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Abstract

This note highlights a special class of mean field games in which the coefficients
satisfy a convolution-type structural condition. A mean field game of this type with
common noise is related to a certain mean field game without common noise by a
simple transformation, which permits a tractable construction of a solution of the
problem with common noise from a solution of the problem without. This yields new
existence results for common noise problems, notably allowing controlled volatility, as
well as new uniqueness results for problems without common noise.
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1 Introduction

The goal of this paper is to demonstrate how a typical structural property can be
exploited to construct a solution of a mean field game (MFG) with common noise from a
solution of a certain MFG without common noise. This provides a simple way to extend
to the common noise setting many existing results on MFGs without common noise. The
MFG with common noise we consider is described concisely as follows:

MFG problem with common noise.
α∗ ∈ arg maxαE

[∫ T
0
f(t,Xα

t , µt, αt)dt+ g(Xα
T , µT )

]
,

dXα
t = [b0(t, µt) + b(t,Xα

t , µt, αt)] dt

+σ(t,Xα
t , µt, αt)dWt + σ0(t, µt)dBt, X

α
0 = ξ,

µ = Law(Xα∗ | B).

Here ξ is some given initial state, Xα is the state process subject to the control α, and
µ is a random measure on the path space with time-marginals (µt)t∈[0,T ]. Definition 2.2
will formulate this precisely, but for now a more careful explanation is as follows: Given
a random measure µ, treat it as fixed and solve the stochastic optimal control problem
defined in the first two lines above. If an optimal control α∗ may be found, compute
the conditional law of Xα∗ given the common noise B. If the resulting conditional law
matches µ, then we say µ is an MFG equilibrium. The goal of this paper is to link this
problem with the following MFG without common noise:
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Translation invariant mean field games with common noise

MFG problem without common noise.
α∗ ∈ arg maxαE

[∫ T
0
f(t, Y αt , µ̄t, αt)dt+ g(Y αT , µ̄T )

]
,

dY αt = b(t, Y αt , µ̄t, αt)dt+ σ(t, Y αt , µ̄t, αt)dWt, Y
α
0 = ξ,

µ̄ = Law(Y α
∗
).

The structure of the problem will be made completely precise in Definition 2.4. It is
exactly like the common noise problem except that now µ̄ is a deterministic measure,
matched to the (unconditional) law of the optimally controlled state process Y α

∗
. The

crucial structural condition that allows us to relate these two problems is translation
invariance; we assume that b, σ, f , and g satisfy a condition of the form b(t, x+ q, µ, a) =

b(t, x, µ(·+ q), a), for all q. The procedure for constructing common-noise solutions is as
follows:

1. Solve the MFG without common noise to get µ̄ and α∗.

2. Using µ̄ from step (1), solve the SDE

dqt = b0(t, µ̄t(· − qt))dt+ σ0(t, µ̄t(· − qt))dBt, q0 = 0.

3. An equilibrium for the MFG with common noise is then given by µ := µ̄(· − q), and
the same control α∗ is optimal. (Define Xα := Y α + q for all α.)

The role of the translation invariance is to isolate the effect of the common noise by
decomposing the equilibrium measure flow (µt)t∈[0,T ] into a deterministic measure flow
(µ̄t)t∈[0,T ] shifted by a highly tractable finite-dimensional stochastic process (qt)t∈[0,T ].
We show also that one may invert this procedure to construct a solution of the MFG
without common noise from a solution of the MFG with common noise, if one is willing to
work with a weaker notion of solution. While this is less obviously useful, it completes the
connection between the two systems and enables uniqueness arguments. For example,
by taking σ0 ≡ 0 we find a correspondence between two MFG problems, both without
common noise, and use this to derive a modest new uniqueness result, which appears to
be the first involving a mean field term in the drift.

It is worth mentioning that our construction also works on the level of the n-player
game. That is, a Nash equilibrium for the n-player game without common noise can be
used to construct (in exactly the same manner) a Nash equilibrium for the n-player game
with common noise. We will not discuss this in detail, as the construction is clearest in
the mean field setting. Additionally, for the sake of concreteness we work with a finite
time horizon T > 0, but it should be clear from the analysis that our construction is more
broadly applicable, for example to infinite-horizon or ergodic objectives.

While no concrete MFG models are presented in this note, our results provide a
tractable method for incorporating common noise terms in MFG models, which often
makes the models more realistic or robust. For example, using our construction, the
models of population distribution of [15] and the flocking models of [23, 10] can easily
be extended to include common noise. The common noise systemic risk model of [9]
fits perfectly into our framework, although a direct analysis was possible for this model
because of its relatively simple linear-quadratic structure.

Our construction is inspired by the paper [15] of Guéant, Lasry, and Lions, in which
the equilibrium is computed explicitly for a specific common-noise MFG model of income
distribution. While this equilibrium measure flow (µt)t∈[0,T ] is indeed random, it may be
decomposed into

µt = ν(qt·), i.e. µt(A) = ν(qtA) for measurable A ⊂ R,
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Translation invariant mean field games with common noise

where ν is a deterministic (Pareto) distribution and qt is a one-dimensional stochastic
process. This is a multiplicative decomposition, whereas our decompositions are additive.
Conceivably, many other classes of common-noise MFG models may permit similar
decompositions, in which the common noise has a simple finite-dimensional effect on the
measure flow.

This note is a contribution to the wellposedness theory for MFGs. The theory was
introduced by Lasry and Lions [22] and Huang, Malhamé, and Caines in [17, 16], largely
as a tool for studying limits and approximations of Nash equilibria for corresponding
n-player games of a certain symmetric type. When n is large, n-player stochastic
differential games are highly intractable, and the MFG limit is often easier to analyze
while still providing a good approximation of the more realistic n-player system. This has
naturally led to a substantial literature on existence and uniqueness for MFG equilibria;
for additional background see the surveys [4, 14] or the more probabilistic [6, 2].

To the best of the authors’ knowledge, the only general existence results for MFGs
with common noise appear in the two recent papers [8, 1], although common noise had
appeared already in specific models in [15, 9]. Very recently, the papers [7, 3] derive the
so-called master equation, which reformulates the problem in terms of a single PDE, but
no existence results are provided. Under a monotonicity assumption similar to that of
Lasry and Lions [22], Ahuja [1] proves existence and uniqueness for a class of nearly
linear-quadratic MFGs with common noise. The existence results of [8] apply to much
more general systems but provide only weak solutions, the main differences being that µ
is not necessarily B-measurable and that the fixed point condition µ = Law(Xα∗ | B) is
replaced by the weaker condition µ = Law(Xα∗ | B,µ). The present paper provides new
results on strong solutions, but only for the particular class of translation invariant MFG
models. However, the objective of this note is not so much to prove a precise existence
result but rather to provide a mechanism for constructing strong solutions to a large
class of common noise mean field games, in a surprisingly tractable manner.

The first main result, Theorem 2.5, shows how to construct a strong solution of the
problem with common noise from a strong solution of the problem without common noise.
This construction generalizes to weak solutions as well, and our second main result,
Theorem 4.4, is a converse, allowing us to construct a weak solution of the problem
without common noise from a weak solution of the problem with common noise. In [20],
it is proven that the set of weak solutions introduced in [8] precisely characterizes the set
of possible limits of approximate Nash equilibria of the corresponding n-player games, as
the number of agents n tends to infinity. (The sense in which this limit is meant is made
clear in [20].) Hence, Theorem 4.4 (or more specifically its Corollary 5.1) is useful from
the perspective of the n-player games, as it shows there is a complete correspondence
between the sets of weak solutions of the two problems, with and without common noise.

The main result is set up in Section 2 stated precisely in Theorem 2.5. Section 3
presents some applications, including a precise existence result with easily verifiable as-
sumptions. Section 4 discusses the converse to Theorem 2.5, completing the connection
between the two MFG problems. Finally, Section 5 applies the converse to the study of
uniqueness, closing with a new uniqueness result for MFGs without common noise.

2 Main results

Given a metric space E, let P(E) denote the Borel probability measures on E. Endow
P(E) with the topology of weak convergence and the corresponding Borel σ-field. Let
Ck := C([0, T ];Rk) denote the space of continuous Rk-valued paths, endowed with the
supremum norm and Borel σ-field. Given µ ∈ P(Ck) and t ∈ [0, T ], let µt ∈ P(Rk) denote
the image of the projection x 7→ xt under µ. Given µ ∈ P(Rk) (resp. P(Ck)) and q ∈ Rk
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Translation invariant mean field games with common noise

(resp. Ck), the translation by −q of µ is denoted µ(· + q), which is the image of map
x 7→ x− q under µ. The following definition of translation invariance is central to this
note, and it is precisely what will allow us to isolate the stochastic part of the measure
flow arising in the MFGs with common noise:

Definition 2.1. A subset D of P(Rk) is said to be translation invariant if µ(· + q) ∈ D
for each q ∈ Rk and µ ∈ D. Given such a D and a function F : Rk ×D → E for some set
E, we say F is translation invariant if, for each x, q ∈ Rk and µ ∈ D,

F (x+ q, µ) = F (x, µ(·+ q)),

The domains D of interest to us are the entire space P(Rk) and the subset consisting
of measures admitting Lebesgue-densities. The guiding examples of translation invariant
functions F involve convolutions,

F (x, µ) = G

(∫
φ(x− y)µ(dy)

)
,

and local interactions (noting that D = {µ ∈ P(Rk) : µ � Lebesgue} is translation
invariant),

F (x, µ) = G

(
dµ

dx
(x)

)
.

The term translation invariant is chosen because of the equivalent definition that F (x+

q, µ(· − q)) = F (x, µ), which shows that F is unchanged when the same translation is
applies to both the spatial variable and the measure.

We are given the following data. The control space A is a closed subset of Euclidean
space, λ ∈ P(Rd) is an initial state distribution, and d, m, and m0 are positive integers.
We are given an exponent p ≥ 0, simply to specify some class of admissible controls by
way of an integrability assumption. A translation invariant domain D ⊂ P(Rd) and the
following functions are given:

(b, σ, f) : [0, T ]×Rd ×D ×A→ Rd ×Rd×m ×R,
(b0, σ0) : [0, T ]×D → Rd ×Rd×m0 ,

g : Rd ×D → R.

Standing assumptions. Each function is jointly measurable, and for each fixed (t, a) ∈
[0, T ]×A the functions b, σ, f , and g are translation invariant on Rd ×D.

The assumptions on the coefficients are minimal for now, but condition (3) of each
of the following definitions will implicitly require that certain integrals make sense.
Consider the following notions of MFG solution:

Definition 2.2 (Strong common-noise solution). A strong solution of CN(b, σ, f, g, b0, σ0)

is a tuple (Ω, (Ft)t∈[0,T ], P,B,W, µ, α,X), where (Ω, (Ft)t∈[0,T ], P ) is a complete filtered
probability space supporting (B,W, µ, α,X) satisfying the following:

1. B and W are independent (Ft)t∈[0,T ]-Wiener processes of dimension m0 and m,
respectively, and X is a continuous d-dimensional (Ft)t∈[0,T ]-adapted process with
P ◦X−1

0 = λ.

2. α is an (Ft)t∈[0,T ]-progressive A-valued process satisfying EP
∫ T

0
|αt|pdt <∞.

3. The state equation holds:

dXt =[b0(t, µt) + b(t,Xt, µt, αt)]dt+ σ(t,Xt, µt, αt)dWt + σ0(t, µt)dBt. (2.1)
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4. If (Ω′, (F ′t)t∈[0,T ], P
′) is another filtered probability space supporting processes

(B′,W ′, µ′, α′, X ′) satisfying (1-3) and P ◦ (B,µ)−1 = P ′ ◦ (B′, µ′)−1, then

EP

[∫ T

0

f(t,Xt, µt, αt)dt+ g(XT , µT )

]
≥ EP

′

[∫ T

0

f(t,X ′t, µ
′
t, α
′
t)dt+ g(X ′T , µ

′
T )

]
.

5. µ is a random element of P(Cd) such that µ = P (X ∈ · | B) a.s., and µt ∈ D a.s. for
each t ∈ [0, T ].

Remark 2.3. Note that µ = P (X ∈ · | B) implies that µt = P (Xt ∈ · | B) = P (Xt ∈
· | FBt ), where FBt = σ(Bs : s ≤ t), since (Xs, Bs)s∈[0,t] and (Bs − Bt)s∈[t,T ] are indepen-
dent. That is, (µt)t∈[0,T ] is (FBt )t∈[0,T ]-adapted.

Definition 2.4 (Strong no-common-noise solution). A strong solution of NCN(b, σ, f, g)

is a tuple (Ω, (Ft)t∈[0,T ], P,W, µ̄, α, Y ), where (Ω, (Ft)t∈[0,T ], P ) is a complete filtered prob-
ability space supporting (W,α, Y ) satisfying the following:

1. W is a (Ft)t∈[0,T ]-Wiener processes of dimension m, respectively, and Y is a contin-
uous d-dimensional (Ft)t∈[0,T ]-adapted process with P ◦ Y −1

0 = λ.

2. α is an (Ft)t∈[0,T ]-progressive A-valued process satisfying EP
∫ T

0
|αt|pdt <∞.

3. The state equation holds:

dYt = b(t, Yt, µ̄t, αt)dt+ σ(t, Yt, µ̄t, αt)dWt. (2.2)

4. If (Ω′, (F ′t)t∈[0,T ], P
′) is another filtered probability space supporting processes

(B′,W ′, α′, Y ′) satisfying (1-3), then

EP

[∫ T

0

f(t, Yt, µ̄t, αt)dt+ g(YT , µ̄T )

]
≥ EP

′

[∫ T

0

f(t, Y ′t , µ̄t, α
′
t)dt+ g(Y ′T , µ̄T )

]
.

5. µ̄ ∈ P(Cd) satisfies µ̄ = P ◦ Y −1 and µ̄t ∈ D for all t ∈ [0, T ].

The first main result of the paper is the following:

Theorem 2.5. Suppose (Ω, (Ft)t∈[0,T ], P,W, µ̄, α, Y ) is a strong solution ofNCN(b, σ, f, g).
By extending the probability space, we may assume that Ω supports an m0-dimensional
(Ft)t∈[0,T ]-Wiener process B independent of (W,α, Y ). Suppose weak existence and
pathwise uniqueness hold for the following SDE:

dqt = b0(t, µ̄t(· − qt))dt+ σ0(t, µ̄t(· − qt))dBt, q0 = 0. (2.3)

If X := Y + q and µ := µ̄(· − q), then (Ω, (Ft)t∈[0,T ], P,B,W, µ, α,X) is a strong solution
of CN(b, σ, f, g, b0, σ0).

Proof. Solve the SDE (2.3) on Ω, and note that (qt)t∈[0,T ] is adapted to (the P -completion
of) (FBt := σ(Bs : s ≤ t))t∈[0,T ] and that µ is the translation of the deterministic measure
µ̄ ∈ P(Cd) by the stochastic process q. First, note that translation invariance implies
b(t, Yt, µ̄t, αt) = b(t,Xt, µt, αt), and similarly for σ, f , and g. Thus

dXt = dYt + dqt

= [b0(t, µ̄t(· − qt)) + b(t, Yt, µ̄t, αt)]dt+ σ(t, Yt, µ̄t, αt)dWt + σ0(t, µ̄t(· − qt))dBt,
= [b0(t, µt) + b(t,Xt, µt, αt)dt] + σ(t,Xt, µt, αt)dWt + σ0(t, µt)dBt.

ECP 20 (2015), paper 42.
Page 5/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3822
http://ecp.ejpecp.org/


Translation invariant mean field games with common noise

Note also that X0 = Y0. Since µ̄ = P ◦ Y −1, since Y is independent of B, and since q is
B-measurable, we have

µ = µ̄(· − q) = P (Y ∈ · − q | B) = P (X ∈ · | B).

It remains to check the optimality property (4) of Definition 2.2. Let (Ω′, (F ′t)t∈[0,T ], P
′)

be any filtered probability space supporting processes (B′,W ′, µ′, α′, X ′) satisfying (1-3)
of Definition 2.2 and P ′ ◦(B′, µ′)−1 = P ◦(B,µ)−1. Let (q′t)t∈[0,T ] denote the unique strong
solution on Ω′ of the SDE

dq′t = b0(t, µ̄t(· − q′t))dt+ σ0(t, µ̄t(· − q′t))dB′t, q′0 = 0.

Then q′ is B′-measurable and P ′ ◦ (B′, q′)−1 = P ◦ (B, q)−1 by uniqueness. Thus P ′ ◦
(B′, µ′, q′)−1 = P ◦ (B,µ, q)−1, since µ′ (resp. µ) is B′-measurable (resp. B-measurable),
and we conclude that µ′ = µ̄(· − q′) a.s. Define Y ′ := X ′ − q′, and again use translation
invariance of b and σ to get

dY ′t = dX ′t − dq′t = b(t,X ′t, µ
′
t, α
′
t)dt+ σ(t,X ′t, µ

′
t, α
′
t)dWt,

= b(t, Y ′t , µ̄t, α
′
t)dt+ σ(t, Yt, µ̄t, α

′
t)dWt.

Since (Ω, (Ft)t∈[0,T ], P,W, α, Y ) is a NCN solution, we may apply the optimality condition
(4) of Definition 2.4 and then translation invariance to get

0 ≤ EP
[∫ T

0

f(t, Yt, µ̄t, αt)dt+ g(YT , µ̄T )

]
− EP

′

[∫ T

0

f(t, Y ′t , µ̄t, α
′
t)dt+ g(Y ′T , µ̄T )

]

= EP

[∫ T

0

f(t,Xt, µt, αt)dt+ g(XT , µT )

]
− EP

′

[∫ T

0

f(t,X ′t, µ
′
t, α
′
t)dt+ g(X ′T , µ

′
T )

]
.

Note that the definition of NCN solution involves weak controls, according to the
terminology of [8], which are not required to be adapted to the filtration Ft = σ(Y0,Ws :

s ≤ t) generated by the given sources of randomness. Only the recent papers [21, 11, 10]
work with essentially the same Definition 2.4, using weak controls; most probabilistic
notions of MFG solutions in the literature restrict their attention to strong controls,
adapted to σ(Y0,Ws : s ≤ t). But it is rather well-known from the theory of relaxed
controls that this additional flexibility does not typically help the agent; a control which
is optimal among the class of strong controls is typically also optimal among the class of
weak controls. Thus, a special case of our notion of strong NCN solution is the usual MFG
solution appearing in the probabilistic literature (e.g. [6, 2]). MFG solutions obtained
by PDE methods are translated to the stochastic setting through verification theorems
which allow for weak controls, and thus our notion of solution includes those defined by
(classical) PDE solutions (e.g. [22]). To be somewhat more precise:

Proposition 2.6. Suppose that b and σ are uniformly Lipschitz in x, A is compact, and
b, σ, f , and g are all jointly continuous in (x, a). Then it is equivalent in Definition 2.2
to replace condition (4) with one requiring that α′ be adapted to (the P ′-completion of)
σ(X ′0, B

′
s,W

′
s : s ≤ t). Similarly, in Definition 2.4, it is equivalent to require optimality

only among σ(Y ′0 ,W
′
s : s ≤ t)-adapted controls.

Proof. See, for example, [18] or the recent account of [19].

Remark 2.7. The construction of CN solutions in Theorem 2.5 leaves the optimal control
unchanged, and thus we may construct a CN solution whose optimal control is inde-
pendent of the common noise B and, a fortiori, independent of the random measure µ.
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Intuitively, the entire population is affected in parallel by the common noise through
(qt)t∈[0,T ], and because of the translation invariance the common noise does not influence
the optimization.

3 Applications

This section discusses examples of applications of Theorem 2.5. First, some comments
on the SDE (2.3) are in order. Given p ≥ 1, define Pp(Rd) to be the set of µ ∈ P(Rd) with∫
|x|pµ(dx) <∞. Define the p-Wasserstein distanceWp on Pp(Rd) by

Wp(µ, ν) := inf
γ

(∫
Rd×Rd

|x− y|pγ(dx, dy)

)1/p

,

where the infimum is over γ ∈ P(Rd × Rd) with marginals equal to µ and ν. The
assumption of solvability of the SDE (2.3) is guaranteed by assuming that the coefficients
b0(t, µ) and σ0(t, µ) are Wp-Lipschitz in µ, uniformly with respect to t. Indeed, for any
µ ∈ Pp(Rd) and q ∈ R we have

Wp(µ(· − q), µ(· − q′)) ≤
(∫

Rd
|(x+ q)− (x+ q′)|pµ(dx)

)1/p

= |q − q′|,

and it follows that b0(t, µ̄t(· − q)) and σ0(t, µ̄t(· − q)) are Lipschitz in q, uniformly with
respect to t, for each µ̄ ∈ P(Cd) with supt∈[0,T ]

∫
|x|pµ̄t(dx) <∞.

Theorem 2.5 allows us to derive common noise existence results from the existence
results without common noise of [21]. Take D = Pp(Rd) in the following.

Theorem 3.1. Under the following assumptions, there exists a strong solution of
CN(b, σ, f, g, b0, σ0):

1. The control space A is a closed subset of a Euclidean space.

2. The initial distribution λ is in Pp′(Rd), where p′ > p ≥ max{1, pσ}, pσ ∈ [0, 2].

3. The functions b, b0, σ, σ0, f , and g of (t, x, µ, a) are measurable in t and continuous
in (x, µ, a) (with respect to the metricWp on Pp(Rd)).

4. There exists c1 > 0 such that, for all (t, µ, a) ∈ [0, T ]× Pp(Rd)×A and all x, y ∈ Rd,

|b(t, x, µ, a)− b(t, y, µ, a)|+ |σ(t, x, µ, a)− σ(t, y, µ, a)| ≤ c1|x− y|,

and

|b(t, x, µ, a)| ≤ c1

[
1 + |x|+

(∫
Rd
|z|pµ(dz)

)1/p

+ |a|

]
,

|σσ>(t, x, µ, a)| ≤ c1

[
1 + |x|pσ +

(∫
Rd
|z|pµ(dz)

)pσ/p
+ |a|pσ

]

5. There exist c2, c3 > 0 such that, for each (t, x, µ, a) ∈ [0, T ]×Rd × Pp(Rd)×A,

|g(x, µ)| ≤ c2 (1 + |x|p + |µ|p) ,

−c2
(

1 + |x|p + |µ|p + |a|p
′
)
≤ f(t, x, µ, a) ≤ c2 (1 + |x|p + |µ|p)− c3|a|p

′

6. For each (t, x, µ) the following subset of Rd ×Rd×d ×R is convex:{
(b(t, x, µ, a), σσ>(t, x, µ, a), z) : a ∈ A, z ≤ f(t, x, µ, a)

}
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7. The functions b, σ, f , and g are translation invariant in (x, µ), for each (t, a).

8. There exists c4 > 0 such that, for each t ∈ [0, T ] and µ, ν ∈ Pp(Rd),

|b0(t, µ)− b0(t, ν)|+ |σ0(t, µ)− σ0(t, ν)| ≤ c4Wp(µ, ν).

Proof. Assumptions (1-6) and [21, Theorem 2.1] imply that there exists an NCN solution.
By assumption (8), as pointed out before, the SDE (2.3) is well-posed. In light of
assumption (7), Theorem 2.5 applies.

Similarly, combining our Theorem 2.5 with any of the results on MFG without common
noise with local interactions, such as [13, 12, 5, 22, 4, 14], we could derive existence
results for some mean field games with common noise and local interactions. Aside from
the specific model of [15], local interactions have not been incorporated in common
noise models before, and without our construction this would presumably be quite a
technical matter. As it should be clear at this stage how to construct such results, and
since spelling them out in detail would require yet another laundry list of technical
assumptions, we suppress any further details.

We conclude the section with a useful trick which allows us to apply our theorem to
certain nearly translation invariant functions. Given coefficients (b, σ, f, g) satisfying the
standing assumptions, define new coefficients

b̃(t, x, µ, a) = Qx+ b(t, x, µ, a),

f̃(t, x, µ, a) = rf · x+ f(t, x, µ, a),

g̃(x, µ) = rg · x+ g(x, µ).

where Q is a d× d matrix and rf , rg ∈ Rd. Define also

b̃0(µ) := Q

∫
Rd
y µ(dy), f̃0(µ) :=

∫
Rd
rf · y µ(dy), g̃0(µ) :=

∫
Rd
rg · y µ(dy).

Naively, Theorem 2.5 does not apply to the coefficients (b̃, σ, f̃ , g̃, b0, σ0), since b̃, f̃ ,
and g̃ are not translation invariant. However, simply obvserve that every solution of
CN(b̃, σ, f̃ , g̃, b0, σ0) is also a solution of CN(b̃ − b̃0, σ, f̃ − f̃0, g̃ − g̃0, b0 + b̃0, σ0), and the
converse is true as well. Note, of course, that subtracting f̃0 and g̃0 does not alter the
optimization problems. The point is that the latter coefficients are translation invariant,
and thus we may use Theorem 2.5 to construct a solution of these CN problems from
a solution of NCN(b̃ − b̃0, σ, f̃ − f̃0, g̃ − g̃0). For example, this trick would allow us to
effortlessly incorporate common noise into the flocking models considered in [23, 10],
which have a linear drift term which is not translation invariant.

4 Weak solutions and the converse

To make sense of the converse of Theorem 2.5, we will need the notion of weak
solution for mean field games with and without common noise, introduced in [8] and
[20], respectively. The meaning of weak here is probabilistic: the random measure µ in
the CN solution is no longer required to be B-measurable, and the measure µ̄ of the NCN
solution is now allowed to be random. Unfortunately, there is an additional subtely in
the definitions which necessitates some more notation. Let X := Cm × Lp([0, T ];A)× Cd,
and let (FXt )t∈[0,T ] denote the natural filtration on X , where FXt is the σ-field generated
by the maps

X 3 (w,α, x) 7→ (ws, xs) ∈ Rm ×Rd, for s ≤ t, and

X 3 (w,α, x) 7→
∫ s

0

1C(αs)ds, for s ≤ t, C ⊂ A Borel.
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A measure µ ∈ P(X ) is to represent a joint law of (W,α,X): the independent noise, the
control, and the state process. Given µ ∈ P(X ), let µx := µ(Cm ×Lp([0, T ];A)× ·) denote
the Cd-marginal. Given q ∈ Cd, we may write µ(·+ (0, 0, q)) to denote the translation of µ
in the direction of Cd given by q, defined by

µ(A+ (0, 0, q)) := µ {(w,α, x+ q) : (w,α, x) ∈ A} ,

Note of course that µ(·+ (0, 0, q))x = µx(·+ q). The following two definitions come from
[8] and [20], respectively. The curious reader is referred to these papers for a thorough
discussion of these definitions, especially [8] for the unusual conditional independence
of condition (3) and the necessity of considering measures on the larger space X , rather
than Cd.
Definition 4.1 (Weak common-noise solution). A weak solution of CN(b, σ, f, g, b0, σ0)

is a tuple (Ω, (Ft)t∈[0,T ], P,B,W, µ, α,X), where (Ω, (Ft)t∈[0,T ], P ) is a complete filtered
probability space supporting (B,W, µ, α,X) satisfying the following:

1. B and W are independent (Ft)t∈[0,T ]-Wiener processes of dimension m0 and m,
respectively, and X is a continuous d-dimensional (Ft)t∈[0,T ]-adapted process with
P ◦X−1

0 = λ.

2. µ is a random element of P(X ), and µ(C) is Ft-measurable for each C ∈ FXt and
t ∈ [0, T ].

3. α is a (Ft)t∈[0,T ]-progressive A-valued process satisfying EP
∫ T

0
|αt|pdt < ∞, and

σ(αs : s ≤ t) is conditionally independent of FX0,B,W,µ
T given FX0,B,W,µ

t , for each
t ∈ [0, T ], where

FX0,B,W,µ
t := σ(X0, Bs,Ws, µ(C) : s ≤ t, C ∈ FXt ).

4. X0, W , and (B,µ) are independent.

5. The state equation (2.1) holds.

6. If (Ω′, (F ′t)t∈[0,T ], P
′) is another filtered probability space supporting processes

(B′,W ′, µ′, α′, X ′) satisfying (1-5) and P ◦ (B,µ)−1 = P ′ ◦ (B′, µ′)−1, then

EP

[∫ T

0

f(t,Xt, µ
x
t , αt)dt+ g(XT , µ

x
T )

]
≥ EP

′

[∫ T

0

f(t,X ′t, µ
′x
t , α

′
t)dt+ g(X ′T , µ

′x
T )

]
.

7. µ = P ((W,α,X) ∈ · | (B,µ)) a.s., and µxt ∈ D a.s. for each t ∈ [0, T ].

Definition 4.2 (Weak no-common-noise solution). A weak solution of NCN(b, σ, f, g) is a
tuple (Ω, (Ft)t∈[0,T ], P,W, µ̄, α, Y ), where (Ω, (Ft)t∈[0,T ], P ) is a filtered probability space
supporting (W, µ̄, α, Y ) satisfying the following:

1. W is a (Ft)t∈[0,T ]-Wiener processes of dimension m, and Y is a continuous d-
dimensional (Ft)t∈[0,T ]-adapted process with P ◦ Y −1

0 = λ.

2. µ̄ is a random element of P(X ), and µ̄(C) is Ft-measurable for each C ∈ FXt and
t ∈ [0, T ].

3. α is an (Ft)t∈[0,T ]-progressive A-valued process satisfying EP
∫ T

0
|αt|pdt <∞, and

σ(αs : s ≤ t) is conditionally independent of FX0,W,µ̄
T given FX0,W,µ̄

t , for each
t ∈ [0, T ], where

FX0,W,µ̄
t := σ(X0,Ws, µ̄(C) : s ≤ t, C ∈ FXt ).
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4. X0, W , and µ̄ are independent.

5. The state equation (2.2) holds.

6. If (Ω′, (F ′t)t∈[0,T ], P
′) is another filtered probability space supporting processes

(W ′, µ̄′, α′, Y ′) satisfying (1-5) and P ◦ µ̄−1 = P ′ ◦ (µ̄′)−1, then

EP

[∫ T

0

f(t, Yt, µ̄
x
t , αt)dt+ g(YT , µ̄

x
T )

]
≥ EP

′

[∫ T

0

f(t, Y ′t , µ̄
′x
t , α

′
t)dt+ g(Y ′T , µ̄

′x
T )

]
.

7. µ̄ = P ((W,α, Y ) ∈ · | µ̄) a.s., and µ̄xt ∈ D a.s. for each t ∈ [0, T ].

Note that both of these solution notions correspond to weak MFG solutions with strict
control in [8]. If A is replaced by P(A), then these notions correspond to weak MFG
solutions with weak (relaxed) control in [8]. Note that a weak CN solution for which µ
happens to be B-measurable automatically provides a (strong) CN solution, replacing µ
with µx. Similarly, a weak NCN solution for which µ̄ happens to be deterministic (a.s.
constant) automatically yields a (strong) NCN solution. One additional definition will
facilitate the statement of the final results:

Definition 4.3. Consider two filtered probability spaces (Ωi, (F it )t∈[0,T ], P
i) supporting

(respectively) an Rd-valued adapted process (qit)t∈[0,T ], a Wiener process (Bit)t∈[0,T ], and
a P(X )-valued random variable µ̄ such that µ̄xt ∈ D a.s. for each t ∈ [0, T ] and such that
µ̄(C) is F it -measurable for each C ∈ FXt and each t ∈ [0, T ]. Suppose also that

dqit = b0(t, µ̄ixt (· − qit))dt+ σ0(t, µ̄ixt (· − qit))dBit, qi0 = 0. (4.1)

Suppose that for any such a pair of spaces satisfying P 1 ◦ (B1, µ̄1)−1 = P 2 ◦ (B2, µ̄2)−1 we
also have P 1 ◦ (B1, µ̄1, q1)−1 = P 2 ◦ (B2, µ̄2, q2)−1. Then we say weak uniqueness holds
for the SDE (4.1).

As argued at the beginning of Section 3, weak uniqueness holds for the SDE (4.1)
when b0 and σ0 areWp-Lipschitz in the measure argument uniformly in t, for some p ≥ 1.

Theorem 4.4. Let (Ω, (Ft)t∈[0,T ], P,B,W, µ, α,X) be a weak solution of the common
noise problem CN(b, σ, f, g, b0, σ0). Suppose that weak uniqueness holds for the SDE
(4.1). Define a process (qt)t∈[0,T ] on Ω by

qt =

∫ t

0

b0(s, µs)ds+

∫ t

0

σ0(s, µs)dBs.

If Y := X − q and µ̄ := µ(·+ (0, 0, q)), then (Ω, (Ft)t∈[0,T ], P,W, µ̄, α, Y ) is a weak solution
of NCN(b, σ, f, g).

Proof. We simply invert the construction of Theorem 2.5. Since µ = P ((W,α,X) ∈
· | B,µ) and q is (B,µ)-measurable,

µ̄ = P ((W,α,X) ∈ ·+ (0, 0, q) | B,µ) = P ((W,α, Y ) ∈ · | B,µ).

Clearly µ̄ generates a smaller σ-field than (B,µ), and so we may condition both sides of
this equation on µ̄ to get

µ̄ = P ((W,α, Y ) ∈ · | µ̄).

Translation invariance implies b(t,Xt, µ
x
t , αt) = b(t, Yt, µ̄

x
t , αt), and similarly for σ and f .

Thus

dYt = dXt − dqt = b(t,Xt, µ
x
t , αt)dt+ σ(t,Xt, µ

x
t , αt)dWt

= b(t, Yt, µ̄
x
t , αt)dt+ σ(t, Yt, µ̄

x
t , αt)dWt.
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Note that q happens to verify the SDE

dqt = b0(t, µ̄xt (· − qt))dt+ σ0(t, µ̄xt (· − qt))dBt, q0 = 0.

Now suppose (Ω′, (F ′t)t∈[0,T ], P
′) is another filtered probability space supporting

(W ′, µ̄′, α′, Y ′) satisfying (1-5) of Definition 4.2 and P ′ ◦(µ̄′)−1 = P ◦ µ̄−1. By enlarging the
space Ω′, we may assume without loss of generality that it supports a (F ′t)t∈[0,T ]-Wiener
process B′ of dimension m0 such that Y ′0 , W ′ and (B′, µ̄′) are independent and such that
P ′ ◦ (B′, µ̄′)−1 = P ◦ (B, µ̄)−1. Solve the SDE

dq′t = b0(t, µ̄′xt (· − q′t))dt+ σ0(t, µ̄′xt (· − q′t))dB′t, q′0 = 0.

Define µ′ := µ̄′(· − (0, 0, q′)). Since P ′ ◦ (B′, µ̄′)−1 = P ◦ (B, µ̄)−1, it follows from weak
uniqueness of the SDE (4.1) that P ′ ◦ (B′, µ̄′, q′)−1 = P ◦ (B, µ̄, q)−1, which in turn implies
P ′ ◦ (B′, µ′)−1 = P ◦ (B,µ)−1. Using translation invariance of b and σ, we check that
X ′ := Y ′ + q′ verifies the state equation

dX ′t = [b0(t, νxt ) + b(t,X ′t, µ
′x
t , α

′
t)]dt+ σ(t,X ′t, µ

′x
t , α

′
t)dW

′
t + σ0(t, µ′xt )dB′t, X

′
0 = Y ′0 .

Hence, (Ω′, (F ′t)t∈[0,T ], P
′, B′,W ′, µ′, α′, X ′) satisfies (1-5) of Definition 4.1, along with

P ′ ◦ (B′, µ′)−1 = P ◦ (B,µ)−1. Using translation invariance of f along with the optimality
property (6) of Definition 4.1, we get

0 ≤ EP
[∫ T

0

f(t,Xt, µ
x
t , αt)dt+ g(XT , µ

x
T )

]
− EP

′

[∫ T

0

f(t,X ′t, µ
′x
t , α

′
t)dt+ g(X ′T , µ

′x
T )

]

= EP

[∫ T

0

f(t, Yt, µ̄
x
t , αt)dt+ g(YT , µ̄

x
T )

]
− EP

′

[∫ T

0

f(t, Y ′t , µ̄
′x
t , α

′
t)dt+ g(Y ′T , µ̄

′x
T )

]
.

This shows that (Ω, (Ft)t∈[0,T ], P,W, µ̄, α, Y ) is a weak NCN solution.

5 Uniqueness

A corollary of Theorem 4.4 lets us relate uniqueness statements for CN solutions
and NCN solutions. We say uniqueness in law holds for the weak CN solution if any
two weak CN solutions (Ωi, (F it )t∈[0,T ], P

i, Bi,W i, µi, αi, Xi) induce the same joint law
P i ◦ (Bi, µi)−1. Note that weak uniqueness along with the fixed point condition (7)
implies that also P i ◦ (Bi,W i, µi, αi, Xi)−1 is the same for each i = 1, 2. Analogously, we
say uniqueness in law holds for the weak NCN solution if any two weak NCN solutions
(Ωi, (F it )t∈[0,T ], P

i,W i, µ̄i, αi, Y i) induce the same law P i ◦ (µ̄i)−1.

Corollary 5.1. Suppose uniqueness in law holds for weak NCN solutions, and suppose
the unique weak NCN solution is in fact a strong NCN solution. Suppose weak unique-
ness holds for the SDE 4.1, in the sense of Definition 4.3, and suppose that for each
(deterministic) µ̄ ∈ P(Cd) that pathwise uniqueness holds for the corresponding SDE
(2.3). Then uniqueness in law holds for weak CN solutions, and the unique weak CN
solution is in fact a strong CN solution.

Proof. Suppose that (Ωi,F it , P i, Bi,W i, µi, αi, Xi), i = 1, 2, are two weak CN solutions.
Define

qit :=

∫ t

0

b0(s, µi,xs )ds+

∫ t

0

σ0(s, µi,xs )dBis, where µi,x := (µi)x,

Y i := Xi − qi, µ̄i := µi(·+ (0, 0, qi)).
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By Theorem 4.4, (Ωi,F it , P i,W i, µ̄i, αi, Y i) is a weak NCN solution for each i = 1, 2. By
assumption, µ̄1 and µ̄2 must be equal and almost surely constant. Define µ̄ ∈ P(X ) to be
their common value. Then, on Ωi, (qit)t∈[0,T ] solves the SDE

dqit = b0(t, µ̄xt (· − qit))dt+ σ(t, µ̄xt (· − qit))dBit, qi0 = 0,

and since pathwise uniqueness holds we conclude that qi is Bi-measurable and that
P 1 ◦ (B1, q1)−1 = P 2 ◦ (B2, q2)−1. Since µi = µ̄(· − (0, 0, qi)), we conclude that µi is
Bi-measurable and that P 1 ◦ (B1, µ1)−1 = P 2 ◦ (B2, µ2)−1.

When there is no common noise, i.e. σ0 ≡ 0, we still have some flexibility with the
drift term b0. Analogs of Theorem 2.5 and Corollary 5.1 allow us to relate solutions
of NCN(b, σ, f, g) with solutions of NCN(b + b0, σ, f, g). In particular, existence and
uniqueness are equivalent for the two problems, whether we use strong or weak solutions.
Many uniqueness results [22, 1, 10, 8] rely not only on the Lasry-Lions monotonicity
condition but also crucially on the independence of the coefficients b and σ of the mean
field term. Corollary 5.1 leads to new uniqueness results for (translation invariant) MFGs
in which a mean field term enters into the drift. Let us present one simple example,
drawing on the uniqueness results of [8]:

Corollary 5.2. Let b(t, x, µ, a) = a, and let σ be constant. If (f, g, b0) satisfy the following
assumptions, then there exists a uniqueness in law strong solution of NCN(b+ b0, σ, f, g).

1. The control space A is a closed convex subset of Rd.

2. The initial distribution λ is in Pp′(Rd), where p′ > p ≥ max{1, pσ}, pσ ∈ [0, 2].

3. The functions b0, f , and g of (t, x, µ, a) are measurable in t and continuous in (x, µ, a)

(with respect to the metricWp on Pp(Rd)).

4. There exist c2, c3 > 0 such that, for each (t, x, µ, a) ∈ [0, T ]×Rd × Pp(Rd)×A,

|g(x, µ)| ≤ c2 (1 + |x|p + |µ|p) ,

−c2
(

1 + |x|p + |µ|p + |a|p
′
)
≤ f(t, x, µ, a) ≤ c2 (1 + |x|p + |µ|p)− c3|a|p

′

5. f is strictly concave in (x, a), and g is concave in x, for each (x, µ).

6. The functions f , and g are translation invariant in (x, µ), for each (t, a).

7. There exists c4 > 0 such that, for each t ∈ [0, T ] and µ, ν ∈ Pp(Rd),

|b0(t, µ)− b0(t, ν)| ≤ c4Wp(µ, ν).

8. f is of the form f(t, x, µ, a) = f1(t, x, a) + f2(t, x, µ).

9. The Lasry-Lions monotonicity condition holds: For all µ, ν ∈ Pp(Rd) we have∫
Rd

(µ− ν)(dx) (g(x, µ)− g(x, ν)) dt ≤ 0,∫
Rd

(µ− ν)(dx) (f2(t, x, µ)− f2(t, x, ν)) dt ≤ 0.

Proof. Strong existence and uniqueness in law of NCN(b, σ, f, g) follow from the results
of [8], namely Proposition 4.4 and Theorem 6.2 therein (or more accurately a slight adap-
tation of Theorem 6.2 for the NCN problem). The argument of Theorem 2.5 shows that a
strong solution of NCN(b, σ, f, g) gives rise to a strong solution of NCN(b, σ, f, g, b0, 0),
since the ODE (2.3) is well-posed by assumption (7). On the other hand, the argument of
Theorem 4.4 shows that any weak solution of NCN(b, σ, f, g, b0, 0) gives rise to a weak
solution of NCN(b+ b0, σ, f, g).
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