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Abstract

We deal with multidimensional backward stochastic differential equations (BSDE) with locally
Lipschitz coefficient in both variables y, z and an only square integrable terminal data. Let
LN be the Lipschitz constant of the coefficient on the ball B(0, N) of Rd × Rdr. We prove
that if LN = O(

√
logN), then the corresponding BSDE has a unique solution. Moreover,

the stability of the solution is established under the same assumptions. In the case where the
terminal data is bounded, we establish the existence and uniqueness of the solution also when
the coefficient has an arbitrary growth (in y) and without restriction on the behaviour of the
Lipschitz constant LN .

Introduction

Let (Wt)0≤t≤1 be a r-dimensional Wiener process defined on a probability space (Ω,F , P )
and (Ft)0≤t≤1 denotes the natural filtration of (Wt), such that F0 contains all P-null sets
of F . Let ξ be an F1-measurable d-dimensional square integrable random variable. Let f
be an IRd-valued process defined on IR+ × Ω × IRd × IRd×r with values in IRd such that for
all (y, z) ∈ IRd × IRd×r, the map (t, ω) −→ f(t, ω, y, z) is Ft-progressively measurable. We
consider the following BSDE,

(Ef,ξ) Yt = ξ +

∫ 1

t

f(s, Ys, Zs)ds−
∫ 1

t

ZsdWs 0 ≤ t ≤ 1

Linear versions of the BSDE (Ef,ξ) appear as the equations for the adjoint process in stochastic
control, as well as the model behind the Black & Scholes formula for the pricing and hedging of
options in mathematical finance. It turned out recently that equation (Ef,ξ) is closely related
to both elliptic and parabolic nonlinear partial differential equations of second order [16,17].
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The linear BSDEs can be solved more or less explicitly. When the coefficient f is uniformly
Lipschitz, the BSDE (Ef,ξ) has a unique solution which can be constructed by using both Itô’s
representation theorem and a successive approximation procedure [15]. Further developments
on the BSDEs with various applications to stochastic control, mathematical finance, partial
differential equations and homogenization can be find in the lectures [5,6,12,14].

The comparison-theorem-technique is the essential tool to prove the existence of solutions to
one dimensional BSDEs with continuous coefficient, see [7,10,11] and the references therein.
The case where the coefficient is measurable has been treated in [4], by using a classical
transformation which removes the drift. This transformation allows the authors of [4], to
establish both existence and uniqueness of the solutions and to deal with the BSDE also
involving a local time. It should be noted that the techniques used in dimension one do not
work for multidimensional equations.

In multidimensional case, the improvements of the Lipschitz condition on f concern, generally,
the variable y only (e.g. [3,8,13,14,18]). The coefficient f is usually assumed to be uniformly
Lipschitz with respect to the variable z. Sometimes the Lipschitz condition in the variable
y is replaced by monotonicity condition. Noticing that the techniques used in the Lipschitz
case work in general for BSDEs with monotone coefficient. In all the previous papers, the
assumptions on the coefficient are global, although are non-Lipschitz. The present work is
the first one which consider multidimensional BSDEs with both local assumptions on the
coefficient and an only square integrable terminal data. The solutions are usually constructed
by successive approximations. Although this method is a powerful tool under global Lipschitz
conditions on the coefficient, it fails when these assumptions are merely local. The second
difficulty encountered in the locally Lipschitz case stays in the fact that the usual localization
techniques by means of stopping times do not work in BSDE.

In this note we deal with multidimensional BSDEs with locally Lipschitz coefficient and a
square integrable terminal data. We study the existence and uniqueness, as well as the sta-
bility of solutions. We show that if the coefficient f is locally Lipschitz in both variables y, z
and the Lipschitz constant LN in the ball B(0, N) is such that LN = O(

√
logN), then the

corresponding BSDE (Ef,ξ) has a unique solution. The stability of the solution with respect to
the data (f, ξ) is established under the same conditions. In the case where the terminal data ξ
is bounded, we establish the existence and uniqueness of the solution also when the coefficient
has an arbitrary growth (in y) and without any restrictive condition on the behaviour of the
Lipschitz constant LN . This last result remains valid also in the case where the coefficient f is
bounded. The proofs of our results mainly consist to establishing an a priori estimate between
two solutions (Y 1, Z1), (Y 2, Z2) with respectively the data (f 1, ξ1), (f2, ξ2). We deduce the
existence of solutions by approximating the coefficient f by a sequence of Lipschitz functions
(fn) via a suitable family of semi-norms and by using an appropriate (alternative) localization
which seems to be more adapted to BSDEs than the usual localization by stopping time. Our
method makes it possible to prove both existence and uniqueness, as well as the stability of
the solution by using the same computations.

The paper is organized as follows. The notations, definitions and some assumptions are col-
lected in section 1. The existence and uniqueness of the solution to BSDEs with locally
Lipschitz coefficient are stated in section 2. The Theorem 2, of section 2, has been already
announced in [1] with a sketched proof. The stability of the solutions is estabished in section 3.
The BSDE with bounded terminal data and arbitrary growth coefficient are studied in section
4. The final Section 5, is devoted to some remarks on the possible extentions.
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1 Definitions, assumptions and notations

We denote by E the set of IRd × IRd×r-valued processes (Y,Z) defined on IR+ × Ω which are

Ft-adapted and such that: ||(Y,Z)||2 = E
(

sup0≤t≤1 |Yt|2 +
∫ 1

0
|Zs|2ds

)

< +∞. The couple
(E , ||.||) is then a Banach space.

Definition 1. A solution of equation (Ef,ξ) is a couple (Y,Z) which belongs to the space

(E , ||.||) and satisfies (Ef,ξ).

We consider the following assumptions:

(H1) f is continuous in (y, z) for almost all (t, ω).
(H2) There exist two constants, M > 0 and α ∈ [0, 1], such that,

|f(t, ω, y, z)| ≤M(1 + |y|α + |z|α) P -a.s., a.e. t ∈ [0, 1].

(H3) For every N ∈ IN, there exists a constant LN > 0 such that,
|f(t, ω, y, z)− f(t, ω, y′, z′)| ≤ LN (|y − y′|+ |z − z′|), P -a.s., a.e. t ∈ [0, 1]
and ∀y, y′, z, z′ such that |y| ≤ N , |y′| ≤ N , |z| ≤ N , |z′| ≤ N .

(H4) there exists a constant L > 0 such that,
|f(t, ω, y, z)− f(t, ω, y′, z′)| ≤ L(|y − y′|+ |z − z′|), P -a.s., a.e. t ∈ [0, 1].

When the assumptions (H1), (H2) are satisfied, we can define a family of semi-norms
(

ρn(f)
)

n∈IN
by,

ρn(f) =
(

E

∫ 1

0

sup
|y|,|z|≤n

|f(s, y, z)|2ds
)

1

2

We denote by Liploc (resp. Lip) the set of functions f satisfying (H3) (resp. (H4)).
Liploc,α denotes the subset of functions f which satisfy assumptions (H2), (H3).

2 BSDE with locally Lipschitz coefficient

Theorem 2. Let f ∈ Liploc,α and ξ be a square integrable random variable. Assume moreover
that there exists a positive constant L such that, LN = L+

√
logN . Then equation (Ef,ξ) has

a unique solution.

The following corollary gives a weaker condition on LN in the case where f is uniformly
Lipschitz in the variable z and locally Lipschitz with respect to the variable y.

Corollary 1. Let (H1), (H2) be satisfied and ξ be a square integrable random variable. Assume
that f is uniformly Lipschiz in the variable z and locally Lipschitz in the variable y and denote
by LN the local Lipschitz constant of f with respect to the variable y. Then equation (Ef,ξ)
has a unique solution if LN ≤ L+ logN , where L is some positive constant.

To prove Theorem 2 and their corollaries we need the following lemmas.

Lemma 1. -(i)- Let (Y,Z) be a solution of equation (Ef,ξ). If f satisfies (H2) then there
exists a positive constant K = K(M, ξ) which depends only on M and E(|ξ|2) such that for
every t ∈ [0, 1],

E(|Yt|2) ≤ K and E

∫ 1

0

|Zs|2ds ≤ K
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-(ii)- Let ξ1, ξ2 be two d-dimensional square integrable random variables which are F1-measurable.
Let f1 f2 be such that, f1 satisfies (H1), (H2), (H3) and f2 verifies (H1), (H2). Let (Y 1, Z1)

[resp. (Y 2, Z2)] be a solution of the BSDE (Ef1,ξ1

) [resp. (Ef2,ξ2

))]. Then for every N > 1,
every β > 0 and every t ∈ [0, 1] the following estimates hold

E

∫ 1

t

|Z1
s − Z2

s |2ds ≤ K(M, ξ1, ξ2)
(

E(|ξ1 − ξ2|2) + [E

∫ 1

t

|Y 1
s − Y 2

s |2ds]
1

2

)

.

and

E(|Y 1
t − Y 2

t |2) ≤
[

E(|ξ1 − ξ2|2) + ρ2
N (f1 − f2)

L2
N

+
K(M, ξ1, ξ2)

L2
NN

2(1−α)

]

exp[2(1− t)L2
N + 1]

where K(M, ξ1, ξ2) is a constant which depends from M , E(|ξ1|2) and E(|ξ2|2).

Proof. Since |x|α ≤ 1 + |x| for each α ∈ [0, 1], assertion (i) follows then from standard
arguments of BSDEs. The first inequality of assertion (ii) follows from Itô’s formula and
Schwarz inequality. We shall prove the second inequality of (ii). Let <,> denote the inner
product in IRd. By Itô’s formula we have,

|Y 1
t − Y 2

t |2 +
∫ 1

t

|Z1
s − Z2

s |2ds = |ξ1 − ξ2|2 + 2

∫ 1

t

< Y 1
s − Y 2

s , f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s ) > ds

−2
∫ 1

t

< Y 1
s − Y 2

s , (Z1
s − Z2

s )dWs >

Let β be a strictly positive number. For a given N > 1, let LN be the Lipschitz constant of
f1 in the ball B(0, N), AN := {(s, ω); |Y 1

s |2 + |Z1
s |2 + |Y 2

s |2 + |Z2
s |2 ≥ N2}, AN := Ω \ AN

and denote by χE the indicator function of the set E. Taking expectation in the last identity,
we show that

E(|Y 1
t − Y 2

t |2) +E

∫ 1

t

|Z1
s − Z2

s |2ds ≤

≤ E(|ξ1 − ξ2|2) + 2E

∫ 1

t

|Y 1
s − Y 2

s ||f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s ))|ds

≤ E(|ξ1 − ξ2|2) + β2E

∫ 1

t

|Y 1
s − Y 2

s |2ds

+
1

β2
E

∫ 1

t

|f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )|2χAN

ds

+
1

β2
E

∫ 1

t

(

|f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s )|2

)

χAN
ds

≤ E(|ξ1 − ξ2|2) + β2E

∫ 1

t

|Y 1
s − Y 2

s |2ds

+
2M2

β2
E

∫ 1

t

(1 + |Y 1
s |α + |Z1

s |α)2χAN
ds

+
2M2

β2
E

∫ 1

t

(1 + |Y 2
s |α + |Z2

s |α)2χAN
ds
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+
2

β2
ρ2
N (f1 − f2) +

2

β2
L2
NE

∫ 1

t

(|Y 1
s − Y 2

s |2 + |Z1
s − Z2

s |2)ds

≤ E(|ξ1 − ξ2|2) + (β2 +
2L2

N

β2
)E

∫ 1

t

|Y 1
s − Y 2

s |2ds

+
6M2

β2
E

∫ 1

t

(1 + |Y 1
s |2α + |Z1

s |2α)χAN
ds

+
6M2

β2
E

∫ 1

t

(1 + |Y 2
s |2α + |Z2

s |2α)χAN
ds

+
2

β2
ρ2
N (f1 − f2) +

2L2
N

β2
E

∫ 1

t

|Z1
s − Z2

s |2ds

We use Hölder’s inequality and Chebychev’s inequality to obtain,

E(|Y 1
t − Y 2

t |2) + E

∫ 1

t

|Z1
s − Z2

s |2ds

≤ E(|ξ1 − ξ2|2) + (β2 +
2L2

N

β2
)E

∫ 1

t

|Y 1
s − Y 2

s |2ds

+
K(M, ξ1, ξ2)

β2N2(1−α)
+

2

β2
ρ2
N (f1 − f2)

+
2L2

N

β2
E

∫ 1

t

|Z1
s − Z2

s |2ds

where K(M, ξ1, ξ2) is a constant which depends fromM , E(|ξ1|2) and E(|ξ2|2) and which may

change from line to line. We choose β such that
2L2

N

β2 = 1, then we use Gronwall’s lemma to
get,

E(|Y 1
t − Y 2

t |2) ≤
[

E(|ξ1 − ξ2|2) + ρ2
N (f1 − f2)

L2
N

+
K(M, ξ1, ξ2)

L2
NN

2(1−α)

]

exp[2(1− t)L2
N + 1].

Lemma 2. Let f be a function which satisfies (H1), (H2). Then there exists a sequence of
functions fn such that,
-(i) -a) For each n, fn ∈ Lipα.
-b) supn |fn(t, ω, y, z)| ≤ |f(t, ω, y, z)| ≤M(1 + |y|α + |z|α) P -a.s., a.e. t ∈ [0, 1].
-(ii)- For every N , ρN (fn − f) −→ 0 as n −→∞.

Proof. Let ψn be a sequence of smooth functions with support in the ball B(0, n+1) and such
that ψn = 1 in the ball B(0, n). It is not difficult to see that the sequence (fn) of truncated
functions, defined by fn = fψn, satisfies all the properties quoted in Lemma 2.

Lemma 3. Let f and ξ be as in Theorem 2. Let (fn) be the sequence of functions associated
to f by Lemma 2 and denote by (Y n, Zn) the solution of equation (Efn). Then there exists a
constant K = K(M, ξ) which depends only on M and E(|ξ|2) such that,
-a) sup

n
E(| Y n

t |2) ≤ K.

-b) sup
n
E

∫ 1

0

|Zn
s |2ds ≤ K.

Proof. It goes as that of Lemma 1 (i). K can have the following form,
K = max{[E(|ξ|2) + 9] exp(3M2 + 1),

[

E(|ξ|2) + 9
][

2 + (1 + 12M2) exp(3M2 + 1)
]

}.
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Lemma 4. Let f and ξ be as in theorem 2. Let (fn) be the sequence of functions associated
to f by Lemma 2 and denote by (Y n, Zn) the solution of equation (Efn,ξ). Then there exists
a process (Y,Z) ∈ E such that limn→∞ ||(Y n, Zn)− (Y,Z)|| = 0.

Proof. For the simplicity we assume L = 0. Observe that for each n ≥ (N + 1), |fn(t, y, z)−
fn(t, y

′, z′)| ≤ LN (|y−y′|+|z−z′|) on the ballB(0, N). Assume first that LN ≤
√

(1− α) logN .
Then applying Lemma 1 to (Y 1, Z1, f1, ξ1) = (Y n, Zn, fn, ξ), (Y 2, Z2, f2, ξ2) = (Y m, Zm, fm, ξ)
and passing to the limit successively on n,m,N one gets Lemma 4. Assume now that
LN ≤

√
logN . Let δ be a strictly positive number such that δ > (1 − α). Let ([ti+1, ti])

be a subdivision of [0, 1] such that |ti − ti+1| ≤ δ. Appliying Lemma 1 in all the subintervals
[ti+1, ti] we get Lemma 4.

Proof of Theorem 2. The uniqueness follows from the Lemma 1 by letting f 1 = f2 = f

and ξ1 = ξ2 = ξ). We shall prove the existence of solutions. Thanks to Lemma 4 , there exists
(Y,Z) ∈ E such that ||(Y n, Zn)− (Y,Z)|| → 0 as n→∞. Thus, we immediately have

(1) lim
n→∞

E( sup
0≤s≤1

| Y n
s − Ys |2) = 0 and lim

n→∞
E

∫ 1

0

|Zn
s − Zs|2ds

It remains to prove that
∫ 1

t
fn(s, Y

n
s , Z

n
s )ds converges to

∫ 1

t
f(s, Ys, Zs)ds in probability. Let

N > 1 and denote by LN the Lipschitz constant of f in the ball B(0, N). We put AN
n :=

{(s, ω); |Y n
s |+ |Zn

s |+ |Ys|+ |Zs| ≥ N} and AN

n := Ω\AN
n . Arguing as in the proof of Lemma

1 then using Lemma 3 and Fatou’s Lemma, we show that

E|
∫ 1

t

fn(s, Y
n
s , Z

n
s )ds−

∫ 1

t

f(s, Ys, Zs)ds| ≤ I1(n) + LNI2(n) +
K(M, ξ)

N

where

I1(n) = E

∫ 1

0

sup
|y|,|z|≤N

|fn(s, y, z)− f(s, y, z)|ds.

I2(n) = E

∫ 1

0

|Y n
s − Ys|ds+ E

∫ 1

0

|Zn
s − Zs|ds.

and K(M, ξ) is a constant which depends only on M and E(|ξ|)

Lemma 2 shows that limn→∞I1(n) = 0. We shall prove that limn→∞I2(n) = 0. From the

identity (1) we have limn→∞E
∫ 1

0
|Zn

s − Zs|ds = 0. We use equality (1), Lemma 3, Fatou’s

Lemma and the Lebesgue dominated convergence Theorem to show that limn→∞E
∫ 1

0
|Y n

s −
Ys|ds = 0. This proves that equation (Ef,ξ) has at least one solution. Theorem 2 is proved.

Proof of Corollary 1. For α = 1, the problem will be reduced to the classical case. We
shall treat the case α < 1. We assume L = 0 for simplicity. Let L′ be the (uniform) Lipschitz
constant of f with respect to the variable z. For a given N > 1, let LN denote the Lipschitz
constant (in y) of f in the ball B(0, N). We define AN

n,m := {(s, ω); |Y n
s |2 + |Zn

s |2 + |Y m
s |2 +

|Zm
s |2 ≥ N2}, AN

n,m := Ω \AN
n,m. By Itô’s formula, we have

E(|Y n
t − Y m

t |2) + E

∫ 1

t

|Zn
s − Zm

s |2ds = I1(n,m) + I2(n,m) + I3(n,m) + I4(n,m)
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where,

I1(n,m) = 2E

∫ 1

t

< Y n
s − Y m

s , fn(s, Y
n
s , Z

n
s )− f(s, Y n

s , Z
n
s ) > χ

A
N

n,m

ds

I2(n,m) = 2E

∫ 1

t

< Y n
s − Y m

s , f(s, Y n
s , Z

n
s )− f(s, Y m

s , Zm
s ) > χ

A
N

n,m

ds

I3(n,m) = 2E

∫ 1

t

< Y n
s − Y m

s , f(s, Y m
s , Zm

s )− fm((s, Y m
s , Zm

s ) > χ
A

N

n,m

ds

I4(n,m) = 2E

∫ 1

t

< Y n
s − Y m

s , fn(s, Y
n
s , Z

n
s )− fm(s, Y m

s , Zm
s ) > χAN

n,m
ds

We shall estimate successively I1(n,m), I2(n,m), I3(n,m), I4(n,m). Let β1, β2 be a strictly
positive numbers. It is easy to see that,

(2) I1(n,m) ≤ E

∫ 1

t

|Y n
s − Y m

s |2ds+ ρ2
N (fn − f)

(3) I3(n,m) ≤ E

∫ 1

t

|Y n
s − Y m

s |2ds+ ρ2
N (fm − f)

(4) I2(n,m) ≤ (2LN + β2
1L
′)E

∫ 1

t

|Y n
s − Y m

s |2χA
N

n,m

ds+
L′

β2
1

E

∫ 1

t

|Zn
s − Zm

s |2ds

We use assumption (H2), Hölder’s inequality, Chebychev’s inequality and Lemma 3 to show
that

(5) I4(n,m) ≤ β2
2E

∫ 1

t

|Y n
s − Y m

s |2χAN
n,m

ds+
K(M, ξ)

β2
2N

2(1−α)

where K(M, ξ) is a constant which depends only on M and E(|ξ|2) and which may change
from a line to another.
We choose β2

1 = L′ and β2
2 = 2LN then we use (2), (3), (4), (5) and Gronwall’s lemma to

obtain,

E(|Y n
t − Y m

t |2) ≤
[

ρ2
N (fn − f) + ρ2

N (fm − f) +
K(M, ξ)

(LN )N2(1−α)

]

exp(2LN ) exp(L′2 + 2)

Passing to the limit successively on n,m,N and using the Burkholder-Davis-Gundy inequality,
we show that (Y n, Zn) is a Cauchy sequence in the Banach space (E , ||.||). The end of the
proof goes as that of Theorem 2. Corollary 1 is proved.

3 Stability of the solutions

In this section, we prove a stability result for the solution with respect to the data (f, ξ).
Roughly speaking, if fn converges to f in the metric defined by the family of semi-norms (ρN )
and ξn converges to ξ in L2(Ω) then (Y n, Zn) converges to (Y,Z) in (E , ||.||). Let (fn) be a
sequence of functions which are Ft-progressively measurable for each n. Let (ξn) be a sequence
of random variables which are F1-measurable for each n and such that E(|ξn|2) <∞.
Throughout this section we will assume that for each n, the BSDE (Efn,ξn) corresponding to
the data (fn, ξn) has a (not necessarily unique) solution. Each solution of the equation (Efn)



176 Electronic Communications in Probability

will be denoted by (Y n, Zn). We suppose also that the following assumptions (H3), (H4), (H5)
are fulfilled,

(H3) For every N , ρN (fn − f) −→ 0 as n→∞.

(H4) E(|ξn − ξ|2) −→ 0 as n→∞ .

(H5) There exist two constants, M > 0 and α ∈ [0, 1], such that,

sup
n
|fn(t, ω, y, z)| ≤M(1 + |y|α + |z|α) P -a.s., a.e. t ∈ [0, 1].

Theorem 6. Let f and ξ be as in Theorem 2. Assume that (H3), (H4), (H5) are satisfied.
Then (Y n, Zn) converges to (Y,Z) in the space (E , ||.||).

Proof. For α = 1, the result is classic. We shall treat the case α < 1. Applying Lemma
1 to (Y 1, Z1, f1, ξ1) = (Y,Z, f, ξ), (Y 2, Z2, f2, ξ) = (Y n, Zn, fn, ξ

n) and passing to the limits
successively on n,N one gets Theorem 6.

IV) BSDEs with bounded terminal data.

Let <,> denote the inner product in IRd and consider the following assumptions,

(H6) There exists a constant M > 0 such that,

ξ ≤M P -a.s.
(H7) There exists a constant M > 0 such that, for every y and z,

< y, f(t, ω, y, z) >≤M(1 + |y|2 + |y||z|) P -a.s., a.e. t ∈ [0, 1].

(H8) There exists a constant M > 0 and a positive continuous function ϕ : IR+ −→ IR+

such that for every y and z,

|f(t, ω, y, z)| ≤M(1 + ϕ(|y|) + |z|) P -a.s., a.e. t ∈ [0, 1].

(H9) For every N ∈ IN, there exists a constant LN > 0 such that,

|f(t, ω, y, z)− f(t, ω, y′, z)| ≤ LN (|y − y′|),
P -a.s., a.e. t ∈ [0, 1] and for all

y, y′, z such that |y| ≤ N , |y′| ≤ N .

(H10) there exists a constant L′ > 0 such that, for every y, z, z′,

|f(t, ω, y, z)− f(t, ω, y, z′)| ≤ L′(|z − z′|), P -a.s., a.e. t ∈ [0, 1].

Proposition 7. Let (H6)–(H10) be satisfied. Then equation (Ef,ξ) has a unique solution.
Moreover the solution is stable in the sense of Theorem 6.

To prove proposition 7, we need the following lemmas.

Lemma 8. Let f be a function which satisfies (H7)–(H10). Then there exists a sequence of
functions (fn) such that,

-(i)- For each n, fn is globally Lipschitz in (y, z) a.e. t and P -a.s.ω.

-(ii)- There exists a constant K(M) > 0 such that for each (y, z),

supn < y, fn(t, ω, y, z) >≤ K(M)(1 + |y|2 + |y||z|) P -a.s. and a.e. t ∈ [0, 1].

-(iii)- For every (y, z), supn |fn(t, ω, y, z|) ≤M(1 + ϕ(|y|) + |z|)| P -a.s., a.e. t ∈ [0, 1].

-(iv)- For every N , ρN (fn − f) −→ 0 as n −→∞.

Proof. Let ψn : IRd −→ IR+ be a sequence of smooth functions such that 0 ≤ ψn ≤ 1, ψn(u) =
1 for |u| ≤ n and ψn(u) = 0 for |u| ≥ n+1. Likewise we define the sequence ψ′n from IRd×r to
IR+. It is not difficult to see that the sequence fn defined by fn(t, y, z) := f(t, y, z)ψn(y)ψ

′
n(z)

satisfies all the assertions of Lemma 8.
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Lemma 9. Let f and ξ be as in Proposition 7. Let (fn) be the sequence of functions associated
to f by Lemma 8 and denote by (Y n, Zn) the solution of equation (Efn). Then there exist two
positive constants K = K(M) such that,

sup
n

(

sup
0≤t≤1

| Y n
t |

)

≤ K and sup
n
E

∫ 1

0

| Zn
s |2 ds ≤ K

Proof. It follows by using Itô’s formula, the conditional expectation, Gronwall’s Lemma and
Lemma 8.

Proof of Proposition 7. - (i)- Let l, N be two strictly positive numbers. We define AN
n,m :=

{(s, ω); |Y n
s |2 + |Y m

s |2 ≥ N2}, AN

n,m := Ω\AN
n,m and Bl

n,m := {(s, ω); |Zn
s |2 + |Zm

s |2 ≥ l2},
B

l

n,m := Ω \Bl
n,m. By Itô’s formula, we have

E(|Y n
t − Y m

t |2) + E

∫ 1

t

|Zn
s − Zm

s |2ds = I1(n,m) + I2(n,m) + I3(n,m)

where,

I1(n,m) = 2E

∫ 1

t

< Y n
s − Y m

s , fn(s, Y
n
s , Z

n
s )− f(s, Y n

s , Z
n
s ) > ds

I2(n,m) = 2E

∫ 1

t

< Y n
s − Y m

s , f(s, Y n
s , Z

n
s )− f(s, Y m

s , Zm
s ) > ds

I3(n,m) = 2E

∫ 1

t

< Y n
s − Y m

s , f(s, Y m
s , Zm

s )− fm((s, Y m
s , Zm

s ) > ds

We shall estimate I1(n,m), I2(n,m), I3(n,m). Let n andN be such that, n ≥ N ≥ supn(|Y n
t |).

We then have,

I1(n,m) = 2E

∫ 1

t

|Y n
s − Y m

s ||f(Y n, Zn)||(ψn(Z
n)− 1)|(χ

B
l

n,m

+ χBl
n,m

)ds

We use assumption (H8), Lemma 8 and Chebychev’s inequality to get,

I1(n,m) ≤ K(M,ϕ)
(

sup
|z|≤l

|ψn(z)− 1|+ 1

l2

)

where K(M,ϕ) is a constant which depends only on M and ϕ and which can changes from a
line to another.
By similar arguments, we show that

I3(n,m) ≤ K(M,ϕ)
(

sup
|z|≤l

|ψm(z)− 1|+ 1

l2

)

We successively use assumption (H8), Lemma 8, Hölder’s inequality and Chebychev’s inequal-
ity to show that

I2(n,m) ≤ (2LN + L′2)E

∫ 1

t

|Y n
s − Y m

s |2ds+
L′

L′
E

∫ 1

t

|Zn
s − Zm

s |2ds

+2E

∫ 1

t

|Y n
s − Y m

s ||f(Y n
s , Z

n
s )− f(Y m

s , Zn
s )|(χA

N

n,m

+ χAN
n,m

)ds

≤ (2LN + L′2)E

∫ 1

t

|Y n
s − Y m

s |2ds+ E

∫ 1

t

|Zn
s − Zm

s |2ds
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Using these last estimates of I1(n,m), I2(n,m), I3(n,m) and the Gronwall Lemma, we obtain

E(|Y n
t − Y m

t |2) ≤ K(M,ϕ)
[

sup
|z|≤l

(|ψn(z)− 1|) + sup
|z|≤l

(|ψm(z)− 1|) + 1

l2

]

exp(2LN ) exp(L′2)

Passing to the limit, first on n,m and next on l, we show that (Y n, Zn) is a Cauchy sequence
in the Banach space (E , ||.||). The end of the proof goes as that of Theorem 2. Proposition 7
is proved.

V) Remarks.

1) BSDEs with monotone coefficient in Y and locally Lipschitz in Z.

We consider the following assumptions,

(H11) there exists a constant µ ∈ IR such that,
< y − y′, f(t, ω, y, z)− f(t, ω, y′, z) > ≤ µ|y − y′|2 P -a.s., a.e. t ∈ [0, 1]

(H12) For every N ∈ IN, there exists a constant LN > 0 such that,
|f(t, ω, y, z)− f(t, ω, y, z′)| ≤ LN |z − z′|, P -a.s., a.e. t ∈ [0, 1] and ∀y, z such that
|y| ≤ N , |z′| ≤ N , |z| ≤ N .

Arguing as in the proof of Corollary 1 one can establish the following result which is an
extension of the Darling-Pardoux result [3] to the locally Lipschitz case.

If f satisfies the assumptions (H1), (H2), (H11), (H12). Then equation (Ef,ξ) has a unique
solution. Moreover the solution is stable in the sense of Theorem 6.

2) Our method works under assumptions considered in [13]. That is, the results established in
[13] can be proved by our techniques. Indeed, in these cases we can approximate the coefficient
f , uniformly in (y, z) ∈ IRd × IRd×r, by a sequence (fn) of uniformly Lipschitz functions.

3) Observe that the condition LN = O(
√
logN) allows to f a super-linear growth such

|z|
√

| log |z|| or |y|
√

| log |y||. Hence we can think that the BSDE (Ef,ξ) has a unique so-
lution under the following conditions
LN = O(

√
logN) and |f | ≤M(1 + |z|

√

| log |z||+ |y|
√

| log |y||).
4) Modifying the construction of the sequence (fn), It seems possible to prove that all the
previous results can be extended to the case where f is locally, µN -monotone in y and LN -
Lipschitz in z, on the ball B(0, N) of IRd× IRd×r. The supplementary assumption which could
be required in this case seems to be: (2µ+

N + L2
N ) = O(logN).
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lipschitzien, Ann. Inst. Henri Poincaré, 32, 645-660.
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stochastiques rétrogrades avec des générateurs à croissance quadratique, C.R.A.S. Paris, Sér.

1 Math., 324, 81-86.
[11] J.P. Lepeltier, J. San Martin, (1998), Existence for BSDE with Superlinear-Quadratic
coefficients, Stoc. Stoc. Reports, 63, 227-240.
[12] J. Ma, J. Yong (1999), Forward-Backward Stochastic Differential Equations and their
applications Lectures Notes in Mathematics, 1702, Springer.
[13] X. Mao, (1995), Adapted solutions of backward stochastic differential equations with
non-Lipschitz coefficient, Stoch. Proc. Appl., 58, 281-292.
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