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Abstract
Let A be an arc on the boundary of the unit disk U. We prove an asymptotic formula for the
probability that there is a percolation cluster K for critical site percolation on the triangular
grid in U which intersects A and such that 0 is surrounded by K ∪ A.

Motivated by questions of Langlands et al [LPSA94] and M. Aizenman, J. Cardy [Car92, Car]
derived a formula for the asymptotic probability for the existence of a crossing of a rectangle
by a critical percolation cluster. Recently, S. Smirnov [Smi1] proved Cardy’s formula and
established the conformal invariance of critical site percolation on the triangular grid. The
paper [LSW] has a generalization of Cardy’s formula. Another percolation formula, which is
still unproven, was derived by G. M. T. Watts [Wat96]. The current paper will state and
prove yet another such formula. A short discussion elaborating on the general context of these
results appears at the end of the paper.

Consider site percolation on the triangular lattice in C with small mesh δ > 0, where each
site is declared open with probability 1/2, independently. (See [Gri89, Kes82] for background
on percolation.) It is convenient to represent a percolation configuration by coloring the
corresponding hexagonal faces of the dual grid; black for an open site, white for a closed site.
(The faces are taken to be topologically closed. Some edges are colored by both colors, but
that has no significance.) Let B denote the union of the black hexagons, intersected with the
closed unit disk U, and for θ ∈ (0, 2π) let A = A(θ) be the event that there is a connected
component K of B which intersects the arc

Aθ :=
{
eis : s ∈ [0, θ]

} ⊂ ∂U

and such that 0 is surrounded by K ∪Aθ. The latter means that 0 is in a bounded component
of C \ (

Aθ ∪K
)

or 0 ∈ K. Figure 1 shows the two distinct topological ways in which this could
happen.
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Figure 1: The two topologically distinct ways to surround 0.

Here, F2,1 is the hypergeometric function. See [EMOT53, Chap. 2] for background on hyper-
geometric functions.

There is a second interpretation of the Theorem. Let C1 be the cluster of either black or white
hexagons which contains 0. (If 0 is on the boundary of two clusters of different colors, let C1

be the black cluster containing 0, say.) Let C2 be the (unique) cluster which surrounds C1 and
is adjacent to it. Inductively, let Cn+1 be the cluster surrounding and adjacent to Cn, and of
the opposite color. Let m be the least integer such that Cm is not contained in U, and let C′

m

be the component of U ∩ Cm which surrounds 0. Let X := 1 if C′
m ∩ ∂U ⊂ Aθ, let X := 0 if

C ′
m∩Aθ = ∅, and otherwise set X := 1/2. Then limδ↓0 E[X ] = limδ↓0 P[A]. This is so because

A = {X = 1} ∪ {X = 1/2 and Cm is black} ∪ {m = 1, X > 0 and 0 ∈ ∂Cm} ,

and the probability that m = 1 goes to zero as δ ↓ 0 (since a.s. there is no infinite cluster).

Theorem 1 will be proved by utilizing the relation between the scaling limit of percolation
and Stochastic Loewner evolution with parameter κ = 6 (a.k.a. SLE6), which was conjectured
in [Sch00] and proven by S. Smirnov [Smi1].
We now very briefly review the definition and the relevant properties of chordal SLE. For a
thorough treatment, see [RS]. Let κ ≥ 0, let B(t) be Brownian motion on R starting from
B(0) = 0, and set W (t) =

√
κ B(t). For z in the upper half plane H consider the time flow

gt(z) given by

∂tgt(z) =
2

gt(z) − W (t)
, g0(z) = z . (1)

Then gt(z) is well defined up to the first time τ = τ(z) such that limt↑τ gt(z)−W (t) = 0. For
all t > 0, the map gt is a conformal map from the domain Ht :=

{
z ∈ H : τ(z) > t

}
onto H .

The process t 7→ gt is called Stochastic Loewner evolution with parameter κ, or SLEκ.
In [RS] it was proven that at least for κ 6= 8 a.s. there is a uniquely defined continuous path
γ : [0,∞) → H with γ(0) = 0, called the trace of the SLE, such that for every t ≥ 0 the set
Ht is equal to the unbounded component of H \ γ[0, t]. In fact, a.s.

∀t ≥ 0, γ(t) = lim
z→W (t)

g−1
t (z) ,
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where z tends to W (t) from within H . Additionally, it was shown that γ is a.s. transient, namely
limt→∞

∣∣γ(t)
∣∣ = ∞, and that when κ ∈ (0, 8) we have for every z0 ∈ H that P

[
z0 ∈ γ[0,∞)

]
=

0.
It was also shown [RS] that γ is a simple path a.s. iff κ ≤ 4. When κ > 4, κ 6= 8, although
not a simple path, γ does not cross itself; that is, a.s. for every t0 > 0 there is a continuous
homotopy H : [0, 1]×[t0,∞) → H such that H(0, t) = γ(t) and H

(
(0, 1]×(t0,∞)

)∩γ[0, t0] = ∅.
This property easily follows from the fact that γ[t0,∞) is the image of a continuous path in
H (which, by the way, has essentially the same law as γ) under the continuous extension of
g−1

t0 : H → H \ γ[0, t0], to H . (See, for example, [RS, Proposition 2.1.ii, Theorem 5.2].)
Fix some z0 = x0 + i y0 ∈ H . Then we may ask if γ passes to the right or to the left of z0,
topologically. (Formally, this should be defined in terms of winding numbers, as follows. Let βt

be the path from γ(t) to 0 which follows the arc |γ(t)|∂U clockwise from γ(t) to |γ(t)| and then
takes the straight line segment in R to 0. Then γ passes to the left of z0 if the winding number
of γ[0, t] ∪ βt around z0 is 1 for all large t. As noted above, γ is a.s. transient, and therefore
there is some random time t0 such that the winding number is constant for t ∈ (t0,∞). This
constant is either 0 or 1, since γ does not cross itself, as discussed above.) Theorem 1 will be
established by applying the following with κ = 6:

Theorem 2. Let κ ∈ [0, 8), and let z0 = x0 + i y0 ∈ H . Then the trace γ of chordal SLEκ

satisfies

P
[
γ passes to the left of z0

]
=

1
2

+
Γ(4/κ)√
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)
.

When κ = 2, 8/3, 4 and 8 the right hand side simplifies to 1+ x0 y0
π |z0|2 −

arg z0
π , 1

2 + x0
2 |z0| , 1− arg z0

π

and 1
2 , respectively.

Let xt := Re gt(z0) − W (t), yt := Im gt(z0), and wt := xt/yt.

Lemma 3. Almost surely, γ is to the left of z0 iff limt↑τ(z0) wt = ∞ and a.s. γ is to the right
of z0 iff limt↑τ(z0) wt = −∞.

Proof. Suppose first that κ ∈ [0, 4]. In that case, a.s. γ is a simple path and τ(z0) = ∞,
by [RS]. Given γ, we start a planar Brownian motion B from z0. Suppose that γ is to the left
of z0. This implies that B will first hit R ∪ γ[0,∞) in [0,∞) or from the right hand side of γ.
Since γ is transient, as t ↑ ∞ the probability that B first hits γ[0, t] ∪ R from the right hand
side of γ or in [0,∞) tends to 1. By conformal invariance of harmonic measure, this means that
the harmonic measure in H of [W (t),∞) from gt(z0) tends to 1. Therefore, limt↑∞ wt = ∞.
The argument in the case where γ is to the right of z0 is entirely similar. Since γ must be
either to the left of to the right of z0, this proves the lemma in the case κ ∈ [0, 4].
For κ ∈ (4, 8), the analysis is similar. The difference is that a.s. γ is not a simple path,
τ(z0) < ∞, and z0 is in a bounded component of H \ γ

[
0, τ(z0)

]
(see [RS]). Clearly, z0 is not

in a bounded component of H \ γ[0, t] when t < τ(z0). Hence, at time τ(z0) the path γ closes
a loop around z0. Since γ does not cross itself, the issue then is whether this is a clockwise
or counter-clockwise loop. As above, if the loop is clockwise, then as t ↑ τ(z0) the harmonic
measure from z0 in R ∪ γ[0, t] is predominantly on [0,∞) and the right side of γ[0, t]. This
implies that wt ↑ ∞. If the loop is counter-clockwise, we get wt ↓ −∞, by the same reasoning.
This completes the proof.
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Proof of Theorem 2. Writing (1) in terms of the real and imaginary parts gives,

dxt =
2 xt dt

x2
t + y2

t

− dW (t) , dyt = − 2 yt dt

x2
t + y2

t

.

Itô’s formula then gives,

dwt = −dW (t)
yt

+
4 wt dt

x2
t + y2

t

. (2)

Make the time change

u(t) =
∫ t

0

dt

y2
t

,

and set

W̃ (t) =
∫ t

0

dW (t)
yt

.

Note that W̃/
√

κ is Brownian motion as a function of u. From (2), we now get

dw = −dW̃ +
4 w du

w2 + 1
. (3)

We got rid of xt and yt, and are left with a single variable diffusion process w(u). (This is
no mystery, but a simple consequence of scale invariance.) An immediate consequence of this
and the lemma is that a.s. limt↑τ(z0) u = ∞, because the diffusion (3) a.s. does not hit ±∞ in
finite time. It is clear that u(t) < ∞ when t < τ(z0), because yt is monotone decreasing and
positive for t ∈ [0, τ(z0)).
Given a starting point ŵ ∈ R for the diffusion (3), and given a, b ∈ R with a < ŵ < b, we
are interested in the probability h(ŵ) = ha,b(ŵ) that w will hit b before hitting a. Note that
h
(
w(u)

)
is a local martingale. Therefore, assuming for the moment that h is smooth, by Itô’s

formula, h satisfies

κ

2
h′′(w) +

4 w

w2 + 1
h′(w) = 0 , h(a) = 0 , h(b) = 1 .

By the maximum principle, these equations have a unique solution, and therefore we find that

h(w) =
f(w) − f(a)
f(b) − f(a)

, (4)

where
f(w) := F2,1(1/2, 4/κ, 3/2,−w2)w .

We may now dispose of the assumption that h is smooth, because Itô’s formula implies that the
right hand side in (4) is a martingale, and it easily follows that it must equal h. By [EMOT53,
2.10.(3)] and our assumption κ < 8 it follows that

lim
w→±∞ f(w) = ±

√
π Γ

(
(8 − κ)/(2κ)

)
2 Γ(4/κ)

. (5)

In particular, the limit is finite, which shows that limb→∞ ha,b(w) > 0 for all w > a. Hence,
the diffusion process (3) is transient. Moreover,

P
[

lim
u→∞w(u) = +∞

]
=

f(ŵ) − f(−∞)
f(∞) − f(−∞)

.

An appeal to the lemma now completes the proof.



A PERCOLATION FORMULA 119

Proof of Theorem 1. As above, letB be the intersection of the union of the black hexagons
with U, and let B̂ be the union of B and the set S :=

{
r eis : r ≥ 1, s ∈ [0, θ]

}
. Let β be

the intersection of U with the outer boundary of the connected component of B̂ containing
S. Then β is a path in U from 1 to eiθ. It is immediate that the event A is equivalent to
the event that 0 appears to the right of the path β; that is, that the winding number of the
concatenation of β with the arc Aθ with the clockwise orientation around 0 is 1.
S. Smirnov [Smi1] has shown that as δ ↓ 0 the law of β tends weakly to the law of the image
of the chordal SLE6 trace γ under any fixed conformal map φ : H → U satisfying φ(0) = 1 and
φ(∞) = eiθ. (See also [Smi2].) We may take

φ(z) = eiθ z + cot θ
2 − i

z + cot θ
2 + i

.

The theorem now follows by setting κ = 6 in Theorem 2.

Discussion. According to J. Cardy (private communication, 2001), presently, the conformal
field theory methods used by him to derive his formula do not seem to supply even a heuristic
derivation of Theorem 1. On the other hand, it seems that, in principle, probabilities for
“reasonable” events involving critical percolation can be expressed as solutions of boundary-
value PDE problems, via SLE6. But this is not always easy. In particular, it would be nice to
obtain a proof of Watts’ formula [Wat96]. The event A studied here was chosen because the
corresponding proof is particularly simple, and because the PDE can be solved explicitly.
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