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Abstract. Let β̃k(n) be the number of self-intersections of order k, appropriately

renormalized, for a mean zero random walk Xn in Z2 with 2 + δ moments. On a suitable

probability space we can construct Xn and a planar Brownian motion Wt such that for

each k ≥ 2

|β̃k(n)− γ̃k(n)| = O(n−a), a.s.

for some a > 0 where γ̃k(n) is the renormalized self-intersection local time of order k at

time 1 for the Brownian motion Wnt/
√
n.
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1. Introduction.

If {Wt ; t ≥ 0} is a planar Brownian motion with density pt(x), for x ∈ R2 set

γ1,ε(t, x) = t and for k ≥ 2 and x = (x2, . . . , xk) ∈ (R2)k−1 let

γk,ε(t, x) =

∫

0≤t1≤···≤tk<t

k∏

i=2

pε(Wti
−Wti−1 − xi)dt1 · · · dtk.

When xi 6= 0 for all i the limit

γk(t, x) = lim
ε→0

γk,ε(t, x)

exists and for any bounded continuous function F (x) on R2(k−1) we have

∫
F (x)γk(t, x) dx =

∫

0≤t1≤···≤tk<t

F (Wt2 −Wt1 , . . . ,Wtk
−Wtk−1

)dt1 · · · dtk. (1.1)

(Here we may arbitrarily specify that γk(t, x) = ∞ if any xi = 0.) When xi 6= 0 for all i

define the renormalized intersection local times as

γ̃k(t, x) =
∑

A⊆{2,...,k}
(−1)|A|

(∏

i∈A

1

π
log(1/|xi|)

)
γk−|A|(t, xAc)

where xAc = (xi1 , . . . , xik−|A|) with i1 < i2 < · · · < ik−|A| and ij ∈ {2, . . . , k} −A for each

j, that is, the vector (x2, . . . , xk) with all terms that have indices in A deleted. (When

A = {2, . . . , k} so that k − |A| = 1 and Ac = ∅ we set γk−|A|(t, xAc) = γ1,ε(t) = t). It is

known that the γ̃k(t, x) have a continuous extension to all R1
+ × Rk−1; see [3].

Renormalized self-intersection local time was originally studied by Varadhan [20] for

its role in quantum field theory. In Rosen [18] it is shown that γ̃k(t, 0) can be characterized

as the continuous process of zero quadratic variation in the decomposition of a natural

Dirichlet process. Renormalized intersection local time turns out to be the right tool for

the solution of certain “classical” problems such as the asymptotic expansion of the area of

the Wiener sausage in the plane and the range of random walks, [5], [9], [10]. For further

work on renormalized self-intersection local times see Dynkin [7], Le Gall [11], Bass and

Khoshnevisan [3], Rosen [17] and Marcus and Rosen [14].

Let ξi be i.i.d. random variables with values in Z2 that are mean 0, with covariance

matrix equal to the identity, and with 2+δ moments. Let us suppose the ξi are symmetric

and are strongly aperiodic. Let Xn be the random walk, that is, Xn =
∑n

i=1 ξi. Let

p(n, x, y) be the transition probabilities. Let B1(n, x) = n and for x ∈ Z2 set

B2(n, x) =
∑

0≤i1<i2≤n

1(Xi2=Xi1+x).
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More generally, for x = (x2, . . . , xk) ∈ (Z2)k−1 let

Bk(n, x) =
∑

0≤i1<i2<...<ik≤n

k∏

j=2

1(Xij
=Xij−1

+xj).

Note that Bk(n, x) = 0 for all n < k − 1.

With e1 = (1, 0), let

G(x) =

∞∑

n=1

[p(n, 0, x)− p(n, 0, e1)],

and set Gn(x) = G(x)−G(√ne1). Let

B̃k(n, x) =
∑

A⊂{2,...,k}
(−1)|A|

(∏

i∈A
Gn(xi)

)
Bk−|A|(n, xAc). (1.2)

In particular we have

B̃2(n, x) = B2(n, x)−Gn(x)n. (1.3)

Finally we define the renormalized intersection local times for our random walk by

β̃k(n, x) =
1

n
B̃k(n, x

√
n). (1.4)

In particular we have

β̃2(n, x) =
1

n
B2(n, x

√
n)−Gn(x

√
n). (1.5)

We note from P12.3 of [19] that for x 6= 0

lim
n→∞

Gn(x
√
n) = lim

n→∞
G(x

√
n)−G(√ne1) =

1

π
log(1/|x|). (1.6)

We know we can find a version of our random walk and a Brownian motionWt such

that

sup
s≤1

|Xn
s −Wn

s | = o(n−ζ), a.s. (1.7)

for some ζ > 0 where Xn
t = X[nt]/

√
n and Wn

t = Wnt/
√
n; see, [6], Theorem 3, for

example. Let γk(1, x, n) and γ̃k(1, x, n) be the intersection local times and renormalized

intersection local times up to time 1 of order k, resp., for the Brownian motion W n
t . In

this paper we prove the following theorem.

126



Theorem 1.1. Let Xn = ξ1 + · · · + ξn be a random walk in Z2, where the ξi are i.i.d.,

mean 0, with covariance matrix equal to the identity, with 2 + δ moments for some δ > 0,

symmetric, and strongly aperiodic. On a suitable probability space we can construct

{Xn ; n ≥ 1} and a planar Brownian motion {Wt ; t ≥ 0} and we can find η > 0 such that

for each k ≥ 2

|β̃k(n, 0)− γ̃k(1, 0, n)| = o(n−η), a.s.

For related work see [4], [5], [16]. In fact, [5] provided much of the motivation for

this work; in that paper we proved a strong invariance principle with respect to the L2

norm.

We give a brief overview of the proof. There is an equation similar to (1.1) when γk

is replaced by γ̃k, and also when it is replaced by β̃k. Since by (1.7) we haveXn
s close toWn

s

for n large, we are able to conclude that
∫
F (x)γ̃k(1, x) dx is close to

∫
F (x)β̃k(n, x) dx for

n large. If F is smooth, with integral 1 and support in a small neighborhood of the origin,

then by the continuity of γ̃k(t, x) in x, which is proved in [3], we see that
∫
F (x)γ̃k(1, x) dx

is not far from γ̃k(1, 0). If we had a similar result for β̃k, we would then have that∫
F (x)β̃k(n, x) dx is not far from β̃(n, 0), and we would have our proof. So our strategy

is to obtain good estimates on |β̃k(n, x) − β̃k(n, 0)|. Because of the rate of convergence

in (1.7), it turns out we are able to avoid having to find the sharpest estimates on the

difference, which simplifies the proof considerably.

Our main tool in obtaining the desired estimates is Proposition 3.2. This proposition

may be of independent interest. It has been known for a long time that one way of proving

Lp estimates for a continuous increasing process is to prove corresponding estimates for

the potential. It is not as well known that one can do the same for continuous processes

of bounded variation provided one has some control on the total variation; see, e.g., [1] or

[3]. Proposition 3.2 is the discrete time analogue of this result, and is proved in a similar

way. Unlike the continuous time version, here it is also necessary to have control on the

differences of successive terms.

Section 2 has some estimates on the potential kernel for random walks in the plane,

while Section 3 has the proof of the stochastic calculus results we need. Theorem 1.1 in

the case when k = 2 is proved in Section 4, with the proofs of some lemmas postponed to

Section 5. We treat the case k = 2 separately for simplicity of exposition. The description

of the potentials of intersection local times of random walks in the k > 2 case is a bit

different than in the k = 2 case and this is described in Section 6. Theorem 1.1 in the

k > 2 case is proved in Section 7, with the proofs of some lemmas given in Sections 8 and

9. Finally in Section 10 we give an extension of our results to L2 convergence, and more

importantly, make a correction to the proof of one of the propositions in [3]. An Appendix

contains the detailed proof of that correction. Throughout this paper we use the letter c

to denote finite positive constants whose exact value is unimportant and which may vary
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from line to line.

2. Estimates for random walks.

In this section we prove some estimates for the potential kernel of a random variable.

See the forthcoming book by Lawler [13] for further information. Let G be the potential

kernel for X. Recall that in 2 dimensions, since X is recurrent, the potential kernel is

defined somewhat differently than in higher dimensions, and is defined by

G(x) =

∞∑

n=0

[p(n, 0, x)− p(n, 0, e1)],

where e1 = (1, 0). (Note e1 can be replaced by any fixed point.) For us it will be more

convenient to work with

G(x) =
∞∑

n=1

[p(n, 0, x)− p(n, 0, e1)],

which, since p(0, 0, 0) = 1 and p(0, 0, e1) = 0, differs from G(x) by 1{0}(x). By Spitzer

[19], p. 75, we have

p(n, 0, x) ≤ c/n. (2.1)

By [4], Proposition 2.1, if the ξi are strongly aperiodic, then

|p(n, 0, x)− p(n, 0, y)| ≤ c|x− y|
n3/2

. (2.2)

Proposition 2.1. Suppose the ξi have 2 + δ moments. Then G(x) exists and |G(x)| ≤
c(1 + log+ |x|).

Proof. Using (2.2), we have that

|G(0)| ≤
∞∑

n=1

c

n3/2

is finite. The rest of the assertions follow from

|G(x)| ≤
|x|2∑

n=1

c

n
+

∞∑

n=|x|2+1

c|x− e1|
n3/2

≤ c+ c log |x|+ c
|x|

(|x|2 + 1)1/2
.
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Proposition 2.2. For some c <∞

|G(x)−G(y)| ≤ c
( |x− y|
(1 + |x|) ∧ (1 + |y|)

)2/3
, x, y ∈ Z2.

Proof. By [19], P7.10,

p(j, 0, x) ≤ c

|x|2 . (2.3)

Since p(j, 0, 0) ≤ 1, then we have

p(j, 0, x) ≤ c

1 + |x|2 . (2.4)

Suppose 0 < |x| ≤ |y|. Let us set R in a moment. Using (2.4) for j ≤ R and (2.2) for

j > R, we have that

|G(x)−G(y)| ≤
R∑

j=1

c

1 + |x|2 +

∞∑

j=R+1

c|x− y|
j3/2

≤ cR

1 + |x|2 +
c|x− y|
R1/2

.

If we select R so that

R

1 + |x|2 =
|x− y|
R1/2

, i.e., R3/2 = (1 + |x|2)(|x− y|),

the result follows. Since G(0) is finite and |G(x)| ≤ c log(1 + |x|) ≤ |x|2/3, the result holds

when either x or y is 0, as well.

Lemma 2.3. For some constant κ and any ρ < δ/2,

G(x) = κ+ 1
π log(1/|x|) +O(|x|−ρ), x ∈ Z2.

Proof. Let us begin with the proof of Proposition 3.1 in [2]. We have for δ > 0

∣∣∣eiα·x/
√
n − 1− α · x√

n
− |α · x|

2

2n

∣∣∣ ≤ c
∣∣∣α · x√

n

∣∣∣
2+δ

.

So if φ is the characteristic function of a random vector with finite 2 + δ moments, mean

0, and the identity as its covariance matrix, then

φ(α/
√
n) = 1− |α|

2

2n
+ E1(α, n),

with

|E1(α, n)| ≤ c(|α|/√n)2+δ. (2.5)
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Applying this also for the characteristic function of a standard normal vector,

e−|α|
2/2n = 1− |α|

2

2n
+ E2(α, n),

where E2(α, n) has the same bound as E1(α, n). If we use this in place of the display in

the middle of page 473 of [2], we obtain

I
(n)
1 ≤ cn−δ/2(log n)(4+δ)/2.

So if E(n, x) = |p(n, 0, x)− (2πn)−1e−|x|
2/2n|, following the proof in [2] we obtain

sup
x
E(n, x) ≤ cn−1−(δ/2)(log n)(4+δ)/2.

Let us choose δ′ < δ. We then have

sup
x
E(n, x) ≤ cn−1−(δ

′/2). (2.6)

Recall G(x) =
∑∞

k=1[p(k, 0, x) − p(k, 0, e1)]. It is shown in the proof of Theorem

1.6.2 in [12] that for some constant κ

∞∑

k=1

[q(k, 0, x)− q(k, 0, e1)] = κ+ 1
π log(1/|x|) +O(|x|−1),

where q(k, x, y) = (2πk)−1e−|x−y|2/2k. Thus, to prove the lemma, it suffices to prove

∞∑

k=1

|p(k, x, 0)− q(k, x, 0)| = O(|x|−ρ) (2.7)

for any ρ < δ/2.

To establish (2.7), use [15], p. 60 to observe that

p(k, x, 0) ≤ P(|Xk| > |x|) ≤
E |Xk|2+δ

|x|2+δ
≤ c

k1+δ/2

|x|2+δ

and a similar estimate is easily seen to hold for q(k, x, 0). Therefore, using (2.6) and setting

R = |x|,
∞∑

k=1

|p(k, x, 0)− q(k, x, 0)| ≤
R∑

k=1

[p(k, x, 0) + q(k, x, 0)]

+
∞∑

k=R

|p(k, x, 0)− q(k, x, 0)|

≤
R∑

k=1

c
k1+δ/2

|x|2+δ
+

∞∑

k=R

c
1

k1+δ′/2

≤ c
R2+δ/2

|x|2+δ
+ c

1

Rδ′/2

≤ c|x|−ρ.
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3. Stochastic calculus.

We will use the following propositions; these may be of independent interest. Propo-

sitions 3.1 and 3.2 and their proofs are the discrete time analogues of Propositions 6.1 and

6.2 of [3].

Proposition 3.1. Let An be an adapted increasing sequence of random variables with

A0 = 0 and A∞ = supnAn finite. Suppose that

Y = sup
n

(An −An−1)

and W is a random variable such that

E [A∞ −An | Fn] ≤ E [W | Fn]

for all n. Then for each integer p larger than 1 there exists a constant c such that

EAp
∞ ≤ cpp(‖W‖p + ‖Y ‖p)p.

Proof. Since An is increasing,

pAp−1
n ≥ Ap−1

n +Ap−2
n An−1 + · · ·+AnA

p−2
n−1 +Ap−1

n−1.

Multiplying by An −An−1, we obtain

(An −An−1)pA
p−1
n ≥ Ap

n −Ap
n−1.

Summing over n we obtain

p

∞∑

n=1

(An −An−1)A
p−1
n ≥ Ap

∞. (3.1)

On the other hand, applying the general summation formula

A∞B∞ =

∞∑

n=1

An(Bn −Bn−1) +
∞∑

n=1

(An −An−1)Bn−1

with Bn = Ap−1
n+1 we obtain

∞∑

n=1

(An −An−1)A
p−1
n = Ap

∞ −
∞∑

n=1

An(A
p−1
n+1 −Ap−1

n ) (3.2)

=
∞∑

n=1

(A∞ −An)(A
p−1
n+1 −Ap−1

n ) +A∞A
p−1
1 .
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Here we used the fact that

∞∑

n=1

A∞(Ap−1
n+1 −Ap−1

n ) = Ap
∞ −A∞Ap−1

1 .

Combining (3.1) and (3.2) we obtain

Ap
∞ ≤ p

∞∑

n=1

(A∞ −An)(A
p−1
n+1 −Ap−1

n ) + pA∞A
p−1
1 . (3.3)

Now suppose for the moment that Y is bounded and An = An0 for all n ≥ n0 for

some n0. We have

∞∑

n=1

(A∞ −An)(A
p−1
n+1 −Ap−1

n ) (3.4)

=

∞∑

n=1

(A∞ −An+1)(A
p−1
n+1 −Ap−1

n ) +

∞∑

n=1

(An+1 −An)(A
p−1
n+1 −Ap−1

n ).

and ∞∑

n=1

(An+1 −An)(A
p−1
n+1 −Ap−1

n ) ≤ Y Ap−1
∞ .

But, A1 ≤ A∞ and also A1 ≤ Y so that

A∞A
p−1
1 ≤ Y Ap−1

∞ .

We write

E
∞∑

n=1

(A∞ −An+1)(A
p−1
n+1 −Ap−1

n ) = E
∞∑

n=1

E [A∞ −An+1 | Fn+1](A
p−1
n+1 −Ap−1

n )

≤ E
∞∑

n=1

E [W | Fn+1](A
p−1
n+1 −Ap−1

n )

= E
∞∑

n=1

W (Ap−1
n+1 −Ap−1

n )

≤ E [WAp−1
∞ ].

Therefore using Hölder’s inequality,

EAp
∞ ≤ p(‖W‖p + 2‖Y ‖p)(EAp

∞)1−
1
p .

Our temporary assumptions on A allow us to divide both sides by (EAp
∞)1−

1
p to obtain

our result in this special case.
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In general, look at

A′n =
n∑

j=1

((Aj −Aj−1) ∧K)

and apply the above to A′′n = A′n∧n0
; note that A′′ will satisfy the hypotheses with the

same W and Y . Then let K ↑ ∞ and next n0 ↑ ∞ and use monotone convergence.

Proposition 3.2. Suppose Q1
n and Q2

n are two adapted nonnegative increasing sequences.

Suppose Qn = Q1
n −Q2

n, Hn +Qn is a martingale that is 0 at time 0,

Z = sup
n
|Hn|,

Y = sup
n

[(Q1
n −Q1

n−1) + (Q2
n −Q2

n−1)],

and

W = Q1
∞ +Q2

∞.

Then there exists c such that for p > 1

E sup
n
|Qn|2p ≤ cpp4p

[
EZ2p + (EZ2p)1/2(EW 2p)1/2 (3.5)

+ (EY 2p)1/2(EW 2p)1/2
]
.

Proof. There is nothing to prove unless EW 2p < ∞. Since supnQn ≤ W , all the

random variables that follow will satisfy the appropriate integrability conditions. Let us

temporarily assume that there exists n0 such that Qi
n = Qi

n0
if n ≥ n0, i = 1, 2.

Let

Vm = E [Q∞ −Qm | Fm], Mm = E [Q∞ | Fm].

Note that V∞ = 0, Mm is a martingale, and Qm = Mm − Vm. In fact, in view of our

temporary assumption, Vm = 0 if m ≥ n0.

Our first observation is that since

Vm = E [Q∞ −Qm | Fm] = E [Hm −H∞ | Fm],

then

|Vm| ≤ 2E [Z | Fm]. (3.6)

By Doob’s inequality,

E sup
n
V p
n ≤ cEZp. (3.7)

We will use
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Lemma 3.3.

E
( ∞∑

n=0

(Mn+1 −Mn)
2
)p
≤ cpp2p(E [ZW + YW ]p + EZ2p). (3.8)

This lemma will be proved shortly. We first show how Proposition 3.2 follows from

this lemma. By the Burkholder-Davis-Gundy inequalities, we obtain

E sup
n
|Mn|2p ≤ cp4p(E [ZW + YW ]p + EZ2p). (3.9)

Combining with (3.7) and the fact that Qm = Mm − Vm and then using Cauchy-Schwarz

completes the proof of Proposition 3.2 in the special case where the Qi are constant from

some n0 on. In the general case, letQ
i

n = Qi
n∧n0

for i = 1, 2, obtain (3.5) forQn = Q
1

n−Q
2

n,

let n0 →∞, and apply monotone convergence.

Proof of Lemma 3.3. We now prove (3.8). Simple algebraic manipulations show

that

V 2
∞ − V 2

m =

∞∑

n=m

(Vn+1 − Vn)2 + 2

∞∑

n=m

Vn(Vn+1 − Vn). (3.10)

(Note that the sums are actually finite because Vm = 0 if m ≥ n0.) Recalling Q =M − V
and V∞ = 0, we have

∞∑

n=m

(Mn+1 −Mn)
2 ≤ 2

∞∑

n=m

(Vn+1 − Vn)2 + 2
∞∑

n=m

(Qn+1 −Qn)
2

= −2V 2
m − 4

∞∑

n=m

Vn(Vn+1 − Vn) + 2
∞∑

n=m

(Qn+1 −Qn)
2

≤ −4
∞∑

n=m

Vn(Vn+1 − Vn) + 2

∞∑

n=m

(Qn+1 −Qn)
2

=: −4S1 + 2S2. (3.11)
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We now take the conditional expectation with respect to Fm.

E [S1 | Fm] = E
[ ∞∑

n=m

Vn(Vn+1 − Vn) | Fm

]

= E
[ ∞∑

n=m

E [Vn+1 − Vn | Fn]Vn | Fm

]

= −E
[ ∞∑

n=m

E [Qn+1 −Qn | Fn]Vn | Fm

]

= −E
[ ∞∑

n=m

Vn(Qn+1 −Qn) | Fm

]

= −E
[ ∞∑

n=m

Vn+1(Qn+1 −Qn) | Fm

]

+ E
[ ∞∑

n=m

(Vn+1 − Vn)(Qn+1 −Qn) | Fm

]

=: I1 + I2.

Since Vn+1 ≤ 2E [Z | Fn+1] by (3.6), and recalling that Qn = Q1
n −Q2

n, we have

|I1| ≤ 2E
[ ∞∑

n=m

Z|Qn+1 −Qn| | Fm

]
≤ 2E [ZW | Fm].

Recalling that Vn = Mn − Qn and setting S3 =
∑∞

n=m(Mn+1 −Mn)(Qn+1 − Qn)

we see that

I2 = −E [S2 | Fm] + E [S3 | Fm].

Since ∞∑

n=m

(Qn+1 −Qn)
2 ≤ YW (3.12)

we have

E [S2 | Fm] ≤ E [YW | Fm].

Let J = E [
∑∞

n=m(Mn+1 −Mn)
2 | Fm]. By Cauchy-Schwarz and (3.12),

|E [S3 | Fm]| ≤ J1/2
(
E [YW | Fm]

)1/2
.

We therefore conclude

J ≤ cE [ZW + YW | Fm] + c1J
1/2
(
E [YW | Fm]

)1/2
. (3.13)
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Using the inequality A1/2x1/2 ≤ (A + x)/2 with x = J and A = c21E [YW | Fm], we see

that

J ≤ cE [ZW + YW | Fm] + c21

(
E [YW | Fm]

)
/2 + J/2 (3.14)

and therefore

J = E
[ ∞∑

n=m

(Mn+1 −Mn)
2 | Fm

]
≤ cE [ZW + YW | Fm]. (3.15)

We have |Qn+1 −Qn| ≤ Y for all n and so

E sup
n
|Qn+1 −Qn|p ≤ EY p. (3.16)

Using (3.7), (3.16) and the fact that Qm =Mm−Vm and Y ≤ (YW )1/2 we then have that

E sup
n
|Mn+1 −Mn|2p ≤ cpE sup

n
|Qn+1 −Qn|2p + cpE sup

n
|Vn+1 − Vn|2p

≤ cp(EZ2p + E (YW )p). (3.17)

(3.8) then follows using (3.15) and Proposition 3.1 with An =
∑n

j=1(Mj −Mj−1)2.

4. The k = 2 case.

Proposition 4.1. If

Ũ2(n, x) =
n−1∑

i=0

Gn(Xn −Xi − x),

then

Mn = Ũ2(n, x) + B̃2(n, x)

is a martingale with M0 = 0.

Proof. If

U2(n, x) =
n−1∑

i=0

G(Xn −Xi − x),

we have Ũ2(n, x) = U2(n, x)− nG(e1
√
n) so that

Mn = U2(n, x) +B2(n, x)− nG(x).

Abbreviating B̄n = B2(n, x)− nG(x) we have

B̄n − B̄n−1 =
n−1∑

i=0

1(Xn=Xi+x) −G(x).
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So

E [B̄n − B̄n−1 +G(x) | Fn−1] =
n−1∑

i=0

P(Xn −Xn−1 +Xn−1 −Xi = x | Fn−1)

=
n−1∑

i=0

p(1, 0, Xn−1 −Xi − x)
(4.1)

Abbreviating Un = U2(n, x) we have

Un − Un−1 −G(x) =
n−1∑

i=0

[G(Xn −Xi − x)−G(Xn−1 −Xi − x)].

Now for any i ≤ n− 1

E [G(Xn −Xi − x) | Fn−1] = E [G(Xn −Xn−1 +Xn−1 −Xi − x) | Fn−1] (4.2)

=
∑

y

G(y +Xn−1 −Xi − x)P(Xn −Xn−1 = y | Fn−1)

=
∑

y

G(y +Xn−1 −Xi − x)P(Xn −Xn−1 = y)

=
∑

y

G(y +Xn−1 −Xi − x)p(1, 0, y)

= P1G(Xn−1 −Xi − x)

where Pj is the transition operator associated to p(j, x, y). Hence

E [Un − Un−1 −G(x) | Fn−1] =
n−1∑

i=0

[P1G(Xn−1 −Xi − x)−G(Xn−1 −Xi − x)].

Comparing with (4.1) and using

P1G(z)−G(z) = −p(1, 0, z), z ∈ Z2, (4.3)

we see that

E [Mn −Mn−1 | Fn−1] = E [Un − Un−1 + B̄n − B̄n−1 | Fn−1] = 0

as required.

The key to proving Theorem 1.1 in the k = 2 case is the following proposition.
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Proposition 4.2. We have

E |β̃2(n, x)− β̃2(n, x′)|p ≤ c(p)(log n)pn|x− x′|p/3 (4.4)

for each integer p > 1 and x, x′ ∈ Z2/
√
n with |x|, |x′| ≤ 1.

Let

W2(n) = |B2(n, x)|+ |B2(n, x
′)|,

Y2(n) = max
i≤n

{|B2(i, x)−B2(i− 1, x)|+ |B2(i, x
′)−B2(i− 1, x′)|},

and

Z̃2(n) = sup
j≤n

|Ũ2(j, x)− Ũ2(j, x
′)|.

In the proof of Proposition 4.2 we will need the following three lemmas, whose

proofs are deferred until the next section.

Lemma 4.3. For any x, x′ with |x|, |x|′ ≤ √n

EW2(n)
p ≤ c(log n)pnp. (4.5)

Lemma 4.4. For any x, x′ with |x|, |x|′ ≤ √n

EY2(n)p ≤ cn(log n)p. (4.6)

Lemma 4.5. For any x, x′ with |x|, |x|′ ≤ √n

E Z̃2(n)
p ≤ cnp

∣∣∣x− x
′

√
n

∣∣∣
2p/3

, (4.7)

Proof of Proposition 4.2. Converting from β̃’s to B̃’s, estimate (4.4) for k = 2 is

equivalent to

E |B̃2(n, x)− B̃2(n, x
′)|p ≤ c(p)(log n)pnp+1

( |x− x′|√
n

)p/3
(4.8)

for x, x′ ∈ Z2 with |x|, |x′| ≤ √n. We want to apply Proposition 3.2. We fix an n. We use

the notation f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0) so that f(x) = f+(x)−f−(x).
Take for i ≤ n

Q1
i = B2(i, x) + (G+(x′) +G−(x))i, Q2

i = B2(i, x
′) + (G+(x) +G−(x′))i, (4.9)

so that Q1 and Q2 are increasing and Qi = Q1
i −Q2

i = B̃2(i, x)− B̃2(i, x
′). For i ≥ n and

j = 1, 2, set Qj
i = Qj

n. We set Hi = Ũ2(i, x)− Ũ2(i, x
′). By Proposition 4.1, Qi +Hi is a

martingale.
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From Proposition 2.1, Lemmas 4.3 and 4.4, and the fact that |x|, |x′| ≤ √n, we see

that

E [(Q1
n +Q2

n)
p] ≤ c(log n)pnp (4.10)

and

E [(max
i≤n

{[Q1
i −Q1

i−1] + [Q2
i −Q2

i−1]})p] ≤ cn(log n)p. (4.11)

Combining (4.10), (4.11), Lemma 4.5, and the fact that 1√
n
≤ |x−x′|√

n
≤ 2 unless x = x′

with Proposition 3.2, we obtain

E sup
j≤n

|B̃2(j, x)− B̃2(j, x
′)|p ≤ c(p)(log n)pnp+1

( |x− x′|√
n

)p/3
(4.12)

for x, x′ ∈ Z2 with |x|, |x′| ≤ √n, which implies (4.8). This is the bound we need.

Proof of Theorem 1.1, the k = 2 case. Let f : R2 → [0,∞) be a nonnegative C∞

function with support in {y : 1
2 ≤ |y| ≤ 1}, and with integral 1. Let fτ (x) = τ−2f(x/τ).

The gradient of fτ is bounded by a constant times τ−3. Set τn = n−ζ/4. Then recalling

(1.7),

∫ 1

0

∫ t

0

|fτn
(Xn

t −Xn
s )− fτn

(Wn
t −Wn

s )|ds dt ≤ cτ−3n n−ζ ≤ cn−ζ/4. (4.13)

We also have by Lemma 2.3 that for some δ̄ > 0
∣∣∣∣∣
∑

x∈Z2/
√
n

fτn
(x)Gn(x

√
n)

1

n
−

∑

x∈Z2/
√
n

fτn
(x)

1

π
log(1/|x|) 1

n

∣∣∣∣∣ ≤ cn−δ̄ (4.14)

and it is easy to see from the support properties of fτn
(x) that

∣∣∣∣∣

∫
fτn

(x) 1π log(1/|x|) dx−
∑

x∈Z2/
√
n

fτn
(x)

1

π
log(1/|x|) 1

n

∣∣∣∣∣ ≤ cn−δ̄. (4.15)

On the other hand, recalling the notation Xn
t = X[nt]/

√
n

∑

x∈Z2/
√
n

fτn
(x)B2(n,

√
nx)

1

n2
=

1

n2

∑

x∈Z2/
√
n

fτn
(x)

∑

0≤i1<i2≤n

1(Xi2=Xi1+
√
nx)

=
1

n2

∑

0≤i1<i2≤n

fτn

( (Xi2 −Xi1√
n

)

=
1

n2

∫ n

0

∫ t

0

fτn

( (X[t] −X[s]√
n

)
ds dt

=

∫ 1

0

∫ t

0

fτn
(Xn

t −Xn
s )ds dt (4.16)
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so that

∑

x∈Z2/
√
n

fτn
(x)β̃2(n, x)

1

n
=

∫ 1

0

∫ t

0

fτn
(Xn

t −Xn
s )ds dt−

∑

x∈Z2/
√
n

fτn
(x)Gn(x

√
n)

1

n
.

By [3],

∫
fτn

(x)γ̃2(1, x, n) dx =

∫ 1

0

∫ t

0

fτn
(Wn

t −Wn
s ) ds dt−

∫
fτn

(x) 1π log(1/|x|) dx. (4.17)

(This conforms with the definition given in Section 1 above; the definition in [3] is very

slightly different and would yield
∫ 1
0

∫ 1
0
fτn

(Wn
t −Wn

s ) ds dt instead.) Combining the above,

∣∣∣∣∣
∑

x∈Z2/
√
n

fτn
(x)β̃2(n, x)

1

n
−
∫
fτn

(x)γ̃2(1, x, n) dx

∣∣∣∣∣ = O(n−ζ/4) +O(n−δ). (4.18)

Recall
∫
fτn

(x)dx = 1. Without loss of generality we may assume ζ < 1/2 is small enough

so that ψn =:
∑

x∈Z2/
√
n fτn

(x) 1n = 1+O(n−δ) for some δ > 1/4. (If ζ were too large, then

τn would tend to 0 too quickly, and then the above estimate for ψn might not be valid. In

general one has ψn = 1 + O(n−1/2τ−3n ). ) Jensen’s inequality and estimates (4.4), (4.5)

imply that

E

∣∣∣∣∣
∑

x∈Z2/
√
n

fτn
(x)β̃2(n, x)

1

n
− ψnβ̃2(n, 0)

∣∣∣∣∣

p

(4.19)

≤ c(p)E

∣∣∣∣∣
∑

x∈Z2/
√
n

1

n
fτn

(x)[β̃2(n, x)− β̃2(n, 0)]
∣∣∣∣∣

p

+ c(p)(ψn − 1)pE β̃2(n, 0)p

≤ c(p)
∑

x∈Z2/
√
n

fτn
(x)E |β̃2(n, x)− β̃2(n, 0)|p

1

n
+ c(p)n−pδ(log n)p

≤ c(p)(log n)pn(τn)
p/3.

If we take p big enough, then using Chebyshev’s inequality

P
(∣∣∣

∑

x∈Z2/
√
n

fτn
(x)β̃2(n, x)

1

n
− ψnβ̃2(n, 0)

∣∣∣ ≥ n−ζ/24
)
≤ c

(log n)pn(τn)
p/3

n−ζp/24
≤ c

n2
.

By Borel-Cantelli, we conclude that

∑

x∈Z2/
√
n

fτn
(x)β̃2(n, x)

1

n
− ψnβ̃2(n, 0) = O(n−ζ/24), a.s. (4.20)
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Using (4.10),

E [|B̃2(n, 0)
p|] ≤ c(log n)pnp,

so

P(|β̃2(n, 0)| > nδ/2) ≤ c(log n)p

nδp/2
,

and if we take p large enough, Borel-Cantelli tells us that

β̃2(n, 0) = O(nδ/2), a.s.

So then

β̃2(n, 0)− ψnβ̃2(n, 0) = O(n−δ/2), a.s. (4.21)

A very similar argument to the above also shows that we have

∫
fτn

(x)γ̃2(1, x, n) dx− γ̃2(1, 0, n) = O(n−ζ/24), a.s. (4.22)

the analogue to estimate (4.4) is in [3]. Combining (4.18), (4.20), (4.21) and (4.22) we

conclude that

β̃2(n, 0)− γ̃2(1, 0, n) = O(n−ζ/24) +O(n−δ/2), a.s.

Remark 4.6. To see the importance of renormalization, note that if we also had the

estimate (4.8) for B2(n, x)−B2(n, x
′), this would imply that uniformly in n

|G(x)−G(x′)| ≤ c(p)(log n)n1/p
( |x− x′|√

n

)1/3

which is impossible if p > 6 and n is sufficiently large.

5. Proofs of Lemmas 4.3-4.5.

Proof of Lemma 4.3. We have

E {(B2(n, x))
p}

≤ E {(
n∑

i,j=0

1(Xj−Xi=x))
p}

=
∑

s∈S

∑

0≤i1≤...i2p≤n

∑

z1,...,zp∈Z2

2p∏

j=1

p(ij − ij−1, zs(j−1) + xc(j−1), zs(j) + xc(j))

(5.1)
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where s runs over the set of maps S from {1, . . . , 2p} to {1, . . . , p} such that s−1(j) = 2 for

each 1 ≤ j ≤ p, c(j) =
∑j

i=1 1{s(i)=s(j)} and x1 = 0, x2 = x. Here we use the conventions

i0 = 0, z0 = 0, c(0) = 0. Setting

gn(x) =
n∑

i=0

p(i, 0, x) ≤ c log n (5.2)

for x ≤ √n by Proposition 2.1, and using the obvious fact that

∑

x∈Z2

gn(x) =
∑

x∈Z2

n∑

i=0

p(i, 0, x) = n+ 1

we can bound (5.1) by

∑

s∈S

∑

z1,...,zp∈Z2

2p∏

j=1

gn(zs(j) + xc(j) − zs(j−1) − xc(j−1))

≤ c(log n)p
∑

s∈S

∑

z1,...,zp∈Z2

∏

j : c(j)=1

gn(zs(j) + xc(j) − zs(j−1) − xc(j−1))

≤ c(n log n)p.

(5.3)

Proof of Lemma 4.4. Let

C(m,x) = [B2(m,x)−B2(m− 1, x)] =

m−1∑

i=0

1(Xm=Xi+x).

We show that for any 1 ≤ m ≤ n

EC(m,x)p ≤ c(log n)p; (5.4)

using

Y2(n)
p ≤

n∑

m=1

c(p)C(m,x)p,

we are then done.
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But

E {(
m−1∑

i=0

1(Xm=Xi+x))
p}

≤ p!
∑

0≤i1≤...ip≤m−1

∑

z1,...,zp,y∈Z2

p∏

j=1

p(ij − ij−1, zj−1, zj)1(y=zj+x)p(m− ip, zp, y)

= p!
∑

0≤i1≤...ip≤m−1

∑

y∈Z2

p(i1, 0, y − x)
p∏

j=2

p(ij − ij−1, 0, 0)p(m− ip, 0, x)

= p!
∑

0≤i1≤...ip≤m−1

p∏

j=2

p(ij − ij−1, 0, 0)p(m− ip, 0, x)

≤ c(logm)p

which gives (5.4).

Proof of Lemma 4.5. We begin by estimating

E (1 + |Xi|2)−b/2

with 0 < b < 2.

First

E [(1 + |Xi|2)−b/2; |Xi| = 0] = 1 · P(Xi = 0) ≤ c/i ≤ ci−b/2.

Next, using (2.1)

E [(1 + |Xi|2)−b/2; 0 < |Xi| <
√
i] ≤

∑

{x∈Z2,0<|x|≤
√
i}

|x|−bp(i, 0, x)

≤ c

i

∑

{x∈Z2,0<|x|≤
√
i}

|x|−b

=
c

i
i1−b/2 = ci−b/2.

Finally,

E [(1 + |Xi|2)−b/2;
√
i ≤ |Xi| ] ≤ (1 + i)−b/2P(

√
i ≤ |Xi|) ≤ ci−b/2. (5.5)

We conclude that for any 0 < b < 2

E [(1 + |Xi|2)−b/2] ≤ ci−b/2. (5.6)
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Using the estimate

|G(Xi + x)−G(Xi + y)| ≤ c|x− y|2/3
(1 + |Xi + x|2)1/3 +

c|x− y|2/3
(1 + |Xi + y|2)1/3

of Proposition 2.2, the fact that symmetry tells us that E [(1 + |Xi + x|2)−1/3] is largest

when x = 0, and the estimate (5.6) above, we obtain

E
n∑

i=1

|G(Xi + x)−G(Xi + y)| ≤ c|x− y|2/3
n∑

i=1

i−1/3 ≤ cn(|x− y|/√n)2/3.

So by independence, using X̄i, Ē to denote an independent copy of Xi and its expectation

operator,

E
[ n∑

i=m+1

|G(Xi + x)−G(Xi + y)| | Fm

]
(5.7)

≤ Ē
n∑

i=1

|G(X̄i +Xm + x)−G(X̄i +Xm + y)| ≤ cn
( |x− y|√

n

)2/3
.

If |x| ≤ √n, by Proposition 2.1 and Doob’s inequality

E sup
i≤n
|G(Xi + x)|p ≤ cE sup

i≤n
(1 + log+ |Xi + x|)p (5.8)

≤ c(log n)pP(sup
i≤n

|Xi + x| ≤ n) + c
∞∑

m=[logn]

mpP(em ≤ sup
i≤n

|Xi + x| ≤ em+1)

≤ c(log n)p + c

∞∑

m=[logn]

mp E |Xn + x|2
e2m

≤ c(log n)p.

If x 6= y, then |x− y| ≥ 1 and (5.8) then implies that

E sup
i≤n

|G(Xi + x)−G(Xi + y)|p ≤ c(log n)p ≤ c
(
n
( |x− y|√

n

)2/3)p
.

Using Proposition 3.1 with Aj =
∑j∧n

i=1 |G(Xi + x)−G(Xi + y)|, if |x|, |y| ≤ √n, then

∥∥∥
n∑

i=1

|G(Xi + x)−G(Xi + y)|
∥∥∥
p
≤ cn(|x− y|/√n)2/3. (5.9)

Replacing x and y by −x and −x′, resp., and using the fact that
∑n

i=1G(Xi − x) is equal
in law to

∑n−1
i=0 G(Xn −Xi − x) yields the Lp estimate that we want.
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6. The martingale connection: k > 2.

Let B̃1,m(j, x) = j and for k ≥ 2 define

B̃k,m(j, x) =
∑

A⊂{2,...,k}
(−1)|A|

(∏

i∈A
Gm(xi)

)
Bk−|A|(j, xAc). (6.1)

Note that B̃k,n(n, x) = B̃k(n, x).

If x = (x2, . . . , xk−1, xk), let xkc = (x2, . . . , xk−1).

Proposition 6.1. Let k > 2. If

Ũk,m(n, x) =

n∑

i=1

Gm(Xn −Xi − xk)[B̃k−1,m(i, xkc)− B̃k−1,m(i− 1, xkc)],

then for each m

Mn,m = Ũk,m(n, x) + B̃k,m(n, x), n = 0, 1, 2, . . .

is a martingale with M0,m = 0.

Proof. We will show that for each k

Nk,m(n) = Uk,m(n, x) +Bk,m(n, x)−Gm(xk)Bk−1,m(n, xkc), n = 0, 1, 2, . . .

is a martingale where

Uk,m(n, x) =
n∑

i=1

[G(Xn −Xi − xk)−G(e1
√
m)][Bk−1(i, xkc)−Bk−1(i− 1, xkc)]

=

n∑

i=1

G(Xn −Xi − xk)[Bk−1(i, xkc)−Bk−1(i− 1, xkc)]

−G(e1
√
m)Bk−1(n, xkc).

This will prove the proposition since, with the notation Dk = D ∪ {k},

Ũk,m(n, x) + B̃k,m(n, x)

=
n∑

i=1

Gm(Xn −Xi − xk)
∑

D⊂{2,...,k−1}
(−1)|D|

(∏

l∈D
Gm(xl)

)
[Bk−|Dk|,m(i, xDc

k
)−Bk−|Dk|,m(i− 1, xDc

k
)]

+
∑

A⊂{2,...,k}
(−1)|A|

(∏

i∈A
Gm(xi)

)
Bk−|A|(n, xAc)

=
∑

D⊂{2,...,k−1}
(−1)|D|

(∏

l∈D
Gm(xl)

)

[Uk−|Dc|,m(n, xDc) +Bk−|Dc|,m(n, xDc)−Gm(xk)Bk−|Dc|−1,m(n, xDc
k
)].
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If we set

Ūk(n, x) =

n∑

i=1

G(Xn −Xi − xk)[Bk−1(i, xkc)−Bk−1(i− 1, xkc)]

we have that

Nk,m(n) = Ūk(n, x) +Bk(n, x)−G(xk)Bk−1(n, xkc).

Abbreviating Ūn = Ūk(n, x) and B̄n = Bk(n, x)−G(xk)Bk−1(n, xkc), we have that

Nk,m(n) = Ūn + B̄n.

Setting

Hi = Bk−1(i, xkc)−Bk−1(i− 1, xkc) =
∑

0≤i1<i2<...<ik−1=i

k−1∏

j=2

1(Xij
=Xij−1

+xj)

we have

B̄n − B̄n−1 =
n−1∑

i=1

1(Xn=Xi+xk)Hi −G(xk)Hn.

So using (4.1)
E [B̄n − B̄n−1 +G(xk)Hn | Fn−1]

=

n−1∑

i=1

p(1, 0, Xn−1 −Xi − xk)Hi.
(6.2)

From the definition of Ūn we have

Ūn − Ūn−1 = G(xk)Hn

+
n−1∑

i=1

[G(Xn −Xi − xk)−G(Xn−1 −Xi − xk)]Hi.

Recalling (4.2)

E [Ūn − Ūn−1 −Gn(xk)Hn | Fn−1]

=
n−1∑

i=1

[P1G(Xn−1 −Xi − xk)−G(Xn−1 −Xi − xk)]Hi.

Comparing with (6.2) and using (4.3)

P1G(x)−G(x) = −p(1, 0, x),
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we see that

E [Ūn − Ūn−1 + B̄n − B̄n−1 | Fn−1] = 0

as required.

Remark. The statement of Proposition 6.1 is not an exact analogue of that of Proposition

4.1. Consider the summands in the definition of Ũk,m(n, x):

Gm(Xn −Xi − xk)[B̃k−1,m(i, xkc)− B̃k−1,m(i− 1, xkc)]. (6.3)

When k = 2 and i = n, this is nonrandom, whereas this is not the case when k > 2 and

i = n. On the other hand, recalling that Bk−1(i, x) = 0 if i > k − 1, it is natural to define

Bk−1(−1, x) to be 0. It is also natural to define B̃1,m(i, x) = i for i ≥ 0. Then (6.3) will

be 0 if i = 0 for all k ≥ 2, but the i = 0 term in the statement of Proposition 4.1 is not

zero.

7. The case of general k.

The key to proving Theorem 1.1 for the case of general k is the following proposition.

Proposition 7.1. For any k ≥ 2 we have

E |β̃k(n, x)− β̃k(n, x′)|p ≤ c(p)(log n)p(k−1)nk|x− x′|8−kp (7.1)

for each integer p > 1 and x, x′ ∈ (Z2)k−1/
√
n with |x|, |x′| ≤ 1.

Let

Wk(n) = |Bk(n, x)|+ |Bk(n, x
′)|,

W̃k(n) = |B̃k(n, x)|+ |B̃k(n, x
′)|,

Yk(n) = max
i≤n

{|Bk(i, x)−Bk(i− 1, x)|+ |Bk(i, x
′)−Bk(i− 1, x′)|},

Ỹk(n) = max
i≤n

{|B̃k,n(i, x)− B̃k,n(i− 1, x)|+ |B̃k,n(i, x
′)− B̃k,n(i− 1, x′)|},

and

Z̃k(n) = sup
j≤n

|Ũk,n(j, x)− Ũk,n(j, x
′)|.

In the proof of Proposition 7.1 we will need the following three lemmas, whose

proofs are deferred until the next two sections.
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Lemma 7.2. For any x, x′ with |x|, |x|′ ≤ √n

EWk(n)
p ≤ c(log n)p(k−1)np (7.2)

and

E W̃k(n)
p ≤ c(log n)p(k−1)np. (7.3)

Lemma 7.3. For any x, x′ with |x|, |x|′ ≤ √n

EYk(n)p ≤ cn(log n)p(k−1) (7.4)

and

E Ỹk(n)p ≤ cn(log n)p(k−1). (7.5)

Lemma 7.4. For any x, x′ with |x|, |x|′ ≤ √n

E Z̃k(n)
p ≤ c(log n)p(k−1)np+k

( |x− x′|√
n

)8−k2p

, (7.6)

Proof of Proposition 7.1. Converting from β̃’s to B̃’s, estimate (7.1) is equivalent to

E |B̃k,n(n, x)− B̃k,n(n, x
′)|p ≤ c(p)(log n)p(k−1)np+k

( |x− x′|√
n

)8−kp

(7.7)

for x, x′ ∈ (Z2)k−1 with |x|, |x′| ≤ √n. We want to apply Proposition 3.2. We fix an n.

Let

A+(x) =

{
A ⊂ {2, . . . , k}

∣∣ (−1)|A|
∏

i∈A
Gn(xi) > 0

}

B̃k,n,+(j, x) =
∑

A∈A+(x)

(−1)|A|
(∏

i∈A
Gn(xi)

)
Bk−|A|(j, xAc). (7.8)

B̃k,n,−(j, x) =
∑

A∈Ac
+
(x)

(−1)|A|
(∏

i∈A
Gn(xi)

)
Bk−|A|(j, xAc). (7.9)

For i ≤ n set

Q1
i = B̃k,n,+(i, x)− B̃k,n,−(i, x

′), Q2
i = B̃k,n,+(i, x

′)− B̃k,n,−(i, x),

so that Q1 and Q2 are increasing and Qi = Q1
i −Q2

i = B̃k,n(i, x)− B̃k,n(i, x
′). For i ≥ n

set Qj
i = Qj

n, j = 1, 2. We set Hi = Ũk,n(i, x)− Ũk,n(i, x
′). By Proposition 6.1, Qi +Hi is

a martingale. Using Lemmas 7.2-7.4 and Proposition 2.1 to bound the right hand side of

(3.5) in Proposition 3.2 and using the fact that 1√
n
≤ |x−x′|√

n
≤ 2 unless x = x′ we obtain

E sup
j≤n

|B̃k,n(j, x)− B̃k,n(j, x
′)|p ≤ c(p)(log n)p(k−1)np+k

( |x− x′|√
n

)8−kp

(7.10)

148



for x, x′ ∈ (Z2)k−1 with |x|, |x′| ≤ √n, which implies (7.7). This is the bound we need.

Proof of Theorem 1.1, the general case. The proof is quite similar to the k = 2

case. Let f : R2 → [0,∞) be a nonnegative C∞ function with support in {y : 1
2 ≤

|y| ≤ 1}, and with integral 1. Let fτ (x) = τ−2f(x/τ). Set τn = n−ζ/4k. Set gn(f) =∑
x∈Z2/

√
n f(x)Gn(x

√
n) 1n and l(f) = 1

π

∫
f(x) log(1/|x|)dx. As in (4.14), (4.15)

|gn(fτn
)− 1

π
l(fτn

)| ≤ c(τn
√
n)−ρ. (7.11)

Using (1.1) and setting Fτn
(x2, . . . , xk) =

∏k
i=2 fτn

(xi) we have

∫
Fτn

(x)γ̃k(1, x) dx =

k−1∑

j=0

(
k − 1
j

)
(−1)j

(
l(fτn

)
)j

×
∫

0≤t1≤···≤tk−j<1

k−j∏

i=2

fτn
(Wti

−Wti−1)dt1 · · · dtk−j .

(7.12)

On the other hand, as in (4.16), it is easily checked that we have

∑

x∈Z2(k−1)/
√
n

Fτn
(x)β̃k(n, x)

1

nk−1
=

k−1∑

j=0

(
k − 1
j

)
(−1)j

(
gn(fτn

)
)j

×
∫

0≤t1≤···≤tk−j<1

k−j∏

i=2

fτn
(Xn

ti
−Xn

ti−1
)dt1 · · · dtk−j .

(7.13)

Since the gradient of fτ is bounded by a constant times τ−3

∫

0≤t1≤···≤tk−j<1

∣∣∣
k−j∏

i=2

fτn
(Wn

ti
−Wn

ti−1
)−

k−j∏

i=2

fτn
(Xn

ti
−Xn

ti−1
)
∣∣∣ dt1 · · · dtk−j

≤ cτ−3−2(k−j−2)
n n−ζ ≤ cn−ζ/4.

(7.14)

Combining (7.11), (7.14), and the fact that both |gn(fτn
)| and |l(fτn

)| are bounded

by c log n we see that

∣∣∣
∫
Fτn

(x)γ̃k(t, x, n) dx−
∑

x∈Z2(k−1)/
√
n

Fτn
(x)β̃k(t, x)

1

nk−1

∣∣∣

≤ cτ−2(k−2)n (τn
√
n)−ρ + c(log n)k−1n−ζ/4 ≤ cn−ζ/8

(7.15)

if we take ζ > 0 sufficiently small.

149



Since
∫
Fτn

(x)dx = 1, we have ψk,n =:
∑

x∈Z2(k−1)/
√
n Fτn

(x) 1
nk−1 = 1 + O(n−δ),

provided we assume, as we may without loss of generality, that ζ is sufficiently small.

Jensen’s inequality and estimates (7.1), (7.2) imply that

E
∣∣∣

∑

x∈Z2(k−1)/
√
n

Fτn
(x)β̃k(n, x)

1

nk−1
− ψk,nβ̃k(n, 0)

∣∣∣
p

≤ c(p)
∑

x∈Z2(k−1)/
√
n

Fτn
(x)E |β̃k(n, x)− β̃k(n, 0)|p

1

nk−1
+ c(p)(ψk,n − 1)p

≤ c(p)(log n)p(k−1)n2(τn)
8−kp. (7.16)

If we take p big enough, then

P
(∣∣∣

∑

x∈Z2(k−1)/
√
n

Fτn
(x)β̃k(n, x)

1

nk−1
− ψk,nβ̃k(n, 0)

∣∣∣ ≥ n−8
−kζ/8k

)

≤ c
(log n)p(k−1)n2(τn)8

−kp

n−8−kpζ/8k
≤ c

n2
.

By Borel-Cantelli, we conclude that

∑

x∈Z2(k−1)/
√
n

Fτn
(x)β̃k(n, x)

1

nk−1
− ψk,nβ̃k(n, 0) = O(n−8

−kζ/8k), a.s. (7.17)

We use (7.3) and the same argument as in the k = 2 case to show

β̃k(n, 0)− ψk,nβ̃k(n, 0) = O(n−δ/2), a.s.

for some δ > 0. This with (7.17) yields

∑

x∈Z2(k−1)/
√
n

Fτn
(x)β̃k(n, x)

1

nk−1
− β̃k(n, 0) = O(n−8

−kζ/8k) +O(n−δ/2), a.s. (7.18)

A similar argument shows that we have (7.18) holding with the β̃k(n, x) replaced

by γ̃k(1, x, n); the analogue to estimate (7.1) is in [3]. Combining, we conclude that

β̃k(n, 0)− γ̃k(1, 0, n) = O(n−8
−kζ/8k) +O(n−δ/2), a.s.

8. Proofs of Lemmas 7.2-7.3.

These are again similar to the k = 2 case.
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Proof of Lemma 7.2. Using Proposition 2.1 it suffices to prove (7.2) for all k.

We have

E {(Bk(n, x))
m} (8.1)

≤ E {(
n∑

i1,...,ik=0

k∏

j=2

1(Xij
=Xij−1

+xj))
m}

=
∑

s∈S(k,m)

∑

0≤i1≤...ikm≤n

∑

z1,...,zm∈Z2

km∏

j=1

p(ij − ij−1, zs(j−1) + x̄c(j−1), zs(j) + x̄c(j))

where s runs over the set of maps S(k,m) from {1, . . . , km} to {1, . . . ,m} such that

s−1(j) = k for each 1 ≤ j ≤ m, c(j) =
∑j

i=1 1{s(i)=s(j)}, x̄j =
∑j

l=2 xl and x̄1 = 0. Here

we use the conventions i0 = 0, z0 = 0, c(0) = 0. Setting

gn(x) =
n∑

i=0

p(i, 0, x) ≤ c log n (8.2)

and using the obvious fact that
∑

x∈Z2 gn(x) =
∑

x∈Z2

∑n
i=0 p(i, 0, x) = n+1 we can bound

(8.1) by

∑

s∈S(k,m)

∑

z1,...,zm∈Z2

km∏

j=1

gn(zs(j) + x̄c(j) − zs(j−1) − x̄c(j−1))

≤ c(log n)(k−1)m
∑

s∈S

∑

z1,...,zk∈Z2

∏

j : c(j)=1

gn(zs(j) + x̄c(j) − zs(j−1) − x̄c(j−1))

≤ cnm(log n)(k−1)m.
(8.3)

Proof of Lemma 7.3. Using Proposition 2.1 it suffices to prove (7.4) for all k.

Let

Ck(n, x) = [Bk(n, x)−Bk(n− 1, x)] =
∑

0≤i1<i2<...<ik=n

k∏

j=2

1(Xij
=Xij−1

+xj).

If we show

ECk(i, x)
p ≤ c(log n)(k−1)p, i ≤ n, (8.4)

then using

Yk(n)
p ≤

n∑

i=1

c(p)Ck(i, x)
p,
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we are done.

But

E
{( ∑

0≤i1<i2<...<ik=n

k∏

j=2

1(Xij
=Xij−1

+xj)

)m}

=
∑

s∈S(k−1,m)

∑

(i1,...,i(k−1)m)∈D(s)

∑

z1,...,zm,y∈Z2

(k−1)m∏

j=1

p(ij − ij−1, zs(j−1) + x̄c(j−1), zs(j) + x̄c(j))

( ∏

j : c(j)=k−1
1(y=zs(j)+x̄k)

)
p(n− i(k−1)m + x̄k−1, zs((k−1)m), y)

(8.5)

where S(k − 1,m), c(j), x̄j are defined in the last section and for each s ∈ S(k − 1,m)

D(s) = {(i1, . . . , i(k−1)m) : 0 ≤ i1 ≤ . . . ≤ i(k−1)m < n and

ij−1 < ij whenever s(j − 1) = s(j)}.

We can then see that (8.5) equals

∑

s∈S(k−1,m)

∑

(i1,...,i(k−1)m)∈D(s)

∑

y∈Z2

p(i1, 0, y − x̄k)
(k−1)m∏

j=2

p(ij − ij−1, x̄c(j−1), x̄c(j)) p(n− i(k−1)m, 0, xk)

≤ c(log n)(k−1)m

which is (7.4).

9. Proof of Lemma 7.4.

This proof is substantially different from the proof of Lemma 4.5.

Proof of Lemma 7.4. We use induction on k. We already know (7.6) for k = 2. Thus

assume (7.6) has been proved with k replaced by i for all i ≤ k − 1. Then as explained

above in the proof of Proposition 7.1 we will have that (7.10) holds with k replaced by i

for all i ≤ k − 1.

We will show that

E [|Ũk,n(m,x)− Ũk,n(m,x)|p] ≤ c(log n)(k−1)pnp+k−1
( |x− x′|√

n

)8−k2p

(9.1)
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for m ≤ n. This and the inequality

E [max
m≤n

|Cm|p] ≤ E
n∑

m=1

|Cm|p =
n∑

m=1

E [|Cm|p] ≤ nmax
m≤n

E [|Cm|p]

yields (7.6).

Abbreviating ∆iB̃k−1,n(i, xkc) := B̃k−1,n(i, xkc) − B̃k−1,n(i − 1, xkc), where xkc is

the same as (x2, . . . , xk−1), we have

‖Ũk,n(m,x)− Ũk,n(m,x
′)‖p (9.2)

≤ ‖
m∑

i=1

(
G(Xm −Xi − xk)−G(Xm −Xi − x′k)

)(
∆iB̃k−1,n(i, xkc)

)
‖p

+ ‖
m∑

i=1

(
G(Xm −Xi − x′k)−G(e1

√
n)
)(

∆iB̃k−1,n(i, xkc)−∆iB̃k−1,n(i, x
′
kc)
)
‖p.

Then with m ≤ n

‖
m∑

i=1

(
G(Xm −Xi − xk)−G(Xm −Xi − x′k)

)(
∆iB̃k−1,n(i, xkc)

)
‖p

≤ ‖
m∑

i=1

|G(Xm −Xi − xk)−G(Xm −Xi − x′k)| ‖2p ‖Ỹk−1(m)‖2p

≤ cn
∣∣∣x− x

′
√
n

∣∣∣
2/3

n1/2p(log n)(k−2).

(9.3)

by (5.9) and (7.5).

After interchanging x′ and x for convenience it remains to bound

∥∥∥
m∑

i=1

(
G(Xm −Xi − xk)−G(e1

√
n)
)(

∆iB̃k−1,n(i, xkc)−∆iB̃k−1,n(i, x
′
kc)
)∥∥∥

p

≤
∥∥∥

m∑

i=1

G(Xm −Xi − xk)
(
∆iB̃k−1,n(i, xkc)−∆iB̃k−1,n(i, x

′
kc)
)∥∥∥

p

+
∥∥∥G(

√
ne1)[B̃k−1,n(m,xkc)− B̃k−1,n(m,x

′
kc)]

∥∥∥
p

(9.4)

Using Proposition 2.1 and our inductive hypothesis concerning (7.10) we see that

∥∥∥G(
√
ne1)[B̃k−1,n(m,xkc)− B̃k−1,n(m,x

′
kc)]

∥∥∥
p

≤ c(log n)(k−1)n1+(k−1)/p
( |x− x′|√

n

)8−k+1

.

(9.5)
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To complete the proof of (9.1) it therefore suffices to show that

‖
m∑

i=1

G(Xm −Xi − x))[∆iB̃k−1,n(i, xkc)−∆iB̃k−1,n(i, x
′
kc)]‖p

≤ c(log n)(k−1)n1+(k−1)/p
( |x− x′|√

n

)8−k2

.

(9.6)

By Propositions 2.1 and 2.3, G(x) is bounded above (but G(x)→ −∞ as |x| → ∞).

Let

J(x) = G(x) ∨ (−9 logm), H(x) = G(x)− J(x).

Let Ki = J(Xm −Xi − x) for i = 0, . . . ,m and let Ki = J(Xm − x) for i < 0. Let

B be a small positive real to be chosen later and let

Li =
Ki + · · ·+Ki−Bm

Bm
.

We see that

∣∣∣
m∑

i=1

(Ki − Li)[∆iB̃k−1,n(i, xkc)]
∣∣∣

≤ Ỹk−1(n)
n∑

i=1

|Ki − Li|. (9.7)

Since J is bounded in absolute value by c logm, the same is true for Ki and Li for

any i, i.e.

sup
i
|Ki − Li| ≤ c logm. (9.8)

Note that Li and Ki are independent of Fh for i ≥ h+Bm, and thus

E
[ m∑

i=h

|Ki − Li| | Fh

]
≤ E

m∑

i=h+2Bm

|Ki − Li|+ cBm logm. (9.9)

Now by Proposition 2.2

E |J(Xm −Xi − x)− J(Xm −Xj − x)|
≤ E |G(Xm −Xi − x)−G(Xm −Xj − x)|

≤ E
[ c|Xi −Xj |2/3
(1 + |Xm −Xi − x|2)1/3

+
c|Xi −Xj |2/3

(1 + |Xm −Xj − x|2)1/3
]
.

By (5.6) and symmetry

E
(
(1 + |Xm −Xi − x|2)−1/2

)
≤ E

(
(1 + |Xm −Xi|2)−1/2

)
≤ 1 ∧ c(m− i)−1/2.
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Then using Holder’s inequality in the form |E (fg)| ≤ ‖f‖3 ‖g‖3/2 we obtain from the last

two displays that

E |J(Xm −Xi − x)− J(Xm −Xj − x)| (9.10)

≤ c|i− j|1/3
1 ∨ |m− i|1/3 +

c|i− j|1/3
1 ∨ |m− j|1/3 .

Thus for i ≥ 2Bm, summing over j from i−Bm to i and dividing by Bm shows

E |Ki − Li| ≤ c(Bm)1/3(1 ∨ |m− i|)−1/3.

Therefore,

E
m∑

i=h+2Bm

|Ki − Li| ≤
m∑

i=h+2Bm

c(Bm)1/3

(1 ∨ |m− i|)1/3 ≤ cmB1/3.

Recalling (9.8)–(9.9) and then using Proposition 3.1 we have that

E
∣∣∣

m∑

i=1

|Ki − Li|
∣∣∣
p

≤ c(logm)p + cmpBp/3 ≤ c(log n)pnpBp/3 (9.11)

for n large. Combining with this with (9.7), (7.5) and Cauchy-Schwarz, the left hand side

of (9.7) is bounded in Lp norm by

c(log n)k−1n1+(1/2p)B1/3. (9.12)

We use summation by parts on

m∑

i=1

Li[∆iB̃k−1,n(i, xkc)−∆iB̃k−1,n(i, x
′
kc)] (9.13)

and we see that it is equal to

Lm[B̃k−1,n(m,xkc)− B̃k−1,n(m,x
′
kc)]

−
m∑

i=1

[B̃k−1,n(i− 1, xkc)− B̃k−1,n(i− 1, x′kc)] [Li − Li−1]. (9.14)

Write w = |xkc − x′kc |/
√
n ≤ 1. Using the fact that Lm is bounded by c logm and our

inductive hypothesis concerning (7.10), we can bound the Lp norm of the first term of

(9.14) by

c(log n)k−1n1+(k−1)/pw8−k+1

.
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Since Ki is bounded by c log n, then Li − Li−1 is bounded by c log n/(Bn). Hence using

once again our inductive hypothesis concerning (7.10)

‖[B̃k−1,n(i− 1, xkc)− B̃k−1,n(i− 1, x′kc)] [Li − Li−1]‖p

≤ c log n

Bn
‖B̃k−1,n(i− 1, xkc)− B̃k−1,n(i− 1, x′kc)‖p

≤ c log n

Bn
(log n)k−2n1+(k−1)/pw8−k+1

.

Since there are n summands in the sum in (9.14), we bound the Lp norm of the left hand

side of (9.13) by
c

B
(log n)k−1n1+(k−1)/pw8−k+1

. (9.15)

Notice that

∣∣∣
m∑

i=1

H(Xm −Xi − x)[∆iB̃k−1,n(i, xkc)]
∣∣∣ ≤ mỸk−1(n) sup

1≤i≤m
|H(Xm −Xi − x)|. (9.16)

By Proposition 2.3, H(z) is 0 unless |z| ≥ e8 logm. By hypothesis we have |x| ≤ √
n.

Therefore using |H(z)|2p ≤ c| log z|2p ≤ c|z| for |z| ≥ e8 logm

E |H(Xm −Xi − x)|2p ≤ c(p)E [|Xm −Xi − x|; |Xm −Xi − x| ≥ e8 logn]

≤ c(p)e−8 logmE |Xm −Xi − x|2

≤ c(p)m2e−8 logm = c(p)m−6.

Hence E supi≤m |H(Xm − Xi − x)|2p ≤ c(p)m−5. Since w ≥ 1/
√
n, then this estimate,

(9.16), (7.5) and Cauchy-Schwarz imply that the left hand side of (9.16) is bounded in Lp

norm by c(log n)k−2n1/2p ≤ c(log n)k−2n1+1/2pw2 ≤ c(log n)k−1n1+1/2pw8−k+1

.

Combining our estimates (9.12), (9.15), and our last estimate for (9.16), we have

‖
m∑

i=1

G(Xm −Xi − x))[∆iB̃k−1,n(i, xkc)−∆iB̃k−1,n(i, x
′
kc)]‖p

≤ c(log n)(k−1)n1+(k−1)/p[w8−k+1

+B1/3 + w8−k+1

B−1].

(9.17)

If we take B = w6(8−k), we obtain (9.6). Together with (9.2)–(9.5) we obtain (9.1).

10. Other results.

A. L2 norms. By Section 3 of [5] we see that we can choose Wt and Xn such that

‖ sup
s≤1

|Xn
s −Wn

s | ‖2 = o(n−ζ)
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for some ζ > 0. If we then use this (in place of (1.7)), our proof shows that we obtain

‖β̃k(n, 0)− γ̃k(1, 0, n)‖2 = o(n−η) (10.1)

for some η > 0.

B. A correction. We take this opportunity to correct an error in [3]. In the statement

of (8.3) in Theorem 8.1 of that paper, G∨ := max1≤j≤k−1 |G(xj)| should be replaced by

N∨ := max1≤j≤k−1 |xj |−1. The term G∨ also needs to be replaced by N∨ throughout the

proof of (8.3).

Proposition 9.2 of that paper is correct as stated. Where the proof of this proposition

says to follow the lines of the proof of (8.3), it is to be understood that here one uses G∨

throughout.

For the convenience of the interested reader we give a complete proof of that propo-

sition in the following Appendix.

Appendix. Proof of Proposition 9.2 of [3].

The proof of Proposition 9.2 in [3] is perhaps a bit confusing due to an error in the

statement of (8.3) in Theorem 8.1 of that paper. This Appendix provides a complete proof

of Proposition 9.2 of [3].

Write g(y) = 1
π log(1/|y|), γ̃1(t, x) = t, and for x = (x2, . . . , xk) = (xkc , xk) ∈

(R2)k−1, set

g∨(x) = max
2≤i≤k

|g(xi)|

and

Uk(t, x) =

∫ t

0

g(Wt −Wr − xk)γ̃k−1(dr, xkc).

Proposition A.1. Let M ≥ 1, let x, x′ ∈ (R2)k−1 with |xi|, |x′i| ≤ M for i = 2, . . . , k,

and let g+ = g∨(x) + g∨(x′) + 1. There exist ak and νk such that for k ≥ 2

(a) E |Uk(t, x)− Uk(t, x
′)|p ≤ c(g+)νkp|x− x′|akp.

(b) E |Uk(t, x)− Uk(s, x)|p ≤ c(g+)νkp|t− s|akp.

Except for the restriction on the size of x, x′, this is Proposition 9.2 of [3] translated to

the notation of this paper. Using the argument of [3] this is sufficient to prove the joint

continuity of γ̃k(t, x) over t ∈ [0, 1], x ∈ (B(0,M))k−1 for each k and M . For almost every

path of Brownian motion, {Ws : s ∈ [0, 1]} is contained in B(0,M) for someM (depending

on the path), and hence for |x| > M we have γ̃k(t, x) = 0. The joint continuity of γ̃k(t, x)
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over t ∈ [0, 1], x ∈ (R2)k−1 follows. For the purposes of this paper we only need the case

M = 1.

Note that renormalization allows us to use U k(t, x) in place of

U∗k (t, x) =

∫ t

0

[g(Wt −Wr − xk)− g(−xk)]γ̃k−1(dr, xkc).

If one were to try to use U∗k (t, x) in Proposition A.1, the right hand sides of (a) and (b)

would have to have g+ replaced by N∨, which is not a good enough bound for the joint

continuity argument.

Proof. Since g+ is infinite if any component of x or x′ is zero, we may assume that no

component of either is 0.

Let A ∈ (0, 12 ] be chosen later and let

gA(x) =
(
g(x) ∧ 1

π log(1/A)
)
∨
(
− 1

π log(1/A)
)
,

hA(x) = [g(x)− gA(x)]1(|x|<A), jA(x) = [gA(x)− g(x)]1(|x|>A−1),

so g = gA + hA − jA. With Ck = C ∪ {k} set

Lk(t, x) =
∑

C⊂{2,...,k−1}

(∏

i∈C
|g(xi)|

)
γk−1−|C|(t, xCc

k
).

The proof is by induction. We start with k = 2. In preparation for general k

we retain the general notation, but note that when k = 2, we have L2(t, x) = t, xkc is

superfluous, and we have γ̃k−1(dr, xkc) = dr.

Uk(t, x)− Uk(t, x
′) (A.1)

=

∫ t

0

[gA(Wt −Wr − xk)− gA(Wt −Wr − x′k)]γ̃k−1(dr, xkc)

+

∫ t

0

hA(Wt −Wr − xk)γ̃k−1(dr, xkc)

−
∫ t

0

hA(Wt −Wr − x′k)γ̃k−1(dr, xkc)

−
∫ t

0

jA(Wt −Wr − xk)γ̃k−1(dr, xkc)

+

∫ t

0

jA(Wt −Wr − x′k)γ̃k−1(dr, xkc)

=: I1 + I2 − I3 − I4 + I5.
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If we connect x, x′ by a curve Γ of length c|x−x′| that never gets closer to 0 than |x|∧ |x′|,
use the fact that |∇gA| ≤ A−1, and use inequality (8.1) of [3] (this is only needed for k > 2)

E |I1|p ≤ cA−p|x− x′|pELk(t, x)
p ≤ cA−p(g+)ν1p|x− x′|p.

By Proposition 5.2 of [3], for some constants b1 and ν′1

E |I2|p ≤ cAb1p(g+)ν
′
1p (A.2)

and similarly for I3.

We next turn to I4. Standard estimates on Brownian motion tells us that

P( sup
0≤r≤t≤1

|Wt −Wr| > λ) ≤ ce−c′λ2

. (A.3)

Since |xk| ≤M , it follows that

E [ sup
0≤r≤t≤1

| log(1/|Wt −Wr − xk|)|p] ≤ c(p,M) (A.4)

for each p ≥ 1. If |A| ≤ (2M)−1, then |Wt −Wr − xk| ≥ A−1 only if |Wt −Wr| ≥ (2A)−1.

So by Cauchy-Schwarz, (A.3), and (A.4),

E [ sup
0≤r≤t≤1

|jA(Wt −Wr − xk)|p]

≤ cE [ sup
0≤r≤t≤1

| log(1/|Wt −Wr − xk|)|p1(sup0≤r≤t≤1 |Wt−Wr−xk|≥A−1)]

≤ c(E [ sup
0≤r≤t≤1

| log(1/|Wt −Wr − xk|)|2p])1/2(P( sup
0≤r≤t≤1

|Wt −Wr| ≥ (2A)−1))1/2

≤ cAp

for each p ≥ 1. Using the fact that

|I4| ≤
(

sup
0≤r≤t≤1

|jA(Wt −Wr − xk)|
)
Lk(t, x),

another application of Cauchy-Schwarz shows that

E |I4|p ≤ (g+)ν1pAp.

I5 is handled the same way.

Combining shows the left hand side of (A.1) is bounded by

c(g+)ν2p[A−p|x− x′|p +Ab1p +Ap]
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for some constant ν2, and we obtain (a) for k = 2 by setting A = |x− x′|1/2 ∧ (2M)−1.

Next we look at (b) for the k = 2 case. We write

Uk(t, x)− Uk(s, x) (A.5)

=

∫ s

0

[gA(Wt −Wr − xk)− gA(Ws −Wr − xk)]γ̃k−1(dr, xkc)

+

∫ t

s

gA(Wt −Wr − xk)γ̃k−1(dr, xkc)

+

∫ t

0

hA(Wt −Wr − xk)γ̃k−1(dr, xkc)

−
∫ s

0

hA(Ws −Wr − xk)γ̃k−1(dr, xkc)

−
∫ s

0

jA(Ws −Wr − xk)γ̃k−1(dr, xkc)

+

∫ s

0

jA(Ws −Wr − x′k)γ̃k−1(dr, xkc)

=: I6 + I7 + I8 − I9 − I10 + I11.

Using Cauchy-Schwarz, for s, t ≤ 1 we have for some constant ν ′′1

E |I6|p ≤ cA−psp
(
E |Wt −Ws|2p

)1/2(
EL(s, xkc)2p

)1/2
≤ cA−p(g+)ν

′′
1 p|t− s|p/2.

We bound I7 by

E |I7|p ≤ c(log(1/A))p|t− s|p(g+)ν′′′p.
We bound I8 and I9 just as we did I2 and bound I10 and I11 as we did I4. Combining, the

left hand side of (A.5) is bounded by

c(g+)ν2p[A−p|t− s|p/2 +Ab1p +Ap],

and (b) follows by setting A = |t− s|1/4 ∧ (2M)−1.

We now turn to the case when k > 2. We suppose (a) and (b) hold for k − 1 and

prove them for k. We prove (a) in two cases, when xkc = x′kc and when xk = x′k; the

general case follows by the triangle inequality. Suppose first that xkc = x′kc . Using the

induction hypothesis, the proof is almost exactly the same as the proof of (a) in the case

k = 2.

Suppose next that xk = x′k. Let

VA = {|Ws+u −Wu| ≥ u1/4/A for some s, u ∈ [0, 1]}.

Standard estimates on Brownian motion show that

P(VA) ≤ c1e
−c2/A

2

.
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We write

Uk(t, x)− Uk(t, x
′) (A.6)

= 1VA

∫ t

0

gA(Wt −Wr − xk)γ̃k−1(dr, xkc)

− 1VA

∫ t

0

gA(Wt −Wr − xk)γ̃k−1(dr, x′kc)

+

∫ t

0

hA(Wt −Wr − xk)γ̃k−1(dr, xkc)

−
∫ t

0

hA(Wt −Wr − xk)γ̃k−1(dr, x′kc)

−
∫ t

0

jA(Wt −Wr − xk)γ̃k−1(dr, x′kc)

+

∫ t

0

jA(Wt −Wr − x′k)γ̃k−1(dr, x′kc)

+ 1V c
A

∫ t

0

gA(Wt −Wr − xk)[γ̃k−1(dr, xkc)− γ̃k−1(dr, x′kc)]

=: I12 − I13 + I14 − I15 − I16 + I17 + I18.

Since |gA| ≤ log(1/A), for some constant νk−1

E |I12|p ≤ c(log(1/A))pE [Lk(t, x)
p;VA]

≤ c(log(1/A))p
(
ELk(t, x)

2p
)1/2(

P(VA)
)1/2

≤ c(g+)νk−1pAp,

and similarly for I13. We bound I14 and I15 just as we did I2 and bound I16 and I17 as

we did I4.

We turn to I18. Let f(r) = gA(Wt −Wr − xk) and

fA(t) =
1

A12

∫ t+A12

t

f(u) du.

On V c
A we have

|f(r)− f(s)| = |gA(Wt −Wr − xk)− gA(Wt −Ws − xk)|
≤ A−1|Wr −Ws| ≤ A−2|r − s|1/4,

and therefore

|f(t)− fA(t)| ≤ A−2(A12)1/4 = A.
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Using integration by parts, we write

I18 = 1V c
A

∫ t

0

[f(r)− fA(r)]γ̃k−1(dr, xkc)

− 1V c
A

∫ t

0

[f(r)− fA(r)]γ̃k−1(dr, x′kc)

+ 1V c
A
fA(t)[γ̃k−1(t, xkc)− γ̃k−1(t, x′kc)]

− 1V c
A

∫ t

0

[γ̃k−1(r, xkc)− γ̃k−1(r, x′kc)]fA(dr)

=: I19 − I20 + I21 − I22.

We bound

E |I19|p ≤ cAp(g+)ν
′
k−1p

for some constant ν ′k−1 and similarly for I20. By the induction hypothesis and the fact

that |fA| is bounded by log(1/A) ≤ cA−p ,

E |I21|p ≤ cA−p(g+)ν
′′
k−1p|xkc − x′kc |ak−1p.

Finally, since |f ′A| ≤ ‖fA‖∞A−12 ≤ cA−13,

E |I22|p ≤ c(g+)ν
′′′
k−1pA−13p|xkc − x′kc |a′k−1p.

If we combine all the terms, we see that the left hand side of (A.6) is bounded by

c(g+)νkp[Abkp +A−b′kp|x− x′|a′′k−1p +Ap].

Setting A = |x− x′|a′′k−1/(2b
′
k) ∧ (2M)−1 completes the proof of (b) for k > 2.

The proof of (b) for k > 2 is almost identical to the k = 2 case.
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