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Abstract

We give a sufficient criterion for the weak disorder regime of directed polymers in random
environment, which extends a well-known second moment criterion. We use a stochastic
representation of the size-biased law of the partition function.

We consider the so-called directed polymer in random environment, being defined as follows:
Let p(z,y) = p(y—2), 7,y € Z¢ be a shift-invariant, irreducible transition kernel, (S, )nen, the
corresponding random walk. Let £(x,n),z € Z% n € N be i.i.d. random variables satisfying

Elexp(B¢(x,n))] < oo for all 5 € R, (1)
we denote their cumulant generating function by
A(B) := log Elexp(5¢(x,n))]. (2)

We think of the graph of S, as the (directed) polymer, which is influenced by the random
environment generated by the {(z,n) through a reweighting of paths with

en = en(€8) = exp (30 {86(85.5) = MB)})
that is, we are interested in the random probability measures on path space given by

pa(ds) = -Elen1(S € ds) | ()],

where the normalising constant (or partition function) is given by
n n
Zo=Elealdl= 3 I plovspen (X, (560 -A0)})
S1yeeeySp EZI

Note that (Z,) is a martingale, and hence converges almost surely. This model has been
studied by many authors, see e.g. [2] and the references given there. It is known that the
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behaviour of u, as n — oo depends on whether lim,, Z,, > 0 or lim,, Z,, = 0. One speaks of
weak disorder in the first, and of strong disorder in the second case. Our aim here is to give
a condition for the weak disorder regime.

Let (S,) and (S),) be two independent p-random walks starting from Sy = S = 0, and let
V=3, 1(5, = 5}) be the number of times the two paths meet. Define

o, i=sup {a > 1:E[a"|S'] < oo almost surely}. (3)
Proposition 1 If A\(28) — 2\(8) < log ., then
lim, o Zn, >0 almost surely,
that is, the directed polymer is in the weak disorder regime.

Note that Proposition 1 implicitly requires that the difference random walk S — S’ be transient,
for otherwise we would have log ., = 0, but we also have A(23) — 2A(8) > 0 by convexity. For
symmetric simple random walk in dimension d = 1,2 we have Z,, — 0 almost surely for any
B #0, see [2], Thm. 2.3 (b).

Observe that

1

. . \4 _
Qy 2> Q2 ,_5up{0421.E[04 }<OO}_ 1—]P)(00)(Sn7ésl f01"71>1).

An easy calculation shows that (Z,) is an L2-bounded martingale iff A\(23) — 2\(3) < log az,
cf. e.g. [2], equation (1.8) and the paragraph below it on p. 707 and the references given
there (note that for symmetric simple random walk, P(g,0)(S, # S;, for n > 1) = Po(S, #
0for n>1)=:gq).

If S — S’ is transient and p satisfies

sup _ pl®) < 00 (4)

na Dy Pn(Y)Pn(—Y)
then we have

=1+ (ni exp (- H(pn)))_l > as, (5)

where p,(z) := Po(S, = x) is the n-step transition probability of a p-random walk, and
H(p,) = =), pn(x)log(p,(x)) is its entropy, see [1], Thm. 5. Note that (4) is automatically
satisfied if a local central limit theorem holds for p, in particular, it holds for symmetric simple
random walk. Thus, Proposition 1 is an extension of the second moment condition (1.8) in

[2].
Let Z,, have the size-biased law of Z,, i.e.

for any bounded, measurable f. The proof of Proposition 1 hinges on the representation of
the size-biased law given in the following lemma.
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Lemma 1 Let (S)) be a p-random walk starting from S) = 0, and let {(e(n,x),é(n,x))}n "
be i.i.d., independent of S', with values in R? such that

Ple(n,z) € dr) = Pexp(B&(n,z) — A(B)) € dr)
P(é(n,xz) € dr) = Ele(n,z);e(n,z) € dr],
i.e. é(n,x) has the size-biased law of e(n,x). Put
€x(n,y) = Ogyé(n,x)+ (1 —0zy)ex(n,y) and
Zy = [Hegfj, eeS]
1<j<n

Then Zn and Zn have the same distribution.

Proof. Note that Z, is a function of S’, e and &, namely

n

Z, = Z Hp(sj_l,s] H (k, sk).

815008, €24 J=1 k=1

We have by definition for a bounded f : Ry — R

= > IIetsivsnE[5(Z) T ek,s0)]
S1yeeeSn €24 j=1 1<k<n
= E[f(Z) [] etk.50)]
1<k<n
= [ ( > Hp vicny) < ] 6(k,yk-)) I1 6(&52)}
Y1y sUn 1<k<n 1<¢<n

~ E[E[..|5]] -E [( VR R | AT )1

""" 1<k<n

Proof of Proposition 1. As P(Z, > 0) € {0,1} by Kolmogorov’s 0 — 1 law (see e.g. (1.7) in
[2]), the proposition will be proved if we can show that under the given condition, the sequence
Zn, n € Nis uniformly integrable. This, in turn, is equivalent to tightness of the sequence Zn,
see e.g. Lemma 9 in [1]. We see from Lemma 1 that this is equivalent to whether the family
E(Z ), n € N, is tight. Let us denote by a := Eexp(ﬁf A(B)) = exp(A(28) — 2A(0)), then

E[ZH\S'] — E|q#{1<i<n:si=s]} Sl:|7

hence a < av, implies sup,, E[Z,]S"] < oo almost surely, which in particular shows that the
family of laws £(Z,,) is tight. a

Remark. Note that we obtain a sufficient condition for weak disorder by averaging out &(-, )
and &(-, ) in the construction of Z,, given in Lemma 1. In order to obtain a sharp criterion one
would have to analyse the distribution of Z,, itself. Unfortunately, this seems a rather hard
problem.
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