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Abstract

Let {Gn : n ≥ 1} be a sequence of simple graphs. Suppose Gn has mn edges
and each vertex of Gn is colored independently and uniformly at random with cn
colors. Recently, Bhattacharya, Diaconis and Mukherjee (2014) proved universal limit
theorems for the number of monochromatic edges in Gn. Their proof was by the
method of moments, and therefore was not able to produce rates of convergence. By
a non-trivial application of Stein’s method, we prove that there exists a universal error
bound for their central limit theorem. The error bound depends only on mn and cn,
regardless of the graph structure.
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1 Introduction

Let {Gn : n ≥ 1} be a sequence of simple graphs, that is, graphs that contain no
loops and no multiple edges. Suppose Gn has mn edges and each vertex of Gn is
colored independently and uniformly at random with cn colors. Let Yn be the number of
monochromatic edges in Gn. Using the coupling approach in Stein’s method for Poisson
approximation, Barbour, Holst and Janson [3] (page 105, Theorem 5.G) proved that

dTV (L(Yn), Poi(
mn

cn
)) ≤

√
8mn

cn
(1.1)

where dTV denotes the total variation distance and Poi(λ) denotes the Poisson distri-
bution with mean λ. The bound (1.1) implies that if cn → ∞ and mn/cn → λ > 0,
the distribution of Yn converges to the Poisson distribution with mean λ. Recently,
Bhattacharya, Diaconis and Mukherjee [4] reproved this Poisson limit theorem by the
method of moments. By the same method, they also showed that in the case cn → ∞
and mn/cn →∞, the distribution of Yn, after proper standardization, converges to the
standard normal distribution. These limit theorems were called universal limit theorems
because they do not require any assumption on the graph structure. For applications of
this and related problems, we refer to [4] and the references therein.

In this note, we prove the following result.
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Theorem 1.1. Let Y be the number of monochromatic edges in a simple graph with
m ≥ 1 edges where each vertex is colored independently and uniformly at random with
c ≥ 2 colors. Let

W =
(Y − m

c )√
m
c (1− 1

c )
.

We have

dW (L(W ), N(0, 1)) ≤ 3

√
c

m
+

10
√

2√
c

+
1√
π

27/4

m1/4
. (1.2)

where dW denotes the Wasserstein distance and N(0, 1) denotes the standard normal
distribution.

The bound (1.2) provides a universal error bound for the central limit theorem for
W as c → ∞ and m/c → ∞. A corollary for fixed c is also obtained in Remark 2.5.
The bound (1.2) is obtained by a non-trivial application of Stein’s method for normal
approximation.

Stein’s method was introduced by Stein [15] for normal approximation. Stein’s
method for Poisson approximation was first studied by Chen [7] and popularized by
Arratia, Goldstein and Gordon [1]. We refer to [2] for an introduction to Stein’s method.
Stein’s method has been widely used to prove limit theorems with error bounds in graph
theory. For example, Arratia, Goldstein and Gordon [1] and Chatterjee, Diaconis and
Meckes [6] used Stein’s method to prove Poisson limit theorems for monochromatic
cliques in a uniformly colored complete graph. Cerquetti and Fortini [5] considered
more general monochromatic subgraphs counts when the distribution of colors was
exchangeable. Janson and Nowicki [12] studied the asymptotic distribution of the number
of copies of a given graph in various random graph models.

All of the above results are obtained by exploiting the local dependence structure
within random variables. Chen and Shao [8] provides general normal approximation
results for sums of locally dependent random variables. Rinott and Rotar [14] gives
multivariate normal approximation results for sums of bounded locally dependent random
vectors. Their error bounds are on the Kolmogorov distance and on the difference
between probabilities on multidimensional convex sets. However, these results are not
directly applicable in our problem, which does not have a useful (LD2) structure required
in these two papers. In addition to the local dependence structure, we also exploit the
uncorrelatedness within W . This technique of exploiting the uncorrelatedness within
random variables was also used in [10] to obtain rates of convergence for the central
limit theorem for subgraph counts in random graphs.

We would like to mention that Goldstein and Rinott [11] studied the more general
multidimensional version of the graph coloring problem. Moreover, their result does not
require the number of colors to go to infinity or the coloring to be uniform. However,
they only considered regular graphs with degree of each vertex not growing too fast.
For example, their bound does not converge to 0 for complete graphs. We only consider
the case where the number of colors goes to infinity since it is a necessary condition to
ensure that the central limit theorem holds for all graphs with sufficiently large number
of edges, regardless of the graph structure and therefore universal.

In the next section, we give the proof of Theorem 1.1.

2 Normal approximation

Let G = (V (G), E(G)) be a simple undirected graph, where V (G) is the vertex set
and E(G) is the edge set. Let m = |E(G)| be the number of edges of G. We color each
vertex of G independently and uniformly at random with c ≥ 2 colors. Formally, label
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the vertices of G by {v1, . . . , v|V (G)|} and denote the color of the vertex vi by ξvi . Label
the edges of G by {1, . . . ,m}. For each edge i, we denote by vi1, vi2 the two vertices
it connects, i.e., i = (vi1, vi2). Without loss of generality, assume deg(vi1) ≤ deg(vi2)

where deg(v) denotes the degree of vertex v. Using the above notation, the standardized
number of monochromatic edges can be expressed as

W =

m∑
i=1

Xi :=

m∑
i=1

(I(ξvi1
= ξvi2

)− 1
c )√

m
c (1− 1

c )
. (2.1)

Observing that Xi and Xj are uncorrelated if i 6= j, we have EW = 0,Var(W ) = 1.
We will need the following lemmas in the proof of Theorem 1.1.

Lemma 2.1. We have the following bounds on the moments of Xi:

E|Xi| ≤
2√
mc

; EX2
i =

1

m
; E|Xi|3 ≤

√
c

m3/2
. (2.2)

Proof. The proof is elementary and therefore omitted.

Lemma 2.2 (Page 37 of [3]). For each edge i = (vi1, vi2), define di = deg(vi1) ∧ deg(vi2).
We have

m∑
i=1

di ≤
√

2m3/2. (2.3)

Lemma 2.3 (Lemma 2.2 of [4]). The number of triangles, denoted by #(∆), in G is
bounded by

√
2m3/2/3.

The following proposition is the key ingredient in proving Theorem 1.1.

Proposition 2.4. For any function f with bounded first and second derivatives, we have
with W defined in (2.1),

|Ef ′(W )−EWf(W )| ≤ ||f ′′||(3

2

√
c

m
+

5
√

2√
c

) + ||f ′||2 · 2
1/4

m1/4
(2.4)

where ||g|| := supx |g(x)| for any function g.

Proof. For each edge i = (vi1, vi2) with deg(vi1) ≤ deg(vi2), define the neighborhood
Ni ⊂ {1, . . . ,m} to consist of all edges connect to vi1. Let

Di =
∑
j∈Ni

Xj , Wi = W −Di.

Since the color of vi1 is independent of Wi, we have Xi is independent of Wi. Let U be
an independent random variable distributed uniformly in [0, 1]. By EXi = 0, EX2

i = 1/m,
the Taylor expansion and adding and subtracting corresponding terms, we have

Ef ′(W )−EWf(W ) =

m∑
i=1

EX2
i Ef

′(W )−
m∑
i=1

EXi[f(W )− f(Wi)]

=

m∑
i=1

EX2
i Ef

′(W )−
m∑
i=1

EXiDif
′(W − UDi)

=

m∑
i=1

EX2
i Ef

′(W )−
m∑
i=1

EX2
i f
′(W − UDi)−

m∑
i=1

EXi(Di −Xi)f
′(W − UDi)

=: R1 −R2 −R3 −R4

(2.5)
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where

R1 =

m∑
i=1

EX2
i Ef

′(W )−
m∑
i=1

EX2
i Ef

′(Wi),

R2 =

m∑
i=1

EX2
i [f ′(W − UDi)− f ′(Wi)],

R3 =

m∑
i=1

EXi(Di −Xi)[f
′(W − UDi)− f ′(W )],

R4 = Ef ′(W )

m∑
i=1

Xi(Di −Xi).

First of all, by the Taylor expansion,

|R1| ≤ ||f ′′||
m∑
i=1

EX2
i E|Di| ≤ ||f ′′||

( m∑
i=1

E|Xi|3 +

m∑
i=1

∑
j∈Ni\{i}

E|Xi|2E|Xj |
)
.

By (2.2) and (2.3),

m∑
i=1

E|Xi|3 ≤
√

c

m
,

m∑
i=1

∑
j∈Ni\{i}

E|Xi|2E|Xj | ≤
1

m

2√
mc

m∑
i=1

di ≤
2
√

2√
c
.

Therefore,

|R1| ≤ ||f ′′||(
√

c

m
+

2
√

2√
c

).

By the same argument and the fact that {Xj : j ∈ Ni} are jointly independent,

|R2| ≤
1

2
||f ′′||(

√
c

m
+

2
√

2√
c

).

For R3, by the Taylor expansion,

|R3| ≤
1

2
||f ′′||

m∑
i=1

E|Xi||Di−Xi||Di| ≤
1

2
||f ′′||

m∑
i=1

EX2
i |Di−Xi|+

1

2
||f ′′||

m∑
i=1

E|Xi||Di−Xi|2.

Again by (2.2), (2.3) and the fact that {Xj : j ∈ Ni} are jointly independent,

m∑
i=1

EX2
i |Di −Xi| ≤

1

m

2√
mc

m∑
i=1

di ≤
2
√

2√
c
,

m∑
i=1

E|Xi||Di −Xi|2 ≤
2√
mc

1

m

m∑
i=1

di ≤
2
√

2√
c
.

Therefore,

|R3| ≤ ||f ′′||
2
√

2√
c
.

Finally we bound |R4|. By the Cauchy-Schwartz inequality, the fact that {Xj : j ∈ Ni}
are jointly independent and EXi = 0,

|R4| ≤ ||f ′||

√√√√Var(

m∑
i=1

Xi(Di −Xi)) = ||f ′||

√√√√Var(

m∑
i=1

∑
j∈Ni\{i}

XiXj).
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Observe that if j ∈ Ni\{i} and l ∈ Nk\{k}, Cov(XiXj , XkXl) = 0 unless {i, j} = {k, l} or
{i, j, k, l} forms a triangle. For the case {i, j} = {k, l},

Cov(XiXj , XiXj) =
1

m2
.

For the case {i, j, k, l} forms a triangle, with distinct i, j, k,

Cov(XiXj , XjXk) = EXiX
2
jXk ≤

1

m2

where the last inequality is by straightforward calculation. Therefore, by (2.3), Lemma
2.3, and observing that each triangle in G gives rise to 3 ordered pairs of (i, j) such that
j ∈ Ni\{i}, we have,

|R4| ≤ ||f ′||

√√√√2

m∑
i=1

∑
j∈Ni\{i}

1

m2
+

3× 2

m2
#(∆) ≤ ||f ′||2 · 2

1/4

m1/4
.

The bound (2.4) follows from (2.5) and the bounds on |R1| − |R4|.

Proof of Theorem 1.1. By the definition of the Wasserstein distance, we have

dW (L(W ), N(0, 1)) = sup
||h′||≤1

|Eh(W )−Eh(Z)|.

where Z is a standard Gaussian random variable. Let fh be the solution to

f ′(w)− wf(w) = h(w)−Eh(Z) (2.6)

given by

fh(w) = ew
2/2

∫ w

−∞
{h(t)−Eh(Z)}e−t

2/2dt.

Replacing w by W and taking expectations on both sides of (2.6), we have

dW (L(W ), N(0, 1)) = sup
||h′||≤1

|Ef ′h(W )−EWfh(W )|. (2.7)

If ||h′|| ≤ 1, then it is know that (c.f. (2.14) of [13] and (2.13) of [9])

||f ′h|| ≤
√

2

π
, ||f ′′h || ≤ 2.

The bound (1.2) is proved by (2.7) and applying the above bounds in (2.4).

Remark 2.5. The following bound can be obtained following the proof of Theorem 1.1:

dW (L(W ), N(0, 1)) ≤ C0(

√
c

m
+

Km√
cm3/2

+
1

m1/4
)

where C0 is an absolute constant, c ≥ 2, Km =
∑m

i=1 di and di is defined in Lemma 2.2.
For fixed c ≥ 2, the above error bound goes to zero if m→∞ and Km = o(m3/2). This
rules out complete graphs. Theorem 1.3 of [4] shows that a sufficient and necessary
condition for the asymptotic normality with fixed c ≥ 2 is m → ∞ and N(C4) = o(m2)

where N(C4) is the number of 4-cycles.
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