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Abstract

We study the weighted version of the interchange process where a permutation
receives weight θ#cycles. For θ = 2 this is Tóth’s representation of the quantum
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1 Introduction

The interchange process and related models of random permutations are interesting
both for their beautiful mathematics, and for their relevance to quantum theoretical
models for magnetization. The interchange process may be described as follows. Fix
an integer n and put n labelled balls into n labelled boxes, ball i in box i. At each time
t = 1, 2, . . . , select uniformly (independently) a pair of distinct boxes i, j and transpose
the balls inside them. At a given time t, box i contains some ball πt(i), where πt is
a permutation of 1, 2, . . . , n. Said otherwise, πt is the composition of t independent,
uniformly chosen transpositions.

Being a permuation, πt can be written as a product of disjoint cycles. Schramm
showed in [11], proving a conjecture of Aldous in [4], that if t is of the form bcnc with
c > 1/2, then with probability approaching 1 as n → ∞, the largest cycle has size of
order n (for c < 1/2 it is of order log n). He also described the scaling limit of the cycles
in terms of the Poisson–Dirichlet distribution.

In this paper we study random permutations which are biased towards having many
small cycles. A precise definition is given in the next subsection, but roughly speaking
we consider the weighted version of the interchange process where each permutation π
receives a weight θ`(π). Here θ ≥ 1 is fixed, and `(π) is the total number of cycles in π.
For θ = 1 one recovers the interchange process. Our main result (Theorem 1.1) is that
large cycles appear for c > θ/2.

The model is motivated by considerations in statistical physics, where it provides a
probabilistic representation of the (ferromagnetic) quantum Heisenberg model on the
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Large cycles in random permutations

complete graph Kn. It is a notorious open problem to prove that the quantum Heisenberg
ferromagnet on the lattice Zd, d ≥ 3, can exhibit a nonzero magnetization.

1.1 Model and main result

We will in fact work in continuous time, and with a different time-scaling than
described above. Let G = Kn = (V,E) be the complete graph on the vertex set V =

{1, . . . , n}, with edge set E =
(
V
2

)
. Let β > 0 and let P1(·) denote a probability measure

governing a collection ω = (ωxy : xy ∈ E) of independent rate 1 Poisson processes on
[0, β], indexed by the edges. If ωxy has an event at time t ∈ [0, β] we write (xy, t) ∈ ω. We
think of such an event as a transposition of the vertices x, y at time t. The time-ordered
product of these transpositions gives a permutation π = π(ω) of V . More precisely, if
we write (xiyi, ti), i = 1, . . . , N , for the points of ω, indexed so that 0 < t1 < . . . < tN < β,
and write τi = (xi, yi) for the transposition of xi and yi, then we have that π = τN · · · τ2τ1.

Let ` = `(ω) denote the number of cycles in a disjoint-cycle decomposition of π(ω),
including singletons. Let C1(π), . . . , C`(π) denote the cycles ordered by decreasing size
(breaking ties by any rule). For θ ≥ 1 we will consider the distribution of ω and π(ω)

under the probability measure Pθ(·) given by

dPθ
dP1

(ω) =
θ`(ω)

Z
. (1.1)

Here Z = Z(θ, β) is the appropriate normalization. (The same definition makes sense on
a general finite graph G.)

For θ = 1 our model is the continuous-time version of the interchange process, sped
up by a factor

(
n
2

)
compared to the introduction, viewed at time β. We take β of the form

β = λ/n where λ > 0 is constant.

Theorem 1.1. Let G = Kn and β = λ/n with λ > θ > 1. For each ε > 0 there is δ > 0

such that, for n large enough,

Pθ(|C1(π)| ≥ δn) ≥ 1− ε.

Our proof of Theorem 1.1 relies on a colouring-lemma inspired by the approach of
Bollobás, Grimmett and Janson [6] to the random-cluster model. Roughly speaking, if we
sample ω and then colour each cycle red or white independently, with probability 1/θ for
red, then the conditional distribution of the red cycles is determined by an interchange
process. See Lemma 2.2 for a precise statement. When λ > θ, we can use the results of
Schramm [11] to show that there are red cycles of order n.

With high probability there are no cycles having size of order n when λ is small
enough, e.g. when λ < e−1. This follows from [7, Theorem 6.1]. One would expect that
there is a critical value λc(θ) such that there are cycles of order n for λ > λc but not for
λ < λc. Schramm’s result shows that λc(1) = 1. It follows from the work of Tóth [12] that
λc(2) = 2. For other values of θ the existence of λc is not known, and Theorem 1.1 is the
first result on the occurrence of large cycles in this generality.

Regarding other choices for G, the interchange process (θ = 1) has been investigated
on general graphs by Alon and Kozma [1], and on infinite trees by Angel [2] and by
Hammond [8, 9]. In ongoing work, Kotecký, Miłoś and Ueltschi are investigating cases
with θ 6= 1 on the hypercube.

1.2 Relation to the Heisenberg model

For θ = 2 the cycles in our model represent correlations in the (ferromagnetic,
quantum) Heisenberg model, as shown by Tóth [13]. Here is a brief account, see the
review [7] for more details.
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The Heisenberg model on G is given by the Hamiltonian

H = −2
∑
xy∈E

(σ(1)
x σ(1)

y + σ(2)
x σ(2)

y + σ(3)
x σ(3)

y ).

Here

σ(1) = 1
2

(
0 1

1 0

)
, σ(2) = 1

2

(
0 −i
i 0

)
, σ(3) = 1

2

(
1 0

0 −1

)
are spin- 1

2 Pauli matrices, and σ
(j)
x acts on the Hilbert space HV =

⊗
x∈V C

2 as σ(j) ⊗
IdV \{x}. Magnetic correlations between vertices x, y ∈ G are given by the correlation
functions

〈σ(3)
x σ(3)

y 〉 :=
tr
(
σ

(3)
x σ

(3)
y e−βH

)
tr
(
e−βH

) , (1.2)

where tr(·) denotes the trace of a matrix. In this formulation the parameter β > 0 is
usually called the inverse temperature. (It is the same β as in Section 1.1.)

Tóth’s representation expresses the correlations (1.2) probabilistically. Write {x↔ y}
for the event that x and y belong to the same cycle in the permutation π(ω). Then we
have, with θ = 2:

〈σ(3)
x σ(3)

y 〉 = 1
4P2(x↔ y).

Thus the occurrence of large cycles in π(ω) corresponds, in physical terms, to magnetic
ordering.

The quantum model also possesses other probabilistic representations. In the pa-
per [12] Tóth studied a lattice gas representation and explicitly computed the free energy.
(The same result was independently obtained by Penrose [10].) By standard arguments
one may deduce from these results that the quantum Heisenberg model on G = Kn

undergoes a phase transition at β = 2/n, as mentioned above.

Outline and notation

We describe a graphical representation, and present the key colouring-lemma, in
Section 2, followed by the proof of Theorem 1.1 in Section 3.

The abbreviation i.i.d. means independent and identically distributed. The identity
permutation is denoted id. Unspecified limits are for n→∞. If an/bn → 0 then we write
an = o(bn), if an/bn is bounded above then we write an = O(bn). The indicator of an
event A is written 1IA, and takes the value 1 if A happens, otherwise 0. Expectation with
respect to Pθ will be written Eθ.

2 Colouring-lemma

The following graphical representation of a sample ω will be useful. We picture ω
in G × [0, β], representing a point (xy, t) ∈ ω by a ‘cross’ as in Figure 1. The crosses
decompose V × [0, β] into a collection L(ω) of disjoint loops, obtained as follows. Starting
at some point (x, 0) ∈ V × [0, β], we follow the interval {x}× [0, β] until we reach the first
cross (if any), i.e. the first point (xy, t) ∈ ω for some y. At this point we jump to (y, t) and
continue as before on the interval {y} × [t, β] until the next cross (if any). Eventually we
reach a point (z, β). We then continue the loop at (z, 0), i.e. we apply periodic boundary
conditions ‘vertically’. The loop is completed when we return to the starting point (x, 0).
Denote the loop by γ and identify γ with the union of all intervals of the form {y} × [s, t)

that it traverses.
Recall the permutation π = π(ω) defined in Section 1.1. The points z such that γ

visits (z, 0) are precisely x, π(x), π2(x), . . . (in the same order). Thus the loops γ are in
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1 2 3 4 5 6 7 8 9 10

Figure 1: Loop-representation of a sample ω. The vertex set V = {1, . . . , 10} is drawn
on the horizontal axis, and ‘time’ is on the vertical axis. Transpositions (xy, t) ∈ ω

are represented as crosses. The resulting loops are coloured red (solid red lines) or
white (dotted lines). Here π(ω) = (1, 3)(2, 6, 7, 4)(9, 10), and there are two red loops
corresponding to the cycles (2, 6, 7, 4) and (9, 10).

one-to-one correspondence with the cycles C of π, and the total vertical length of a loop
equals β times the size of the corresponding cycle.

Let θ > 1 and r = 1/θ. Given ω, colour each loop γ ∈ L(ω) red or white, independently
of each other, with probability r for red. Write R and W for the unions of the red and
white loops, respectively; they are subsets of V × [0, β]. See Figure 1. The points of ω
(i.e. the crosses) now fall into three categories: red, white and mixed. Write ωr, ωw and
ωm for the red, white and mixed crosses, respectively. Thus ω = ωr ∪ ωw ∪ ωm.

For H ⊆ E × [0, β] measurable, let PH1 (·) denote the law of the restriction ω ∩H of ω
to H. Similarly, for measurable S ⊆ V × [0, β], let PS1 (·) be the restriction of P1(·) to the
set

{(xy, t) ∈ E × [0, β] : (x, t) ∈ S and (y, t) ∈ S};

that is, the set of points in E × [0, β] ‘between’ points of S. The following is the key
colouring-lemma.

Lemma 2.1. Given R, the distribution of ωr is PR1 (·), and ωr is conditionally independent
of ωw.

In words, conditional on the red set, the red crosses simply form a Poisson process.
This means that (given R) the red cycles are obtained from a sample of the interchange
process, in a way which will be made precise in Lemma 2.2. Lemma 2.1 holds for general
graphs G, with the same proof.

One way to check Lemma 2.1 is to finely discretize the Poisson processes. We present
instead a ‘clean’ proof, and the basic approach is as follows. We write a coloured
loop-configuration as a pair (q, ω), where q ∈ {r,w}V is a colouring of the vertices. We
interpret qx as the colour of the loop containing (x, 0), thus we require the pair (q, ω)

to be consistent in that qx = qy whenever x, y belong to the same cycle. Write C(q) for
the set of ω that are consistent with q. Note that, for ω ∈ C(q), the red and white sets
R, W are determined by the pair (q, ωm) where ωm are the mixed crosses as before.
Indeed, deleting red or white crosses does not change R or W : compare Figure 2 with
Figure 1. Thus we may write R = R(q, ωm) and W = W (q, ωm), and moreover there is
some freedom in the choice of ωr ∪ ωw. The only restriction on ωr ∪ ωw is that it is a
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subset of

H = H(q, ωm) ={(xy, t) : (x, t) ∈ R and (y, t) ∈ R}
∪ {(xy, t) : (x, t) ∈W and (y, t) ∈W}.

We will proceed by conditioning on the mixed crosses ωm. When integrating over the
allowed choices for ωr, a cancellation occurs in the factor θ`(ω) which removes the
dependencies in R.

Proof of Lemma 2.1. Let X = X(R) be a bounded R-measurable random variable, and
consider events A = A(ωr) and B = B(ωw) depending on ωr and ωw, respectively. We
will give an expression for Eθ[X1IA1IB ] which will allow us to deduce the result.

Write `R(ωr) and `W (ωw) for the number of red and white loops, respectively, so that
`(ω) = `R(ωr) + `W (ωw). For each colouring q, let Ξ(q) be the set of possible ωm for
ω ∈ C(q). Then ω is consistent with q if and only if it can be decomposed as a disjoint
union ω = ξ ∪ ζ with ξ ∈ Ξ(q) and ζ ⊆ H(q, ξ). We thus have that

Eθ[X1IA1IB ] =
1

Z

∑
q∈{r,w}V

E1

[
1I{ω ∈ C(q)}θ`(ω)r`R(ωr)(1− r)`W (ωw)X1IA1IB

]
=

1

Z

∑
q∈{r,w}V

E1

[∑
ξ⊆ω

1I{ξ ∈ Ξ(q);ω \ ξ ⊆ H}(θ − 1)`W (ωw)X1IA1IB
]
.

(2.1)

The expectation on the right-hand-side of (2.1) can be written in the form∫
dP1(ω)

∑
ξ⊆ω

α(ξ;ω \ ξ) = eβ|E|
∫
dP1(ξ)

∫
dP1(ζ)α(ξ; ζ) (2.2)

with

α(ξ; ζ) = 1I{ξ ∈ Ξ(q); ζ ⊆ H(q, ξ)}(θ − 1)`W (ζw)X(R(q, ξ))1IA(ζr)1IB(ζw).

We give a proof of the identity (2.2) below. From (2.2) we see that

Eθ[X1IA1IB ] =
eβ|E|

Z

∑
q∈{r,w}V

∫
Ξ(q)

dP1(ξ)

∫
dP1(ζ)1I{ζ ⊆ H}(θ − 1)`W (ζw)X1IA1IB .

Here, ξ plays the role of ωm and ζ = ζr ∪ ζw that of ω \ ωm. Thus X is a function of
R = R(q, ξ), i.e. it is ξ-measurable, and A, B depend on ζr and ζw, respectively. It follows
that ∫

Ξ(q)

dP1(ξ)

∫
dP1(ζ)1I{ζ ⊆ H}(θ − 1)`W (ζw)X1IA1IB

=

∫
Ξ(q)

dP1(ξ)X(R(q, ξ))e−|H
c|PR1 (A)EW1 [(θ − 1)`W (ζw)1IB(ζw)],

whereHc = (E×[0, β])\H. It follows thatPθ(A | R) = PR1 (A), thatPθ(B | R) = PW(θ−1)(B),
and that A and B are conditionally independent, as claimed.

We now verify (2.2). Let U1, U2, . . . and U ′1, U
′
2, . . . denote independent collections of

i.i.d. uniform random variables on E × [0, β]. The conditional distribution P1(· | |ω| = m)
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1 2 3 4 5 6 7 8 9 10

Figure 2: The configuration ω̃ = ωm corresponding to ω of Figure 1. Here ϕ̃ is the
permutation (9, 10) of R0 = {2, 4, 6, 7, 9, 10}.

coincides with the law of {U1, . . . , Um}. Thus∫
dP1(ω)

∑
ξ⊆ω

α(ξ;ω \ ξ) =
∑
m≥0

P1(|ω| = m)E
[ ∑
ξ⊆{U1,...,Um}

α(ξ; {U1, . . . , Um} \ ξ)
]

=
∑
m≥0

e−β|E|(β|E|)m

m!

m∑
k=0

(
m

k

)
E
[
α({U1, . . . , Uk}; {Uk+1, . . . , Um})

]
= e−β|E|

∑
k≥0

∑
`≥0

(β|E|)k

k!

(β|E|)`

`!
E
[
α({U1, . . . , Uk}; {U ′1, . . . , U ′`})

]
= eβ|E|

∫
dP1(ξ)

∫
dP1(ζ)α(ξ; ζ), as claimed.

As noted above, R is the same if we remove all red and all white crosses, that is if we
replace ω = ωr ∪ ωw ∪ ωm with ω̃ = ωm. We now introduce some notation, see Figure 2
again. Let

R0 = {x ∈ V : (x, 0) ∈ R} ⊆ V

be the set of red vertices at time t = 0. These are the elements of the red cycles of π(ω).
For each x ∈ R0, the trajectory of x formed by following the vertical lines and crosses
in ω̃ in the time interval [0, β] resembles a ‘crooked line’. We write h̃t(x) ∈ V for the
location of this line at time t. We write ht(x) for the corresponding location obtained
using ω. We take both these functions to be right-continuous in t.

The functions ht(·) and h̃t(·) will differ in general, due to the red crosses. Our present
goal is to describe their relationship precisely. Of particular importance are the functions

ϕ(·) := hβ(·) and ϕ̃(·) := h̃β(·). (2.3)

These are permutations of R0, and ϕ is precisely the restriction of π(ω) to R0. Hence the
cycles of ϕ are the red cycles of π. Clearly ϕ̃ is R-measurable.

Let ξ = (ξxy : x, y ∈ R0, x 6= y) be a collection of independent rate 1 Poisson
processes on [0, β], independent of everything else. We interpret the points (xy, t) ∈ ξ as
transpositions of the vertices x, y as before, and let σt be the time-ordered product of
these transpositions up to time t. Thus σt is a sample of the interchange process in the
set R0. We will use Lemma 2.1 to prove the following.
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Lemma 2.2. Given R, the conditional distribution of (ht(·) : t ∈ [0, β]) coincides with
that of (h̃t ◦ σt : t ∈ [0, β]). In particular,

ϕ
(d)
= ϕ̃ ◦ σβ .

In words, the conditional distribution of the red cycles of π(ω), given the union R of
the red loops, is given by the interchange process σβ on R0, composed with a ‘twist’ ϕ̃
(which is a function of R).

Proof of Lemma 2.2. The key observation is that, thanks to Lemma 2.1 and the symmetry
of the complete graph, ωr has the same (conditional) distribution as the collection of
points of the form

(h̃t(x)h̃t(y), t) for (xy, t) ∈ ξ. (2.4)

For simpler notation we identify ωr with the collection of points in (2.4). With this
identification, we can prove the statement of the lemma with equality (not just in
distribution).

Some further notation is required. Let Rt = ht(R0) = h̃t(R0) be the set of red vertices
at time t. Let t1 < t2 < · · · denote the sequence of times at which there are mixed
crosses (elements of ωm = ω̃). Also set t0 = 0. Then Rt is constant for tk−1 ≤ t < tk,
for k ≥ 1. Moreover, there is a unique ak ∈ Rtk−1

and a unique bk 6∈ Rtk−1
such that

Rtk = ψk(Rtk−1
), where

ψk(x) =

{
x, if x 6= ak,

bk, if x = ak.

Then for tk ≤ t < tk+1 we have that

h̃t = ψk ◦ ψk−1 ◦ · · · ◦ ψ1.

Now, for all k ≥ 0 let

tk < s
(k)
1 < s

(k)
2 < · · · < s(k)

mk
< tk+1

denote the times of events (transpositions) in ξ, and for 1 ≤ q ≤ mk let τ (k)
q = (x

(k)
q , y

(k)
q )

denote the corresponding transposition. Here x(k)
q , y

(k)
q ∈ Rtk .

With this notation in hand, we can turn to the proof. For t = 0 we have h̃0 = id, σ0 = id

and h0 = id, so clearly the claim holds then. In fact, for t < t1 we have that h̃t = id and
that ht = σt, so the claim holds for such t (by Lemma 2.1). Since the functions involved
only change at times tk and s(k)

q , we can proceed by induction.

Assume that the claim holds for some t > 0, i.e. assume that

ht = h̃t ◦ σt. (2.5)

Let t′ be the time of the next ‘event’. That is, either t′ = tk for some k, or t′ = s
(k)
q for

some k, q. It suffices to show that ht′ = h̃t′ ◦ σt′ holds in both cases.

First case: t′ = tk. Then htk is obtained by applying ψk, thus

htk = ψk ◦ ht = (ψk ◦ h̃t) ◦ σt = h̃tk ◦ σt = h̃tk ◦ σtk .

Here we used (2.5) and the fact that σtk = σt. Thus ht′ = h̃t′ ◦ σt′ holds in this case.

Second case: t′ = s
(k)
q . Now we have that h̃t′ = h̃t, and that

σt′ = τ (k)
q ◦ σt = (x(k)

q , y(k)
q ) ◦ σt.
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By the identification of ωr with (2.4), we obtain ht′ by transposing h̃t(x
(k)
q ) and h̃t(y

(k)
q ).

That is,

ht′(z) =


h̃t(y

(k)
q ), if ht(z) = h̃t(x

(k)
q ),

h̃t(x
(k)
q ), if ht(z) = h̃t(y

(k)
q ),

ht(z), otherwise.

Using that ht = h̃t ◦ σt, we can rewrite this as ht′(z) = h̃t(τ
(k)
q (σt(z))), as required.

3 Large cycles

In order to use Lemma 2.2 to analyze the cycle structure of π, we will first need
results on the cycle structure of ϕ̃ ◦ σt, where σt is given by the interchange process and
ϕ̃ is a non-random permutation.

3.1 Random and non-random transpositions

The following result will be obtained using small modifications of Lemmas 2.1–2.3
of [11]. (A similar result can be obtained by a small modification of Theorem 1 of [3].)
Here σt denotes a sample of the interchange process (θ = 1 in (1.1)) on 1, . . . , n, viewed
at time t, and ϕ̃ is a deterministic permuation of 1, . . . , n. In this subsection we write P
for P1.

Proposition 3.1. Let λ > 1 and t = λ/n. For each ε > 0 there is δ > 0 and n0(λ, ε, δ)

such that for n ≥ n0 we have

P(|C1(ϕ̃ ◦ σt)| ≥ δn) ≥ 1− ε.

Proof. First note that, since ϕ̃ ◦ σt and σt ◦ ϕ̃ are conjugate, it is equivalent to consider
the largest cycle in the process (σt ◦ ϕ̃)t≥0 which starts with the permutation ϕ̃ at time
t = 0. We associate with ϕ̃ a graph G̃ whose connected components coincide (as sets)
with the cycles of ϕ̃. One way to do this is to decompose each cycle of ϕ̃ as:

(x1, x2, . . . , xm) = (x1, x2)(x2, x3) · · · (xm−1, xm)

and let the edges of G̃ be the pairs {xi, xi+1} obtained in this way. For t ≥ 0 we let
Gt be the (multi-)graph obtained by representing each new transposition that appears
in the process (σt)t≥0 by an edge, and we let G̃t be the (multi-)graph obtained by
superimposing Gt on G̃. Note that Gt has the distribution of an Erdős–Rényi graph
G(n, p) with p = 1−e−t. Also note that each cycle of σt ◦ ϕ̃ is contained in some connected
component of G̃t.

We have that Lemmas 2.1–2.3 of [11] hold in this situation, with the graph Gt replaced
by G̃t. Indeed, one need only check the proof of Lemma 2.2, since Lemmas 2.1 and 2.3
do not refer to the graph. We provide an outline of the arguments.

As in Lemma 2.1 of [11], each time we apply a new transposition in σt, the probability
that it splits an existing cycle so that at least one of the resulting cycles has size ≤ k

is at most 2k/(n − 1). Let V t
G̃

(k) ⊆ V be the union of all components of G̃t of size at
least k, and let V tX(k) ⊆ V be the union of all the cycles of σt ◦ ϕ̃ of size at least k. As in
Lemma 2.2 of [11] we have that

E|V t
G̃

(k) \ V tX(k)| ≤ t
(
n

2

)
4k2

n− 1
. (3.1)

(Recall that our process is sped up by a factor
(
n
2

)
compared to [11].) This is because

each cycle of size < k which lies in a component of size ≥ k can be associated with a
transposition which split an existing cycle so that at least one resulting cycle had size ≤ k
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(and this can be done so that at most two cycles get mapped to the same transposition).
Here we use the fact that at time t = 0 the components are equal to the cycles.

Set t1 = λ/n and let t0 ≤ t1 with t1 − t0 = o(n−1). From (3.1) we see that, at time t0,
only a tiny fraction of vertices in components ≥ 2n1/4 lie in cycles < 2n1/4:

E|V t0
G̃

(2n1/4) \ V t0X (2n1/4)| ≤ 32λn1/2.

Let z(λ) > 0 be the survival probability of a Galton–Watson process with Poisson(λ)
offspring distribution, and set δ′ = z(λ)/4. Applying the Erdős–Rényi theorem to Gt0 ⊆
G̃t0 we find that

P(|V t0X (2n1/4)| ≤ δ′n) ≤ P(|V t0
G̃

(2n1/4) \ V t0X (n1/4)| > δ′n) + o(1)

≤ 32λn1/2

δ′n
+ o(1).

(3.2)

Here the o(1) is uniform in ϕ̃.
Lemma 2.3 of [11] applies in our setting, with adjusted time-scaling. Let j be such

that n1/4 ≤ 2j ≤ 2n1/4, write ρ = 2j/n, set

∆ =

(
n

2

)−1

d26(δ′)−1ρ−1 log2(ρ−1)e = O(n−5/4 log n), (3.3)

and let t0 = t1 −∆. The Lemma tells us that a large fraction of the vertices that lie in
cycles of size ≥ 2n1/4 at time t0 will lie in cycles of size of the order n at time t1. More
precisely, there is a constant C > 0 such that for all ε′ ∈ (0, 1/8) we have

P
(
|V t0X (2n1/4) \ V t1X (ε′δ′n)| > δ′n

∣∣∣ |V t0X (2n1/4)| > δ′n
)

≤ C · (δ′)−2ε′| log(ε′δ′)|.
(3.4)

Letting δ = ε′δ′ for ε′ > 0 small enough we find using (3.2) and (3.4) that, for large
enough n,

P(V t1X (δn) = ∅) ≤ P(|V t0X (2n1/4) \ V t1X (ε′δ′n)| > δ′n)

+ P(|V t0X (2n1/4)| ≤ δ′n)

≤ ε, as claimed.

3.2 Proof of Theorem 1.1

Fix λ > θ and let β = λ/n. It suffices to prove that, for any sequence δ = δn → 0, we
have that P(|C1(π)| < δn)→ 0, where P = Pθ.

Let N = |R0| denote the number of red vertices, and let Λ = λN/n so that the
auxiliary process σt of Lemma 2.2 is an interchange process on N points viewed at time
Λ/N . Let Cr

1 = C1(ϕ̃ ◦ σΛ/N ) be the largest red cycle. Pick α such that 1
λ < α < r. Since

C1 is red with probability r,

rP(|C1| < δn) ≤ P(N ≥ αn, |Cr
1| < δn) + P(N < αn, |C1| < δn)

≤ E[1I{Λ ≥ αλ}P(|Cr
1| < (λδ)n | R)]

+ P(N < αn, |C1| < δn).

(3.5)

When Λ ≥ αλ > 1, Prop. 3.1 implies that P(|Cr
1| < (λδ)n | R) → 0. The dominated-

convergence-theorem therefore implies that the first term on the right-hand-side of (3.5)
converges to 0.
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To bound the second term, let P′, E′ and V′ denote the conditional probability,
expectation and variance, respectively, given the cycle sizes |C1|, |C2|, . . . Then E′(N) =∑
i≥1 r|Ci| = rn, and

V′(N) =
∑
i≥1

r(1− r)|Ci|2 ≤ |C1|
∑
i≥1

|Ci| = |C1|n.

Using Chebyshev’s inequality:

P(N < αn, |C1| < δn) = E[1I{|C1| < δn}P′(N < αn)]

≤ E
[
1I{|C1| < δn} |C1|n

n2(r − α)2

]
≤ δ

(r − α)2
→ 0.

This proves the result.

Remark 3.2. Our proof can straightforwardly be extended to cases where the cycles
C (or loops γ) receive potentially different weights. Indeed, consider the probability
measure P(·) given by

dP

dP1
(ω) =

1

Z

∏
γ∈L(ω)

θ(γ).

The conclusion of Theorem 1.1 holds under the assumption that there is a constant θ < λ

such that 1 ≤ θ(·) ≤ θ uniformly.
Such weights occur for example in the Heisenberg model in the presence of an

external field h > 0, where θ(γ) = 2 cosh(h|γ|) ≤ 2 cosh(hλ). See e.g. [5, 7].
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