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Abstract
Given a probability law π on a set S and a function g : S → R, suppose one wants to
estimate the mean ḡ =

∫
g dπ. The Markov Chain Monte Carlo method consists of inventing

and simulating a Markov chain with stationary distribution π. Typically one has no a priori
bounds on the chain’s mixing time, so even if simulations suggest rapid mixing one cannot infer
rigorous confidence intervals for ḡ. But suppose there is also a separate method which (slowly)
gives samples exactly from π. Using n exact samples, one could immediately get a confidence
interval of length O(n−1/2). But one can do better. Use each exact sample as the initial state
of a Markov chain, and run each of these n chains for m steps. We show how to construct
confidence intervals which are always valid, and which, if the (unknown) relaxation time of the
chain is sufficiently small relative to m/n, have length O(n−1 log n) with high probability.

1 Background

Let π be a given probability distribution on a set S. Given a function g : S → R, we want to
estimate its mean ḡ :=

∫
S g(s)π(ds). As we learn in elementary statistics, one can obtain an

estimate for ḡ by taking samples from π and using the sample average g-value as an estimator.
But algorithms which sample exactly from π may be prohibitively slow. This is the setting for
the Markov chain Monte Carlo (MCMC) method, classical in statistical physics and over the
last ten years studied extensively as statistical methodology [4, 7, 9, 12]. In MCMC one designs
a Markov chain on state-space S to have stationary distribution π. Then the sample average
g-value over a long run of the chain is a heuristic estimator of ḡ. Diagnostics for assessing
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length of run required, and expressions for heuristic confidence intervals, form a substantial
part of MCMC methodology [11]. In general one cannot make such estimates rigorous, because
one cannot eliminate the possibility that all the samples seen come from some small part of
the state space which is almost disconnected from the remainder. Rigorous estimates typically
require an a priori bound on some notion of the chain’s mixing time (e.g. the relaxation
time defined at (3)); and while there is now substantial theoretical literature on mixing times
[1, 3, 5] it deals with settings more tractable than most statistical applications.
This paper investigates the interface between rigor and heuristics in a particular (perhaps
artificial) context. Suppose we have a guess τ̂ for the mixing time of the chain, based on
simulation diagnostics or heuristic estimates [6] or some non-rigorous mathematical argument.
Suppose we have some separate scheme (an exact sampler) which gives independent samples
exactly from π. Imagining that sampling τ̂ steps of the chain is roughly equivalent to sampling
once from π, it is natural to consider the ratio

ρ =
cost of one exact sample

cost of τ̂ steps of the chain

where cost refers to computational time. If ρ < 1 then one would just use the exact sampler
and forget MCMC. If ρ is extremely large then we might not be able to afford even one
exact sample, and we are forced to rely on MCMC (this is the setting typically envisaged in
MCMC). This paper addresses the remaining context, where ρ is large but not extremely large;
in other words, we can afford to simulate many steps of the chain (enough to make estimates
heuristically good) but can afford only a few exact samples. In the case of sampling from
general d-dimensional densities, for instance, exact samplers (e.g. based on rejection sampling
using some tractable comparison density) are typically feasible only for small d, and MCMC
is used for large d, so there should always be a window of d-values which fits our “ρ large, but
not extremely large” context.
In this context, we could just use the exact sampler to get n independent samples from π.
Then the sample average g-value provides an estimate of ḡ with O(n−1/2) error. But instead,
suppose we use these n independent samples as initial states and generate n independent m-
step realizations of the Markov chain. If diagnostic tests suggest that mixing occurs in τ̂ steps
then we have an “effective sample size” of (n×m/τ̂) and the heuristic estimate of error (when
we use the overall sample average g-value as an estimator) would be O(

√
τ̂ /(nm)). Our basic

result, Theorem 2.1, shows that in a certain sense such error bounds can be made rigorous.
This basic result requires an initial guess for mixing time; an “adaptive” variation, Theorem
2.2, eliminates that requirement.

2 Results

The discussion in section 1 provides conceptual context for our result, but let us now state
the (rather minimal) mathematical assumptions for the result. For simplicity we assume the
state space S is finite (though since our results are non-asymptotic they must extend to the
general case without essential change). We assume (for reasons explained in Section 2.1) the
function g : S → R is bounded, so by rescaling we may assume

0 ≤ g(·) ≤ 1. (1)

We assume the Markov chain is reversible, that is to say its transition matrix K satisfies

πikij = πjkji, ∀i, j. (2)
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With no further assumptions, Theorem 2.1 says we can construct a conservative confidence
interval I which is always valid, i.e. satisfies (4). That is, for validity there are no “implicit
asymptotics”, and indeed we do not even need to assume K is irreducible. The length of the
confidence interval will depend on the data, i.e. the realizations of the chain, but (5) bounds
the length in terms of the relaxation time of the chain, defined as

τ2 := (1 − λ2)−1 (3)

where 1 = λ1 ≥ λ2 ≥ · · · ≥ λs ≥ −1 are the eigenvalues of K, and τ2 < ∞ if K is irreducible.

Theorem 2.1 Assume (1,2). Take n ≥ 2, m ≥ 1, 0 < α < 1, c > 0 and τ̂ ≥ 1. Based on 2n
exact samples from π and 2mn steps of the K-chain, we can construct an interval I such that

P (ḡ 6∈ I) ≤ α (4)

and

P
(

length(I) > kc
α max

(
1
n ,
√

τ̂
nm

)
log2 n

)

≤ 3n(n + 1) exp
(
− m c2

48nτ2
log2

2 n

)
, (5)

where kc
α := 2

(
c
√

2/α + log(4/α)
)
.

2.1 Discussion

Of course 1 − α is the prescribed confidence level. Choice of c reflects a trade-off between

the “target length” kc
α max

(
1
n ,
√

τ̂
nm

)
log2 n of confidence interval and the probability of

meeting that target. We have not tried to optimize numerical constants; at various places
where we have used Chebyshev’s inequality, more complicated arguments would presumably
give better bounds.
To interpret Theorem 2.1 in order-of-magnitude terms, suppose we take m = nτ̂ , so that
we use 2n2τ̂ steps of the chain. Then the “target length” of our confidence interval will
be O(n−1 log n). The theorem guarantees a confidence interval that is always valid, and
guarantees that, if τ2 is indeed not more than τ̂ , then the length of the confidence interval
will likely not exceed the target length. This contrasts with the O(n−1/2) length confidence
interval obtained by using the exact sampler only, and gets close to the O(n−1) length of the
heuristic confidence interval.
Admittedly the numerical constants make our numerical error bounds too crude to be useful in
practice. For instance, taking m = nτ̂ , α = 0.32 and c = 1, the target length is about 10 log2 n

n ,
compared to the 1.0√

n
length of the usual confidence interval based on exact samples only. So

not until n ≈ 30, 000 would our interval be guaranteed to be actually shorter (provided τ̂/τ2

were sufficiently large). But the order-of-magnitude result does seem of theoretical interest,
in particular because of its similarity to the idea [10] of self-testing algorithms. That paper
describes an algorithm for generating random self-avoiding walks. As the authors write [10]
“While there are a number of Monte Carlo algorithms used to solve these problems in practice,
these are heuristic and their correctness relies on unproven conjectures. In contrast, our
algorithm is shown rigorously to produce answers with specific accuracy and confidence. Only
the efficiency of the algorithm relies on a widely believed conjecture, and a novel feature is that
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this conjecture can be tested as the algorithm proceeds.” In our MCMC setting, we cannot
estimate rigorously the actual value of τ2, but we can self-justify inferences based on estimated
τ2.
On a more technical note, let us outline why Theorem 2.1 gives close to the best possible
bounds on confidence interval length. Indeed, we claim that the best one could hope for is
length of order

max
(

1
n

,

√
τ2

nm

)
. (6)

The point is that there are two different “obstacles” to sharp estimation. First, consider
the eigenvector g2 associated with eigenvalue λ2. It is easy to estimate the variance of the
overall sample average when g = g2, and this variance works out as order τ2

nm ; so we should
not hope to have smaller estimation error than the corresponding standard deviation

√
τ2
mn .

Second, suppose some subset A of the state space, with π(A) = 1/n, is almost disconnected.
Then it is not unlikely that all n exact samples, and hence the n realizations of the chains,
miss A, and so a contribution Eπ[g(·)1A] to ḡ would be “invisible” to our simulations, and
so this contribution is an unavoidable source of possible error when using sample averages
as estimators. Our assumption (1) that g is bounded was intended as the simplest way of
bounding this error – bounding it as order 1/n.
So Theorem 2.1 shows that, if our initial guess τ̂ is indeed roughly close to τ2, then our rigorous
confidence interval’s length will be roughly of the minimal order (6), up to log n terms. In
Section 2.3 we give a natural “adaptive” variation in which we prescribe two numbers τ̂ < τ̂max,
where as before τ̂ is a heuristic estimate of τ2, and where 2n2τ̂max is the maximum number
of steps of the chain that we would be willing to simulate. Theorem 2.2 gives an always-
valid confidence interval which, if τ2 is indeed small relative to τ̂max, will have length of order
n−1 log n and will require order n2τ2 steps of the chain.

2.2 Outline of construction and proof

Recall the “procedure” of simulating n realizations of m steps of the Markov chain, starting
from n exact samples from π. The construction of the confidence interval I in Theorem 2.1
can be summarized as follows.
(i) Perform this procedure once, and find the overall average g-value – call it ḡ∗.
(ii) Perform the procedure again, and for 1 ≤ i ≤ n let Ai be the average g-value over the i’th
m-step realization.
(iii) Test whether |Ai − ḡ∗| ≤ c log n√

r(n,m)
for all i, where r(n, m) := min

(
n, m

τ̂

)
. If so, report

a “short” confidence interval
[
aveiAi ± O

(
max

(
1
n ,
√

τ̂
nm

)
log n

)]
; if not, report a “long”

confidence interval [aveiAi ± O( 1√
n
)].

To analyze the validity of the confidence interval, the key point is that after observing the event
“|Ai − ḡ∗| ≤ c log n√

r(n,m)
” happening n times out of n, we can be confident that its probability is

1 −O(1/n). This allows us to truncate Ai at ḡ∗ ± c log n√
r(n,m)

, and then the sample average of n

truncated variables has s.d. of order log n√
r(n,m)

× 1√
n

= max
(

1
n ,
√

τ̂
nm

)
log n.

Finally, to bound the chance of not reporting the short confidence interval we need to bound
the chance of a truncation being needed, and a bound can be derived from large deviation



Fast Heuristic Markov Chain Monte Carlo and Slow Exact Sampling 83

estimates for reversible chains.

2.3 An adaptive version

In the procedure underlying Theorem 2.1 we make a single guess τ̂ and hope that the “good
event” which leads to a short confidence interval will happen; if not, we settle for a long
confidence interval. A natural variation is to specify that, if the “good event” fails, then repeat
the process with τ̂ replaced by 2τ̂ , 4τ̂ , 8τ̂ , . . . and continue until the “good event” happens or
until we reach some predetermined limit on numbers of steps of the chain.

Theorem 2.2 Assume (1,2). Take n ≥ 5, 0 < α < 1, and 1 ≤ τ̂ ≤ τ̂max = 2aτ̂ , where a ≥ 0
is an integer. Then based on 2n exact samples from π, and 2n2 × M steps of the K-chain,
where M is a random variable taking values in {τ̂ , 2τ̂ , 22τ̂ , . . . , 2aτ̂}, we can define an interval
I, such that

P (ḡ 6∈ I) ≤ α, (7)

and
length(I) ≤ kα,a

log2 n

n
if 1 ≤ M

τ̂
< 2a, (8)

and
P (M > 96(τ2 ∨ τ̂ )) ≤ 3n(n + 1) exp

(− log2
2 n
)
. (9)

where kα,a = 2
(√

2(a + 1)/α + log(4(a + 1)/α)
)
.

So we are prescribing the maximum number of steps of the chain to be 2n2τ̂max. The bound
in (9) is less than 0.05 for n = 8 and goes to zero very rapidly as n increases (the constant
96 just emerges from the proof technique). So if τ̂max is indeed large compared to τ2 then by
generating a small number of exact samples one can construct a confidence interval for ḡ which
will be “short” with high probability, and the number of steps of the Markov chain required
will be O(n2(τ2 ∨ τ̂ )). More precisely, if we start with small τ̂ then we are confident of needing
at most 192n2τ2 steps of the chain. But as discussed earlier, though the interval is “short” in
the sense of being O( log n

n ), the numerical constants make the interval numerically large for
moderate values of n.

3 Proof of Theorem 2.1

3.1 Construction of the confidence interval

Let {Z∗
1 , Z∗

2 , . . . , Z∗
n} be n independent samples from π. For 1 ≤ i ≤ n let (X∗

ij)
m−1
j=0 be a

reversible Markov chain with initial state X∗
i0 = Z∗

i ; these n Markov chains are independent.
Define

A∗
i :=

1
m

m−1∑
j=0

g(X∗
ij), 1 ≤ i ≤ n,

and

ḡ∗ :=
1
n

n∑
i=1

A∗
i . (10)

ḡ∗ is our initial guess for ḡ.
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Now re-run the entire simulation independently to get {Z1, Z2, . . . , Zn}, another set of n
independent samples from π, and (Xij)m−1

j=0 another independent but identically distributed
family of n reversible Markov chains each with initial state Xi0 = Zi. We further define

Ai :=
1
m

m−1∑
j=0

g(Xij), 1 ≤ i ≤ n,

and
=

A:=
1
n

n∑
i=1

Ai. (11)

Fix c > 0. Truncate each Ai to get

Ãi :=

{
Ai if |Ai − ḡ∗| ≤ c log2 n√

r(n,m)

ḡ∗ otherwise
(12)

where r(n, m) := min
(
n, m

τ̂

)
. Let

'
A:=

1
n

n∑
i=1

Ãi. (13)

Write Nn =
∑n

i=1 I(Ai 6= Ãi) for the number of truncations, and call the event Gn := [Nn = 0]
the good event.
Define h : (N ∪ {0})× N × (0, 1) → [0,∞) by

h(z, n; α) :=




z

n
+

cα√
n

if z 6= 0

dα

n
if z = 0

, (14)

where
cα :=

1√
2α

and dα := log
2
α

.

In the next section we shall prove

Proposition 3.1 For any b > 0

P
[
| '
A −ḡ| > b c max

(
1
n ,
√

τ̂
nm

)
log2 n + h(Nn, n; α)

]
≤ 1

b2
+ α. (15)

Replacing α by α/2 in Proposition 3.1 and setting b =
√

2/α, we see that the confidence
interval

I :=
'
A ±

(
c

√
2
α

max
(

1
n ,
√

τ̂
nm

)
log2 n + h(Nn, n; α/2)

)
(16)

satisfies the requirement of (4) that P(ḡ /∈ I) ≤ α. If Nn = 0 then the length of this confidence
interval is

2

(
c

√
2
α

max
(

1
n ,
√

τ̂
nm

)
log2 n +

dα/2

n

)
. (17)

Notice that (17) is bounded by kc
α max

(
1
n ,
√

τ̂
nm

)
log2 n; here we use assumption n ≥ 2

which implies log2 n ≥ 1. So to prove (5) and complete the proof of Theorem 2.1, it is enough
to prove (in section 3.3)
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Proposition 3.2

P(Nn > 0) ≤ 3n(n + 1) exp
(
− m c2

48nτ2
log2

2 n

)
.

3.2 Proof of Proposition 3.1

We denote the conditional probability, conditional expectation and conditional variance given
ḡ∗ by Pḡ∗

, Eḡ∗
and Varḡ∗

respectively.

Observe that under Pḡ∗
, the random variables Ã1, Ã2, . . . , Ãn are i.i.d. Thus Eḡ∗

(
'
A) =

Eḡ∗
(Ã1), and Varḡ∗

(
'
A) = 1

nVarḡ∗
(Ã1). But Varḡ∗

(Ã1) = Varḡ∗
(Ã1 − ḡ∗) ≤

(
c log2 n√

r(n,m)

)2

,

because |Ã1 − ḡ∗| ≤ c log2 n√
r(n,m)

. So by Chebyshev’s inequality, we get

Pḡ∗
[
| '
A −Eḡ∗

(Ã1)| > b c max
(

1
n ,
√

τ̂
nm

)
log2 n

]
≤ 1

b2
,

and by taking expectation

P
[
| '
A −Eḡ∗

(Ã1)| > b c max
(

1
n ,
√

τ̂
nm

)
log2 n

]
≤ 1

b2
. (18)

Now we want to estimate |Eḡ∗
(Ã1) − ḡ|. ¿From the definitions (11) and (13),

(
=

A − '
A) =

1
n

n∑
i=1

AiI(Ai 6= Ãi) − 1
n

n∑
i=1

ḡ∗I(Ai 6= Ãi).

Since g takes values in [0, 1],

− 1
n

Nn ≤
(=

A − '
A
)

≤ 1
n

Nn. (19)

Now
=

A is independent of ḡ∗, thus taking conditional expectation given ḡ∗ in (19) we get∣∣∣Eḡ∗
(Ã1) − ḡ

∣∣∣ ≤ pn(ḡ∗), (20)

where pn(ḡ∗) := Pḡ∗
(
|A1 − ḡ∗| > c log2 n/

√
r(n, m)

)
.

Under Pḡ∗
we have Nn ∼ Binomial (n, pn(ḡ∗)), and hence

Pḡ∗
(

pn(ḡ∗) >
dα

n
, Nn = 0

)
=

(
1 − pn(ḡ∗)

)n

1(pn(ḡ∗)>dα/n)

≤
(

1 − dα

n

)n

1(dα/n≤1)

≤ e−dα since (1 − x) ≤ e−x ∀ 0 ≤ x ≤ 1

=
α

2
by definition of dα. (21)
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Further,

Pḡ∗
(

pn(ḡ∗) >
Nn

n
+

cα√
n

, Nn > 0
)

(22)

≤ Pḡ∗
(

Nn

n
+

cα√
n

< pn(ḡ∗)

)

≤ Pḡ∗ (|Nn − npn(ḡ∗)| >
√

ncα

)
≤ pn(ḡ∗)(1 − pn(ḡ∗))

c2
α

by Chebyshev’s inequality

≤ 1
4c2

α

=
α

2
by definition of cα. (23)

Taking expectations of the conditional probabilities in (21) and (23) we get

P
(

pn(ḡ∗) >
dα

n
, Nn = 0

)
≤ α

2
and

P
(

pn(ḡ∗) >
Nn

n
+

cα√
n

, Nn > 0
)

≤ α

2
.

Thus by definition of h(·)
P
(
pn(ḡ∗) > h(Nn, n; α)

)
≤ α. (24)

And hence from (18), (20) and (24) we get

P
(
| '
A −ḡ| > b c max

(
1
n ,
√

τ̂
nm

)
log2 n + h(Nn, n; α)

)

≤ P
(
| '
A −E(Ã1|ḡ∗)| > b c max

(
1
n ,
√

τ̂
nm

)
log2 n

)

+ P
(
pn(ḡ∗) > h(Nn, n; α)

)
≤ 1

b2
+ α.

�

3.3 Proof of Proposition 3.2

Clearly

P(Nn > 0) ≤ nP

(
|A1 − ḡ∗| > c

log2 n√
r(n, m)

)

≤ n

[
P

(
|A1 − ḡ| > c

log2 n

2
√

r(n, m)

)

+ P

(
|ḡ∗ − ḡ| > c

log2 n

2
√

r(n, m)

)]
. (25)
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To bound the terms of (25) we use a large deviation bound for sample averages of reversible
Markov chains. Lezaud [8] equation (2) gives a one-sided bound for A1 = m−1

∑m−1
j=0 g(X1j):

P
(
A1 − ḡ > λ

)
≤ exp

(
1

5τ2
− λ2m

12τ2

)
, λ > 0.

Since τ2 ≥ 1/2 always, and 2e2/5 < 3, we deduce the two-sided bound

P
(
|A1 − ḡ| > λ

)
≤ 3 exp

(
−λ2m

12τ2

)
, λ > 0. (26)

So in particular

P

(
|A1 − ḡ| > c

log2 n

2
√

r(n, m)

)
≤ 3 exp

(
− m c2

48nτ2

n

r(n, m)
log2

2 n

)

≤ 3 exp
(
− m c2

48nτ2
log2

2 n

)
. (27)

Also, for λ > 0,

P (|ḡ∗ − ḡ| > λ) ≤ nP (|A∗
1 − ḡ| > λ)

= nP (|A1 − ḡ| > λ)

≤ 3n exp
(
−λ2m

12τ2

)
by (26).

So in particular

P

(
|ḡ∗ − ḡ| > c

log2 n

2
√

r(n, m)

)
≤ 3n exp

(
− m c2

48nτ2

n

r(n, m)
log2

2 n

)

≤ 3n exp
(
− m c2

48nτ2
log2

2 n

)
. (28)

Substituting (27) and (28) into (25) gives the bound asserted in Proposition 3.2.
�

4 Proof of Theorem 2.2

For the first part of the procedure for constructing the confidence interval I, simulate {Z∗
i , 1 ≤

i ≤ n} and {Zi, 1 ≤ i ≤ n} as at the start of section 3.1. This part of the procedure is
not repeated. Then for k ∈ {0, 1, 2, . . . , a}, let {X∗

ij | 1 ≤ i ≤ n, 1 ≤ j ≤ mk := 2knτ̂} be
realizations of chains started at X∗

i0 = Z∗
i ; and let {Xij | 1 ≤ i ≤ n, 1 ≤ j ≤ mk := 2knτ̂}

be realizations of chains started at Xi0 = Zi; each simulated until time mk := 2knτ̂ . Repeat

definitions from Section 3: for k = 0, 1, . . . a define A
(k)
i , Ã

(k)
i , and

'
A

(k)

as Ai, Ãi, and
'
A

respectively with m = mk. Note that for such m we have r(n, m) = n.
Let N

(k)
n =

∑n
i=1 I(A(k)

i 6= Ã
(k)
i ). Define

I (n, k; α) :=

[
'
A

(k)

±
(√

2
α

log2 n

n
+ h(N (k)

n , n; α/2)

)]
, (29)
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where h(·) is as defined in (14). This is the interval I defined at (16) which featured in Theorem
2.1 for c = 1, and so by (4) we get that for 0 ≤ k ≤ a, 0 < α < 1, and n ≥ 5,

P (ḡ 6∈ I(n, k; α)) ≤ α. (30)

Define T := min{ 0 ≤ k ≤ a |N (k)
n = 0 }, where we write T = a if the set is empty. Then define

M := 2T τ̂ ∈ {τ̂ , 2τ̂ , 22τ̂ , . . . , 2aτ̂}
.

I := I
(
n, T ; α/(a + 1)

)
.

If 0 ≤ T < a then N
(T )
n = 0, and hence from (29) and (14) we get that

length(I) ≤ kα,a
log2 n

n
, (31)

where kα,a = 2
(√

2(a + 1)/α + log(4(a + 1)/α)
)
, so (8) is satisfied. Further,

P
(
ḡ 6∈ I

)
=

a∑
k=0

P
(
ḡ 6∈ I, T = k

)

=
a∑

k=0

P
(
ḡ 6∈ I(n, k; α/(a + 1)), T = k

)

≤
a∑

k=0

P
(
ḡ 6∈ I (n, k; α/(a + 1))

)

≤
a∑

k=0

α

a + 1
= α.

So (7) is satisfied also.
Now to complete the proof we observe that

P (M > 96(τ̂ ∨ τ2)) = P
(

T >

⌊
log2

96(τ2 ∨ τ̂ )
τ̂

⌋)

≤ P
(

N
(blog2

96(τ2∨τ̂)
τ̂ c)

n > 0
)

, (32)

where bxc denotes the greatest integer less than or equal to x.
Applying Proposition 3.2 with m = n × 2blog2

96(τ2∨τ̂)
τ̂ cτ̂ , and c = 1, we get

P
(

N
(blog2

96(τ2∨τ̂)
τ̂ c)

n > 0
)

≤ 3n(n + 1) exp

(
−2blog2

96(τ̂∨τ2)
τ̂ c τ̂

48τ2
log2

2 n

)

≤ 3n(n + 1) exp
(− log2

2 n
)
. (33)

The bound asserted in (9) follows from (32) and (33). The number of chain steps used equals
2n2 × 2T τ̂ = 2n2 × M .

�
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