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1 Introduction

Exponential random graph models are widely used to characterize the structure and
behavior of real-world networks as they are able to predict the global structure of the
networked system based on a set of tractable local features. Let s be a positive integer.
We recall the definition of an s-parameter family of exponential random graphs. Let
H1, . . . ,Hs be fixed finite simple graphs (“simple” means undirected, with no loops or
multiple edges). By convention, we take H1 to be a single edge. Let ζ1, . . . , ζs be s real
parameters and let N be a positive integer. Consider the set GN of all simple graphs GN
on N vertices. Let hom(Hi, GN ) denote the number of homomorphisms (edge-preserving
vertex maps) from the vertex set V (Hi) into the vertex set V (GN ) and t(Hi, GN ) denote
the homomorphism density of Hi in GN ,

t(Hi, GN ) =
|hom(Hi, GN )|
|V (GN )||V (Hi)|

. (1.1)

By an s-parameter family of exponential random graphs we mean a family of probability
measures PζN on GN defined by, for GN ∈ GN ,

P
ζ
N (GN ) = exp

(
N2
(
ζ1t(H1, GN ) + · · ·+ ζst(Hs, GN )− ψζN

))
, (1.2)

where the parameters ζ1, . . . , ζs are used to tune the densities of different subgraphs
H1, . . . ,Hs of GN and ψζN is the normalization constant,

ψζN =
1

N2
log

∑
GN∈GN

exp
(
N2 (ζ1t(H1, GN ) + · · ·+ ζst(Hs, GN ))

)
. (1.3)
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Exact asymptotics for constrained exponential random graphs

These exponential models are analogues of grand canonical ensembles in statistical
physics, with particle and energy densities in place of subgraph densities, and tem-
perature and chemical potentials in place of tuning parameters. A key objective while
studying these models is to evaluate the normalization constant. It encodes essential
information about the model since averages of various quantities of interest may be
obtained by differentiating the normalization constant with respect to appropriate pa-
rameters. Indeed, a phase is commonly characterized as a connected region of the
parameter space, maximal for the condition that the limiting normalization constant
is analytic, and phase boundaries are determined by examining the singularities of its
derivatives. Computation of the normalization constant is also important in statistics
because it is crucial for carrying out maximum likelihood estimates and Bayesian infer-
ence of unknown parameters. The computation though is not always reliable for large N .
For example, as shown by Chatterjee and Diaconis [5], when s = 2 and ζ2 > 0, all graphs
drawn from the exponential model (1.2) are not appreciably different from Erdős-Rényi
in the large N limit.

This implies that sometimes subgraph densities cannot be tuned in the unconstrained
model and exponential random graphs alone may not capture all desirable features of
the networked system, such as interdependency and clustering. Furthermore, unlike
standard statistical physics models, the equivalence of various ensembles (microcanoni-
cal, canonical, grand canonical) in the asymptotic regime does not hold in these models.
One possible explanation is that since the normalization constant in the microcanonical
ensemble is not always a convex function of the parameters [11], the Legendre transform
between the normalization constants in different ensembles is not invertible (see [13]
for discussions about non-equivalence of ensembles). We are thus motivated to study
the constrained exponential random graph model in [7], where some subgraph density
is controlled directly and others are tuned with parameters. In contrast to the above
example where in the limit as N →∞, all graphs are close to Erdős-Rényi as ζ2 increases
from 0 to∞, it was shown in [7] that for fixed edge density, a typical graph drawn from
the constrained edge-triangle model still exhibits Erdős-Rényi structure for ζ2 close to
0, but consists of one big clique and some isolated vertices as ζ2 gets sufficiently close
to infinity. Notice that the transition observed in the constrained model is between
graphs of different characters, whereas in the unconstrained model, although there is a
curve in the parameter space across which the graph densities display sudden jumps
[5, 12], the transition is between graphs of similar characters (Erdős-Rényi graphs).
Interesting mathematics is therefore expected from studying the constrained model, and
in particular, the associated normalization constant directly; the normalization constant
in the unconstrained model may sometimes be of no particular relevance.

For clarity, we assume that the edge density of the graph is approximately known
to be e, though the argument runs through without much modification if the density
of some other more complicated subgraph is approximately described. Take t > 0.
The conditional normalization constant ψe,ζN,t is defined analogously to the normalization

constant ψζN for the unconstrained exponential random graph model,

ψe,ζN,t =
1

N2
log

∑
GN∈GN :|e(GN )−e|≤t

exp
(
N2 (ζ1t(H1, GN ) + · · ·+ ζst(Hs, GN ))

)
, (1.4)

the difference being that we are only taking into account graphs GN whose edge density
e(GN ) is within a t neighborhood of e. Correspondingly, the associated conditional
probability measure Pe,ζN,t(GN ) is given by

P
e,ζ
N,t(GN ) = exp

(
N2
(
ζ1t(H1, GN ) + · · ·+ ζst(Hs, GN )− ψe,ζN,t

))
1|e(GN )−e|≤t. (1.5)
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Exact asymptotics for constrained exponential random graphs

Based on a large deviation principle for Erdős-Rényi graphs established in Chatterjee
and Varadhan [6], Chatterjee and Diaconis [5] developed an asymptotic approximation
for the normalization constant ψζN as N →∞ and connected the occurrence of a phase
transition in the dense exponential model with the non-analyticity of the asymptotic limit
of ψζN . Further investigations quickly followed, see for example [1, 9, 10, 11, 12, 14, 15].
However, since the approximation relies on Szemerédi’s regularity lemma, the error
bound on ψζN is of the order of some negative power of

log∗N =

{
0, if N ≤ 1;
1 + log∗(logN), if N > 1,

(1.6)

which is the number of times the logarithm function must be iteratively applied before
the result is less than or equal to 1, and this method is also not applicable for sparse
exponential random graphs. Analogously, using the large deviation principle established
in Chatterjee and Varadhan [6] and Chatterjee and Diaconis [5], we developed an
asymptotic approximation for the conditional normalization constant ψe,ζN,t as N →∞ and
t→ 0, since it is in this limit that interesting singular behavior occurs [7]. Nevertheless,
this approximation suffers from the same problem: the error bound on ψe,ζN,t is of the
order of some negative power of log∗N and the method does not lead to an exact limit
for ψe,ζN,t in the sparse setting.

To improve on the approximation, Chatterjee and Dembo [4] presented a general
technique for computing large deviations of nonlinear functions of independent Bernoulli
random variables in a recent work. In detail, let f be a function from [0, 1]n to R, they
considered a generic normalization constant of the form

F = log
∑

x∈{0,1}n
ef(x) (1.7)

and investigated conditions on f such that the approximation

F = sup
x∈[0,1]n

(f(x)− I(x)) + lower order terms (1.8)

is valid, where I(x) =
∑n
i=1 I(xi) and

I(xi) =

n∑
i=1

(xi log xi + (1− xi) log(1− xi)). (1.9)

They then applied the general result and obtained bounds for the normalization constant
ψζN for finite N , which leads to a variational formula for the asymptotic normalization
of exponential random graphs with a small amount of sparsity. Serious attempts have
also been made at formulating a suitable “sparse” version of Szemerédi’s lemma [2, 3].
This however may not always provide the precision required for large deviations, since
random graphs do not necessarily satisfy the proposed regularity conditions in the large
deviations regime. Seeing the power of nonlinear large deviations in deriving a concrete
error bound for ψζN as N →∞, we naturally wonder if it is possible to likewise obtain

a better estimate for ψe,ζN,t as N → ∞ and t → 0, which will shed light on constrained
exponential random graphs with sparsity. The following sections will be dedicated
towards this goal. Due to the imposed constraint, instead of working with a generic
normalization constant of the form (1.7) as in Chatterjee and Dembo [4], we will work
with a generic conditional normalization constant in Theorem 3.1 and then apply this
result to derive a concrete error bound for the conditional normalization constant ψe,ζN,t
of constrained exponential random graphs in Theorems 4.1 and 4.2.

ECP 20 (2015), paper 56.
Page 3/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4010
http://ecp.ejpecp.org/


Exact asymptotics for constrained exponential random graphs

2 Overview of Chatterjee-Dembo results

Chatterjee and Dembo came up with a two-part sufficient condition under which the
approximation (1.8) holds. They first assumed that f is a twice continuously differentiable
function on [0, 1]n and introduced some shorthand notation. Let ‖·‖ denote the supremum
norm. For each i and j, let

fi =
∂f

∂xi
and fij =

∂2f

∂xi∂xj
(2.1)

and define a = ‖f‖, bi = ‖fi‖, and cij = ‖fij‖. In addition to this minor smoothness
condition on the function f , they further assumed that the gradient vector ∇f(x) =

(∂f/∂x1, . . . , ∂f/∂xn) satisfies a low complexity gradient condition: For any ε > 0, there
is a finite subset of Rn denoted by D(ε) such that for all x ∈ [0, 1]n, there exists d =

(d1, . . . , dn) ∈ D(ε) with
n∑
i=1

(fi(x)− di)2 ≤ nε2. (2.2)

Theorem 2.1 (Theorem 1.5 in [4]). Let F , a, bi, cij , and D(ε) be defined as above. Let I
be defined as in (1.9). Then for any ε > 0, F satisfies the upper bound

F ≤ sup
x∈[0,1]n

(f(x)− I(x)) + complexity term + smoothness term, (2.3)

where

complexity term =
1

4

(
n

n∑
i=1

b2i

)1/2

ε+ 3nε+ log |D(ε)|, and (2.4)

smoothness term = 4

 n∑
i=1

(acii + b2i ) +
1

4

n∑
i,j=1

(ac2ij + bibjcij + 4bicij)

1/2

(2.5)

+
1

4

(
n∑
i=1

b2i

)1/2( n∑
i=1

c2ii

)1/2

+ 3

n∑
i=1

cii + log 2.

Moreover, F satisfies the lower bound

F ≥ sup
x∈[0,1]n

(f(x)− I(x))− 1

2

n∑
i=1

cii. (2.6)

To utilize Theorem 2.1 in the exponential random graph setting, Chatterjee and
Dembo introduced an equivalent definition of the homomorphism density so that the
normalization constant for exponential random graphs (1.3) takes the same form as the
generic normalization constant (1.7). This notion of the homomorphism density, which
dates back to Lovász, is denoted by t(H,x) and may be constructed not only for simple
graphs but also for more general objects (referred to as “graphons” in Lovász [8]). Let k
be a positive integer and let H be a finite simple graph on the vertex set [k] = {1, . . . , k}.
Let E be the set of edges of H and let m = |E|. Let N be another positive integer and let
n =

(
N
2

)
. Index the elements of [0, 1]n as x = (xij)1≤i<j≤N with the understanding that

if i < j, then xji is the same as xij , and for all i, xii = 0. Let t(H,x) = T (x)/N2, where
T : [0, 1]n → R is defined as

T (x) =
1

Nk−2

∑
q∈[N ]k

∏
{l,l′}∈E

xqlql′ . (2.7)
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Exact asymptotics for constrained exponential random graphs

For any graph GN , if xij = 1 means there is an edge between the vertices i and j

and xij = 0 means there is no edge, then t(H,x) = t(H,GN ), where t(H,GN ) is the
homomorphism density defined by (1.1). Furthermore, if we let Gx denote the simple
graph whose edges are independent, and edge (i, j) is present with probability xij
and absent with probability 1 − xij , then t(H,x) gives the expected value of t(H,Gx).
Chatterjee and Dembo checked that T (x) satisfies both the smoothness condition and
the low complexity gradient condition as assumed in Theorem 2.1. In detail, they showed
in Lemmas 5.1 and 5.2 of [4] that

‖T‖ ≤ N2, ‖ ∂T
∂xij
‖ ≤ 2m, (2.8)

∥∥∥∥ ∂2T

∂xij∂xi′j′

∥∥∥∥ ≤ { 4m(m− 1)N−1, if |{i, j, i′, j′}| = 2 or 3;
4m(m− 1)N−2, if |{i, j, i′, j′}| = 4,

(2.9)

and for any ε > 0,

|DT (ε)| ≤ exp

(
cm4k4N

ε4
log

Cm4k4

ε4

)
, (2.10)

where c and C are universal constants. By taking f(x) = ζ1T1(x) + · · · + ζsTs(x) in
Theorem 2.1, they then gave a concrete error bound for the normalization constant ψζN ,
which is seen to be F/N2 in this alternative interpretation of (1.7). This error bound
is significantly better than the negative power of log∗N and allows a small degree of
sparsity for ζi. As Theorem 2.2 shows, the difference between ψζN and the approximation

supx∈[0,1]n
f(x)−I(x)

N2 tends to zero as long as
∑s
i=1 |ζi| grows slower than N1/8(logN)−1/8.

Theorem 2.2 (Theorem 1.6 in [4]). Let s be a positive integer and H1, . . . ,Hs be fixed
finite simple graphs. Let N be another positive integer and let n =

(
N
2

)
. Define T1, . . . , Ts

accordingly as in the above paragraph. Let ζ1, . . . , ζs be s real parameters and define ψζN
as in (1.3). Let f(x) = ζ1T1(x) + · · ·+ ζsTs(x), B = 1 + |ζ1|+ · · ·+ |ζs|, and I be defined
as in (1.9). Then

− cBN−1 ≤ ψζN − sup
x∈[0,1]n

f(x)− I(x)
N2

(2.11)

≤ CB8/5N−1/5(logN)1/5
(
1 +

logB

logN

)
+ CB2N−1/2,

where c and C are constants that may depend only on H1, . . . ,Hs.

3 Nonlinear large deviations

Let f and h be two continuously differentiable functions from [0, 1]n to R. Assume
that f and h satisfy both the smoothness condition and the low complexity gradient
condition described at the beginning of this paper. Let a, bi, cij be the supremum norms
of f and let α, βi, γij be the corresponding supremum norms of h. For any ε > 0, let
Df (ε) and Dh(ε) be finite subsets of Rn associated with the gradient vectors of f and h
respectively. Take t > 0. Consider a generic conditional normalization constant of the
form

F c = log
∑

x∈{0,1}n:|h(x)|≤tn

ef(x). (3.1)

Theorem 3.1. Let F c, a, bi, cij , α, βi, γij , Df (ε), and Dh(ε) be defined as above. Let I be
defined as in (1.9). Let K = log 2 + 2a/n. Then for any δ > 0 and ε > 0, F c satisfies the
upper bound
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Exact asymptotics for constrained exponential random graphs

F c ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)) + complexity term + smoothness term, (3.2)

where

complexity term =
1

4

(
n

n∑
i=1

m2
i

)1/2

ε+ 3nε+ log

(
12K

(
1
n

∑n
i=1 β

2
i

)1/2
δε

)
(3.3)

+ log |Df (ε/3)|+ log |Dh((δε)/(6K))|, and

smoothness term = 4

 n∑
i=1

(lnii +m2
i ) +

1

4

n∑
i,j=1

(ln2ij +mimjnij + 4minij)

1/2

(3.4)

+
1

4

(
n∑
i=1

m2
i

)1/2( n∑
i=1

n2ii

)1/2

+ 3

n∑
i=1

nii + log 2,

where
l = a+ nK, (3.5)

mi = bi +
2Kβi
δ

, (3.6)

nij = cij +
2Kγij
δ

+
6Kβiβj
nδ2

. (3.7)

Moreover, F c satisfies the lower bound

F c ≥ sup
x∈[0,1]n:|h(x)|≤(t−δ0)n

(f(x)− I(x))− ε0n− η0n− log 2, (3.8)

where

δ0 =

√
6

n

(
n∑
i=1

(αγii + β2
i )

)1/2

, (3.9)

ε0 = 2

√
6

n
, (3.10)

η0 =

√
6

n

(
n∑
i=1

(acii + b2i )

)1/2

. (3.11)

The proof of Theorem 3.1 follows a similar line of reasoning as in the proof of Theorem
1.1 of Chatterjee and Dembo [4], however the argument is more involved due to the
following reasons. First, instead of having a one-sided constraint f ≥ tn as in Theorem
1.1, we have a two-sided constraint |h| ≤ tn, and this calls for a minor modification of
the function ψ. Then, more importantly, in Theorem 1.1, the upper and lower bounds
are established for a probability measure, whereas here we are trying to establish the
upper and lower bounds for the normalization constant of a probability measure with
exponential weights. So to justify the upper bound, rather than checking the smoothness
condition and the low complexity gradient condition for a single function g, which is
connected to the constraint on f as in the proof of Theorem 1.1, we need to check the
smoothness condition and the low complexity gradient condition for the sum of two
functions f + e in our proof, where f is the weight in the exponent and e is connected
to the constraint on h; while to justify the lower bound, rather than considering two
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small probability sets A and A′ as in the proof of Theorem 1.1, we need to consider the
probability of one more set A3, which deals with the weight deviation in the exponent in
our proof.

Proof of the upper bound. Let g : R → R be a function that is twice continuously
differentiable, non-decreasing, and satisfies g(x) = −1 if x ≤ −1 and g(x) = 0 if x ≥ 0.
Let L1 = ‖g′‖ and L2 = ‖g′′‖. Chatterjee and Dembo [4] described one such g:

g(x) = 10(x+ 1)3 − 15(x+ 1)4 + 6(x+ 1)5 − 1, (3.12)

which gives L1 ≤ 2 and L2 ≤ 6. Define

ψ(x) = Kg((t− |x|)/δ). (3.13)

Then clearly ψ(x) = −K if |x| ≥ t+ δ, ψ(x) = 0 if |x| ≤ t, and ψ(x) is non-decreasing for
−(t+ δ) ≤ x ≤ −t and non-increasing for t ≤ x ≤ t+ δ. We also have

‖ψ‖ ≤ K, ‖ψ′‖ ≤ 2K

δ
, ‖ψ′′‖ ≤ 6K

δ2
. (3.14)

Let e(x) = nψ(h(x)/n). The plan is to apply Theorem 2.1 to the function f + e instead
of f only. Note that ∑

x∈{0,1}n:|h(x)|≤tn

ef(x) ≤
∑

x∈{0,1}n
ef(x)+e(x). (3.15)

We estimate f(x) + e(x)− I(x) over [0, 1]n. There are three cases.

• If |h(x)| ≤ tn, then

f(x) + e(x)− I(x) = f(x)− I(x) ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)). (3.16)

• If |h(x)| ≥ (t+ δ)n, then

f(x) + e(x)− I(x) = f(x)− nK − I(x) ≤ a+ n log 2− nK (3.17)

≤ −a ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)).

• If |h(x)| = (t+ δ′)n for some 0 < δ′ < δ, then

f(x) + e(x)− I(x) ≤ f(x)− I(x) ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)). (3.18)

This shows that

sup
x∈[0,1]n

(f(x) + e(x)− I(x)) ≤ sup
x∈[0,1]n:|h(x)|≤(t+δ)n

(f(x)− I(x)). (3.19)

We check the smoothness condition for f + e first. Note that

‖f + e‖ ≤ a+ nK = l, (3.20)

and for any i, ∥∥∥∥∂(f + e)

∂xi

∥∥∥∥ ≤ bi + 2Kβi
δ

= mi, (3.21)
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and for any i, j, ∥∥∥∥∂2(f + e)

∂xi∂xj

∥∥∥∥ ≤ cij + 2Kγij
δ

+
6Kβiβj
nδ2

= nij . (3.22)

Next we check the low complexity gradient condition for f + e. Let

ε′ =
ε

3‖ψ′‖
and τ =

ε

3
(
1
n

∑n
i=1 β

2
i

)1/2 . (3.23)

Define

D(ε) = {df + θdh : df ∈ Df (ε/3), dh ∈ Dh(ε′),
and θ = jτ for some integer − ‖ψ′‖/τ < j < ‖ψ′‖/τ}. (3.24)

Note that

|D(ε)| ≤ 2‖ψ′‖
τ
|Df (ε/3)||Dh(ε′)|. (3.25)

Let ei = ∂e/∂xi. Take any x ∈ [0, 1]n and choose df ∈ Df (ε/3) and dh ∈ Dh(ε′). Choose an
integer j between −‖ψ′‖/τ and ‖ψ′‖/τ such that |ψ′(h(x)/n)− jτ | ≤ τ . Let d = df + jτdh

so that d ∈ D(ε). Then

n∑
i=1

(fi(x) + ei(x)− di)2 =

n∑
i=1

(
(fi(x)− dfi ) + (ψ′(h(x)/n)hi(x)− jτdhi )

)2
(3.26)

≤ 3

n∑
i=1

(fi(x)− dfi )
2 + 3(ψ′(h(x)/n)− jτ)2

n∑
i=1

hi(x)
2 + 3‖ψ′‖2

n∑
i=1

(hi(x)− dhi )2

≤ 1

3
nε2 + 3τ2

n∑
i=1

β2
i + 3‖ψ′‖2nε′2 = nε2.

Thus D(ε) is a finite subset of Rn associated with the gradient vector of f + e. The proof
is completed by applying Theorem 2.1.

Proof of the lower bound. Fix any y ∈ [0, 1]n such that |h(y)| ≤ (t − δ0)n. Let
Y = (Y1, . . . , Yn) be a random vector with independent components, where each Yi is a
Bernoulli(yi) random variable. Let Y (i) be the random vector (Y1, . . . , Yi−1, 0, Yi+1, . . . , Yn).
Let

A1 = {x ∈ {0, 1}n : |h(x)| ≤ tn}, (3.27)

A2 = {x ∈ {0, 1}n : |g(x, y)− I(y)| ≤ ε0n}, (3.28)

A3 = {x ∈ {0, 1}n : |f(x)− f(y)| ≤ η0n}. (3.29)

Let A = A1 ∩A2 ∩A3. Then∑
x∈{0,1}n:|h(x)|≤tn

ef(x) =
∑
x∈A1

ef(x)−g(x,y)+g(x,y) (3.30)

≥
∑
x∈A

ef(x)−g(x,y)+g(x,y)

≥ ef(y)−I(y)−(ε0+η0)nP(Y ∈ A).

We first consider P(Y ∈ A1). Let U = h(Y )− h(y). For t ∈ [0, 1] and x ∈ [0, 1]n define
ui(t, x) = hi(tx+ (1− t)y). Note that

U =

∫ 1

0

n∑
i=1

(Yi − yi)ui(t, Y )dt, (3.31)
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which implies

E(U2) =

∫ 1

0

n∑
i=1

E((Yi − yi)ui(t, Y )U)dt. (3.32)

Let Ui = h(Y (i))− h(y) so that Y (i) and Ui are functions of random variables (Yj)j 6=i only.
By the independence of Yi and (Y (i), Ui), we have

E((Yi − yi)ui(t, Y (i))Ui) = 0. (3.33)

Therefore

|E((Yi − yi)ui(t, Y )U)| ≤ E|((ui(t, Y )− ui(t, Y (i)))U |+ E|ui(t, Y (i))(U − Ui)|(3.34)

≤
∥∥∥∥∂ui∂xi

∥∥∥∥ ‖U‖+ ‖ui‖ ‖U − Ui‖
≤ 2αtγii + β2

i .

This gives

P(Y ∈ Ac1) ≤ P(|U | ≥ δ0n) ≤
E(U2)

δ20n
2
≤
∑n
i=1(αγii + β2

i )

δ20n
2

=
1

6
. (3.35)

Next we consider P(Y ∈ A2). Note that

E(g(Y, y)) = I(y) (3.36)

and

Var(g(Y, y)) =

n∑
i=1

Var(Yi log yi + (1− Yi) log(1− yi)) (3.37)

=

n∑
i=1

yi(1− yi)
(
log

yi
1− yi

)2

.

For x ∈ [0, 1], since |
√
x log x| ≤ 1, we have

x(1− x)
(
log

x

1− x

)2

≤
(
|
√
x log x|+ |

√
1− x log(1− x)|

)2 ≤ 4. (3.38)

Therefore

P(Y ∈ Ac2) ≤ P(|g(Y, y)− I(y)| ≥ ε0n) ≤
Var(g(Y, y))

ε20n
2

≤ 4

ε20n
=

1

6
. (3.39)

Finally we consider P(Y ∈ A3). Let V = f(Y ) − f(y). For t ∈ [0, 1] and x ∈ [0, 1]n

define vi(t, x) = fi(tx+ (1− t)y). Note that

V =

∫ 1

0

n∑
i=1

(Yi − yi)vi(t, Y )dt, (3.40)

which implies

E(V 2) =

∫ 1

0

n∑
i=1

E((Yi − yi)vi(t, Y )V )dt. (3.41)

Let Vi = f(Y (i))− f(y) so that Y (i) and Vi are functions of random variables (Yj)j 6=i only.
By the independence of Yi and (Y (i), Vi), we have

E((Yi − yi)vi(t, Y (i))Vi) = 0. (3.42)
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Therefore

|E((Yi − yi)vi(t, Y )V )| ≤ E|((vi(t, Y )− vi(t, Y (i)))V |+ E|vi(t, Y (i))(V − Vi)|(3.43)

≤
∥∥∥∥ ∂vi∂xi

∥∥∥∥ ‖V ‖+ ‖vi‖ ‖V − Vi‖
≤ 2atcii + b2i .

This gives

P(Y ∈ Ac3) ≤ P(|V | ≥ η0n) ≤
E(V 2)

η20n
2
≤
∑n
i=1(acii + b2i )

η20n
2

=
1

6
. (3.44)

Combining (3.35), (3.39) and (3.44), we have

P(Y ∈ A) ≥ 1− P(Y ∈ Ac1)− P(Y ∈ Ac2)− P(Y ∈ Ac3) ≥
1

2
. (3.45)

Plugging this into (3.30) and taking supremum over y completes the proof.

4 Application to exponential random graphs

As mentioned earlier, we would like to apply Theorem 3.1 to derive the exact asymp-
totics for the conditional normalization constant of constrained exponential random
graphs. Recall the definition of an s-parameter family of conditional exponential random
graphs introduced earlier, where we assume that the “ideal” edge density of the graph is
e. Let

f(x) = ζ1T1(x) + · · ·+ ζsTs(x) and h(x) = T1(x)−N2e, (4.1)

where Ti(x)/N2 is the equivalent notion of homomorphism density as defined in (2.7). Let
n =

(
N
2

)
. We compare the conditional normalization constant ψe,ζN,t (1.4) for constrained

exponential random graphs with the generic conditional normalization constant F c (3.1).
Note that the constraint |e(GN ) − e| ≤ t may be translated into |T1(x) − N2e| ≤ N2t,
and if we further redefine t to be (1− 1/N)t′/2 then we arrive at the generic constraint
|h(x)| ≤ t′n as in (3.1). Thus ψe,ζN,t = F c/N2. In the following we give a concrete error

bound for ψe,ζN,t using the estimates in Theorem 3.1. Our proof is analogous to the proof of
Theorem 1.6 in Chatterjee and Dembo [4], where they analyzed various error bounds for
the generic normalization constant obtained in Theorem 1.5 (referenced as Theorem 2.1
in this paper) and applied it in the exponential setting. Instead, we analyze the various
error bounds for the generic conditional normalization constant obtained in Theorem
3.1 and apply it in the constrained exponential setting. The rationales behind the two
arguments are essentially the same, except that the argument to be presented in the
proof of Theorem 4.1 is more involved due to the imposed constraint.

Theorem 4.1. Let s be a positive integer and H1, . . . ,Hs be fixed finite simple graphs.
Let N be another positive integer and let n =

(
N
2

)
. Define T1, . . . , Ts accordingly as in

the paragraph before Theorem 2.2. Let ζ1, . . . , ζs be s real parameters and define ψe,ζN,t as
in (1.4). Let f(x) = ζ1T1(x) + · · ·+ ζsTs(x), B = 1+ |ζ1|+ · · ·+ |ζs|, and I be defined as in
(1.9). Take κ > 8. Then

sup
x∈[0,1]n:|h(x)|≤(t′−cn−1/(2κ))n

f(x)− I(x)
N2

− CBN−1/2 ≤ ψe,ζN,t (4.2)

≤ sup
x∈[0,1]n:|h(x)|≤(t′+cn−1/(2κ))n

f(x)− I(x)
N2

+ CB8/5N (8−κ)/(5κ)(logN)1/5
(
1 +

logB

logN

)
+CB2N (2−κ)/(2κ),

where t′ = 2Nt/(N − 1) and c and C are constants that may depend only on H1, . . . ,Hs

and e.
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Proof. Chatterjee and Dembo [4] checked that Ti(x) satisfies both the smoothness
condition and the low complexity gradient condition stated at the beginning of this
paper, which readily implies that f and h satisfy the assumptions of Theorem 3.1. Recall
that the indexing set for quantities like bi and γij , instead of being {1, . . . , n}, is now
{(i, j) : 1 ≤ i < j ≤ N}, and for simplicity we write (ij) instead of (i, j). Let a, b(ij),
c(ij)(i′j′) be the supremum norms of f and let α, β(ij), γ(ij)(i′j′) be the corresponding
supremum norms of h. For any ε > 0, let Df (ε) and Dh(ε) be finite subsets of Rn

associated with the gradient vectors of f and h respectively.
Based on the bounds for Ti (2.8) (2.9) (2.10), we derive the bounds for f and h.

a ≤ CBN2, b(ij) ≤ CB, (4.3)

c(ij)(i′j′) ≤
{
CBN−1, if |{i, j, i′, j′}| = 2 or 3;
CBN−2, if |{i, j, i′, j′}| = 4,

(4.4)

|Df (ε)| ≤
s∏
i=1

|Di(ε/(ζis))| ≤ exp

(
CB4N

ε4
log

CB

ε

)
. (4.5)

α ≤ CN2, β(ij) ≤ C, (4.6)

γ(ij)(i′j′) ≤
{
CN−1, if |{i, j, i′, j′}| = 2 or 3;
CN−2, if |{i, j, i′, j′}| = 4,

(4.7)

|Dh(ε)| = |D1(ε)| ≤ exp

(
CN

ε4
log

C

ε

)
. (4.8)

We then estimate the lower and upper error bounds for ψe,ζN,t using the bounds on f
and h obtained above. First the lower bound:∑

(ij)

ac(ij)(ij) ≤ CB2N3,
∑
(ij)

b2(ij) ≤ CB
2N2. (4.9)

∑
(ij)

αγ(ij)(ij) ≤ CN3,
∑
(ij)

β2
(ij) ≤ CN

2. (4.10)

Therefore
δ0 ≤ cn−1/4 ≤ cn−1/(2κ), (4.11)

ε0n+ η0n+ log 2

N2
≤ CN−1 + CBN−1/2 + CN−2 ≤ CBN−1/2. (4.12)

This gives

ψe,ζN,t ≥ sup
x∈[0,1]n:|h(x)|≤(t′−cn−1/(2κ))n

f(x)− I(x)
N2

− CBN−1/2, (4.13)

Next the more involved upper bound: Assume that n−1/4 ≤ δ ≤ 1 and 0 < ε ≤ 1. Since
K ≤ CB, this implies that

l ≤ CBN2, m(ij) ≤ CBδ−1, (4.14)

n(ij)(i′j′) ≤
{
CBN−1δ−1, if |{i, j, i′, j′}| = 2 or 3;
CBN−2δ−2, if |{i, j, i′, j′}| = 4.

(4.15)

The following estimates are direct consequences of the bounds on l, m(ij), and n(ij)(i′j′).∑
(ij)

ln(ij)(ij) ≤ CB2N3δ−1,
∑
(ij)

m2
(ij) ≤ CB

2N2δ−2, (4.16)
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∑
(ij)(i′j′)

ln2(ij)(i′j′) ≤ CB
3N3δ−2, (4.17)

∑
(ij)(i′j′)

m(ij)(mi′j′ + 4)n(ij)(i′j′) ≤ CB3N2δ−4, (4.18)

∑
(ij)

n2(ij)(ij) ≤ CB
2δ−2,

∑
(ij)

n(ij)(ij) ≤ CBNδ−1. (4.19)

Therefore

complexity term ≤ CBN2δ−1ε+ CN2ε+ log
CB

δε
+
CB4N

ε4
log

CB

ε
+
CB4N

δ4ε4
log

CB

δε
(4.20)

≤ CBN2δ−1ε+
CB4N

δ4ε4
log

CB

δε
.

smoothness term ≤ CB3/2N3/2δ−1 +CB2Nδ−2 +CBNδ−1 +C ≤ CB2N3/2δ−1. (4.21)

Taking ε = (B3 logN)/(δ3N)1/5, this gives

ψe,ζN,t ≤ sup
x∈[0,1]n:|h(x)|≤(t′+δ)n

f(x)− I(x)
N2

+ CB8/5N−1/5(logN)1/5δ−8/5
(
1 +

logB

logN

)
(4.22)

+CB2N−1/2δ−1.

For n large enough, we may choose δ = cn−1/(2κ) as in (4.11), which yields a further
simplification

ψe,ζN,t ≤ sup
x∈[0,1]n:|h(x)|≤(t′+cn−1/(2κ))n

f(x)− I(x)
N2

+ CB8/5N (8−κ)/(5κ)(logN)1/5
(
1 +

logB

logN

)
(4.23)

+CB2N (2−κ)/(2κ).

We can do a more refined analysis of Theorem 4.1 when ζi’s are non-negative for
i ≥ 2.

Theorem 4.2. Let s be a positive integer and H1, . . . ,Hs be fixed finite simple graphs.
Let N be another positive integer and let n =

(
N
2

)
. Let ζ1, . . . , ζs be s real parameters

and suppose ζi ≥ 0 for i ≥ 2. Define ψe,ζN,t as in (1.4). Let B = 1 + |ζ1|+ · · ·+ |ζs| and I be
defined as in (1.9). Take κ > 8. Then

− cBN−1/κ ≤ ψe,ζN,t − sup
|x−e|≤t

{
ζ1x+ · · ·+ ζkx

e(Hk) − 1

2
I(x)

}
(4.24)

≤ CB8/5N (8−κ)/(5κ)(logN)1/5
(
1 +

logB

logN

)
+CB2N−1/κ,

where e(Hi) denotes the number of edges in Hi and c and C are constants that may
depend only on H1, . . . ,Hs, e, and t.

Remark 4.3. If Hi, i ≥ 2 are all stars, then the conclusions of Theorem 4.2 hold for any
ζ1, . . . , ζs.
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Remark 4.4. As an example, consider the case where s = 2, H1 is a single edge and H2 is
a triangle. Theorem 4.2 shows that the difference between ψe,ζN,t and sup|x−e|≤t

{
ζ1x+ ζ2x

3 − 1
2I(x)

}
tends to zero as long as |ζ1|+ |ζ2| grows slower than N (κ−8)/(8κ)(logN)−1/8, thereby al-
lowing a small degree of sparsity for ζi. When ζi’s are fixed, it provides an approximation
error bound of order N (8−κ)/(5κ)(logN)1/5, substantially better than the negative power
of log∗N given by Szemerédi’s lemma.

Proof. Fix t > 0. We find upper and lower bounds for

LN = sup
x∈[0,1]n:|h(x)|≤(t′+cn−1/(2κ))n

f(x)− I(x)
N2

(4.25)

and

MN = sup
x∈[0,1]n:|h(x)|≤(t′−cn−1/(2κ))n

f(x)− I(x)
N2

(4.26)

in Theorem 4.1 when N is large.
On one hand, by considering g(x, y) = xij for any ( i−1N , iN ] × ( j−1N , jN ] and i 6= j, we

have

LN ≤ sup
g:[0,1]2→[0,1],g(x,y)=g(y,x)

|e(g)−e|≤t+ c
2n
−1/(2κ)

{
ζ1t(H1, g) + · · ·+ ζkt(Hk, g)−

1

2

∫∫
[0,1]2

I(g(x, y))dxdy

}
,

(4.27)

MN ≤ sup
g:[0,1]2→[0,1],g(x,y)=g(y,x)

|e(g)−e|≤t

{
ζ1t(H1, g) + · · ·+ ζkt(Hk, g)−

1

2

∫∫
[0,1]2

I(g(x, y))dxdy

}
.

(4.28)
It was proved in Chatterjee and Diaconis [5] that when ζi’s are non-negative for i ≥ 2,
the above supremum may only be attained at constant functions on [0, 1]. Therefore

LN ≤ sup
|x−e|≤t+ c

2n
−1/(2κ)

{
ζ1x+ · · ·+ ζkx

e(Hk) − 1

2
I(x)

}
, (4.29)

MN ≤ sup
|x−e|≤t

{
ζ1x+ · · ·+ ζkx

e(Hk) − 1

2
I(x)

}
. (4.30)

On the other hand, by considering g′(x, y) = xij ≡ x for any i 6= j, we have

LN ≥ sup
|N−1
N x−e|≤t

{
ζ1x+ · · ·+ ζkx

e(Hk) − 1

2
I(x)

}
+O(

1

N
), (4.31)

MN ≥ sup
|N−1
N x−e|≤t− c2n−1/(2κ)

{
ζ1x+ · · ·+ ζkx

e(Hk) − 1

2
I(x)

}
+O(

1

N
). (4.32)

The O(1/N) factor comes from the following consideration. The difference between I(g′)
and I(x) is easy to estimate, while the difference between t(Hi, g

′) and t(Hi, x) = xe(Hi)

is caused by the zero diagonal terms xii. We do a broad estimate of (2.7) and find that it
is bounded by ci/N , where ci is a constant that only depends on Hi. Putting everything
together,

LN =MN = sup
|x−e|≤t

{
ζ1x+ · · ·+ ζkx

e(Hk) − 1

2
I(x)

}
+O(

1

N1/κ
). (4.33)

The rest of the proof follows.
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