A PERCOLATION FORMULA

ODED SCHRAMM

Microsoft Research, One Microsoft Way, Redmond, WA 98074, USA
email: schramm@microsoft.com
submitted July 30, 2001 Final version accepted October 24, 2001
AMS 2000 Subject classification: 60K35, 30C35
SLE, Cardy, conformal invariance

Abstract

Let A be an arc on the boundary of the unit disk \mathbb{U}. We prove an asymptotic formula for the probability that there is a percolation cluster K for critical site percolation on the triangular grid in \mathbb{U} which intersects A and such that 0 is surrounded by $K \cup A$.

Motivated by questions of Langlands et al [LPSA94] and M. Aizenman, J. Cardy [Car92, Car] derived a formula for the asymptotic probability for the existence of a crossing of a rectangle by a critical percolation cluster. Recently, S. Smirnov [Smi1] proved Cardy's formula and established the conformal invariance of critical site percolation on the triangular grid. The paper [LSW] has a generalization of Cardy's formula. Another percolation formula, which is still unproven, was derived by G. M. T. Watts [Wat96]. The current paper will state and prove yet another such formula. A short discussion elaborating on the general context of these results appears at the end of the paper.

Consider site percolation on the triangular lattice in \mathbb{C} with small mesh $\delta>0$, where each site is declared open with probability $1 / 2$, independently. (See [Gri89, Kes82] for background on percolation.) It is convenient to represent a percolation configuration by coloring the corresponding hexagonal faces of the dual grid; black for an open site, white for a closed site. (The faces are taken to be topologically closed. Some edges are colored by both colors, but that has no significance.) Let \mathfrak{B} denote the union of the black hexagons, intersected with the closed unit disk $\overline{\mathbb{U}}$, and for $\theta \in(0,2 \pi)$ let $\mathcal{A}=\mathcal{A}(\theta)$ be the event that there is a connected component K of \mathfrak{B} which intersects the arc

$$
A_{\theta}:=\left\{e^{i s}: s \in[0, \theta]\right\} \subset \partial \mathbb{U}
$$

and such that 0 is surrounded by $K \cup A_{\theta}$. The latter means that 0 is in a bounded component of $\mathbb{C} \backslash\left(A_{\theta} \cup K\right)$ or $0 \in K$. Figure 1 shows the two distinct topological ways in which this could happen.

Theorem 1.

$$
\lim _{\delta \downarrow 0} \mathbf{P}[\mathcal{A}]=\frac{1}{2}-\frac{\Gamma(2 / 3)}{\sqrt{\pi} \Gamma(1 / 6)} F_{2,1}\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{2},-\cot ^{2} \frac{\theta}{2}\right) \cot \frac{\theta}{2}
$$

Figure 1: The two topologically distinct ways to surround 0.

Here, $F_{2,1}$ is the hypergeometric function. See [EMOT53, Chap. 2] for background on hypergeometric functions.
There is a second interpretation of the Theorem. Let C_{1} be the cluster of either black or white hexagons which contains 0 . (If 0 is on the boundary of two clusters of different colors, let C_{1} be the black cluster containing 0 , say.) Let C_{2} be the (unique) cluster which surrounds C_{1} and is adjacent to it. Inductively, let C_{n+1} be the cluster surrounding and adjacent to C_{n}, and of the opposite color. Let m be the least integer such that C_{m} is not contained in \mathbb{U}, and let C_{m}^{\prime} be the component of $\overline{\mathbb{U}} \cap C_{m}$ which surrounds 0 . Let $X:=1$ if $C_{m}^{\prime} \cap \partial \mathbb{U} \subset A_{\theta}$, let $X:=0$ if $C_{m}^{\prime} \cap A_{\theta}=\emptyset$, and otherwise set $X:=1 / 2$. Then $\lim _{\delta \downarrow 0} \mathbf{E}[X]=\lim _{\delta \downarrow 0} \mathbf{P}[\mathcal{A}]$. This is so because

$$
\mathcal{A}=\{X=1\} \cup\left\{X=1 / 2 \text { and } C_{m} \text { is black }\right\} \cup\left\{m=1, X>0 \text { and } 0 \in \partial C_{m}\right\}
$$

and the probability that $m=1$ goes to zero as $\delta \downarrow 0$ (since a.s. there is no infinite cluster).
Theorem 1 will be proved by utilizing the relation between the scaling limit of percolation and Stochastic Loewner evolution with parameter $\kappa=6$ (a.k.a. SLE $_{6}$), which was conjectured in [Sch00] and proven by S. Smirnov [Smi1].
We now very briefly review the definition and the relevant properties of chordal SLE. For a thorough treatment, see $[\mathrm{RS}]$. Let $\kappa \geq 0$, let $B(t)$ be Brownian motion on \mathbb{R} starting from $B(0)=0$, and set $W(t)=\sqrt{\kappa} B(t)$. For z in the upper half plane \mathbb{H} consider the time flow $g_{t}(z)$ given by

$$
\begin{equation*}
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-W(t)}, \quad g_{0}(z)=z \tag{1}
\end{equation*}
$$

Then $g_{t}(z)$ is well defined up to the first time $\tau=\tau(z)$ such that $\lim _{t \uparrow \tau} g_{t}(z)-W(t)=0$. For all $t>0$, the map g_{t} is a conformal map from the domain $H_{t}:=\{z \in \mathbb{H}: \tau(z)>t\}$ onto \mathbb{H}. The process $t \mapsto g_{t}$ is called Stochastic Loewner evolution with parameter κ, or SLE $_{\kappa}$.
In $[\mathrm{RS}]$ it was proven that at least for $\kappa \neq 8$ a.s. there is a uniquely defined continuous path $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ with $\gamma(0)=0$, called the trace of the SLE, such that for every $t \geq 0$ the set H_{t} is equal to the unbounded component of $\mathbb{H} \backslash \gamma[0, t]$. In fact, a.s.

$$
\forall t \geq 0, \quad \gamma(t)=\lim _{z \rightarrow W(t)} g_{t}^{-1}(z)
$$

where z tends to $W(t)$ from within \mathbb{H}. Additionally, it was shown that γ is a.s. transient, namely $\lim _{t \rightarrow \infty}|\gamma(t)|=\infty$, and that when $\kappa \in(0,8)$ we have for every $z_{0} \in \mathbb{H}$ that $\mathbf{P}\left[z_{0} \in \gamma[0, \infty)\right]=$ 0 .
It was also shown $[\mathrm{RS}]$ that γ is a simple path a.s. iff $\kappa \leq 4$. When $\kappa>4, \kappa \neq 8$, although not a simple path, γ does not cross itself; that is, a.s. for every $t_{0}>0$ there is a continuous homotopy $H:[0,1] \times\left[t_{0}, \infty\right) \rightarrow \overline{\mathbb{H}}$ such that $H(0, t)=\gamma(t)$ and $H\left((0,1] \times\left(t_{0}, \infty\right)\right) \cap \gamma\left[0, t_{0}\right]=\emptyset$. This property easily follows from the fact that $\gamma\left[t_{0}, \infty\right)$ is the image of a continuous path in $\overline{\mathbb{H}}$ (which, by the way, has essentially the same law as γ) under the continuous extension of $g_{t_{0}}^{-1}: \mathbb{H} \rightarrow \mathbb{H} \backslash \gamma\left[0, t_{0}\right]$, to $\overline{\mathbb{H}}$. (See, for example, [RS, Proposition 2.1.ii, Theorem 5.2].)
Fix some $z_{0}=x_{0}+i y_{0} \in \mathbb{H}$. Then we may ask if γ passes to the right or to the left of z_{0}, topologically. (Formally, this should be defined in terms of winding numbers, as follows. Let β_{t} be the path from $\gamma(t)$ to 0 which follows the arc $|\gamma(t)| \partial \mathbb{U}$ clockwise from $\gamma(t)$ to $|\gamma(t)|$ and then takes the straight line segment in \mathbb{R} to 0 . Then γ passes to the left of z_{0} if the winding number of $\gamma[0, t] \cup \beta_{t}$ around z_{0} is 1 for all large t. As noted above, γ is a.s. transient, and therefore there is some random time t_{0} such that the winding number is constant for $t \in\left(t_{0}, \infty\right)$. This constant is either 0 or 1 , since γ does not cross itself, as discussed above.) Theorem 1 will be established by applying the following with $\kappa=6$:

Theorem 2. Let $\kappa \in[0,8)$, and let $z_{0}=x_{0}+i y_{0} \in \mathbb{H}$. Then the trace γ of chordal SLE ${ }_{\kappa}$ satisfies

$$
\mathbf{P}\left[\gamma \text { passes to the left of } z_{0}\right]=\frac{1}{2}+\frac{\Gamma(4 / \kappa)}{\sqrt{\pi} \Gamma\left(\frac{8-\kappa}{2 \kappa}\right)} \frac{x_{0}}{y_{0}} F_{2,1}\left(\frac{1}{2}, \frac{4}{\kappa}, \frac{3}{2},-\frac{x_{0}^{2}}{y_{0}^{2}}\right) .
$$

When $\kappa=2,8 / 3,4$ and 8 the right hand side simplifies to $1+\frac{x_{0} y_{0}}{\pi\left|z_{0}\right|^{2}}-\frac{\arg z_{0}}{\pi}, \frac{1}{2}+\frac{x_{0}}{2\left|z_{0}\right|}, 1-\frac{\arg z_{0}}{\pi}$ and $\frac{1}{2}$, respectively.

Let $x_{t}:=\operatorname{Re} g_{t}\left(z_{0}\right)-W(t), y_{t}:=\operatorname{Im} g_{t}\left(z_{0}\right)$, and $w_{t}:=x_{t} / y_{t}$.
Lemma 3. Almost surely, γ is to the left of z_{0} iff $\lim _{t \uparrow \tau\left(z_{0}\right)} w_{t}=\infty$ and a.s. γ is to the right of z_{0} iff $\lim _{t \uparrow \tau\left(z_{0}\right)} w_{t}=-\infty$.

Proof. Suppose first that $\kappa \in[0,4]$. In that case, a.s. γ is a simple path and $\tau\left(z_{0}\right)=\infty$, by [RS]. Given γ, we start a planar Brownian motion B from z_{0}. Suppose that γ is to the left of z_{0}. This implies that B will first hit $\mathbb{R} \cup \gamma[0, \infty)$ in $[0, \infty)$ or from the right hand side of γ. Since γ is transient, as $t \uparrow \infty$ the probability that B first hits $\gamma[0, t] \cup \mathbb{R}$ from the right hand side of γ or in $[0, \infty)$ tends to 1 . By conformal invariance of harmonic measure, this means that the harmonic measure in \mathbb{H} of $[W(t), \infty)$ from $g_{t}\left(z_{0}\right)$ tends to 1 . Therefore, $\lim _{t \uparrow \infty} w_{t}=\infty$. The argument in the case where γ is to the right of z_{0} is entirely similar. Since γ must be either to the left of to the right of z_{0}, this proves the lemma in the case $\kappa \in[0,4]$.
For $\kappa \in(4,8)$, the analysis is similar. The difference is that a.s. γ is not a simple path, $\tau\left(z_{0}\right)<\infty$, and z_{0} is in a bounded component of $\mathbb{H} \backslash \gamma\left[0, \tau\left(z_{0}\right)\right]$ (see [RS]). Clearly, z_{0} is not in a bounded component of $\mathbb{H} \backslash \gamma[0, t]$ when $t<\tau\left(z_{0}\right)$. Hence, at time $\tau\left(z_{0}\right)$ the path γ closes a loop around z_{0}. Since γ does not cross itself, the issue then is whether this is a clockwise or counter-clockwise loop. As above, if the loop is clockwise, then as $t \uparrow \tau\left(z_{0}\right)$ the harmonic measure from z_{0} in $\mathbb{R} \cup \gamma[0, t]$ is predominantly on $[0, \infty)$ and the right side of $\gamma[0, t]$. This implies that $w_{t} \uparrow \infty$. If the loop is counter-clockwise, we get $w_{t} \downarrow-\infty$, by the same reasoning. This completes the proof.

Proof of Theorem 2. Writing (1) in terms of the real and imaginary parts gives,

$$
d x_{t}=\frac{2 x_{t} d t}{x_{t}^{2}+y_{t}^{2}}-d W(t), \quad d y_{t}=-\frac{2 y_{t} d t}{x_{t}^{2}+y_{t}^{2}}
$$

Itô's formula then gives,

$$
\begin{equation*}
d w_{t}=-\frac{d W(t)}{y_{t}}+\frac{4 w_{t} d t}{x_{t}^{2}+y_{t}^{2}} \tag{2}
\end{equation*}
$$

Make the time change

$$
u(t)=\int_{0}^{t} \frac{d t}{y_{t}^{2}}
$$

and set

$$
\tilde{W}(t)=\int_{0}^{t} \frac{d W(t)}{y_{t}}
$$

Note that $\tilde{W} / \sqrt{\kappa}$ is Brownian motion as a function of u. From (2), we now get

$$
\begin{equation*}
d w=-d \tilde{W}+\frac{4 w d u}{w^{2}+1} \tag{3}
\end{equation*}
$$

We got rid of x_{t} and y_{t}, and are left with a single variable diffusion process $w(u)$. (This is no mystery, but a simple consequence of scale invariance.) An immediate consequence of this and the lemma is that a.s. $\lim _{t \uparrow \tau\left(z_{0}\right)} u=\infty$, because the diffusion (3) a.s. does not hit $\pm \infty$ in finite time. It is clear that $u(t)<\infty$ when $t<\tau\left(z_{0}\right)$, because y_{t} is monotone decreasing and positive for $t \in\left[0, \tau\left(z_{0}\right)\right)$.
Given a starting point $\hat{w} \in \mathbb{R}$ for the diffusion (3), and given $a, b \in \mathbb{R}$ with $a<\hat{w}<b$, we are interested in the probability $h(\hat{w})=h_{a, b}(\hat{w})$ that w will hit b before hitting a. Note that $h(w(u))$ is a local martingale. Therefore, assuming for the moment that h is smooth, by Itô's formula, h satisfies

$$
\frac{\kappa}{2} h^{\prime \prime}(w)+\frac{4 w}{w^{2}+1} h^{\prime}(w)=0, \quad h(a)=0, \quad h(b)=1
$$

By the maximum principle, these equations have a unique solution, and therefore we find that

$$
\begin{equation*}
h(w)=\frac{f(w)-f(a)}{f(b)-f(a)} \tag{4}
\end{equation*}
$$

where

$$
f(w):=F_{2,1}\left(1 / 2,4 / \kappa, 3 / 2,-w^{2}\right) w
$$

We may now dispose of the assumption that h is smooth, because Itô's formula implies that the right hand side in (4) is a martingale, and it easily follows that it must equal h. By [EMOT53, 2.10.(3)] and our assumption $\kappa<8$ it follows that

$$
\begin{equation*}
\lim _{w \rightarrow \pm \infty} f(w)= \pm \frac{\sqrt{\pi} \Gamma((8-\kappa) /(2 \kappa))}{2 \Gamma(4 / \kappa)} \tag{5}
\end{equation*}
$$

In particular, the limit is finite, which shows that $\lim _{b \rightarrow \infty} h_{a, b}(w)>0$ for all $w>a$. Hence, the diffusion process (3) is transient. Moreover,

$$
\mathbf{P}\left[\lim _{u \rightarrow \infty} w(u)=+\infty\right]=\frac{f(\hat{w})-f(-\infty)}{f(\infty)-f(-\infty)}
$$

An appeal to the lemma now completes the proof.

Proof of Theorem 1. As above, let \mathfrak{B} be the intersection of the union of the black hexagons with $\overline{\mathbb{U}}$, and let $\hat{\mathfrak{B}}$ be the union of \mathfrak{B} and the set $S:=\left\{r e^{i s}: r \geq 1, s \in[0, \theta]\right\}$. Let β be the intersection of $\overline{\mathbb{U}}$ with the outer boundary of the connected component of $\hat{\mathfrak{B}}$ containing S. Then β is a path in $\overline{\mathbb{U}}$ from 1 to $e^{i \theta}$. It is immediate that the event \mathcal{A} is equivalent to the event that 0 appears to the right of the path β; that is, that the winding number of the concatenation of β with the arc A_{θ} with the clockwise orientation around 0 is 1 .
S. Smirnov [Smi1] has shown that as $\delta \downarrow 0$ the law of β tends weakly to the law of the image of the chordal SLE $_{6}$ trace γ under any fixed conformal map $\phi: \mathbb{H} \rightarrow \mathbb{U}$ satisfying $\phi(0)=1$ and $\phi(\infty)=e^{i \theta}$. (See also [Smi2].) We may take

$$
\phi(z)=e^{i \theta} \frac{z+\cot \frac{\theta}{2}-i}{z+\cot \frac{\theta}{2}+i}
$$

The theorem now follows by setting $\kappa=6$ in Theorem 2 .

Discussion. According to J. Cardy (private communication, 2001), presently, the conformal field theory methods used by him to derive his formula do not seem to supply even a heuristic derivation of Theorem 1. On the other hand, it seems that, in principle, probabilities for "reasonable" events involving critical percolation can be expressed as solutions of boundaryvalue PDE problems, via SLE_{6}. But this is not always easy. In particular, it would be nice to obtain a proof of Watts' formula [Wat96]. The event \mathcal{A} studied here was chosen because the corresponding proof is particularly simple, and because the PDE can be solved explicitly.

Acknowledgements. I am grateful to Itai Benjamini and to Wendelin Werner for useful comments on an earlier version of this manuscript.

References

[Car92] John L. Cardy. Critical percolation in finite geometries. J. Phys. A, 25(4):L201L206, 1992.
[Car] John L. Cardy. Conformal Invariance and Percolation, arXiv:math-ph/0103018.
[EMOT53] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman.
[Gri89] Geoffrey Grimmett. Percolation. Springer-Verlag, New York, 1989.
[Kes82] Harry Kesten. Percolation theory for mathematicians. Birkhäuser Boston, Mass., 1982.
[LPSA94] Robert Langlands, Philippe Pouliot, and Yvan Saint-Aubin. Conformal invariance in two-dimensional percolation. Bull. Amer. Math. Soc. (N.S.), 30(1):1-61, 1994.
[LSW] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. Values of Brownian intersection exponents I: Half-plane exponents. Acta Math., to appear. arXiv:math.PR/9911084.
[RS] Steffen Rohde and Oded Schramm. Basic properties of SLE, arXiv:math.PR/0106036.
[Sch00] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221-288, 2000.
[Smi1] Stanislav Smirnov. Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit. Preprint.
[Smi2] Stanislav Smirnov. In preparation.
[Wat96] G. M. T. Watts. A crossing probability for critical percolation in two dimensions. J. Phys. A, 29(14):L363-L368, 1996.

