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Abstract

Let Cn be the origin-containing cluster in subcritical percolation on the lattice 1
nZd, viewed

as a random variable in the space Ω of compact, connected, origin-containing subsets of Rd,
endowed with the Hausdorff metric δ. When d ≥ 2, and Γ is any open subset of Ω, we prove
that

lim
n→∞

1

n
logP (Cn ∈ Γ) = − inf

S∈Γ
λ(S)

where λ(S) is the one-dimensional Hausdorff measure of S defined using the correlation norm:

||u|| := lim
n→∞

−
1

n
logP (un ∈ Cn)

where un is u rounded to the nearest element of 1
nZd. Given points a1, . . . , ak ∈ Rd, there are

finitely many correlation-norm Steiner trees spanning these points and the origin. We show
that if the Cn are each conditioned to contain the points a1n, . . . , a

k
n, then the probability that

Cn fails to approximate one of these trees tends to zero exponentially in n.

1 Introduction

Let Cn be the origin-containing cluster in subcritical Bernoulli bond-percolation with parame-
ter p on the lattice 1

nZd; we view Cn as a random variable in the space Ω of compact, connected,
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origin-containing subsets of Rd. When the probability measure involved is clear from context,
we use P (A) to denote the probability of an event A. When u ∈ Rd, let un be the vector u
rounded to the nearest element in 1

nZ
d. We define the “correlation norm” by

||u|| := lim
n→∞

−
1

n
logP (un ∈ Cn).

This limit exists for all u ∈ Rd (with ||u|| ∈ (0,∞) for u 6= 0) and || · || is a strictly convex norm
(i.e., if u and v are not on the same line through the origin, then ||u+ v|| < ||u||+ ||v||) that
is real-analytic on the Euclidean unit sphere Sd−1 [3]. Denote by λ(S) the one-dimensional

Hausdorff measure of the set S defined with the above norm; in particular, if S ∈ Ω is a finite
union of rectifiable arcs in Rd, then λ(S) is the sum of the correlation-norm lengths of those
arcs.
Given a set X ⊂ Rd, denote by Bε(X) the set of all points of distance less than ε from some
point in X. Given sets X,Y ∈ Ω, let δ(X,Y ) be their Hausdorff distance, i.e.,

δ(X,Y ) = inf{ε : X ⊂ Bε(Y ), Y ⊂ Bε(X)}.

Many authors, including [1], [2], [6], [3], and [12], have investigated the shapes of “typical”
large finite clusters in supercritical percolation on Zd by proving surface order large deviation
principles for clusters conditioned to contain at least m vertices. They have shown that as
m gets large, the shapes of typical clusters are approximately minimizers of surfaces tension
integrals, called Wulff crystals. Moreover, the surface tension integral is a rate function for a
large deviation principle—with surface order speed md−1/d—on cluster shapes. These results
are one way of precisely answering the questions, “What does the typical ‘large’ cluster look
like? How unlikely are large deviations from this typical shape?”
If instead of number of vertices we define “large” in terms of, say, diameter or volume of
the convex hull, then these questions can be answered for subcritical percolation using the
following linear speed large deviation principle:

Theorem 1.1. Let d ≥ 2, p < pc, and Γ ⊂ Ω be Borel-measurable. Then

− inf
S∈Γo

λ(S) ≤ lim inf
n→∞

1

n
logP (Cn ∈ Γ) ≤ lim sup

n→∞

1

n
logP (Cn ∈ Γ) ≤ − inf

S∈Γ
λ(S)

where Γo and Γ are the interior and closure of Γ with respect to the Hausdorff topology.

In the language of [5], this says that the random variables Cn satisfy a large deviation principle
with respect to the Hausdorff metric topology on Ω and with speed n and rate function
I(S) = λ(S). Note that since λ : Ω→ R is continuous, this implies that

lim
1

n
logP (Cn ∈ Γ) = − inf

S∈Γ
λ(S)

whenever Γ is an open subset of Ω.

Acknowledgments. We thank Amir Dembo and his probability discussion group for helpful
conversations and thank Yuval Peres for some suggestions on the presentation. Also, Raphael
Cerf has informed us that Olivier Couronné, working independently, produced an alternate
proof of Theorem 1.1 and was nearly finished writing up the result at the time that our paper
was submitted and posted to the arXiv [4].
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2 Proof of large deviation principle

2.1 Exponential tightness and an equivalent formulation

We now prove Theorem 1.1. The sets {S|δ(S, {0}) ≤ α} are compact in the Hausdorff metric
topology, and P (δ(Cn, {0}) > α) decays exponentially in n and α. [11] This implies that the
laws of the Cn are exponentially tight (in the sense of [5], Sec. 1.2). Given this exponential
tightness, Theorem 1.1 is equivalent to the statement that the following bounds hold for S ∈ Ω:

lim
ε→0

A(S, ε) ≤ λ(S)

lim
ε→0

B(S, ε) ≥ λ(S)

where

A(S, ε) = lim sup
n→∞

−1

n
logP (δ(S,Cn) < ε)

B(S, ε) = lim inf
n→∞

−1

n
logP (δ(S,Cn) < ε)

This equivalence is well-known in the large deviations literature ([5], Lemma 1.2.18 and The-
orem 4.1.11), and is also not hard to prove directly. We now prove the first of the two bounds
above, which involves giving a lower bound on the probabilities P (δ(S,Cn) < ε).

2.2 Lower bound on probabilities

Fix ε and choose S′ to be a connected union of finitely many line segments of the form (ai, bi),
for 1 ≤ i ≤ k—intersecting one another only at endpoints—such that δ(S, S ′) < ε/2 and at
least one of the segments includes the origin as an endpoint. No matter how small ε gets, we
can always choose such an S ′ of total length less than or equal to λ(S). Thus, it is enough to
show that

lim inf
−1

n
logP (δ(S′, Cn) < ε/2) ≤ λ(S′)

for sets S′ of this form.
Now, let Ai

n (respectively, Ai
n,c be the event that ain and bin are connected by some open path

whose Hausdorff distance from the line segment (ai, bi) is at most ε/4 (respectively c/n). For
any fixed n, P (Ai

n,c) tends to P (ain − bin ∈ Cn) as c tends to ∞. Subadditivity arguments

imply that lim inf −1n logP (Ai
n,c) tends to ||ai − bi|| as c tends to infinity. It follows that

lim inf −1n logP (Ai
n) ≤ ||a

i − bi||. The FKG inequality then implies that lim inf −1n P (∪Ai
n) ≤

λ(S′).
Now, we have to show that given ∪Ai

n, the probability of the event Cn 6⊂ Bε/2(S
′) decays

exponentially. Let Dn be the event that there is a path from any point x outside of Bε/2(S
′)

to any point y ∈ Bε/4(S
′). This event is independent of ∪Ai

n. Since Dn contains the event
Cn 6⊂ Bε/2(S

′), it is enough for us to show that P (Dn) decays exponentially. To see this, we
introduce and sketch a proof of the following lemma. (See [3] for more delicate asymptotics of
P (un ∈ Cn).)

Lemma 2.1. There exists a constant α such that P (un ∈ Cn) ≤ αe−n||u|| for all n and u.
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Proof. If u = un, then it is clear that P (un ∈ Cn) ≤ e−n||u||. (Simply use the FKG inequality
to observe that for any integer m, we have P (umn ∈ Cmn) ≥ P (un ∈ Cn)

m and apply the
standard subadditivity argument to the log limits.) If u 6= un, then it suffices to observe that
e−n||u|| and e−n||un|| differ by at most a constant factor.

The probability that any particular vertex of Bε(S
′)\Bε/2(S

′) is connected to any particular
vertex in Bε/4(S) is bounded above by α exp[−n inf{||u|| : |u| = ε/4}], where |u| is the Eu-
clidean norm. Since the number of pairs of points of this type grows polynomially in n, the
result follows.

2.3 Upper bound on probabilities

Fix γ > 0 and choose a finite set of points a1, a2, . . . ak in S such that every collection S ′ of
line segments that contains the points ai has total length greater than λ(S) − γ (or greater
than some large value N if λ(S) is infinite) and that for some sufficiently small ε > 0, this
remains true if each ai is replaced by some ci ∈ Bε(a

i). (The reader may check that such a
set of points and such an ε exist for any γ > 0.) We know that

lim sup−
1

n
logP (δ(S,Cn) < ε)

is at least as large as

lim sup−
1

n
logP (some cin ∈ Bε(a

i) is contained in Cn).

We claim that the latter is at least λ(S) − γ. If Cn does contain all of the cin, then it must
contain a subgraph that is a tree with the cin as vertices. If we remove all branches of this
tree that do not contain a cin, then a straightforward induction on k shows that we are left
with a tree T in which at most k − 2 vertices have more than two neighbors. Denote by bin
the vertices with this property. The path-connectedness-in-T relation puts a tree structure on
the set of bin and cin. Each edge of this new tree T ′ represents a pair of these points joined by
a path, and all of these paths are disjoint.

Now, given a specific set of set of points bin and cin and T ′, we have by the BK inequality
and Lemma 2.1 that the probability that these disjoint paths are contained in Cn is at most
αe−λ(T

′)n, where λ(T ′) is the sum of the correlation lengths of the edges of T ′, and by assump-
tion this value is at least λ(S)− γ. Since the number of possible choices for the bin and the cin
grows polynomially, and since γ can be chosen arbitrarily small, this completes the proof.

2.4 Steiner trees

Given points a1, . . . , ak, a (correlation norm) Steiner tree spanning {ai} and the origin is an
element T of Ω for which λ(T ) is minimal among sets containing the {ai}. Existence of at
least one Steiner tree follows from compactness arguments, and Steiner trees are trees with at
most k − 2 vertices in addition to a1, . . . , ak [8]. Although the Steiner tree spanning a set of
points is not always unique, strict convexity of the correlation norm implies that the number
of Steiner trees is always finite. See [10] for a general reference on Steiner trees. The proof of
Theorem 1.1 now yields the following:
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Theorem 2.2. Let d ≥ 2 and let Γ ⊂ Ω be Borel-measurable. If Cn is the origin-containing

cluster in a subcritical percolation conditioned on {ain} ⊂ Cn, then

− inf
S∈Γo

λ(S)− λ(T ) ≤ lim inf
n→∞

1

n
logP (Cn ∈ Γ) ≤ lim sup

n→∞

1

n
logP (Cn ∈ Γ) ≤ − inf

S∈Γ
λ(S)− λ(T )

where T is any Steiner tree spanning {ai} and the origin.

In other words, these conditioned Cn satisfy a large deviation principle with rate function given
by I(S) = λ(S)−λ(T ). In particular, if Tj , for 1 ≤ j ≤ m, are the Steiner trees spanning {ai}
and the origin, and Bε(Tj) = {S : δ(S, Tj) < ε}, then we have

lim
n→∞

1

n
logP (Cn 6∈ ∪Bε(Tj) = − inf

S 6∈∪Bε(Tj)
λ(S)− λ(T ).

That is, the probability that Cn fails to approximate one of these Steiner trees tends to zero
exponentially.
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