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Abstract

We review the construction of flows associated to Tanaka’s SDE from [8]. Using the
skew Brownian motion, we give an easy proof of the classification of these flows by
means of probability measures on [0, 1]. Our arguments also simplify some proofs in
the subsequent papers [1, 3, 9, 2].
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1 Introduction

Our main interest in this paper is Tanaka’s equation

Xx
t = x+

∫ t

0

sgn(Xx
s )dWs (1.1)

where W is a standard Brownian motion and x ∈ R. Equation (1.1) admits a weak
solution but has no strong solution, i.e. one for which Xx is adapted to the filtration
generated by W . In fact, if (Xx,W ) satisfies (1.1), then (see [12]) for all t ≥ 0,

|Xx
t | = |x|+Wt −min0≤u≤t((|x|+Wu) ∧ 0).

In particular, σ(|Xx
u |, 0 ≤ u ≤ t) = σ(Wu, 0 ≤ u ≤ t) which is strictly smaller than

σ(Xx
u , 0 ≤ u ≤ t). Following [8], our purpose here is to determine the set

P = {P∞ = (Pn)n≥1}

where each P∞ = (Pn)n≥1 is a compatible family [7] of Feller semigroups acting respec-
tively on C0(Rn) such that for each n the coordinates of the n point motion (Markov
process) associated to Pn are solutions of (1.1) driven by the same Brownian motion
Wn. The compatibility means that for all k ≤ n, any k coordinates of an n point motion
(associated to Pn) form a k point motion and for any permutation σ of {1, · · · , n}, if
(X1, · · · , Xn) is the n point motion starting from (x1, · · · , xn), then (Xσ(1), · · · , Xσ(n)) is
the n point motion starting from (xσ(1), · · · , xσ(n)).

There is a one to one correspondance (see Section 2) between P and the set

K =

{
Law of K : K is a solution of the generalized Tanaka’s SDE

}
where the generalized Tanaka’s SDE is defined as follows
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On flows associated to Tanaka’s SDE

Definition 1.1. Let K be a stochastic flow of kernels and W be a real white noise. We
say that (K,W ) is a solution of (the generalized) Tanaka’s SDE (T ) if for all s ≤ t, x ∈ R,
f ∈ C2

b (R) (f is C2 on R and f ′, f ′′ are bounded), a.s.

Ks,tf(x) = f(x) +

∫ t

s

Ks,u(f ′sgn)(x)dWs,u +
1

2

∫ t

s

Ks,uf
′′(x)du (1.2)

We say that K is a Wiener solution of (T ) if for all s ≤ t, FKs,t = σ(Ku,v, s ≤ u ≤ v ≤ t) is
contained in FWs,t = σ(Wu,v, s ≤ u ≤ v ≤ t). Any flow of kernels K solving (T ) that is not
Wiener will be called a weak solution.

We recall that (Ws,t)s≤t is a real white noise if there exists a (unique) Brownian
motion on the real line (Wt)t∈R such that Ws,t = Wt −Ws for all s ≤ t. As a consequence
of Definition 1.1, if (K,W ) solves (T ), then FWs,t ⊂ FKs,t for all s ≤ t (see Lemma 3.1 in [8])
and so we may just say K solves (T ).

The main result of [8] shows that K is in bijection with

M =

{
m ∈ P([0, 1]),

∫ 1

0

x dm(x) =
1

2

}
where P([0, 1]) is the set of all probability measures on [0, 1]. This is summarized in the
following

Theorem 1.2. [8]

(1) Let m be a probability measure on [0, 1] with mean 1/2. There exist a stochastic flow
of kernels (unique in law) Km and a real white noise W such that (Km,W ) solves
(T ) and such that if W+

s,t = Ws,t − inf
u∈[s,t]

Ws,u and τs(x) = inf{r ≥ s : Ws,r = −|x|},

then for all s ≤ t and x ∈ R, a.s.

Km
s,t(x) = δx+sgn(x)Ws,t

1{t≤τs(x)} + (Us,tδW+
s,t

+ (1− Us,t)δ−W+
s,t

)1{t>τs(x)}

where for each s < t, Us,t is independent of W and has for law m.

(2)

Ks,t(x) = δx+sgn(x)Ws,t
1{t≤τs(x)} +

1

2
(δW+

s,t
+ δ−W+

s,t
)1{t>τs(x)}

is the unique (up to modification) Wiener solution of (T ); it corresponds to m = δ 1
2
.

Form = 1
2 (δ0+δ1), Km is induced by a coalescing flow of mappings ϕc i.e. Km = δϕc .

Moreover ϕc is the law unique stochastic flow of mappings such that for all s ≤ t
and x ∈ R a.s.

ϕcs,t(x) = x+

∫ t

0

sgn(ϕcs,u(x))dWs,u.

(3) For any flow K solution of (T ), there exists a unique probability measure m on [0, 1]

with mean 1/2 such that K
law
= Km.

In all this paper, a stochastic flow of kernels K on R is defined as in [7] with the
additional assumption that (s, t, x, ω) 7→ Ks,t(x, ω) is measurable from {(s, t, x, ω), s ≤
t, x ∈ R, ω ∈ Ω} into P(R). This is important for the integrals in (1.2) to be defined.

Let us now describe the content of this paper and our contribution to the study of
(T ). In Section 2, we explain the correspondance between Feller compatible solutions to
(1.1) and flows solutions to (T ). The content of this section was implicit in [9] and [2].
We write it here since our proofs later will strongly rely on it. In Section 3, we briefly
review the construction of the flows Km from [8], thus sketching the proof of Theorem
1.2 (1). In Section 4, we prove Theorem 1.2 (2). The idea to establish this fact for (T )
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On flows associated to Tanaka’s SDE

and other varieties of it which appeared in [1, 3, 9, 2] was to show that whenever K
is a Wiener solution, the Wiener chaos expansion of K0,tf(x) is unique for f bounded
and smooth enough (this was not explicitly written in [8]). This idea was not easy to
formulate especially when the one point motion is the Walsh process (see [1]). The
arguments used here, based only on martingale problems, are elementary; they apply for
all the examples considered in [1, 3, 9, 2, 4] and also give the explicit chaos expansion of
Wiener solutions in an easy way at least in the Brownian case (see Remark 4.3). They
may also be applied for equations driven by noises with a less obvious theory of chaos
expansion for example Lévy processes. The unicity in law of ϕc will not be reproduced
here (see Lemma 3.3 in [8]). In Section 5, we present an easy proof of Theorem 1.2 (3).
The original proof of [8] is based on a non trivial progressive modification of the flow
and a deep result on Brownian filtrations (Lemma 4.11 [8]). Here, we first reformulate
this statement in terms of the compatible family of Feller semigroups associated to K.
The proof is then achieved by linking (1.1) to the skew Brownian motion: if (X,Y ) is a
Markov process such that X and Y are solutions of (1.1) driven by the same Brownian
motion W with X0 = Y0 = 0, then sgn(Xt)Yt is a skew Brownian motion. This leads us
to classifying the laws of all the two point motions. Our arguments also apply for the
works [1, 3]. Finally in Section 6, we write down the generators of the n-point motions
associated to the flows Km and exhibit their dependence on m.

2 Stochastic flows of kernels and weak solutions

In this section, we will explain the link between the usual Tanaka’s equation (1.1)
and the generalized one (T ). The main result is Proposition 2.1 below. It shows that
each P∞ ∈P corresponds to a unique stochastic flow of kernels solution of (T ) and vice
versa. The second half of the proposition is stated only for completeness and will not be
used in this paper.

Proposition 2.1. (1) Let K be a solution of (T ) and let (Pn)n be its associated compat-
ible family of Feller semigroups given by Pnt = E[K⊗n0,t ]. Then for all x1, · · · , xn ∈ R:
if X = (X1, · · · , Xn) is the n-point motion associated to Pn started from (x1, · · · , xn)

and defined on (Ωn,An,Pn), there exists an (FXt )t Brownian motion Wn (on the
same probability space) such that for all i,

Xi
t = xi +

∫ t

0

sgn(Xi
s)dW

n
s . (2.1)

(2) Let (Pn)n≥1 be a compatible family of Feller semigroups acting respectively on
C0(Rn) such that for each n and x1, · · · , xn ∈ R: if X = (X1, · · · , Xn) is the Markov
process associated to Pn and started from (x1, · · · , xn) defined on (Ωn,An,Pn),
there exists an (FXt )t Brownian motion Wn (on the same probability space) such
that for each i, (Xi,Wn) satisfies (2.1). Then there exist a stochastic flow of
kernels K and a real white noise W such that (K,W ) solves (T ) and moreover
Pnt = E[K⊗n0,t ].

Proof. (1) Let (K,W ) be a solution of (T ) defined on (Ω,A,P) and let (Wt)t∈R be the
unique Brownian motion on the real line such that Ws,t = Wt −Ws for all s ≤ t. For
n ≥ 1, t ≥ 0, f ∈ C0(Rn), g ∈ C0(R) and (x,w) ∈ Rn ×R, define

Qnt (f ⊗ g)(x,w) = E[K⊗n0,t f(x)g(w +Wt)].

It is elementary to check that Qn is a Feller semigroup on Rn+1. These semigroups
are among the main tools in this paper; they were introduced in [2] Section 5.1. Fix
(x1, · · · , xn) ∈ Rn and let (X,B) be the Markov process associated to Qn and started
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from (x1, · · · , xn, 0). In particular, B is a Brownian motion. Write X = (X1, · · · , Xn),
then we will prove that for each i,

Xi
t = xi +

∫ t

0

sgn(Xi
s)dBs. (2.2)

Denote by A the generator of Q2 and let

D = {f ∈ C2(R), f, f ′, f ′′ ∈ C0(R), f ′(0) = 0}.

Note that D is dense in C0(R). Since (K,W ) solves (T ), Itô’s formula shows that for all
f ∈ D, g ∈ C2(R) such that g, g′′ ∈ C0(R), we have f ⊗ g ∈ D(A) and

A(f ⊗ g)(x,w) =
1

2
∆(f ⊗ g)(x,w) + f ′(x)sgn(x)g′(w)

where ∆ is the Laplacian on R2 and so

f(Xi
t)g(Bt)−

∫ t

0

A(f ⊗ g)(Xi
s, Bs)ds (2.3)

is a martingale. By Itô’s formula again,

f(Xi
t)g(Bt)−

1

2

∫ t

0

∆(f ⊗ g)(Xi
s, Bs)ds−

∫ t

0

f ′(Xi
s)g
′(Bs)d〈Xi, B〉s (2.4)

is also a martingale. Thus the difference (2.3) - (2.4) is a martingale which is also a
process of finite variation so it is identically zero, i.e.∫ t

0

f ′(Xi
s)g
′(Bs)sgn(Xi

s)ds =

∫ t

0

f ′(Xi
s)g
′(Bs)d〈Xi, B〉s.

An approximation argument shows that 〈Xi, B〉t =
∫ t
0

sgn(Xi
s)ds and consequently (2.2)

holds in L2(P). To finish the proof, recall that B is an (FX,Bt )t Brownian motion and
since FBt ⊂ FXt (from (2.2)), we deduce that B is an (FXt )t Brownian motion.

(2) Let (Pn,c)n≥1 be the compatible family of Feller semigroups associated to (Pn)n≥1
by Theorem 4.1 [7] (note that condition (C) there is satisfied). Let Xn = (Xn,1, · · · , Xn,n)

be the n point motion associated to Pn and started from (x1, · · · , xn) ∈ Rn and let Wn

be an (FXnt )t Brownian motion such that for each i, (Xi,Wn) satisfies (2.1). The n point
motion Y n = (Y n,1, · · · , Y n,n) associated to Pn,c started from (x1, · · · , xn) is coalescing
and the construction of Y n from Xn shows that each Y n,i is solution of (1.1) driven by
Wn and in particular,

〈Y n,i, Y n,j〉t =

∫ t

0

sgn(Y n,is )sgn(Y n,js )ds (2.5)

for all i, j. By Theorem 4.2 and 2.1 in [7], it is possible to construct on the same probability
space a joint realization (K1,K2) where K1 and K2 are two stochastic flows of kernels

satisfying K1 law= δϕ, K2 law= K and such that for all s ≤ t, x ∈ R, K2
s,t(x) = E[K1

s,t(x)|K2]

a.s. We notice that Theorem 1.1 and Theorem 2.1 in [7] remain valid with the additional
assumption that the flows of kernels are jointly measurable with respect to (s, t, x, ω)

(see the lines before Lemma 1.10 in [7]). Now to conclude the proof of (2), we only need
to check that K1 (or ϕ) is solution of (T ). Define

Ws,t = lim
x→+∞,x∈Q

(ϕs,t(x)− x).

Using (2.5), we easily prove that W is a real white noise and (ϕ,W ) solves (T ).
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3 Construction of flows associated to Tanaka’s SDE

The content of this section is taken from [8]. We fix a probability measure m on
[0, 1] with mean 1/2, then using Kolmogorov extension theorem one can construct on a
probability space (Ω,A,P) a process (Us,t,Ws,t)s≤t indexed by {(s, t) ∈ R2, s ≤ t} taking
values in [0, 1]×R whose law is characterized by

(i) Ws,t := Wt −Ws, s ≤ t and (Wt)t∈R is a Brownian motion on the real line.

(ii) For fixed s < t, Us,t is independent of W and Us,t
law
= m.

Set for all s < t,mins,t = inf{Wu : u ∈ [s, t]}. Then

(iii) For all s < t and {(si, ti); 1 ≤ i ≤ n}with si < ti, the law of Us,t knowing (Usi,ti)1≤i≤n
and W is given by m when mins,t 6∈ {minsi,ti ; 1 ≤ i ≤ n} and is given by

n∑
i=1

δUsi,ti ×
1{mins,t=minsi,ti}

Card{i; minsi,ti = mins,t}

otherwise.

Note that (i)-(iii) uniquely define the law of (Us1,t1 , · · · , Usn,tn ,W ) for all si < ti, 1 ≤ i ≤ n.
For s, x ∈ R, define

τs(x) = inf{r ≥ s : Ws,r = −|x|}

and for x ∈ R, s ≤ t, let W+
s,t = Wt −mins,t,

Km
s,t(x) = δx+sgn(x)Ws,t

1{t≤τs(x)} + (Us,tδW+
s,t

+ (1− Us,t)δ−W+
s,t

)1{t>τs(x)}.

Note that for all s ≤ t, Km
s,t is jointly measurable with respect to (x, ω). Setting Ũs,t =

lim supn→∞ Usn,tn , where (sn, tn) = ( bnsc+1
n , bntc−1n ), we get a version of Km which is

measurable from {(s, t, x, ω), s ≤ t, x ∈ R, ω ∈ Ω} into P(R). The new version (Km,W ) is
a solution of (T ).

4 Unicity of the Wiener flow

In this section, we prove uniqueness of the Wiener solution of (T ) and then discuss
some extensions of the proof.

Proposition 4.1. Let (K,W ) be a Wiener solution of (T ). Then for all s ≤ t, x ∈ R, with
probability 1,

Ks,t(x) = δx+sgn(x)Ws,t
1{t≤τs(x)} +

1

2
(δW+

s,t
+ δ−W+

s,t
)1{t>τs(x)}.

Proof. We will use the Feller semigroup

Qt(f ⊗ g)(x,w) = E[K0,tf(x)g(w +Wt)].

Fix x ∈ R and t > 0. Since K is a Wiener solution, there exists a measurable function
Ft,x : C([0, t],R)→ P(R) such that K0,t(x) = Ft,x(Wu, u ≤ t). Let (Xx, B) be the Markov
process associated to Q and started from (x, 0). Then B is a Brownian motion which
we may choose to be W and denote also K̃0,t(x) = Ft,x(Bu, u ≤ t) by K0,t(x) to simplify
notations. We will prove the following: For all measurable bounded f : R→ R a.s.

K0,tf(x) = E[f(Xx
t )|FW0,t]. (4.1)
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To this end, we will check that for all t1 ≤ · · · ≤ tn−1 ≤ tn = t and all bounded functions
f, g1, · · · , gn : R→ R, we have

E
[
K0,tf(x)

n∏
i=1

gi(Wti)
]

= E
[
f(Xx

t )

n∏
i=1

gi(Wti)
]
. (4.2)

This is easy to prove by induction on n. For n = 1, (4.2) is immediate from the definition
of Q. Let us prove the result for n = 2. We have

E[K0,tf(x)g1(Wt1)g2(Wt)] = E[K0,t1(Qt−t1(f ⊗ g2)(·,Wt1)(x)g1(Wt1)].

On the other hand

E[f(Xx
t )g1(Wt1)g2(Wt)] = E[Qt−t1(f ⊗ g2)(Xx

t1 ,Wt1)g1(Wt1)].

Now the equality between both quantities holds using a uniform approximation of
Qt2−t1(f ⊗ g) by a linear combination of functions of the form h⊗ k, h, k ∈ C0(R). Let us
derive the expression of K0,t(x). Proposition 2.1 (1) shows that Xx is solution of (1.1)
driven by W with initial condition Xx

0 = x. As sgn(Xx
t ) is independent of σ(|Xx|) = σ(W )

on the event {t > τ0(x)} and |Xx
t | = W+

0,t (see the introduction), the proof is finished.

Since the law of (Xx,W ) is easy to describe here, we got an explicit expression of the
Wiener solution. When the law of (Xx,W ) is unique with Xx a weak solution of an SDE
driven by W and starting from x, the arguments above may be applied to prove that at
least the Wiener solution to the generalized equation is unique whenever it exists. Let
us discuss the example considered in [9].

Proposition 4.2. (3.1 of [9]) Given W− and W+ two independent real white noises,
there exists at most one Wiener flow K such that for all s ≤ t, x ∈ R, f ∈ C2

b (R), a.s.

Ks,tf(x) = f(x) +

∫ t

s

Ks,u(f ′1]−∞,0])(x)dW−s,u

+

∫ t

s

Ks,u(f ′1]0,∞[)(x)dW+
s,u +

1

2

∫ t

s

Ks,uf
′′(x)du.

(4.3)

Proof. Let W 1 and W 2 be two independent standard Brownian motions. For a given x,
the SDE

dXx
t = 1{Xxt ≤0}dW

1
t + 1{Xxt >0}dW

2
t , X

x
0 = x (4.4)

has a weak solution and moreover the law Qx of (Xx,W 1,W 2) is unique (see Proposition
4.1 in [9]). Now let K1 and K2 be two Wiener solutions of (4.3), then

Ks,t(x, y) = K1
s,t(x)⊗K2

s,t(y)

is a stochastic flow of kernels on R2 and

Q2
t (f ⊗ g ⊗ h)(x, y, w) = E[K1

s,tf(x)K2
s,tg(y)h(w +Wt)]

where f, g ∈ C0(R), h ∈ C0(R2) and x, y ∈ R, w ∈ R2, defines a Feller semigroup on R4.
Fix s = 0, t > 0, x ∈ R, and let (X,Y,B) be the Markov process associated to Q started
from (x, x, 0), then B = (B1, B2) is a two dimensional Brownian motion and following the
proof of (4.1), we have for all f ∈ C0(R) a.s.

N1
0,tf(x) = E[f(Xt)|FB0,t], N2

0,tf(x) = E[f(Yt)|FB0,t]
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where (N1
0,t(x), N2

0,t(x)) is a copy of (K1
0,t(x),K2

0,t(x)). Using martingales as in the proof
of Proposition 2.1 (1), we easily check that (X,B) and (Y,B) satisfy (4.4) and thus have
law Qx. Consequently, for all f ∈ C0(R), a.s.

E[f(Xt)|FB0,t] = E[f(Yt)|FB0,t]

which yields that K1
0,t(x) = K2

0,t(x) a.s.

The method described here applies also for the examples considered in [1, 3, 2, 4] but
there the notion of weak solution starting from a single point should be defined carefully
(see Definition 1.1 in [2]).

Remark 4.3. This remark is a consequence of Exercise 3.13 on page 204 [11]. Let
(Xx,W ) be a weak solution of (1.1) and let f : R→ R be measurable and bounded. Fix
t > 0 and define ψ(s, x) = pt−sf(x) for 0 < s < t, x ∈ R where p is the semigroup of the
standard Brownian motion. Applying Itô’s formula for the semimartingale (s,Xx

s ) and
then letting s ↑ t, we see that

f(Xx
t ) = ptf(x) +

∫ t

0

[(pt−uf)′sgn] (Xx
u)dWu.

Using (4.1), we get

K0,tf(x) = ptf(x) +

∫ t

0

K0,u((pt−uf)′sgn)(x)dWu.

Iterating this relation, we obtain the Wiener chaos expansion of K0,tf(x). The same
method works without difficulty for the SDE (4.3) and the SDE considered in [3]. For the
SDEs studied in [1, 2], one could generalize the previous idea by establishing first an
Itô’s formula for (t,Xt) where X is a Walsh’s Brownian motion and then proceeding as
above.

5 Classification of weak solutions

In this section, we present an easy proof of Theorem 1.2 (3). As promised in the
introduction, our main tool will be the skew Brownian motion. The motivation behind the
use of this process is the following observation: The two point motion (X,Y ) associated
to ϕc (resp. KW ) is composed of two standard Brownian motions X and Y such that
|X| = |Y | and sgn(Xt) = sgn(Yt) (resp. sgn(Xt) and sgn(Yt) are independent given
|X| = |Y |) for all t > 0. This is clear from the expressions of ϕc and KW . In particular
sgn(Xt)Yt is a reflecting (resp. standard) Brownian motion. For any solution K, we will
prove the natural conjecture that sgn(Xt)Yt is a skew Brownian motion. Its skewness
parameter measures how far sgn(Xt) and sgn(Yt) are from each other.

From now on, we fix (K,W ) a solution of (T ). Since FWs,t ⊂ FKs,t for all s ≤ t, we can

define K̂ a Wiener stochastic flow obtained by filtering K with respect to σ(W ) (Lemma
3-2 (ii) in [7]). Thus by conditioning with respect to W , we see that (K̂,W ) also solves
(T ). By the result of the previous section, K̂ is therefore a modification of KW . Thus
setting Us,t = Ks,t(0, [0,∞[), we deduce that for all s ≤ t and x ∈ R, a.s.

Ks,t(x) = δx+sgn(x)Ws,t
1{t≤τs(x)} + (Us,tδW+

s,t
+ (1− Us,t)δ−W+

s,t
)1{t>τs(x)}.

Set Ut := U0,t for t > 0. It remains to prove the following

Proposition 5.1. For all t > 0, Ut is independent of (Wu)u≥0 and the law of Ut does not
depend on t > 0. Denote by m the law of Ut for t > 0, then K and Km have the same law.
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The last claim is a direct consequence of the two first ones, since K and Km will
define the same compatible family of Feller semigroups Pnt = E[K⊗n0,t ] = E[Km

0,t
⊗n], n ≥ 1.

Now the rest of this section will be devoted to the proof of this proposition. The key
observation is the following

Lemma 5.2. The following assertions are equivalent

(i) For all t > 0, Ut is independent of (Wu)u≥0 and the law of Ut does not depend on
t > 0.

(ii) For all n ≥ 1, if (X1, · · · , Xn) is the n point motion associated to K started from
(0, · · · , 0), then (sgn(X1

t ), · · · , sgn(Xn
t )) is independent of |X1| (which is also equal

to any |Xi|) for all t > 0 and the law of (sgn(X1
t ), · · · , sgn(Xn

t )) does not depend on
t > 0.

Proof. For n ≥ 1,

Qnt (f ⊗ g)(x,w) = E[K⊗n0,t f(x)g(w +Wt)],

f ∈ C0(Rn), g ∈ C0(R), x ∈ Rn, w ∈ R defines a Feller semigroup on Rn ×R. Denote by
(X1, · · · , Xn, B) the Markov process associated to Qn and started from (0, · · · , 0, 0). An
easy induction similar to the proof of (4.2) shows that for all N ≥ 1 and all bounded
continuous functions f1, · · · , fN : Rn → R, g1, · · · , gN : R→ R, we have

E

[ N∏
i=1

fi(X
1
ti , · · · , X

n
ti)gi(Bti)

]
= E

[ N∏
i=1

K0,tifi(0)gi(Wti)

]
. (5.1)

By Proposition 4.1, Xi is a solution of Tanaka’s SDE driven by B and so |Xi
t | = B+

t :=

Bt− inf0≤u≤tBu for all i. Now (i) entails (ii) is clear using (5.1). Assume (ii), then by (5.1)
E[UNt g(W )] = E[UNt ]E[g(W )] for each N so that Ut is independent of W and similarly
the law of Ut does not depend on t.

In the rest of this section n ≥ 1 is fixed and (X1, · · · , Xn) is the n point motion
associated to K. We will prove (ii) in Lemma 5.2 for n. The independence part reduces
to proving that for all 1 ≤ i1 ≤ · · · ≤ ik ≤ n, sgn(Xi1

t ) · · · sgn(Xik
t ) is independent of B.

This is sufficient since it yields that for all k1, · · · , kn,

E[(sgn(X1
t ))k1 · · · (sgn(Xn

t ))knh(B)]

coincides with

E[(sgn(X1
t ))k1 · · · (sgn(Xn

t ))kn ]E[h(B)]

for any measurable bounded h : C(R+,R)→ R. To prove that the law of (sgn(X1
t ), · · · , sgn(Xn

t ))

does not depend on t > 0, we will check that for all 1 ≤ i1 ≤ · · · ≤ ik ≤ n, the same holds
for the law of sgn(Xi1

t ) · · · sgn(Xik
t ).

To simplify notations, we take i1 = 1, · · · , ik = k. We will need the following

Lemma 5.3. For any ε > 0, define the stopping times τ ε0 = 0 and for l ≥ 0,

σεl = inf{u ≥ τ εl : B+
u = ε},

τ εl+1 = inf{u ≥ σεl : B+
u = 0}.

Then, the sequence (sgn(Xi
σεl

))1≤i≤k, l = 0, 1, · · · is i.i.d. Moreover for any l and ε′ > 0,

(sgn(Xi
σεl

))1≤i≤k and (sgn(Xi
T ))1≤i≤k have the same law where

T = inf{u ≥ 0 : B+
u = ε′}.
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Proof. Let (Gt)t be the natural filtration of (X1, · · · , Xk). By the strong Markov property,
applied at times τ εl , (sgn(Xi

σεl
))1≤i≤k is independent of Gτεl and has the same law as

(sgn(Xi
σε1

))1≤i≤k (since (X1
τεl
, · · · , Xk

τεl
) = 0Rk ). This gives the first claim. For the second

claim, we may suppose ε′ ≥ ε. Let G : Rk → R be measurable and bounded. Using
the strong Markov property, the fact that (sgn(Xi

σεl
))1≤i≤k is independent of Gτεl and

remarking that (sgn(Xi
σεl

))1≤i≤k = (sgn(Xi
T ))1≤i≤k on the event {τ εl ≤ T < τ εl+1}, we get

E[G((sgn(Xi
T ))1≤i≤k)] =

∑
l

E[G((sgn(Xi
σεl

))1≤i≤k)1{τεl ≤T}P(T < τ εl+1|Gσεl )]

=
∑
l

E[G((sgn(Xi
σεl

))1≤i≤k)1{τεl ≤T}
ε

ε′
]

=
∑
l

E[G((sgn(Xi
σεl

))1≤i≤k)]P(τ εl ≤ T )
ε

ε′

= E[G((sgn(Xi
σε1

))1≤i≤k)]
∑
l

P(τ εl ≤ T )
ε

ε′

= E[G((sgn(Xi
σε1

))1≤i≤k)]
∑
l

P(τ εl ≤ T < τ εl+1)

= E[G((sgn(Xi
σε1

))1≤i≤k)]

which finishes the proof.

Now set
αk = P(sgn(X1

T ) · · · sgn(Xk
T ) = 1)

where T is a stopping time as in the previous lemma, then we have the following

Proposition 5.4. Zt = sgn(X1
t ) · · · sgn(Xk

t )B+
t is a skew Brownian motion with param-

eter αk. In particular, sgn(X1
t ) · · · sgn(Xk

t ) is independent of |Z| = B+ for all t > 0 and
the law of sgn(X1

t ) · · · sgn(Xk
t ) does not depend on t > 0.

Proof. For N ≥ 1, define

TN0 = 0, TNl+1 = inf{t > TNl : |X1
t −X1

TNl
| = 2−N}

and
SNl = 2Nsgn(X1

TNl
) · · · sgn(Xk

TNl
)B+

TNl
, l = 0, 1, · · · .

For every N , (SNl )l is a Markov chain started at 0 whose law is given by the transition
probabilities

Q(0, 1) = 1−Q(0,−1) = αk, Q(m,m+ 1) = Q(m,m− 1) = 1/2, m 6= 0.

In particular,
(

2−NSNb22N tc

)
t≥0

converges in finite dimensional distributions as N →∞

to the skew Brownian motion with parameter αk (see [5]). Now limN→∞ TNb22N tc = t a.s.
uniformly on compact sets (see [6] page 31). Since Z is continuous, ZTN

b22Ntc
converges

to Zt a.s. uniformly on compact sets. But ZTN
b22Ntc

= 2−NSNb22N tc, so we deduce that Z is

a skew Brownian motion with parameter αk and as sgn(Zt) = sgn(X1
t ) · · · sgn(Xk

t ) a.s.
for all t > 0, the proof is finished.

By the fundamental result of [5], Vt = Zt − (2αk − 1)Lt(Z) is a standard Brownian
motion where Lt(Z) stands for the symmetric local time of Z and Z is also the unique
strong solution to Zt = Vt+(2αk−1)Lt(Z). The next proposition gives more informations
on the Brownian motion V .
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Proposition 5.5. We have

Zt =

∫ t

0

sgn(X1
s ) · · · sgn(Xk

s )dBs + (2αk − 1)Lt(Z).

In particular, Zt and Vt =
∫ t
0

sgn(X1
s ) · · · sgn(Xk

s )dBs define the same filtrations.

Proof. The claim holds by following exactly the proof of Proposition 3 in [10]. The slight
difference here is that Z is obtained by flipping independently the excursions of B+ with
an i.i.d sequence {ξl} such that P(ξl = 1) = 1− P(ξl = 1) = αk, so that E[ξ1] at the end
of the proof of Proposition 3 [10] will be replaced with (2αk − 1).

Note that since E[sgn(X1
t ) · · · sgn(Xk

t )] = 2αk − 1, we see from (5.1) that

αk =
1

2

(
1 +

∫ 1

0

(2x− 1)kdm(x)

)
.

This shows that the moments of m up to the order k are uniquely determined by the k
point motions.

6 Generators of the n-point motions

In this section K = Km is a solution of Tanaka’s SDE associated to m. Our purpose
here is to write the generator of Pnt = E[K⊗n0,t ] on a core of C0(Rn) and show its
dependence on m.

For all ε1, · · · , εi ∈ {−1, 1}, set

Mε1,··· ,εi =

∫ 1

0

αI(1− α)i−Idm(α)

where I = Card{j ∈ [1, i] : εj = 1}. Let Dm,n be the set of all functions f : Rn → R which
are in C0(Rn) and satisfy the following assumptions

(i) For all E = E1 × · · · × En, with Ei = R∗+ or R∗−, f|E is the restriction on E of a C2

function g (=gE) on Rn such that for all i, j, ∂g
∂xi

, ∂2g
∂xi∂xj

are in C0(Rn) and for all

x ∈ ∂E, limy→x,y∈E
∂2f

∂xi∂xj
(y) = 0.

(ii) For all x = (x1, · · · , xn) ∈ Rn, if {xh, xh = 0} = {xi1 , · · · , xij} with i1 ≤ · · · ≤ ij ,
then

∑
εi1 ,··· ,εij∈{−1,1}

Mεi1 ,··· ,εij

∑
k∈{i1,··· ,ij}

εk lim
h→0+

∂f

∂xk
(yh(x)) = 0

where the l-th coordinate of yh(x) is given by εlh if l ∈ {i1, · · · , ij} and by xl
otherwise.

Note that Dm,n is dense in C0(Rn) since it contains D ⊗ · · · ⊗ D (n times) with D = {f ∈
C2(R), f, f ′, f ′′ ∈ C0(R), f ′(0) = f ′′(0) = 0}. We have the following

Proposition 6.1. The generator of Pn coincides on Dm,n with An where for f ∈ Dm,n
and x = (x1, · · · , xn) ∈ Rn, Anf(x) is defined by: If xi 6= 0 for all 1 ≤ i ≤ n, then

Anf(x) :=
1

2

∑
h,k

sgn(xh)sgn(xk)
∂2f

∂xh∂xk
(x).
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If {xh, xh = 0} = {xi1 , · · · , xij} with i1 ≤ · · · ≤ ij , then

Anf(x1, · · · , xn) :=
1

2

∑
εi1 ,··· ,εij∈{−1,1}

Mεi1 ,··· ,εij

∑
h,k∈{i1,··· ,ij}

εhεk
∂2f

∂xh∂xk
(x)

+
1

2

∑
εi1 ,··· ,εij∈{−1,1}

Mεi1 ,··· ,εij

∑
h,k/∈{i1,··· ,ij}

sgn(xh)sgn(xk)
∂2f

∂xh∂xk
(x)

+
∑

εi1 ,··· ,εij∈{−1,1}

Mεi1 ,··· ,εij

∑
h∈{i1,··· ,ij},k/∈{i1,··· ,ij}

εhsgn(xk)
∂2f

∂xh∂xk
(x).

Proof. Denote τ0(y) simply by τy. Since for all y 6= 0, limt→0+P(t > τy)/t = 0, using the
fact that Ut is independent of W and has for law m, we have as t→ 0+,

E[K⊗n0,t f(x)] =
∑

ε1,··· ,εi∈{−1,1}

Mε1,··· ,εiE[gε1,··· ,εi(Wt∧τy ,W
+
t∧τy )] + o(t)

where y 6= 0 is fixed from now on such that |y| < |xi| for all xi 6= 0 and gε1,··· ,εi is defined
on R∗ ×R∗+ by

gε1,··· ,εi(a, b) = f
(
C1(a, b), · · · , Cn(a, b)

)
with Ci(a, b) = εib if i ∈ {i1, · · · , ij} and Ci(a, b) = xi + sgn(xi)a if not. Let f̃ be a C2

extension of f|E as in (i) above where E = E1 × · · · ×En and Ei = R∗+ if xi > 0 or xi = 0

and εi = 1, Ei = R∗− if xi < 0 or xi = 0 and εi = −1. By Itô’s formula applied to f̃ ,
denoting g = gε1,··· ,εi , we have

E[g(Wt∧τy ,W
+
t∧τy )] = E

[ ∫ t∧τy

0

(
1

2
∆g +

∂2g

∂a∂b

)
(Ws,W

+
s )ds

]
+ E

[ ∫ t∧τy

0

∂g

∂b
(Ws, 0+)dLs

]
where Lt = −min0≤u≤tWu and ∆ is the Laplacian on R2. Since f ∈ Dm,n, by (ii), for all
s ≤ τy, we have ∑

ε1,··· ,εi∈{−1,1}

Mε1,··· ,εi
∂g

∂b
(Ws, 0+) = 0,

and so

lim
t→0+

t−1(E[K⊗n0,t f(x)]− f(x)) =
∑

εi1 ,··· ,εij∈{−1,1}

Mεi1 ,··· ,εij

(
1

2
∆g +

∂2g

∂a∂b

)
(0, 0) = Anf(x).

References

[1] Hajri. H, Stochastic flows related to Walsh Brownian motion. Electronic Journal of Probability
16, (2011), (1563-1599), MR-2835247

[2] Hajri. H. and Raimond. O, Stochastic flows and an interface SDE on metric graphs,
arXiv:1310.3576 (2013), MR-0000000.

[3] Hajri. H and Raimond. O, Tanaka’s equation on the circle and stochastic flows. ALEA Lat. Am.
J. Probab. Math. Stat., no. 1, 415–448, (2013), MR-3083932

[4] Hajri, H. and Touhami, W., Itô’s formula for Walsh’s Brownian motion and applications.
Statist. Probab. Lett., 87 (2014), 48–53. MR-3168934

ECP 20 (2015), paper 16.
Page 11/12

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2835247
http://www.ams.org/mathscinet-getitem?mr=0000000
http://www.ams.org/mathscinet-getitem?mr=3083932
http://www.ams.org/mathscinet-getitem?mr=3168934
http://dx.doi.org/10.1214/ECP.v20-4058
http://ecp.ejpecp.org/


On flows associated to Tanaka’s SDE

[5] Harrison. J.M. and Shepp. L.A, On skew Brownian motion. Ann. Probab., 9, (1981), no.2,
309–313. MR-0606993

[6] Le Gall.J.F., Mouvement Brownien, Processus de Branchement et Superprocessus. Notes de
cours de DEA, Paris 6, (1994), MR-34509

[7] Le Jan. Y. and Raimond. O, Flows, coalescence and noise. Ann. Probab., 32, (2004), no.2,
1247–1315. MR-2060298

[8] Le Jan. Y. and Raimond. O, Flows associated to Tanaka’s SDE. ALEA Lat. Am. J. Probab. Math.
Stat., 1, (2006), 21–34. MR-2235172

[9] Le Jan, Y. and Raimond, O., Three examples of Brownian flows on R, Ann. Inst. H. Poinca
Probab. Statist, 50 (4), 1323-1346, 2014. MR-3269996

[10] Prokaj, V., Unfolding the Skorohod reflection of a semimartingale.Statist. Probab. Lett., 79
(2009), 534–536. MR-2494646

[11] Revuz, D. and Yor, M., Continuous martingales and Brownian motion. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293,
Third edition, Springer-Verlag, Berlin, (1999). MR-1725357

[12] Watanabe, S., The stochastic flow and the noise associated to Tanaka’s stochastic differential
equation. Ukraïn. Mat. Zh., no. 52 (9), 1176–1193, (2000). MR-1816931

ECP 20 (2015), paper 16.
Page 12/12

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=0606993
http://www.ams.org/mathscinet-getitem?mr=34509
http://www.ams.org/mathscinet-getitem?mr=2060298
http://www.ams.org/mathscinet-getitem?mr=2235172
http://www.ams.org/mathscinet-getitem?mr=3269996
http://www.ams.org/mathscinet-getitem?mr=2494646
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1816931
http://dx.doi.org/10.1214/ECP.v20-4058
http://ecp.ejpecp.org/

	Introduction
	Stochastic flows of kernels and weak solutions
	Construction of flows associated to Tanaka's SDE
	Unicity of the Wiener flow
	Classification of weak solutions
	Generators of the n-point motions
	References

