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Abstract

In this note we give a direct proof of the Gaussian integrability of distance function as

µeδd
2(x,x0) <∞ for some δ > 0 provided the Lyapunov condition holds for symmetric

diffusion operators, which answers a question in Cattiaux-Guillin-Wu [6, Page 295].
The similar argument still works for diffusions processes with unbounded diffusion co-
efficients and for jump processes such as birth-death chains. An analogous discussion
is also made under the Gozlan’s condition arising from [9, Proposition 3.5].
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1 Introduction

In this note, we will investigate how to directly derive the Gaussian integrability
from two kinds of criteria for the Talagrand’s inequality W2H (or T2 in short), say the
Lyapunov condition and Gozlan’s condition presented in a symmetric diffusion Markov
setting. Referring to Bakry-Gentil-Ledoux [2], we denote by E a complete connected
Riemannian manifold of finite dimension, d the geodesic distance, dx the volume measure,
µ(dx) = e−V (x)dx a probability measure with V ∈ C2(E), L = ∆−∇V ·∇ the µ-symmetric
diffusion operator, Γ(f, g) = ∇f · ∇g the carré du champ operator, and E the associated
Dirichlet form, which satisfy the formula for integration by parts∫

∇f · ∇gdµ = −
∫
fLgdµ, f ∈ D(E), g ∈ D(L).

First of all, say W > 1 is a Lyapunov function if there exist two constants b > 0 and
c > 0 such that for some x0 ∈ E and any x ∈ E

LW 6 (−cd2(x, x0) + b)W. (1.1)

More generally, to avoid assuming the integrability and second-order differentiability of
W , it is convenient to introduce a locally Lipschitz function U > 0 such that in the sense
of distribution

LU + |∇U |2 6 −cd2(x, x0) + b, (1.2)
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Gaussian integrability under the Lyapunov condition

which means that for any nonnegative h ∈ C∞c (E) holds∫ (
LU + |∇U |2

)
hdµ :=

∫
ULh+ |∇U |2 hdµ 6

∫ (
−cd2(x, x0) + b

)
hdµ.

When W ∈ C2(E), (1.1) and (1.2) are equivalent by taking U = logW . And it is not hard
to see that (1.1) implies a weaker version for some c′, b′ and R

LW 6 −c′W + b′1B(0,R). (1.3)

The Lyapunov condition plays a powerful role in studying functional inequalities or
estimating convergence rate of Markov processes, which even works as a substitute of
curvature-dimension condition sometimes. Cattiaux-Guillin [4] gave a comprehensive
review on this topic, and here we would like to take partial literature into account. A
simple proof of the Poincaré inequality through (1.3) can be found in Bakry-Barthe-
Cattiaux-Guillin [1]. The L1 transport-information inequality W1I was discussed further
under (1.1) by Guillin-Léonard-Wu-Yao [12]. Then Cattiaux-Guillin-Wu [6] showed the
Talagrand’s inequality and logarithmic Sobolev inequality (LSI for short) provided (1.2),
which was also applied to weighted LSIs for heavy tailed distributions by [7]. Most
recently, Guillin-Joulin [10] obtained non-Gaussian concentration estimates by means of
functional inequalities with some kind of Lyapunov condition yet.

According to [6, Lemma 3.5], it was proved that if (1.2) holds, there exist some δ > 0

and x0 ∈ E such that ∫
eδd

2(x,x0)dµ(x) <∞, (1.4)

which is necessary to derive W2H. Their proof starts from (1.2) and the spectral gap
to show W1I due to [12]. It then follows a L1 transport-entropy inequality W1H by
Guillin-Léonard-Wang-Wu [11], which is equivalent to (1.4) by Djellout-Guillin-Wu [8].
The strategy relies on a series of works on transport inequalities, thereupon the authors
of [6] feel interested in finding a simple or direct proof of (1.4), see [6, Page 295].

Indeed, there exists an elementary proof, and we actually obtain

Proposition 1.1. If (1.2) holds, then µeδd
2(x,x0) <∞ for any δ <

√
c.

Remark 1.2. The upper bound for δ is sharp. For instance, let dµ = 1√
2π
e−

1
2 |x|

2

dx

and L = d2

dx2 − x d
dx associated to one-dimensional Ornstein-Uhlenbeck process, then

W = e
1
4 |x|

2

satisfies LW 6 (− 1
4 |x|

2 + 1
2 )W , which exactly gives δ <

√
c = 1

2 .

Remark 1.3. A weak version LW 6 (−cdp(x, x0) + b)W with p < 2 is not enough to
derive the Gaussian integrability, since W = exp

(
1
2 (1 + |x|2)q

)
with 2(q − 1) = p fulfills

(1.2) with respect to dµ = 1
Z e
−(1+|x|2)

p
2 dx, where Z is a normalized factor.

The same argument can be extended to diffusion processes with unbounded diffusion
coefficients. Define an infinitesimal generator in Rm

La =
1

2

m∑
i,j=1

aij(x)
∂

∂xi

∂

∂xj
+

m∑
i=1

bi(x)
∂

∂xi
,

where A = (aij)mi,j=1 is symmetric positive-definite and bi = 1
2

(∑m
j=1

∂aij

∂xj
− aij ∂V∂xj

)
so

that La admits an invariant probability measure dµ(x) = e−V dx. Then define the Carrédu
champ operator by means of

Γa(f, g) =
1

2
[ La(fg)− fLag − gLaf ] =

1

2
〈∇f,A∇g〉,
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Gaussian integrability under the Lyapunov condition

which satisfies the integration by parts formula for f, g ∈ C∞c (Rm)

−
∫
fLagdµ =

∫
Γa(f, g)dµ =: Ea(f, g).

Thanks to the Lyapunov type criterion by Stroock-Varadhan [13, Theorem 10.2.1], it can
be quickly derived that La corresponds to a non-explosive diffusion process provided
that (1.1) holds by substituting L to La

LaW 6 (−cd2(x, x0) + b)W (1.5)

with lim|x|→∞W =∞.
However, if aij is unbounded, (1.5) is not enough to get the Gaussian integrability

for µ. Consider one-dimensional case, when aij = a(x) = o(|x|4), we take V = x2

2
√
a

and

W = eδV for small δ > 0 so that (1.5) holds but V has a growth rate slower than quadratic.
On the other hand, when a(x) = O(|x|4) or grows even faster, (1.5) is useless to yield
a Poincaré type inequality so that we have no effective calculus on the integrability of
eδd

2(x,x0). For this reason, a stronger condition is necessary.

Proposition 1.4. Let λmax be the maximal eigenvalue of A satisfying µλmax <∞. Sup-
pose there exists a Lyapunov function W > 1 with two constants b > 0 and c > 0 such
that for some x0 ∈ Rm and any x ∈ Rm

LaW 6 (−cd2(x, x0) + b)λmaxW. (1.6)

Then µ
(
eδd

2(x,x0)λmax

)
<∞ for any δ <

√
c.

Remark 1.5. (1.6) is natural, for instance, if there exist V and W satisfying (1.1) over
R, then (1.6) follows automatically provided that lim

|x|→∞
a′W ′

aW |x|2 = 0. Moreover, there is no

need to assume λmax > λ > 0 uniformly on Rm.

Another possible extension is about jump processes (see Bass [3]). To clarify the
effect from jumps part, we simply consider the infinitesimal generator of the form

Lν =

∫
Rm−{0}

[
f(x+ y)− f(x)−∇f · y10<|y|<1(y)

]
ν(x, dy),

Where ν satisfies
∫
Rm−{0}min{1, |y|2}ν(x, dy) <∞. Suppose that Lν admits an invariant

probability measure µ, and the Carrédu champ operator

Γν(f, g) =
1

2
[ Lν(fg)− fLνg − gLνf ]

=
1

2

∫
Rm−{0}

[f(x+ y)− f(x)] [g(x+ y)− g(x)] ν(x, dy)

fulfills the integration by parts formula for f, g ∈ C∞c (Rm)

−
∫
fLνgdµ =

∫
Γν(f, g)dµ =: Eν(f, g).

Then define an intrinsic (pseudo)metric according to Sturm [14, Definition 6.5]

ρ(x, y) := sup{f(x)− f(y) : Γν(f, f) 6 1},

which gives Γν(ρ(x, x0), ρ(x, x0)) 6 1 if ρ(x, x0) ∈ D(Eν). For convenience, we also require
that lim|x|→∞ ρ(x, x0) =∞.

The setting includes discrete Markov chains. For example, consider a birth-death
process on N with strictly positive birth rates bi and death rates di except d0 = 0.
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Gaussian integrability under the Lyapunov condition

Let r0 = 1 and ri = b0b1···bi−1

d1d2···di for i > 1, we can take ν(i, y) = biδ1(y) + diδ−1(y) and
µ(i) = ri

r0+r1+··· provided the series converges, and then Eν has an alternative expression
Eν(f, g) =

∑∞
i=0[f(i+ 1)− f(i)][g(i+ 1)− g(i)]biµi, which determines the intrinsic metric

ρ(i, j) = b
− 1

2
i + b

− 1
2

i+1 + · · · b−
1
2

j−1 for i 6 j.

Proposition 1.6. Suppose there exist some x0 ∈ Rm and a constant K > 0 such that for
all x ∈ Rm and all y ∈ Suppν∣∣ρ2(x+ y, x0)− ρ2(x, x0)

∣∣ 6 K. (1.7)

Suppose also there exists a Lyapunov function W > 1 with two constants b > 0 and c > 0

such that for any x ∈ Rm

LνW 6 (−cρ2(x, x0) + b)W. (1.8)

Then µeδρ
2(x,x0) <∞ for δ < C min{

√
c,K−1} with some multiple C ∈ (0, 1].

Remark 1.7. For a birth-death process referring to Cattiaux-Guillin-Wang-Wu [5], let
bi = di = ia logα(i+ 1) with a > 2 and α ∈ R except b0 = 1, let W = 1 + iγ with 0 < γ < 1,
then µ(i) � b−1

i and LνW 6 −cia−2 logα(i + 1)W . Take a = 2, α = 1, γ = 1
2 explicitly, it

follows ρ(i, 0) � log
1
2 (i + 1) satisfying (1.7-1.8) and then µeδρ

2

< ∞ for any δ < 1. The
combination of (1.7) and (1.8) is necessary. When a = 2, α < 1, γ = 1

2 , (1.7) still holds,

but (1.8) fails and so does the Gaussian integrability. On the other hand, let bi = (i+ 1)
1
2

and di = ibi, then µ(i) � (i!bi)
−1, ρ(i, 0) � i

3
4 , and (1.8) holds for W = 2i, but (1.7) fails

and so does the Gaussian integrability again.

We further investigate another criterion for transport inequalities. According to
Gozlan [9, Proposition 3.5], let µ be a probability on Rm, suppose there exists ω ∈ C3(R)

with ω′(0) > 0,
∣∣∣ω(3)

ω′3

∣∣∣ 6M for some constant M , and

lim inf
|x|→∞

1

u2

m∑
i=1

[
1

10

(
∂V

∂xi

)2 (x
u

)
− ∂2V

∂x2
i

(x
u

)] 1

ω′(xi)2
> mM (1.9)

for some constant u > 0, then a transport-entropy inequality holds with the cost function

dω(x, y) =

(
m∑
i=1

|ω(xi)− ω(yi)|2
) 1

2

. An interesting case is to set

ω(t) =

∫ t

0

√
1 + s2ds =

t

2

√
1 + t2 +

1

2
log
∣∣∣t+

√
1 + t2

∣∣∣
satisfying ω′(0) = 1 and

∣∣∣ω(3)

ω′3 (t)
∣∣∣ = (1 + t2)−3 6 1, which corresponds to W2H.

In [6], it was pointed out that (1.9) is not comparable to the Lyapunov condition (1.2)
in general. Using the similar argument, we still have

Proposition 1.8. If the Gozlan’s type condition holds, i.e.

lim inf
|x|→∞

m∑
i=1

[
23

27

(
∂V

∂xi

)2

(x)− ∂2V

∂x2
i

(x)

]
1

1 + x2
i

> m, (1.10)

then µeδ|x|
2

<∞ for any δ < 2(
√
m−
√
m−1)

3
√

3m
.

Remark 1.9. To yield the Gaussian integrability, or equivalently W1H, the original
constant 1

10 in (1.9) can be increased to arbitrary a < 1 − 4
27
m−1
m . So it is convenient

to take a = 23
27 . Except m = 1, it is unlikely to allow a approaching 1, according to the

estimates in Lemma 3.1 below.

The next two sections will supply the proofs of all propositions respectively.
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Gaussian integrability under the Lyapunov condition

2 Proofs of Proposition 1.1, 1.4 and 1.6

Under the Lyapunov condition (1.2), [6, Lemma 3.4] asserts∫
h2(x)d2(x, x0)dµ(x) 6

1

c

∫
|∇h|2dµ+

b

c

∫
h2dµ, ∀h ∈ D(E), (2.1)

basically via the same technique as in [1, Page 64].

Proof of Proposition 1.1. Let βn =
∫
d2n(x, x0)dµ, which satisfies a recursion by using

(2.1) that

βn =

∫
d2(n−1)(x, x0)d2(x, x0)dµ

6
1

c

∫
|∇dn−1(x, x0)|2dµ+

b

c
βn−1 =

(n− 1)2

c
βn−2 +

b

c
βn−1. (2.2)

Since β0 = 1 and β1 6 b
c , we get the integrability of all d2n(x, x0).

Combining the Hölder inequality with (2.2) gives

βn =

∫
dn+1(x, x0)dn−1(x, x0)dµ 6 β

1
2
n+1β

1
2
n−1 6

(
n2

c
βn−1 +

b

c
βn

) 1
2

β
1
2
n−1,

which implies

βn 6
b
c +

√
b2

c2 + 4n2

c

2
βn−1 6 ( bc + n√

c
)βn−1.

Taking any γ > 1√
c

gives b
c + n√

c
6 γn for big n, which yields some C > 0 such that

βn 6 Cγnn!, ∀n > 1.

Hence, for any δ < γ−1 <
√
c, we have by the Fatou’s lemma

∫
eδd

2(x,x0)dµ =

∫
lim
k→∞

k∑
n=0

(
δd2(x, x0)

)n
/n! dµ (2.3)

6 lim inf
k→∞

∫ k∑
n=0

(
δd2(x, x0)

)n
/n! dµ = lim inf

k→∞

k∑
n=0

δnβn/n! 6
C

1− δγ
.

The proof is completed.

The next proof is almost the same.

Proof of Proposition 1.4. Using the Lyapunov condition (1.6) with the technique from [1,
Page 64] gives a similar inequality for h ∈ D(Ea) as (2.1) that∫

h2(x)d2(x, x0)λmaxdµ 6
1

c

∫
h2 · −LaW

W
dµ+

b

c

∫
h2λmaxdµ

=
1

c

∫
Γa(

h2

W
,W )dµ+

b

c

∫
h2λmaxdµ

=
1

c

∫
Γa(h, h)−W 2Γa(

h

W
,
h

W
)dµ+

b

c

∫
h2λmaxdµ

6
1

c

∫
|∇h|2λmaxdµ+

b

c

∫
h2λmaxdµ.
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Let βn =
∫
d2n(x, x0)λmaxdµ, which satisfies

βn =

∫
d2(n−1)(x, x0)d2(x, x0)λmaxdµ

6
1

c

∫
|∇dn−1(x, x0)|2λmaxdµ+

b

c
βn−1 =

(n− 1)2

c
βn−2 +

b

c
βn−1.

Following rest steps in the previous proof, we get the Gaussian integrability.

For jump processes, we use a little different method.

Proof of Proposition 1.6. The strategy contains three steps.
Step 1. Denote ρt(x) =

√
ρ2(x, x0) + t with a parameter t > 0. Using the technique

in [1, Page 64] again, we have by Condition (1.8) that for h ∈ D(Eν)∫
h2ρ2

tdµ 6
1

c

∫
h2 · −LaW

W
dµ+

(
b

c
+ t

)∫
h2dµ

=
1

c

∫
Γν

(
h2

W
,W

)
dµ+

b+ ct

c

∫
h2dµ

=
1

c
· 1

2

∫ ∫
Rm−{0}

−

∣∣∣∣∣h(x+ y)
W (x)

1
2

W (x+ y)
1
2

− h(x)
W (x+ y)

1
2

W (x)
1
2

∣∣∣∣∣
2

+ |h(x+ y)− h(x)|2ν(x,dy)µ(dx) +
b+ ct

c

∫
h2dµ

6
1

c

∫
Γν(h, h)dµ+

b+ ct

c

∫
h2dµ.

Step 2. Basically, our aim is to estimate
∫

Ω
eδρ(x,x0)2dµ(x) for any bounded domain Ω,

while the integration by parts requires to regularize the characteristic function 1Ω. It is
usually a routine but with a few tricks in this case.

Define a family of φr ∈ C1(R+) with any r > 0 and some constant N > 0 as

φr(s) =


1, s 6 r;

2( s−rN )3 − 3( s−rN )2 + 1, r < s < r +N ;

0, s > r +N,

which satisfies 0 6 φr 6 1 and |φ′r| 6 3
2N 1r<s<r+N .

Let f = e
δ
2ρ

2
t and fr = φr(ρ

2
t )f . Let hr = fr

ρt
, we have by Step 1∫

f2
r dµ =

∫
h2
rρ

2
tdµ 6

1

c

∫
Γν(hr, hr)dµ+

b+ ct

c

∫
h2
rdµ. (2.4)

For convenience, rewrite hr = φr(ρ
2
t )ψ(ρt) by putting ψ(s) := e

δ
2
s2

s .
Take t = 2δ−1 so that ψ is increasing on [

√
t,∞). Using the mean value theorem

respectively to ψ and φr yields that for any x ∈ Rm and y ∈ Suppν, there exist ξ and ζ

both falling between ρ(x+ y) and ρ(x) such that

|hr(x+ y)− hr(x)|
6 φr(ρ

2
t (x)) · |ψ(ρt(x+ y))− ψ(ρt(x))|

+ ψ(ρt(x+ y)) · |φr(ρ2
t (x+ y))− φr(ρ2

t (x))|
= φr(ρ

2
t (x)) ·

∣∣δ − ξ−2
∣∣ e δ2 ξ2 · |ρt(x+ y)− ρt(x)|

+ ψ(ρt(x+ y)) · |2ζφ′r(ζ2)| · |ρt(x+ y)− ρt(x)|,
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which implies by Condition (1.7) that

|hr(x+ y)− hr(x)| 6
δ

2
e
δ
2K · fr(x) · |ρt(x+ y)− ρt(x)|

+
3e

δ
2K

N
· f(x)1r−K<ρ2t (x)<r+N+K · |ρt(x+ y)− ρt(x)|.

Due to Γν(ρt, ρt) 6 1, it follows

Γν(hr, hr) =
1

2

∫
Rm−{0}

|hr(x+ y)− hr(x)|2ν(x, dy)

6
1

2
δ2eδKf2

r (x) +
18eδK

N2
f2(x)1r−K<ρ2t (x)<r+N+K

6
1

2
δ2eδKf2

r (x) +
18eδ(2N+3K)

N2
eδ(r−N−K)1r−N−K<ρ2t (x)<r+N+K .

Let η1 = δ2

2ce
δK and η2 = 18eδ(2N+3K)

N2c , inserting the above estimate into (2.4) gives∫
f2
r dµ 6 η1

∫
f2
r dµ+

b+ ct

c

∫
h2
rdµ

+ η2e
δ(r−N−K)µ{r −N −K < ρ2

t < r +N +K}.

Step 3. Choose some big N and small δ so that η1 + 2η2 < 1. Since µ is a probability,
there exists a sequence of nk ∈ N such that for each rk = nk(N +K)

µ{rk −N −K < ρ2
t < rk} > µ{rk < ρ2

t < rk +N +K},

which implies

eδ(r−N−K)µ{rk −N −K < ρ2
t < rk +N +K}

6 2

∫
f21rk−N−K<ρ2t6rkdµ 6 2

∫
f2
rk

dµ.

It follows from Step 2∫
f2
rk

dµ 6 (η1 + 2η2)

∫
f2
rk

dµ+
b+ ct

c

∫
h2
rk

dµ,

and thus ∫
f2
rk

dµ 6
b+ ct

c(1− η1 − 2η2)

∫
h2
rk

dµ =: C

∫
h2
rk

dµ.

Recall hr = fr
ρt

, fix a domain Ω with ρ2
t > 2C on Ωc, which means for rk > diamΩ∫

f2
rk

dµ 6 C

∫
Ω

f2

ρ2
t

dµ+
1

2

∫
Ωc

f2
rk

dµ.

Consequently, we get
∫
f2dµ = lim

k→∞

∫
f2
rk

dµ 6 2C
∫

Ω
f2

ρ2t
dµ <∞.

3 Proof of Proposition 1.8

We firstly derive a Poincaré like inequality.

Lemma 3.1. If the Gozlan’s type condition (1.10) holds, there exist two constants λ1

and λ2 with big R such that for any h ∈ D(E)∫
h2dµ 6 λ1

∫ m∑
i=1

|h′i|2

1 + x2
i

dµ+ λ2

∫
B(0,R+1)

h2dµ.
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Proof. For convenience, denote a = 23
27 , dνi = e−aV dxi and

dx̂i = dx1 · · · dxi−1dxi+1 · · · dxm

so that dµ = e−(1−a)V dνidx̂i. Define φr ∈ C1(Rn) as

φr(x) =


1, |x| 6 r;

2(|x| − r)3 − 3(|x| − r)2 + 1, r < |x| < r + 1;

0, |x| > r + 1,

which satisfies 0 6 φr 6 1 and |(φr)′i| 6 6 |xi||x|
√

1− φr. The proof has three steps.

Step 1. For any ε > 0, there exists R > 0 by (1.10) such that for all |x| > R

m∑
i=1

(
a|V ′i |2 − V ′′ii

) 1

1 + x2
i

> m− ε.

It follows for any h ∈ D(E)

(m− ε)
∫
h2dµ = (m− ε)

∫
h2φR + h2(1− φR)dµ

6 (m− ε)
∫
h2φRdµ+

∫
h2(1− φR)

m∑
i=1

(
a|V ′i |2 − V ′′ii

) 1

1 + x2
i

dµ

= (m− ε)
∫
h2φRdµ+

m∑
i=1

∫
h2(1− φR)e−(1−a)V

(1 + x2
i )

(
a|V ′i |2 − V ′′ii

)
dνidx̂i. (3.1)

Set U (i) = h2(1−φR)e−(1−a)V

1+x2
i

. For the reader’s convenience, recall the integration by

parts formula satisfied by νi, we have∫
U (i)

(
a|V ′i |2 − V ′′ii

)
dνidx̂i =

∫
(U (i))′iV

′
i dνidx̂i

=

∫ [
2hh′iV

′
i (1− φR)− (φR)′ih

2V ′i −
2xi

1 + x2
i

h2V ′i (1− φR)

−(1− a)h2|V ′i |2(1− φR)
] 1

1 + x2
i

dµ.

Using the Cauchy-Schwarz inequality gives for any positive ε1, ε2 and ε3

2hh′iV
′
i 6 ε1h

2|V ′i |2 + ε−1
1 |h′i|2,

−(φR)′ih
2V ′i 6 6

|xi|
|x|
√

1− φR · h2|V ′i | 6 3ε2h
2|V ′i |2(1− φR) + 3ε−1

2

|xi|2

|x|2
h2,

−2xih
2V ′i

1 + x2
i

6 ε3h
2|V ′i |2 +

x2
ih

2

ε3(1 + x2
i )

2
,

which implies by combining the above estimates subject to ε1 + 3ε2 + ε3 = 1− a∫
U (i)

(
a|V ′i |2 − V ′′ii

)
dνidx̂i

6
∫
|h′i|2(1− φR)

ε1(1 + x2
i )

+
3|xi|2h2

ε2(1 + x2
i )|x|2

+
x2
ih

2(1− φR)

ε3(1 + x2
i )

3
dµ. (3.2)

Step 2. Since x2
i

(1+x2
i )

3 6 4
27 for any xi and there exists xj with |xj |2 > |x|2/m, we have

m∑
i=1

x2
i

(1 + x2
i )

3
6

4

27
(m− 1) +

1

(1 +m−1|x|2)2
,
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Gaussian integrability under the Lyapunov condition

which implies

m∑
i=1

∫
x2
ih

2(1− φR)

ε3(1 + x2
i )

3
dµ 6

(
4(m− 1)

27ε3
+

m2

ε3R4

)∫
B(0,R)c

h2dµ. (3.3)

We also have

m∑
i=1

∫
3|xi|2h2

ε2(1 + x2
i )|x|2

dµ 6
3

ε2

∫
B(0,R)

h2dµ+
3m

ε2R2

∫
B(0,R)c

h2dµ. (3.4)

Choose R (depending on ε and ε1,2,3) so big that m2

ε3R4 + 3m
ε2R2 6 ε, then combining

(3.1-3.4) gives

(m− ε)
∫
h2dµ 6

1

ε1

∫ m∑
i=1

|h′i|2

1 + x2
i

dµ +(
m− ε+

3

ε2

)∫
B(0,R+1)

h2dµ+

(
4(m− 1)

27ε3
+ ε

)∫
h2dµ. (3.5)

Step 3. We have to decide the range of ε and ε1,2,3. First of all, fix ε1 <
4

27m , and take
any ε2 such that ε1 + 3ε2 <

4
27m too. It follows

4(m− 1)

27ε3
=

4(m− 1)

27(1− a− ε1 − 3ε2)
< m,

so we can take any ε such that 4(m−1)
27ε3

+ 2ε < m.
Now, using (3.5) yields∫

h2dµ 6 λ1

∫ m∑
i=1

|h′i|2

1 + x2
i

dµ+ λ2

∫
B(0,R+1)

h2dµ, (3.6)

where λ1 = [ε1(m − 2ε − 4(m−1)
27ε3

)]−1 and λ2 =
(
m− ε+ 3ε−1

2

)
(m − 2ε − 4(m−1)

27ε3
)−1. The

proof is completed.

Under the Gozlan’s condition, we use a similar argument.

Proof of Proposition 1.8. Let βn =
∫
|x|2ndµ. Applying (3.6) to h(x) = |x|n yields

βn 6 λ1

∫ m∑
i=1

n2x2
i

1 + x2
i

|x|2n−4dµ+ λ2

∫
B(0,R+1)

|x|2ndµ

6 λ1mn
2

∫
|x|2n−4dµ+ λ2(R+ 1)2

∫
B(0,R+1)

|x|2n−2dµ

6 λ1mn
2βn−2 + λ2(R+ 1)2βn−1, (3.7)

which implies all βn <∞.
For simplicity, abbreviate λ′1 = λ1m and λ′2 = λ2(R + 1)2. Combining the Hölder

inequality with (3.7) gives

βn =

∫
|x|n+1|x|n−1dµ 6 β

1
2
n+1β

1
2
n−1 6

[
λ′1(n+ 1)2βn−1 + λ′2βn

] 1
2 β

1
2
n−1,

which implies

βn 6
λ′2 +

√
λ′22 + 4λ′1(n+ 1)2

2
βn−1 6

[
λ′2 +

√
λ′1(n+ 1)

]
βn−1.
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Gaussian integrability under the Lyapunov condition

Choose any γ >
√
λ′1, it follows λ′2 +

√
λ′1(n+ 1) 6 γn for big n, which yields a constant

C such that for all n
βn 6 Cγnn!.

By the same argument as (2.3) for any δ < γ−1 < λ′
− 1

2
1 , we have µeδ|x|

2

<∞.
Recall the constraints on all parameters (See Step 3 in the proof of Lemma 3.1), δ is

allowed to be not greater than

sup

{
λ′
− 1

2
1 : ε1 + 3ε2 + ε3 = 1− a, ε1 <

4

27m
, ε = ε2 = 0

}
,

which achieves 2(
√
m−
√
m−1)

3
√

3m
. The proof is completed.
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