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Abstract

We establish a uniform factorial decay estimate for the Taylor approximation of
solutions to controlled differential equations in the p-variation metric. As part of
the proof, we also obtain a factorial decay estimate for controlled paths which is
interesting in its own right.
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1 Introduction

For a controlled differential equation of the form

dYt = f (Yt) dXt

Y0 = y0. (1.1)

where X : [0, T ] → Rd is a path with finite 1-variation and f : Re → L
(
Rd,Re

)
is a

smooth vector field, we are interested in estimating the Taylor remainder

Yt − Ys −
N∑
k=1

f◦k (Ys)

∫
s<s1<...<sk<t

dXs1 ⊗ . . .⊗ dXsk (1.2)

≡
∫
s<s1<...<sN<t

f◦N (Ys1)− f◦N (Ys) dXs1 ⊗ . . .⊗ dXsN , (1.3)

where f◦m : Re → L
((
Rd
)⊗m

,Re
)

is defined inductively by

f◦1 = f

f◦k+1 = D
(
f◦k
)
f.
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Factorial decay estimates for differential equations

The functions f◦k can also be expressed in terms of iterative applications of the vector
field f as differential operators [3]. The iterated integrals in (1.2) will appear numerous
times and we shall use the shorthand

Xk
s,t :=

∫
s<s1<...<sk<t

dXs1 ⊗ . . .⊗ dXsk . (1.4)

Since the 1−variation norm of X equals to the L1 norm of the derivative of X, we
have (see for example [4])∣∣∣∣∣Yt − Ys −

N∑
k=1

f◦k (Ys)X
k
s,t

∣∣∣∣∣ ≤ ∥∥∥f◦(N+1)
∥∥∥
∞

|X|N+1
1−var;[s,t]

N !
(1.5)

where

|X|1−var;[s,t] = sup
s<t1<...<tn<t

n−1∑
i=0

∣∣Xti+1
−Xti

∣∣
and

∥∥f◦N∥∥∞ denotes supx∈Re
∣∣f◦N (x)

∣∣ with |·| being the operator norm

∣∣f◦N (x)
∣∣ = sup

v∈(Rd)⊗N

∣∣f◦N (x) (v)
∣∣

‖v‖
.

Estimates of the form (1.5) have application both as a theoretical tool for analysing the
equation (1.1) and as a practical numerical scheme for constructing the solution. The
estimate (1.5), when the 1-variation metric is replaced by the p-variation metric, has
been shown in [2] (p < 3), [5] (p < 3) and [4] (all p ≥ 1) without the factorial decay factor.
We shall prove such estimate with the factorial decay factor. The estimates of Davie
[2], Gubinelli [5], Friz and Victoir [4] as well as our estimates below gives a numerical
scheme for approximating a solution to (1.1) in O (1) time steps.

Theorem 1.1. Let p ≥ 1. Let X =
(
1, X1, . . . , Xbpc

)
be a p-weak geometric rough path.

Let f be a Lip(γ − 1) vector field where γ > p. Let Y be a solution to the differential
equation

dYt = f (Yt) dXt (1.6)

defined in the sense of [3]. Then there exists a constant Cp depending only on p such
that ∣∣∣∣∣∣Yt − Ys −

bγc∑
k=1

f◦k (Ys)X
k
s,t

∣∣∣∣∣∣ ≤ 1(
bγc
p

)
!
βbγcMp,γ ‖f‖◦γ ‖X‖

γ
p−var,[s,t] , (1.7)

where

Mp,γ = 2Cp

(
|f |Lip((γ−1)∧bpc) ∨ 1

)bpc+1 (
|X|p−var ∨ 1

)bpc+1

;

‖f‖◦γ = max
bγc−bpc+1≤m≤bγc

|f◦m|min(γ−m,1)
Lip(min(γ−m,1)) ; (1.8)

β = p

1 +

∞∑
r=2

(
2

r − 1
∧ 1

) bpc+1
p

 . (1.9)

We refer the readers to Definition 9.16 and Definition 10.2 in [3] for the definition
of Lip (γ) vector fields and weak geometric rough paths respectively. We shall however
recall the definition of p-variation and some basic notations in Section 2.

Remark 1.2. If the equation (1.6) has more than one solution, then any solution must
satisfy (1.7).
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Factorial decay estimates for differential equations

Remark 1.3. Taking the biggest γ may not yield the best estimate for the left hand side
of (1.7). In general the term ‖f‖◦γ could grow factorially fast in γ. Since a Lip(γ) function
is also Lip(γ′) for all γ′ < γ, we may choose γ′ which optimises the estimate (1.7).

The proof for (1.5) relies heavily on the relation between the 1-variation of the path
and the L1 norm of its derivative. Proving an estimate of the form (1.5) for the p-variation
metric, even without the factorial decay factor, requires the clever idea of Young[9]. The
integration with respect to a path can be expressed in terms of the limit of a Riemann
sum as the size of partition converges to zero. Young’s idea was to estimate the Riemann
sum with respect to a partition by removing points from the partition successively. This
idea had been used in [6] to show that, for p < 2, the n-th order iterated integral of a
path X is uniformly bounded by

(
1 + 4

1
p ζ (2/p)

)n( 1

n!

) 1
p

‖X‖np−var,[0,T ] . (1.10)

where ζ is the classical zeta function. T. Lyons’ proof for the p ≥ 2 case in [7] is slightly
different and used the neoclassical inequality ([7],[1])

N∑
k=0

1

Γ (k/p+ 1) Γ ((n− k) /p+ 1)
ak/pb(n−k)/p ≤ p 1

Γ (n/p+ 1)
(a+ b)

n/p (1.11)

to obtain an uniform bound of the form

βn−1
1

Γ (n/p+ 1)
‖X‖np−var,[0,T ]

where Γ is the Gamma function and β is as defined in (1.9).

2 The Proof

2.1 Notations and basic definitions

For each k ∈ N, we equip a norm on
(
Rd
)⊗k

by identifying it with Rd
k

. Let

TN1
(
Rd
)

= 1⊕Rd ⊕ . . .⊕
(
Rd
)N

.

If πk denotes the projection operator TN1
(
Rd
)
→
(
Rd
)⊗k

, then we define a norm on
TN1

(
Rd
)

by

‖x‖ = max
1≤k≤N

‖πk (x)‖
1
k .

Definition 2.1. Let T > 0 and p ≥ 1. A path X : [0, T ]→ T
bpc
1

(
Rd
)

has finite p-variation
if for all 0 < s < t < T ,

‖X‖p−var,[s,t] := sup
s<t1<...<tn<t

max
1≤k≤bpc

(
n−1∑
i=0

∥∥πk (X−1ti Xti+1

)∥∥ pk) 1
p

<∞ (2.1)

where X−1 denote the unique multiplicative inverse of X ∈ T bpc1

(
Rd
)
. We will denote

‖X‖p−var,[0,T ] by ‖X‖p−var.
We first recall Lyons’ extension theorem, which will be used repeatedly in the follow-

ing form:

Fact 2.2. (Theorem 2.2.1 in [7]) Let p ≥ 1 and X =
(
1, X1, . . . , Xbpc

)
be a p-weak

geometric rough path. Then for all N ≥ bpc + 1, there exists a unique continuous
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Factorial decay estimates for differential equations

path X =
(
1, X1, . . . , XN

)
∈ TN1

(
Rd
)

which extends X, X0 = (1, 0 . . . , 0) and for all
bpc ≤ l ≤ N , ∥∥πl (X−1ti Xti+1

)∥∥ ≤ βl−1(
l
p

)
!
‖X‖lp−var,[s,t] . (2.2)

Remark 2.3. We will denote X−1s Xt by Xs,t and πl (Xs,t) by X l
s,t. In particular, Xs,u ⊗

Xu,t = Xs,t and so, for any s < u < t,

Xm
s,t =

m∑
l=0

Xm−l
s,u ⊗X l

u,t. (2.3)

Note that for paths with finite 1-variation, the
(
Xk
)
k≥1 defined in this theorem are

exactly the iterated integrals of X. Hence no confusion will arise by using the same
notation as in (1.4).

Remark 2.4. If r ≥ bpc, then for any m ≥ 0,

Xm
s,t = lim

|P|→0

n−1∑
i=0

r∑
k=1

Xm−k
s,ti ⊗X

k
ti,ti+1

(2.4)

where the limit is taken as the mesh size of the partition P = (s < t1 < . . . < tn−1 < t)

goes to zero. By convention, for any s < t, X0
s,t = 1 and Xm

s,t = 0 if m < 0. In the case
r = m, (2.4) follows directly from (2.3). For r < m, note that the sum over k from r+ 1 to
m in (2.4) vanishes after the taking of limit, due to (2.2). See [5] for details.

2.2 The proof

The following lemma is a factorial decay estimate for the Taylor remainder of a
controlled path in the sense of Gubinelli [5]. This lemma is interesting in its own right.
We interpret it as the dual counterpart of Fact 2.2.

Lemma 2.5. Let p ≥ 1 and γ > p. Let
(
1, X1, . . . , Xbpc

)
be a p-weak geometric rough

path. Let Y (i) be a function [0, T ]→ L
((
Rd
)⊗i

,Re
)

and
(
Y (0), Y (1), . . . , Y (bγc)) satisfies,

for dγ − pe ≤ m ≤ bγc,∣∣∣∣∣∣Y (m)
t −

bγc−m∑
l=0

Y (l+m)
s X l

s,t

∣∣∣∣∣∣ ≤ 1(
bγc−m

p

)
!
Mβbγc−m ‖X‖γ−mp−var,[s,t] , (2.5)

for all s ≤ t and for 0 ≤ m ≤ dγ − pe − 1, the limit

lim
|P|→0

n−1∑
i=0

bγc−m∑
l=1

Y
(m+l)
ti X l

ti,ti+1
, (2.6)

where |P| → 0 denotes the limit as the mesh size of a partition P on [s, t] goes to zero,
exists and equals

Y
(m)
t − Y (m)

s . (2.7)

For l ≥ bpc + 1, let X l denote the projection to
(
Rd
)⊗l

of the unique extension of(
1, X1, . . . , Xbpc

)
given in Fact 2.2. Then (2.5) holds for all 0 ≤ m ≤ bγc.

Proof. We will carry out backward induction on k starting from dγ− pe and moving down
to 0.
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Factorial decay estimates for differential equations

The base induction step of k = dγ − pe holds because of the assumption. We will
assume from now onwards that k ≤ dγ − pe − 1. It is useful to bear in mind that

bγc − bpc ≤ dγ − pe ≤ bγc − bpc+ 1.

For the induction step, note that by (2.4) and the equality of (2.6) and (2.7),

Y
(k)
t −

bγc−k∑
l=0

Y (k+l)
s X l

s,t (2.8)

= lim
|P|→0

n∑
i=0

bγc−k∑
l2=1

Y (k+l2)
ti −

bγc−k−l2∑
l1=0

Y (k+l1+l2)
s X l1

s,ti

X l2
ti,ti+1

, (2.9)

where the limit is taken as the mesh size of the partition P = (s < t1 < . . . < tn−1 < t)

goes to zero.
We first show that the term

n−1∑
i=0

bγc−k∑
l2=1

bγc−k−l2∑
l1=0

Y (k+l1+l2)
s X l1

s,tiX
l2
ti,ti+1

. (2.10)

is in fact independent of the partition P.

n−1∑
i=0

bγc−k∑
l2=1

bγc−k−l2∑
l1=0

Y (k+l1+l2)
s X l1

s,tiX
l2
ti,ti+1

=

n−1∑
i=0

 ∑
0≤l1+l2≤bγc−k

Y (k+l1+l2)
s X l1

s,tiX
l2
ti,ti+1

−
bγc−k∑
l1=0

Y (k+l1)
s X l1

s,ti


=

n−1∑
i=0

bγc−k∑
r=0

∑
l1+l2=r

Y (k+r)
s X l1

s,tiX
l2
ti,ti+1

−
bγc−k∑
l1=0

Y (k+l1)
s X l1

s,ti


=

n−1∑
i=0

bγc−k∑
r=0

Y (k+r)
s Xr

s,ti+1
−
bγc−k∑
r=0

Y (k+r)
s Xr

s,ti


=

bγc−k∑
r=1

Y (k+r)
s Xr

s,t

where we have used (2.3) in the third line. LetY (k)
s −

bγc−k∑
l=0

Y (l)
s X l

s,t

P =

n−1∑
i=0

bγc−k∑
l2=1

Y (k+l2)
ti −

bγc−k−l∑
l1=0

Y (k+l+l1)
s X l1

s,ti

X l2
ti,ti+1

.

Since (2.10) is independent of the partition,Y (k)
s −

bγc−k∑
l=0

Y (l)
s X l

s,t

P −
Y (k)

s −
bγc−k∑
l=0

Y (l)
s X l

s,t

P\{tj} (2.11)

=

bγc−k∑
l′=1

Y
(k+l′)
tj−1

X l′

tj−1,tj +

bγc−k∑
l′=1

Y
(k+l′)
tj X l′

tj ,tj+1
−
bγc−k∑
l′=1

Y
(k+l′)
tj−1

X l′

tj−1,tj+1

=

bγc−k∑
l2=1

Y (k+l2)
tj −

bγc−k−l2∑
l1=0

Y
(k+l1+l2)
tj−1

X l1
tj−1,tj

X l2
tj ,tj+1

. (2.12)
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Factorial decay estimates for differential equations

By induction hypothesis, (2.5) which holds for m > k and Theorem 2.2.1 in [7],∣∣∣∣∣∣
bγc−k∑
l2=1

Y (k+l2)
tj −

bγc−k−l∑
l1=0

Y
(k+l1+l2)
tj−1

X l1
tj−1,tj

X l2
tj ,tj+1

∣∣∣∣∣∣
≤

bγc−k∑
l2=1

 1(
bγc−k−l2

p

)
!
(
l2
p

)
!
Mβbγc−k−l2 ‖X‖γ−k−l2p−var,[tj−1,tj ]

×βl2−1 ‖X‖l2p−var,[tj ,tj+1]

]
(2.13)

≤ 1(
bγc−k
p

)
!

p

β
Mβbγc−k ‖X‖γ−kp−var,[tj−1,tj+1]

, (2.14)

where the final line is obtained by the neoclassical inequality (1.11), proved in [1].

Let ω (s, t) = ‖X‖pp−var,[s,t]. We now choose j such that, for |P| ≥ 2,

ω (tj−1, tj+1) ≤
(

2

|P| − 1
∧ 1

)
ω (s, t)

which exists since
n−1∑
i=1

ω (ti−1, ti+1) ≤ 2ω (s, t)

and also that

ω (tj−1, tj+1) ≤ ω (s, t)

for all j. Then as γ − k ≥ bpc+ 1, (2.14) is less than or equal to

1(
bγc−k
p !

) p
β
Mβbγc−k

(
2

n− 1
∧ 1

) bpc+1
p

‖X‖γ−kp−var,[s,t] .

By removing points successively from P and using that
(
Y

(k)
s −

∑bγc−k
l=0 Y

(k+l)
s X l

s,t

){s,t}
=

0, we have∣∣∣∣∣∣∣
Y (k)

s −
bγc−k∑
l=0

Y (k+l)
s X l

s,t

P
∣∣∣∣∣∣∣ ≤

1(
bγc−k
p !

) p
β
Mβbγc−k

∞∑
n=2

(
2

n− 1
∧ 1

) bpc+1
p

‖X‖γ−kp−var,[s,t]

≤ 1(
bγc−k
p !

)Mβbγc−k ‖X‖γ−kp−var,[s,t] ,

where the final line follows from (1.9).

By taking limit as |P| → 0, (2.5) follows for m = k.

For the differential equation

dYt = f (Yt) dXt (2.15)

we wish to apply Lemma 2.5 to
(
Y, f◦1 (Y ) , . . . , f◦(bγc) (Y )

)
. Using the standard estimates

for rough differential equations, it turns out that it suffices to verify the assumption of
Lemma 2.5 for paths with finite 1-variation. To do so, we need the following lemma.
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Factorial decay estimates for differential equations

Lemma 2.6. Let X : [0, T ]→ Rd be a path with finite 1-variation. Let f be a Lip(γ − 1)
vector field. Let Yt be a solution to the differential equation (2.15). Then

f◦m (Yt)− f◦m (Ys)−
bγc−m∑
k=1

f◦(m+k) (Ys)X
k
s,t

=

{∫
s≤s1≤...≤sbγc−m≤t

f◦bγc (Ys1)− f◦bγc (Ys) dXs1 ⊗ . . .⊗ dXsbγc−m , 0 ≤ m < bγc
f◦bγc (Yt)− f◦bγc (Ys) ,m = bγc.

Proof. We will prove it by backward induction, starting from bγc.
The case m = bγc is trivially true.
For the induction step, note first that by the fundamental theorem of calculus,∫ t

s

f◦(m+1) (Yu) dXu

=

∫ t

s

D (f◦m) (Yu) f (Yu) dXu

=

∫ t

s

D (f◦m) (Yu) dYu

= f◦m (Yt)− f◦m (Ys) . (2.16)

Then by (2.16) and the induction hypothesis,

f◦m (Yt)− f◦m (Ys)−
bγc−m∑
k=1

f◦(m+k) (Ys)X
k
s,t

=

∫ t

s

f◦m+1
(
Ysbγc−m

)
dXsbγc−m −

bγc−m∑
k=1

f◦(m+k) (Ys)X
k−1
s,sbγc−m

⊗ dXsbγc−m

=

∫
s≤s1≤...≤sbγc−m≤t

f◦bγc (Ys1)− f◦bγc (Ys) dXs1 ⊗ . . .⊗ dXsbγc−m .

Proof of Theorem 1. The only thing to prove is that
(
Y, f◦1 (Y ) , . . . , f◦(bγc) (Y )

)
satisfies

the assumptions of Lemma 2.5.
For each s ≤ t, let xs,t : [s, t]→ Rd be a continuous path with finite 1-variation such

that for 1 ≤ l ≤ bpc, (
xs,t
)l
s,t

= X l
s,t, (2.17)

where we use the notation from (1.4) and∫ t

s

∣∣dxs,tu ∣∣ ≤ cp ‖X‖p−var,[s,t] (2.18)

for a function cp of p which is specified in [3] along with the existence of xs,t.
Consider the differential equation

dY s,tu = f
(
Y s,tu

)
dxs,tu

Y s,ts = Ys. (2.19)

By Theorem 10.16 in [3], there exists a solution Y s,t of (2.19) such that the following
estimate holds ∣∣Yt − Y s,tt

∣∣ ≤ Cp |f |γ∧(bpc+1)
Lip((γ−1)∧bpc) ‖X‖

γ∧(bpc+1)
p−var,[s,t] (2.20)
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for some function Cp depending on p only.
Note that by (2.17) and m ≥ dγ − pe ≥ bγc − bpc,

∣∣∣∣∣∣f◦(m) (Yt)−
bγc−m∑
k=0

f◦(m+k) (Ys)X
k
s,t

∣∣∣∣∣∣
≤

∣∣f◦m (Yt)− f◦m
(
Y s,tt

)∣∣+

∣∣∣∣∣∣f◦m (Y s,tt

)
−
bγc−m∑
k=0

f◦(m+k) (Ys)
(
xs,t
)k
s,t

∣∣∣∣∣∣ (2.21)

By (2.20), for 0 ≤ m ≤ bγc − 1,∣∣f◦m (Yt)− f◦m
(
Y s,tt

)∣∣
≤ |f◦m|Lip(1)

∣∣Yt − Y s,tt

∣∣
≤ Cp |f◦m|Lip(1) |f |

γ∧(bpc+1)
Lip((γ−1)∧bpc) ‖X‖

γ∧(bpc+1)
p−var,[s,t] . (2.22)

If dγ − pe ≤ m ≤ bγc − 1, then γ −m ≤ bpc and so

∣∣f◦m (Yt)− f◦m
(
Y s,tt

)∣∣ (2.23)

≤ Cp |f◦m|Lip(1) |f |
γ∧(bpc+1)
Lip((γ−1)∧bpc)

(
‖X‖p−var,[s,t] ∨ 1

)(bpc+1)

‖X‖γ−mp−var,[s,t] . (2.24)

To estimate (2.23) for m = bγc, we note that∣∣∣f◦bγc (Yt)− f◦bγc
(
Y s,tt

)∣∣∣
≤

∣∣∣f◦bγc∣∣∣
Lip(γ−bγc)

∣∣Yt − Y s,tt

∣∣γ−bγc
≤ Cp

∣∣∣f◦bγc∣∣∣
Lip(γ−bγc)

|f |γ∧(bpc+1)(γ−bγc)
Lip((γ−1)∧bpc) ‖X‖γ∧(bpc+1)(γ−bγc)

p−var,[s,t] .

In particular, we have∣∣∣f◦bγc (Yt)− f◦bγc
(
Y s,tt

)∣∣∣
≤ Cp

∣∣∣f◦bγc∣∣∣
Lip(γ−bγc)

|f |γ∧(bpc+1)(γ−bγc)
Lip((γ−1)∧bpc)

(
‖X‖p−var,[s,t] ∨ 1

)(bpc+1)

‖X‖γ−bγcp−var,[s,t] .

To estimate the second term in (2.21), we use Lemma 2.6 to see that for dγ−pe ≤ m ≤ bγc,

∣∣∣∣∣∣f◦m (Y s,tt

)
−
bγc−m∑
k=0

f◦(m+k) (Ys)
(
xs,t
)k
s,t

∣∣∣∣∣∣
=

∣∣∣∣∣
∫
s≤s1≤...≤sbγc−m<t

f◦(bγc)
(
Y s,ts1

)
− f◦(bγc) (Ys) dxs,ts1 . . . dx

s,t
sbγc−m

∣∣∣∣∣ (2.25)

≤ Cbγc−mp

∣∣∣f◦bγc∣∣∣
Lip(γ−bγc)

∣∣Y s,t· ∣∣γ−bγc
p−var,[s,t] ‖X‖

bγc−m
p−var,[s,t]

≤ C ′p

∣∣∣f◦bγc∣∣∣
Lip(γ−bγc)

(
|f |Lip((γ−1)∧bpc) ∨ 1

)p(γ−bγc)
(2.26)

×
(
‖X‖p−var,[s,t] ∨ 1

)(p−1)(γ−bγc)
‖X‖γ−mp−var,[s,t] , (2.27)
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where in the third line we have used the γ − bγc Hölder continuity of f◦(bγc) with (2.18)
and in the final line we have used Theorem 10.16 in [3].

Combining (2.21), (2.23) and (2.26), we have for dγ − pe ≤ m ≤ bγc,∣∣∣∣∣∣f◦(m) (Yt)−
bγc−m∑
k=0

f◦(m+k) (Ys)X
k
s,t

∣∣∣∣∣∣
≤ 2Cp max

bγc−bpc+1≤m≤bγc
|f◦m|min(γ−m,1)

Lip(min(γ−m,1))

(
|f |Lip((γ−1)∧bpc) ∨ 1

)bpc+1

×
(
‖X‖p−var ∨ 1

)bpc+1

‖X‖γ−mp−var,[s,t] . (2.28)

Here since dγ − pe ≤ m ≤ bγc so bγc −m ≤ bpc and

(bγc −m)! ≤ bpc!.

Therefore, by changing the constant Cp, we rewrite (2.28) in the form of the right hand
side of (2.5). It now suffices to show (2.7). Note first that for 0 ≤ m ≤ dγ − pe − 1 and
s ≤ u ≤ v ≤ t,

∣∣∣∣∣∣f◦m (Yv)−
bγc−m∑
k=0

f◦(m+k) (Yu)Xk
u,v

∣∣∣∣∣∣ (2.29)

≤ |f◦m (Yv)− f◦m (Y u,vv )|+

∣∣∣∣∣∣f (Y u,vv )−
bγc−m∑
k=0

f◦(m+k) (Yu) (xu,v)
k
u,v

∣∣∣∣∣∣ (2.30)

+

∣∣∣∣∣∣
bγc−m∑
k=bpc+1

f◦(m+k) (Yu) (xu,v)
k
u,v −

bγc−m∑
k=bpc+1

f◦(m+k) (Yu)Xk
u,v

∣∣∣∣∣∣ . (2.31)

The estimate (2.22) still holds with (s, t) replaced by (u, v) and (2.26) would hold with
the constant Cp now depending on γ as well. For the final term in (2.31),∣∣∣∣∣∣

bγc−m∑
k=bpc+1

f◦(m+k) (Yu) (xu,v)
k
u,v −

bγc−m∑
k=bpc+1

f◦(m+k) (Yu)Xk
u,v

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
bγc−m∑
k=bpc+1

f◦(m+k) (Yu) (xu,v)
k
u,v

∣∣∣∣∣∣+

∣∣∣∣∣∣
bγc−m∑
k=bpc+1

f◦(m+k) (Yu)Xk
u,v

∣∣∣∣∣∣
≤ 2bγccbγcp max

0≤m≤bγc
sup
s≤u≤t

|f◦m (Yu)|
(
‖X‖p−var,[s,t] ∨ 1

)bγc
‖X‖bpc+1

p−var,[u,v]

where we used Fact 2.2 and

∣∣∣(xu,v)ku,v∣∣∣ ≤ ckp

(∫ v

u

|dxu,vr |
)k

≤ Ckp ‖X‖
k
p−var,[u,v] .

Therefore, combining with (2.22) and (2.26), we have for some constants Cf,p,X,s,tγ , C ′f,p,X,s,tγ
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independent of u, v such that when |u− v| is sufficiently small,∣∣∣∣∣∣f◦m (Yv)−
bγc−m∑
k=0

f◦(m+k) (Yu)Xk
u,v

∣∣∣∣∣∣
≤ Cf,p,X,s,tγ

(
‖X‖γ∧(bpc+1)

p−var,[u,v] + ‖X‖γ−mp−var,[u,v] + ‖X‖bpc+1
p−var,[u,v]

)
≤ C ′f,p,X,s,tγ ‖X‖

γ∧(bpc+1)
p−var,[u,v]

Denote the expression in (2.29) as E (u, v). Let lim|P|→0 denote the limit as the mesh
size of a partition P on [s, t] goes to zero. Then for m ≤ dγ − pe − 1,

lim
|P|→0

n−1∑
i=0

bγc−m∑
l=1

E (ti, ti+1)

≤ C ′f,p,X,s,tγ lim
|P|→0

n−1∑
i=0

‖X‖γ∧(bpc+1)
p−var,[ti,ti+1]

(2.32)

≤ C ′f,p,X,γ lim
|P|→0

max
i
‖X‖γ∧(bpc+1)−p

p−var,[ti,ti+1]

n−1∑
i=0

‖X‖pp−var,[ti,ti+1]
(2.33)

Since for s < u < t ,

‖X‖pp−var,[s,u] + ‖X‖pp−var,[u,t] ≤ ‖X‖
p
p−var,[s,t] ,

(2.33) is bounded by

Cf,p,X,γ lim
|P|→0

max
i
‖X‖γ∧(bpc+1)−p

p−var,[ti,ti+1]
‖X‖pp−var,[s,t] ,

which equals 0 by the uniform continuity of the map (u, v) → ‖X‖pp−var,[u,v] (See [8]).
Finally,

lim
|P|→0

n−1∑
i=0

bγc−m∑
l=1

f◦(m+l) (Yti)X
l
ti,ti+1

= lim
|P|→0

n−1∑
i=0

f◦m
(
Yti+1

)
− f◦m (Yti) + E (ti, ti+1)

= f◦m (Yt)− f◦m (Ys) .
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