞(Zd, p),

2. for each v = (v1, ..., vd) ∈ S(α, d, n) there exists an xv ∈ Bn/100ρ((n/5ρ)v) which is

an n hub and xv ∼ ∞ and

3. each pair z, z′ ∈ nS(α, d, n) such that |z − z ′| > n/6ρ and z ∼ z′ is a very good

pair.

then there is a good n graph around 0 that spans Cn(0).

Proof: By Lemma 6.4 the last two conditions imply that there is a copy of the n grid

around 0. We will inductively show that we can attach each vertex of Cn(0) to the n grid

in a way that is consistent with the definition of a good graph. Suppose x is a vertex in

Cn(0) but not in the n grid. Then by the third condition there is a path from x to the

n grid of length at most nd. This path can be chosen to intersect the n grid in only one

vertex. The union of this path and the n grid satisfies the conditions of a good graph.

Now we want to show that if we have an extension E of the n grid that satisfies the

conditions of a good graph then we can extend it to include at least one more vertex so

that the new extension E ′ still satisfies the conditions of a good graph. (Note that E ′

will be an extension of the n grid, but is not necessarily an extension of E.) Let x be a

vertex in Cn(0) but which is not in E. By the second property there exists a path, P ,

connecting x to the n grid with length at most nd. It is clear that x∪V (E) ⊂ V (P ∪E).

The problem is P ∪E might not satisfy the conditions of a good graph. We will now pare

down P ∪ E to get a new graph E ′ which spans E ∪ P and also satisfies the conditions

of a good graph. Starting at the n grid move on P towards x. Stop at the first vertex

v in V (E). From v there may be a vertex v′ ∈ V (E) such that there are two disjoint

paths from v to v′. If there are then remove the edge touching v in the longer of the

two paths. If they are both the same length then remove either one. Now start at v and

move along P toward x and repeat this procedure until you get to x. Call the resulting

graph E ′.

Now we claim that E ′ is a good n graph. Suppose there is a vertex y with two disjoint

paths to the n grid. Then at least one edge of one of the paths is in P and one edge
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is in E. Thus there is a vertex in V (E) ∩ V (P ) connected to one edge in E ′ ∩ E and

one edge in P ∩E ′. But whenever this situation arose we removed one of the two edges.

Thus there is no such vertex. Also by the way we chose to remove edges the distance

from any vertex in V (E ∪ P ) to the n grid does not increase. Thus the distance from

any point in V(E ∪ P ) is at most nd. Thus the resulting graph is a good graph. Thus

we can construct successive extensions until we get a good n graph that spans Cn(0). ¤

Lemma 7.2

P(∃ a good n graph around 0 that spans Cn(0) | 0 ∈ C∞(Zd, p)) > 1− A11e
−C12n.

Proof: The proof is the same as the proof of Lemma 6.5. ¤

We have shown that good n graphs exist with high probability. We would like to

be able to bound the return probabilities on any good n graph. Unfortunately we don’t

know how to do this. So we will place a measure on good n graphs and then bound the

return probabilities on a typical good n graph. This will be done in Section 8.

For a good n graph Q and e = (v1, v2) ∈ E(S(α, d, n)) we define Q(e) = Q((v1, v2))

to be the portion of Q between the distinguished vertices corresponding to v1 and v2,

including v1 and v2. Our choice of the measure µn will be done in such a way that the

random variables Q((v1, v2)) are C13 dependent. By this we mean that if v1 . . . v2n ∈
S(α, d, n) are such that

1. |v2i−1 − v2j−1| > C13 for all 1 ≤ i < j ≤ n and

2. |v2i−1 − v2i| = 1 for all 1 ≤ i ≤ n

then {Q((v2i−1, v2i))}ni=1 are independent.

Lemma 7.3 There exists C13 and measures µn on subgraphs of Zd such that

1. µn(Q is a good n graph around 0 that spans Cn(0)|0 ∈ C∞(Zd, p)) > 1−A11e
−C12n

and

2. the random variables Q((v1, v2)) are C13 dependent.

Also we can couple µn with P so that the graph from µn is a subgraph of ω.
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Proof: We will construct a sequence of distributions on subgraphs of ω. At each stage

we pick a graph from the previous distribution. Then we extend the graph in a collection

of disjoint regions. If at any stage we cannot complete the proscribed extension in a given

region then we define the output of the process in this region to be the null set. We refer

to this portion of the graph where we could not extend it as stunted. In future stages,

if some portion of the graph in the region that we are trying to extend the subgraph in

is stunted then we do not extend the graph in this region.

For each v ∈ S(α, d, n) consider all the

v′ ∈ Bn/100ρ((n/5ρ)v)

which are n/100ρ hubs. We construct a distribution so that all of these have the same

probability of being the distinguished vertex corresponding to v. We also do this inde-

pendently for all v ∈ S(α, d, n).

For a given choice of the distinguished vertex, xv, consider the set of all possible

sets of 2d paths which satisfy the definition of xv being an n/100ρ hub. Form a new

distribution by assigning each of these sets of paths equal mass. Do this independently

for all v. Let H(v) be the n hub and paths corresponding to v. We have defined our

measure such that the distribution of H(v) depends only on ω in

Bn/50ρ(n/5ρ)v.

Also recall the definition of W ′ from line 1. Fix a choice of H(v) for all v ∈ S(α, d, n).

For each pair v1, v2 ∈ S(α, d, n) such that |v1 − v2| = 1 consider all paths in ω that

1. start at xv1 and end at xv2 ,

2. are contained in ω ∩W ′(xv1 , xv2),

3. have length n, and

4. agree with H(v1) in Bn/200ρ(xv1) and with H(v2) in Bn/200ρ(xv2).

Form the next distribution by giving all of these paths equal mass. We form a distribution

on n grids by doing this independently for all such pairs in S(α, d, n). Thus for any
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v1, v2 ∈ S(α, d, n) the distribution of the path connecting xv1 and xv2 depends on ω in

the region.

Bn/50ρ(xv1) ∪Bn/50ρ(xv2) ∪W ′(xv1 , xv2).

Fix a choice, H, of the n grid. For each v ∈ S(α, d, n) consider the set of all subsets

S of ω such that:

1. S ⊂ R = Bn/49ρ(xv).

2. S extends H|R.

3. Every vertex y ∈ Bn/50ρ(xv) which is connected to H in ω|R is connected to H in

S.

4. Every vertex y ∈ V (S) is connected to H by a unique path in S.

5. That path has length ≤ nd.

Form the next distribution by giving all of these graphs equal mass. We form a distribu-

tion by choosing an extension of H independently for all v ∈ S(α, d, n). The distribution

of Q(v1, v2) is determined by ω in the region

Bn/4ρ(xv1) ∪Bn/4ρ(xv2).

FixH ′, a choice of the graph constructed at the previous stage. For each pair adjacent

pair v1, v2 ∈ S(α, d, n) consider all possible connected subgraphs, S ′, of ω such that:

1. S ′ ⊂ R′ =
(

W ′(xv1 , xv2) \ (Bn/50ρ(xv1) ∪Bn/50ρ(xv2))
)

+Bn/1000ρ.

2. S ′ extends H ′|R′ .

3. Every vertex y ∈ W ′(xv1 , xv2) which is connected to H ′ in ω|R′ is connected to H ′

in S ′.

4. Every vertex y ∈ V (H ′ ∪ S ′) is connected to H ′ by a unique path.

5. That path has length ≤ 2nd.
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Form the next distribution by giving all of these graphs equal mass. We form a dis-

tribution by choosing an extension of H ′ independently for all adjacent pairs v1, v2 ∈
S(α, d, n). For each adjacent pair v1, v2 ∈ S(α, d, n) the distribution of Q(v1, v2) is

determined by ω in the region

Bn/4ρ(xv1) ∪Bn/4ρ(xv2).

For any v1, . . . , vj of S(α, d, n) and choice of the n grid we define

CH(v1, . . . , vj) = {z ∈ Zd : z is within distance 1 of the

convex hull of xv1 , . . . , xvj},

Also define

W ′(v1, . . . , v2d−1) = ∪i,i′≤2d−1,|vi−vi′ |=1W
′(xvi , xvi′ )

We say that v1, ..., v2d−1 form a hyperface of S(α, d, n) if |vi − vj|l = 0 or 1 for all i, j

and l, and there exists l such that (vi − vj)l = 0 for all i and j. We say that v1, ..., v2d

form a hypercube of S(α, d, n) if |vi − vj|l = 0 or 1 for all i, j and l.

Given the graph, H ′′, constructed at the previous stage, and v1, . . . v2d−1 consider all

possible connected subgraphs S ′′ of ω such that:

1. S ′′ ⊂ R′′ =
(

∪
z,z′∈CH(v1,...,v2d−1 )

W ′(z, z′)
)

\W ′(v1, . . . , v2d−1).

2. S ′′ extends H ′′|R′′ .

3. Every vertex y ∈ CH(v1, . . . , v2d−1) which is connected to H ′′ in ω|R′′ is connected
to H ′′ in S ′′.

4. Every vertex y ∈ V (H ′′ ∪ S ′′) is connected to H ′′ by a unique path.

5. That path has length ≤ 3nd.

Form the next distribution by giving all of these graphs equal mass. We form a distribu-

tion by choosing an extension of H ′′ independently for all hyperfaces. For each adjacent

pair v1, v2 ∈ S(α, d, n) the distribution of Q(v1, v2) is determined by ω the region

Bdn/4ρ(xv1) ∪Bdn/4ρ(xv2)
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Given the graph H ′′′ constructed at the previous stage, and a hypercube v1, . . . , v2d ,

consider all possible connected subgraphs S ′′′ of ω such that:

1. S ′′′ ⊂ R′′′ = CH(v1, . . . , v2d).

2. S ′′′ extends H ′′′|R′′′ .

3. Every vertex y ∈ C∞(Zd, p)∩CH(v1, . . . , v2d) which is connected to H ′′′ in ω|R′′′ is
connected to H ′′′ in H ′′′ ∪ S ′′′.

4. Every vertex y ∈ V (S ′′) is connected to H ′′′ by a unique path.

5. That path has length ≤ 4nd.

We define the measure µn by giving all of these graphs equal measure. We do this inde-

pendently for all hypercubes. For each adjacent pair v1, v2 ∈ S(α, d, n) the distribution

of Q(v1, v2) is determined by ω in the region

Bdn/2ρ(xv1) ∪Bdn/2ρ(xv2).

Thus we can pick C13 such that, conditioned on the event that Q is a good n graph

around 0 that spans Cn(0), the random variables Q(v1, v2) are C13 dependent.

If the appropriate n hubs exist and every pair in the region which are connected are

very good then the proof of Lemma 6.5 shows that Q is good n graph around 0 that

spans Cn(0). Thus

µn(Q is good n graph around 0 that spans Cn(0)) > 1− A11e
−C12n.

The last condition in the lemma follows easily from the construction. ¤

Corollary 7.4 If e1, . . . , ek are separated by at least C13 then the random variables

Q(e1), . . . , Q(ek) are mutually independent conditioned on the event that none of the

random variables Q(e1), . . . , Q(ek) are stunted.

Proof: The distributions of Q(e1), . . . , Q(ek) are independent as they depend on ω in

disjoint regions. The event that none ofQ(e1), . . . , Q(ek) are stunted means that a certain

event did not occur in any of those regions. Thus Q(e1), . . . , Q(ek) are conditionally

independent. ¤
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8 Bounding the return probabilities on C∞(Zd, p)

First we bound the average of the return probabilities of a continuous time random walk

over the measure we placed on good n graphs. Then we apply Theorem 3.1 to get bounds

for the return probabilities on C∞(Zd, p).

Given any graph the continuous time random walk is defined as follows. Let Zv be

a continuous time Markov chain on the vertices, with Zv(0) = v and jumping rate one

across each edge. The times of the jumps are determined by a family of Poisson processes

with mean 1. To bound the return probabilities on a good n graph Q, we consider the

projection of a walk on Q to a walk on the distinguished vertices of the n grid and then

the projection onto Zd. A walk, P , is the sequence vertices visited by Zv and Pt is the

sequence of vertices visited up to time t. In the case that Q is a good n graph we define

proj(Pt) to be the projection of the walk P to a nearest neighbor walk on Zd. First we

eliminate every element of the sequence Pt which is not a distinguished vertex. Then

we replace consecutive occurrences of the same distinguished vertex with one occurrence

of that vertex. Finally we obtain the sequence proj(Pt) by mapping this sequence of

distinguished vertices into Zd in the canonical way.

The idea of this section is as follows. Our main goal is to bound the return proba-

bilities on good n graphs. We let |proj(Pt)| represent the number of steps in proj(Pt). If

all walks started at v had projections that have the same length L = |proj(Pt)| then, by
using that the walk projected to Zd is simple random walk, we could bound the return

probability by pQt (v, v) ≤ CL−d/2. Clearly this is not the case. However, on the n graphs

which we call great, there is a large collection of walks such that |proj(Pt)| falls in a

small interval. In Lemma 8.1 we show that most good n graphs are great. Then in

Lemma 8.2 we show that this is good enough so that it changes our bound on the return

probabilities by only a logarithmic factor. Then, in Theorem 8.1, we apply Theorem 3.1

to bound the return probabilities on C∞(Zd, p).

Given a good n graph Q and v1, v2 ∈ S(α, d, n) with |v1 − v2| = 1 define

TQ(v1, v2) = the expected amount of time that simple random

walk started at Q(v1) takes before reaching Q(v2)

conditioned on Q(v2) being the first distinguished
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vertex other than Q(v1) to be visited.

Also define

E = Eµn(TQ(v1, v2)).

We let N(v1) = {v : |v − v1| = 1}. Then we can bound E by the cover time of

∪w∈N(v1)Q((v1, w))

as follows. We couple the distribution of simple random walk paths on ∪w∈N(v1)Q((v1, w))

with the distribution of simple random walk paths on the same graph conditioned on

the event that the first distinguished vertex (other than v1) to be hit by the walk is v2.

This can be done such that the coupling is supported on pairs such that the path from

v1 to v2 in the conditioned distribution is a subsequence of the path in the unconditioned

distribution. As

| ∪w∈N(v1) Q((v1, w))| ≤ (8nd)d+1

the result of [14] implies that the covering time of ∪w∈N(v1)Q((v1, w)) is at most (8nd)3d+3.

This implies

E ≤ (8nd)3d+3. (13)

Given any value of t choose n to be the largest integer such that n ≤ log t. This

implies that there exists C14 such that E ≤ C14(log t)
3d+3.

Fix a good graph Q and v ∈ V (Q). We now define d1 and d2 to be the distinguished

vertices closest to v. More precisely if v is not a distinguished vertex we let d1 and d2

be the distinguished vertices such that v ∈ Q((d1, d2)). If v is a distinguished vertex we

choose d1 and d2 so that Q(d1) = Q(d2) = v.

Given a good graph Q, z ∈ {S(α, d, n)}(2αn/2) and a vertex of Q which we call

v, consider the set of walks on Q starting at v that project onto z. We project the

distribution of simple random walk on Q started at v to obtain a distribution PQ,z on

sequences Pt ∈ {S(α, d, n)}(2αn/2).

We define the set Z = ZQ,v to be the set of all z ∈ {S(α, d, n)}(2αn/2) such that

1. z1 = d1 or z1 = d2,

2. |zi+1 − zi| = 1 for all i and
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3. PQ,z

(

|proj(Pt)| /∈ ( t
E
− C15

(

t
E

) 1
2 (log t)3d+8, t

E
+ C15

(

t
E

) 1
2 (log t)3d+8)

)

< t−.51d,

where C15 will be defined later. Let Ṽ ⊂ V (Q) be the set of all v such that

|ZC | < t−.51d(2d)2
αn/2

.

We say a graph Q is great for t if it is a good n graph and

|Ṽ | > |V (Q)|(1− t−.51d).

The rest of this section is organized as follows. Our goal is to prove the following

theorem.

Theorem 8.1 There exists C22 > 0 such that

E(pωt (0, 0) | 0 ∈ C∞(Zd, p)) < C22t
−d/2(log t)6d+14.

There are two main intermediate steps to proving this. First in Section 8.1 we prove

Lemma 8.1 There exists C19 such that for any t

µn(Q is great for t) ≥ 1− C19t
−.51d.

Then in Section 8.2 we prove

Lemma 8.2 There exists C21 such that for any n graph Q which is great for t

1

|V (Q)|
∑

v∈V (Q)

pQt (v, v) ≤ C21t
−d/2(log t)6d+14.

Finally in Section 8.3 we combine Lemmas 8.1 and 8.2 to prove Theorem 8.1.

8.1 Probability of great graphs

In Section 7 we placed a measure on subgraphs of C∞(Zd, p) and showed that most of

them were good. In this subsection we will show that for all large t most of the subgraphs

are great for t.
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Lemma 8.3 For any

y ∈ [−2αn + 2αn/2, 2αn − 2αn/2]d

consider the direct product of the measure on good graphs and the uniform distribution

on the set of z ∈ {S(α, d, n)}(2αn/2) such that z1 = y and |zi+1 − zi| = 1 for all i. There

exists C16 and C17 such that for any y ∈ [−2αn + 2αn/2, 2αn − 2αn/2]d the probability of

pairs Q, z such that Q is not good or

bt/Ec
∑

1

TQ(zi, zi+1) /∈ (t− 1

2
C16

√
t(log t)3d+8, t+

1

2
C16

√
t(log t)3d+8) (14)

is less than C17(t/E)−πd.

Proof: For each directed edge

e = (v1, v2) ∈ E(S(α, d, n))

we define an equivalence class by e ∼ f = (w1, w2) if ∃k ∈ Zd such that

w1 = v1 + C13k and w2 = v2 + C13k,

Label the equivalence classes L1, L2, . . . , L2dC13
d . When we condition of the event that

Q is a good n graph TQ(e1), . . . , TQ(ek) are mutually independent

By Lemma 7.3 the probability that Q(e1), . . . , Q(ek) are not stunted is at most

A11e
−C12n. By Corollary 7.4 for any set e1, . . . , ek ∈ Lj, with ei = el only if i = l,

the random variables TQ(e1), . . . , TQ(ek) are mutually independent conditioned on the

event that Q(e1), . . . , Q(ek) are not stunted.

As in line 13, for any distinguished vertices w and w′ and Q

TQ(w,w
′) < (8nd)3d+3.

If the site in S(α, d, n) which z visits most often in the first (t/E) steps was visited at

most (d+ 1)(log(t/E))2 times then

∑

i:(zi,zi+1)∈Lk

TQ(zi, zi+1) =
∑

(z,z′)∈Lk

TQ(z, z
′)|{i : (zi, zi+1) = (z, z′)}|

is the sum of independent random variables which are bounded by

(d+ 1)(log(t/E))2(8nd)3d+3 < C(log t)3d+5.
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Their variance is bounded by C2(log t)6d+10. Applying Bennett’s Inequality (see [29] page

851) we see that if we let Hk = |{i : (zi, zi+1) ∈ Lk}| then

P





∣

∣

∣

∣

∣

∣

∑

i:(zi,zi+1)∈Lk

TQ(zi, zi+1)− EHk

∣

∣

∣

∣

∣

∣

> 8Cd(log t)3d+8
√

Hk



 ≤ e−( 1
4
)(8d2 log t)2

≤ e−2d2 log t

≤ t−2d2

.

Thus there exists constants so that

P





∑

k

∣

∣

∣

∣

∣

∣

∑

i:(zi,zi+1)∈Lk

TQ(zi, zi+1)− EHk

∣

∣

∣

∣

∣

∣

> C ′
√
t(log t)3d+8



 =

P





∣

∣

∣

∣

∣

∣

bt/Ec
∑

i=1

TQ(zi, zi+1)− t

∣

∣

∣

∣

∣

∣

> C ′
√
t(log t)3d+8



 ≤ C ′′t−2d2

.

Then
bt/Ec
∑

1

TQ(zi, zi+1) ∈ (t− 1

2
C16

√
t(log t)3d+8, t+

1

2
C16

√
t(log t)3d+8).

happens with probability at least 1− C ′′t−2d2

.

By [13] the probability of z for which one vertex is visited too often (more than

(d + 1)(log(t/E))2 times) is less than (t/E)−πd. Thus the probability of z and Q such

that Q is not good or Q and z don’t satisfy line 14 is less than C17(t/E)−πd. ¤

Lemma 8.4 If

y ∈ [−2αn + 2αn/2, 2αn − 2αn/2]d

then for any good graph Q and z the conditional probability that
∣

∣

∣

∣

∣

∣

bt/Ec
∑

1

TQ(zi, zi+1)− inf{k : |proj(Pk)| = t/E}

∣

∣

∣

∣

∣

∣

>
1

2
C16

√
t(log t)3d+8

given Q and z is less than t−2d2

.

Proof: The sequence (indexed by i)

rQ,z,i(P ) = inf{k : |proj(Pk)| = i+ 1} − inf{k : |proj(Pk)| = i}
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is independent.

FixQ, z and i we can boundP(rQ,z,i(P ) > x) by looking at the time it takes for simple

random walk on ∪w′∈N(w)Q((w,w′)) started at w to hitN(w) (for some appropriate choice

of w). As for any Q and w the covering time of ∪w′∈N(w)Q((w,w′)) is at most (8nd)3d+3

for any Q, z and i and x > 0

P(rQ,z,i(P ) > x) < 2
(

2−x/(8nd)
3d+3
)

.

This implies

E
(

(rQ,z,i(P ))l
)

< 4(16nd)3d+3(l!)(16nd)3d+3)l−2/2.

Applying Bernstein’s inequality (see [29] page 855) we get

PQ,v





∣

∣

∣

∣

∣

∣

bt/Ec
∑

1

TQ(zi, zi+1)− inf{k : |proj(Pk)| = t}

∣

∣

∣

∣

∣

∣

>
1

2
C16

√
t(log t)3d+8



 (15)

is less than

exp

{

−
(

C16(log t)
3d+8

)2

8(16d log t)3d+3

}

≤ e−(log t)2 ≤ t−2d2

(16)

for all t sufficiently large. ¤

Lemma 8.5 If

y ∈ [−2αn + 2αn/2, 2αn − 2αn/2]d

then, with probability at least 1 − C17(t/E)−πd, Q and z are such that the conditional

probability that

inf{k : |proj(Pk)| = t/E} ∈ (t− C16

√
t(log t)3d+8, t+ C16

√
t(log t)3d+8) (17)

is greater than 1− t−2d2

.

Proof: If

inf{k : |proj(Pk)| = t/E} /∈ (t− C16

√
t(log t)3d+8, t+ C16

√
t(log t)3d+8)

then one of the following must have happened

1.
∑bt/Ec

1 TQ(zi, zi+1) /∈ (t− 1
2
C16

√
t(log t)3d+8, t+ 1

2
C16

√
t(log t)3d+8) or
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2.
∣

∣

∣

∑bt/Ec
1 TQ(zi, zi+1)− inf{k : |proj(Pk)| = t/E}

∣

∣

∣
> 1

2
C16

√
t(log t)3d+8.

By Lemma 8.3 the fraction of Q and z for which condition 1 is not satisfied is less than

C17(t/E)−πd.

By Lemma 8.4 for all good graphs Q and z the conditional probability that condition 2

is not satisfied is greater than 1− t−2d2

. ¤

Lemma 8.6 If

y ∈ [−2αn + 2αn/2, 2αn − 2αn/2]d

then with probability at least

1− C17(t/E)−πd/2

Q and z are such that the conditional probability that

inf{k : |proj(Pk)| = b
t

E
+
1

2
C15

(

t

E

) 1
2

(log t)3d+8c}−inf{k : |proj(Pk)| = b
t

E
c} ≥ C16

√
t(log t)3d+8,

(18)

and

inf{k : |proj(Pk)| = b
t

E
c}−inf{k : |proj(Pk)| = b

t

E
−1

2
C15

(

t

E

) 1
2

(log t)3d+8c} ≥ C16

√
t(log t)3d+8

(19)

is at least 1− t−d
2

.

Proof: We choose C15 so that C15(t/E)1/2(log t)3d+8 > 3C16

√
t(log t)3d+8. The proof of

this lemma is the same as the proof of the previous three except that t/E is replaced by
1
2
C15(t/E)1/2(log t)3d+8. ¤

Let AQ,y,z be the event that either line 17, 18, or 19 is not satisfied for y, Q, and z.

Combining Lemmas 8.5 and 8.6 we get

Lemma 8.7 If

y ∈ [−2αn + 2αn/2, 2αn − 2αn/2]d

then

P(AQ,y,z) < 3C17(t/E)−πd/2
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Lemma 8.8 If

1. v ∈ Q((y1, y2)),

2. z1 = y1, and

3. z /∈ ZQ,v

then AQ,y1,z occurs.

Proof: If, for a given Q, y1 and z lines 17, 18, and 19 are all satisfied then the conditional

probability that

|proj(Pt)| − inf{k : |proj(Pk)| = 1}

is in the interval

(
t

E
− 1

2
C15

(

t

E

) 1
2

(log t)3d+8,
t

E
+

1

2
C15(

t

E
)

1
2 (log t)3d+8)

is at least 1− 3t−2d2

.

We see this as follows. Line 17 says that (with high probability) the time it took

to go from the first distinguished vertex to the t/Eth distinguished vertex is at most

t + C16

√
t(log t)3d+8. Line 18 says that (with high probability) at least C16

√
t(log t)3d+8

time passed between when we hit the t
E
− 1

2
C15

(

t
E

) 1
2 (log t)3d+8 distinguished vertex and

the t/Eth distinguished vertex. Combining these two says that (with high probability)

at time t we have hit at least t
E
− 1

2
C15

(

t
E

) 1
2 (log t)3d+8 distinguished vertices. Similarly

combining Lines 17 and 19 show that (with high probability) at time t we have hit at

most t
E
+ 1

2
C15

(

t
E

) 1
2 (log t)3d+8 distinguished vertices. Thus if they all are satisfied then

(with high probability) at time t we have hit between t
E
− 1

2
C15

(

t
E

) 1
2 (log t)3d+8 and

t
E
+ 1

2
C15

(

t
E

) 1
2 (log t)3d+8 distinguished vertices.

As the probability that

inf{k : |proj(Pk)| = 1} > 1

2
C15(

t

E
)

1
2 (log t)3d+8)

is decreasing exponentially in
√
t, the conditional probability that |proj(Pt)| is in the

interval
(

t

E
− C15

(

t

E

) 1
2

(log t)3d+8,
t

E
+ C15

(

t

E

) 1
2

(log t)3d+8

)

is at least 1− 4t−2d2

> 1− t−.51d, for t sufficiently large. ¤
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Lemma 8.9 There exists C18 such that the expected value (averaging over µn) of

1

|v(Q)|
∑

v∈V (Q)

|{z /∈ ZQ,v}| (20)

is less than

C18(2d)
2αn/2(t/E)−πd/2(log t)d+1.

Proof: As there are at most (8nd)d+1 vertices attached to the n grid between any two

distinguished vertices
∑

v∈V (Q)

|{z /∈ ZQ,v}| ≤ 2d(8nd)d+1
∑

y∈S(α,d,n)

P(AQ,y,z)

≤ 2d(8nd)d+1
∑

y/∈[−2αn+2αn/2,2αn−2αn/2]

P(AQ,y,z) +

2d(8nd)d+1
∑

y∈[−2αn+2αn/2,2αn−2αn/2]

P(AQ,y,z).

The previous lemmas imply that the expected value of the right hand side of the last

inequality is at most

C(2d)2
αn/2 |S(α, d, n)|(t/E)−πd/2.

Thus the expected value of line 20 is at most

C18(2d)
2αn/2(t/E)−πd/2(log t)d+1.

¤

Proof of Lemma 8.1: If Q is not great for t then the number of v ∈ V (Q) with v /∈ Ṽ

is at least (t−.51d)|V (Q)|. Thus line 20 is at least

(t−.51d)(t−.51d)(2d)2
αn/2

.

By Lemma 8.9 the expected value of line 20 is at most

C18(2d)
2αn/2(t/E)−πd/2(log t)d+1.

This implies that

P(the n graph centered around 0 is great for t)

≥ 1−
(

C18(2d)
2αn/2(t/E)−πd/2(log t)d+1

)

/
(

(t−.51d)(t−.51d)(2d)2
αn/2
)

≥ 1− C19t
−.51d.

¤
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8.2 Return probabilities on great graphs

In this subsection we show that for any t we can bound the average return probability

at time t on a graph that is great for t.

Lemma 8.10 There exists C20 such that for any good graph Q, vertex v and path z ∈ Z,

and any i ∈ (t/E − C15

√

t/E(log t)3d+8, t/E + C15

√

t/E(log t)3d+8)

PQ,v(|proj(P (t))| = i) ≤ C20(t)
−1/2(log t)3d+6.

Proof: Fix i ∈ (t/E − C15

√

t/E(log t)3d+8, t/E + C15

√

t/E(log t)3d+8). If

|proj(P (t))| = i (21)

then either

(inf{k : |proj(P (k))| = i+ 1})− (inf{k : |proj(P (k))| = i}) ≥ (8nd)3d+4 (22)

or

m = inf{k : |proj(P (k))| = i} ∈ (t− (8nd)3d+4, t). (23)

For any Q and distinguished vertex w, the covering time of ∪w′∈N(w)Q((w,w′)) is at

most (8nd)3d+3. Thus the conditional probability of line 22 given Q and z is at most

2−(8nd)3d+4/(8nd)3d+3 ≤ 2−8nd ≤ t−2d.

To bound the probability of line 23 we condition on any z ′ ∈ V (Q)N which is consistent

with z. Let j be such that the ith distinguish vertex of z ′ is z′j. The distribution of m

given z′ is the distribution of the jth occurrence of a Poisson process with parameter

one. Call that distribution Dj(m). Since

sup
m

Dj(m) ≤ Cj−
1
2 ≤ Ci−1/2 ≤ C

(

t/E − C15

√

t/E(log t)3d+8
)−1/2

≤ C ′(t/E)−1/2

the probability of line 23 conditioned on z ′ is less than C ′(t/E)−1/2(8nd)3d+4. As this

bound holds for all z′ consistent with z, the probability of line 23 conditioned on z is

less than

C ′(t/E)−1/2(log t)3d+4 ≤ C20(t)
−1/2(log t)3d+6.
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¤

Proof of Lemma 8.2: Let t1 = t/E−C15

√

t/E(log t)3d+8 and t2 = t/E+C15

√

t/E(log t)3d+8.

We have a set Ṽ such that

|Ṽ | > (1− t−.51d)|V (Q)|.

For a fixed v ∈ Ṽ and any w ∈ S(α, d, n)

P(P̄t = w | P0 = v)

=
∑

i

∑

z:zi=w

PQ,v(|proj(Pt)| = i) · P (z)

≤
∑

i∈(t1,t2)

∑

z∈Z,zi=w

PQ,v(|proj(Pt)| = i) · P (z)

+
∑

i/∈(t1,t2)

∑

z∈Z:zi=w

PQ,v(|proj(Pt)| = i) · P (z)

+
∑

i

∑

z /∈Z

PQ,v(|proj(Pt)| = i) · P (z)

≤ |{i, z : i ∈ (t1, t2), zi = w}| ·max
i,Q

(PQ,v(|proj(Pt)| = i)P (z)) + 2t−.51d

≤
(

2(2d)(2
αn/2)t

−d/2
1 2C15

√

t/E(log t)3d+8
)

(

C20(log t)
3d+6t−1/2

)

(

(2d)−(2αn/2)
)

+2t−.51d (24)

≤ C(log t)6d+14t−d/2.

Line 24 follows from Lemma 8.10.

Thus for any v ∈ Ṽ

pQt (v, v) ≤ 2 sup(P̄t = w | P0 = v) ≤ 2C(log t)6d+14t−d/2.

Thus

1

|V (Q)|
∑

v∈V (Q)

p
C∞(Zd,p)
t (v, v) ≤ 1

|V (Q)|
∑

v∈Ṽ

p
C∞(Zd,p)
t (v, v)

+
1

|V (Q)|
∑

v/∈Ṽ

p
C∞(Zd,p)
t (v, v)

≤ 2Ct−d/2(log t)6d+14 + t−.51d

≤ C21t
−d/2(log t)6d+14.

¤
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8.3 Return probabilities on the percolation cluster

Now we are ready to prove our main theorem.

Proof of Theorem 8.1: The idea for the proof is as follows. We intersect C∞(Zd, p)∩Bm

with evenly spaced boxes that cover most of this region, but are separated by a sufficient

distance when we construct good n graphs in adjacent boxes, they will not intersect. By

dividing the cluster this way, it is possible to analyze the behavior of the random walk

on each piece separately. It is possible to find an n graph which is great for t in most of

these boxes. Then we are able to apply Theorem 3.1 to each piece and average.

Let θ = θ(p, d) be the density of C∞(Zd, p). For any vertex v let Qn(v) ⊂ ω be the n

graph centered around v if it is great for t. Define

Um =
(

∪v∈(10n+2n2αn/5ρ)ZdQn(v)
)

∩Bm.

Notice that Um is the disjoint union of n graphs which are great for t so we have bounds

for pUmt (v, v) from Lemma 8.2

By the ergodic theorem,

θE(pωt (0, 0) | 0 ∈ C∞(Zd, p)) = lim
m

1

|Bm|
∑

v∈C∞(Zd,p)∩Bm

p
C∞(Zd,p)∩Bm

t (v, v). (25)

We apply Theorem 3.1 to the graph Ũm, which is defined to have the same vertices as

C∞(Zd, p) ∩Bm and the same edges as Um.

lim
m

1

|Bm|
∑

v∈C∞(Zd,p)∩Bm

p
C∞(Zd,p)∩Bm

t (v, v) ≤ lim
m

1

|Bm|
∑

v∈C∞(Zd,p)∩Bm

pŨmt (v, v)

≤ lim
m

1

|Bm|





∑

v∈Um

pUmt (v, v) +
∑

v∈(Ũm)\Um

1





≤ C21t
−d/2(log t)6d+14 + C19t

−.51d

+Cdn/2αn (26)

≤ C22t
−d/2(log t)6d+14.

Line 26 follows from Lemmas 8.1 and 8.2. ¤
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9 The Uniform Spanning Forest on C∞(Zd, p)

In this section we show that two independent simple random walks on C∞(Zd, p), d ≥ 5,

have finite expected number of intersections. We then define the wired, free and uniform

spanning forests on a graph G. We will combine the expectation result with some results

about spanning forests to show that the USF on C∞(Zd, p), d ≥ 5, is supported on graphs

with infinitely many connected components.

Choose ω such that 0 ∈ C∞(Zd, p). Let {Z(t)}t≥0 and {Z ′(t)}t≥0 be two independent

copies of simple random walks on C∞(Zd, p) with Z(0) = Z ′(0) = 0. Let Z(t) represent

the vertex that the simple random walk occupies at time t. Given a vertex a in the

percolation cluster let {Xa(t)}t≥0 be a simple random walk in the percolation cluster

started at a (Xa(0) = a). Let I(Z,Z ′, C∞(Zd, p)) = the number of intersections of Z and

Z ′.

Theorem 9.1 For almost every ω the number of intersection of two independent random

walks is finite a.s. In other words, with probability one

I(Z,Z ′, C∞(Zd, p)) <∞.

Proof: The following argument was indicated to us by Russell Lyons. We only need to

show that the expected value of I(Z,Z ′, C∞(Zd, p)) is finite.

E(I(Z,Z ′, C∞)) ≤ E

(

∑

k

∑

j

∑

a∈Zd
P(Z(k) = a and Z ′(j) = a)

)

(27)

≤ E

(

∑

k

∑

j

∑

a∈Zd
P(Z(k) = a)P(Z ′(j) = a)

)

(28)

≤ CE

(

∑

k

∑

j

∑

a∈Zd
P(Z(k) = a)P(Xa(j) = 0)

)

(29)

≤ CE

(

∑

k

∑

j

∑

a∈Zd
P(Z(k) = a and Z(k + j) = 0)

)

(30)

≤ CE

(

∑

k

∑

j

P(Z(k + j) = 0)

)

(31)

297



≤ CE

(

∑

n

(n+ 1)P(Z(n) = 0)

)

(32)

≤ C ′
∑

n

n1−d/2C ′′(log n)6d+14 (33)

< ∞. (34)

Line 27 is ≤ because you might double count intersections. Line 28 is because of the

independence of Z and Z ′. Line 29 is true for the following reason. For each path from

0 to a in the percolation cluster there is a corresponding path from a to 0 (just go in

reverse). These two paths have probabilities that differ by a constant. The probability

of a path from 0 to a is 1 over the product of the degrees of the vertices at the beginning

of each segment. The probability of the corresponding path from a to 0 is the product of

the degrees of the vertices at the end of each segment. Since these sets of vertices only

differ by one element, these two probabilities differ by a factor of the degree of a / degree

of 0. Line 31 is because of the independence of X and Z and the independence of the

increments in simple random walk. Line 33 follows from Theorem 8.1 and because the

sum of the return times for discrete time simple random walk is bounded by a constant

times the sum of the return probabilities for continuous time simple random walk. ¤

We now define spanning forests. Given a finite graph G = (V,E), a spanning tree of

that graph is a connected subgraph which contains no cycles and includes all the vertices.

Define a probability measure on spanning trees by assigning each spanning tree equal

measure and normalizing. Given an infinite graph G, write G as the increasing union of

finite graphs Gn. Pemantle shows in [25] that the weak limit of the sequence of finite

measures arising from each Gn exists. Furthermore it is independent of the exhaustion.

This limit is called the free spanning forest (FSF). Likewise, we define the wired spanning

forest (WSF), except now we impose wired boundary conditions. Namely, for each Gn,

wire all the edges on the boundary of Gn to a single vertex outside of Gn. Define a

sequence of measures on the new finite graphs. Again, this sequence has a weak limit

that is independent of exhaustion [25],[18]. This limit is the wired spanning forest. In

the case when the wired and free spanning forests coincide, the measure is called the

uniform spanning forest. If G = Zd, then the wired and free spanning forests coincide

[25]. In [7], Benjamini, Lyons and Schramm show that the wired and free spanning

forests coincide on percolation clusters in Zd.
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In order to show that the USF is supported on infinitely many components, we use

some theorems about the wired spanning forest. Let α(w1, ...wk) be the probability that

independent random walks started at w1, ..., wk have no pairwise intersections.

Theorem 9.2 [6] Let G be a connected network. The number of trees of the WSF is

a.s.

sup{k : ∃w1, ...wk, α(w1, ..., wk) > 0}.

Moreover, if the WSF on a graph has finitely many components, then the dimension of

the bounded harmonic functions on the graph is equal to the number of components of

the WSF.

In particular, the number of trees in a configuration of the WSF is a.s. constant.

This theorem, along with Theorem 9.1, implies that the WSF is supported on at least

2 components a.s. We can rule out finitely many components because of the following

fact.

Theorem 9.3 [7],[21] Percolation clusters in Zd admit no nonconstant bounded har-

monic functions.

Putting these results together gives the following theorem.

Theorem 9.4 The USF on C∞(Zd, p) d ≥ 5 is supported on graphs with infinitely many

connected components.
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