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We give an explicit bound for the L1-distance between two additive processes of
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1 Introduction and main result

In this note we give an upper bound for the L1-distance between the laws induced
on the Skorokhod space by two additive processes observed until time T > 0. By the L1-
distance between two σ-finite measures µ1 and µ2 on (E,E ) such that µ1 is absolutely
continuous with respect to µ2 we mean

L1(µ1, µ2) = 2 sup
A∈E

∣∣µ1(A)− µ2(A)
∣∣ =

∫
E

∣∣∣∣dµ1

dµ2
− 1

∣∣∣∣dµ2.

Note that, with our definitions, the L1-distance is twice the so called total variation
distance.

Giving bounds for the L1-distance is a classical problem, which, in the last decades,
has been reinterpreted in more modern terms via Stein’s method (see, e.g., [14, 17, 16]).
This kind of problems arises in several fields such us Bayesian statistics, convergence
rates of Markov chains or Monte Carlo algorithms (see [7], Section 4 and the references
therein). However, to the best of our knowledge, results bounding the L1-distance
between laws on the Skorokhod space are much less abundant. In this setting other
kinds of distances have been privileged such as the Wasserstein-Kantorovich-Rubinstein
metric (see [5]). More relevant to our purposes is a result due to Memin and Shiryayev
[11] computing the Hellinger distance between the laws of any two processes with
independent increments. In particular this gives a bound for the L1-distance between
additive processes. In order to state their result let us fix some notation.

∗Laboratoire Jean Kuntzmann, Grenoble.
†Laboratoire Jean Kuntzmann, Grenoble. E-mail: Ester.Mariucci@imag.fr

http://dx.doi.org/10.1214/ECP.v19-3678
http://ecp.ejpecp.org/
http://arXiv.org/abs/1404.7779v2
http://hal.archives-ouvertes.fr/hal-00985588
mailto:Ester.Mariucci@imag.fr
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Let {xt} be the canonical process on the Skorokhod space (D,D) and denote by
P (f,σ2,ν) the law induced on (D,D) by an additive process having local characteris-
tics (f(·), σ2(·), ν). We will denote such a process by

(
{xt}, P (f,σ2,ν)

)
and we will write

P
(f,σ2,ν)
T for the restriction of P (f,σ2,ν) to the σ-algebra generated by {xs : 0 ≤ s ≤ T}

(see Section 2 for the precise definitions). Our purpose is to bound L1

(
P

(f1,σ
2
1 ,ν1)

T , P
(f2,σ

2
2 ,ν2

T

)
.

From now on we will assume that σ2
1(·) = σ2

2(·) = σ2(·), otherwise this distance is 2 (see,
e.g., [13, 8]). We also need to define the following quantities:

γνj =

∫
|y|≤1

yνj(dy), j = 1, 2; ξ2 =

∫ T

0

(f2(r)− f1(r)− (γν2 − γν1))2

σ2(r)
dr.

Theorem 1.1 (Memin and Shiryayev). Let
(
{xt}, P (f1,σ

2,ν1)
)

and
(
{xt}, P (f2,σ

2,ν2)
)

be
two additive processes with ν1 and ν2 Lévy measures such that ν1 is absolutely contin-
uous with respect to ν2 and satisfying:

H2(ν1, ν2) :=

∫
R

(√
dν1

dν2
(y)− 1

)2

ν2(dy) <∞. (1.1)

The following upper bounds hold, for any 0 < T <∞: If σ2 > 0 then

L1

(
P

(f1,σ
2,ν1)

T , P
(f2,σ

2,ν2)
T

)
≤

√
8

(
1− exp

(
− ξ2

8
− T

2
H2(ν1, ν2)

))
.

If σ2 = 0 and f1 − f2 ≡ γν1 − γν2 , then

L1

(
P

(f1,0,ν1)
T , P

(f2,0,ν2)
T

)
≤

√
8

(
1− exp

(
− T

2
H2(ν1, ν2)

))
.

Observe that (1.1) implies γνj < ∞, j = 1, 2. When σ2 = 0 it follows from Theorem

1.2 that, for example, L1

(
P

(γν1 ,0,ν1)
T , P

(γν2 ,0,ν2)
T

)
≤ 2
√
TL1(ν1, ν2).

The proof of Theorem 1.1, however, makes heavy use of general theory of semi-
martingales. This note originated from the research for a proof based only on classical
results for Lévy processes, Esscher-type transformations and the Cameron-Martin for-
mula. It turned out that this method, when applicable, gives sharper bound on the
L1-distance. More precisely, our main result is as follows.

Theorem 1.2. Let
(
{xt}, P (f1,σ

2,ν1)
)

and
(
{xt}, P (f2,σ

2,ν2)
)

be two additive processes
with ν1 and ν2 Lévy measures such that ν1 is absolutely continuous with respect to ν2

and satisfying:
L1(ν1, ν2) <∞.

Then, the following upper bounds hold, for any 0 < T <∞.
If σ2 > 0 then

L1

(
P

(f1,σ
2,ν1)

T , P
(f2,σ

2,ν2)
T

)
≤ 2 sinh

(
TL1(ν1, ν2)

)
+ 2

[
1− 2φ

(
− ξ

2

)]
.

If σ2 = 0 and f1 − f2 ≡ γν1 − γν2 , then

L1

(
P

(f1,0,ν1)
T , P

(f2,0,ν2)
T

)
≤ 2 sinh

(
TL1(ν1, ν2)

)
.

Remark that, in the case ν1 = ν2 = 0, i.e. where there are no jumps, the upper bound
in Theorem 1.2 is achieved. Indeed, an explicit formula for the L1-distance between
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Gaussian processes is well known. Denoting by φ the cumulative distribution function
of a normal random variable N (0, 1), we have, for any 0 < T <∞:

L1

(
P

(f1,σ
2,0)

T , P
(f2,σ

2,0)
T

)
= 2

(
1− 2φ

(
− 1

2

√∫ T

0

(f1(t)− f2(t))2

σ2
1(t)

dt

))
whenever the right-hand side term makes sense (see, e.g., [1]).

The reason for our interest in the L1-distance lies in the fact that it is a fundamental
tool in the Le Cam theory of comparison of statistical models ([9, 10]). More precisely,
the presented result will be needed in a forthcoming paper by the second author, es-
tablishing an equivalence result, in the Le Cam sense, for additive processes. Similar
estimations appear in many other results concerning the Le Cam ∆-distance. See for
example [1, 15, 2], where the L1-distance between Gaussian processes is computed or
[12, 4, 6] concerning diffusion processes without jumps. In recent years, however, there
is a growing interest in models with jumps due to their numerous applications in econo-
metrics, insurance theory or financial modelling. Because of that, it is useful to dispose
of simple formulas for estimating distances between such processes.

Theorem 1.2 is proved in Section 3. In Section 2 we collect some preliminary results
about additive processes that will play a role in the proof. Before that, we give some
examples of situations where our result can be applied. The choice of these examples
are inspired by the models exhibited in [3].

Example 1.3. (L1-distance between compound Poisson processes)
Let {X1

t } and {X2
t } be two compound Poisson processes on [0, T ] with intensities

λj > 0, j = 1, 2 and jump size distributions Gj; i.e. {Xj
t } is a Lévy process of character-

istic triplet
(
λj
∫
|y|≤1

yGj(dy), 0, λjGj
)
. Furthermore, let A be a subset of R and suppose

that Gj is equivalent to the Lebesgue measure restricted to A. Denote by gj the density
dGj
dLeb|A

; then, an application of Theorem 1.2 yields:

L1

(
X1, X2

)
≤ 2 sinh

(
T

∫
A

|λ1g1(y)− λ2g2(y)|dy
)
.

Example 1.4. (L1-distance between additive processes of jump-diffusion type)
An additive process of jump-diffusion type on [0, T ] has the following form:

Xt =

∫ t

0

f(r)dr +

∫ t

0

σ(r)dWr +

Nt∑
i=1

Yi, t ∈ [0, T ],

where {Wt} is a standard Brownian motion, {Nt} is the Poisson process counting the
jumps of {Xt}, and Yi are jumps sizes (i.i.d. random variables). Consider now the
additive processes of jump-diffusion type {Xj

t } having local characteristics (fj(·) +

λj
∫
|y|≤1

yGj(dy), σ2(·), λjGj), j = 1, 2 and suppose again that Gj is equivalent to the
Lebesgue measure restricted to some A ⊆ R. Letting gj denote the density of Gj as
above, we have:

L1

(
X1, X2

)
≤ 2 sinh

(
T

∫
A

|λ1g1(y)−λ2g2(y)|dy
)

+2
(

1−2φ
(
−

√∫ T

0

(f1(t)− f2(t))2

4σ2(t)
dt

))
.

Example 1.5. (L1-distance between tempered stable processes)
Let {X1

t } and {X2
t } be two tempered stable processes, i.e. Lévy processes on R with

no gaussian component and such that their Lévy measures νj have densities of the form

dνj
dLeb

(y) =
C−
|y|1+α

e−λ
j
−|y|Iy<0 +

C+

y1+α
e−λ

j
+yIy>0, j = 1, 2,
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for some parameters C± > 0, λj± > 0 and α < 2. Then the hypothesis (1.1) is satisfied
and Theorem 1.2 bounds the L1-distance by:

2 sinh

(
T

[
C+

∫ ∞
0

∣∣∣∣e−λ1
+y − e−λ

2
+y

y1+α

∣∣∣∣dy + C−

∫ 0

−∞

∣∣∣∣e−λ1
−|y| − e−λ

2
−|y|

|y|1+α

∣∣∣∣dy]).
2 Preliminary results

2.1 Additive processes

Definition 2.1. A stochastic process {Xt} = {Xt : t ≥ 0} on R defined on a probability
space (Ω,A,P) is an additive process if the following conditions are satisfied.

1. X0 = 0 P-a.s.

2. For any choice of n ≥ 1 and 0 ≤ t0 < t1 < . . . < tn, random variables Xt0 ,
Xt1 −Xt0 , . . . , Xtn −Xtn−1are independent.

3. There is Ω0 ∈ A with P(Ω0) = 1 such that, for every ω ∈ Ω0, Xt(ω) is right-
continuous in t ≥ 0 and has left limits in t > 0.

4. It is stochastically continuous.

Thanks to the Lévy-Khintchine formula, the characteristic function of any additive
process {Xt} can be expressed, for all u in R, as:

E
[
eiuXt

]
= exp

(
iu

∫ t

0

f(r)dr − u2

2

∫ t

0

σ2(r)dr − t
∫
R

(1− eiuy + iuyI|y|≤1)ν(dy)
)
, (2.1)

where f(·), σ2(·) are functions on L1[0, T ] and ν is a measure on R satisfying

ν({0}) = 0 and

∫
R

(|y|2 ∧ 1)ν(dy) <∞.

In the sequel we shall refer to (f(·), σ2(·), ν) as the local characteristics of the process
{Xt} and ν will be called Lévy measure. This data characterises uniquely the law of the
process {Xt}. In the case in which f(·) and σ(·) are constant functions, a process {Xt}
satisfying (2.1) is said a Lévy process of characteristic triplet (f, σ2, ν).

Let D = D([0,∞),R) be the space of mappings ω from [0,∞) into R that are right-
continuous with left limits. Define the canonical process x : D → D by

∀ω ∈ D, xt(ω) = ωt, ∀t ≥ 0.

Let Dt and D be the σ-algebras generated by {xs : 0 ≤ s ≤ t} and {xs : 0 ≤ s < ∞},
respectively (here, we use the same notations as in [18]).

Let {Xt} be an additive process defined on (Ω,A,P) having local characteristics
(f(·), σ2(·), ν). It is well known that it induces a probability measure P (f,σ2,ν) on (D,D)
such that

(
{xt}, P (f,σ2,ν)

)
is an additive process identical in law with ({Xt},P) (that is

the local characteristics of {xt} under P (f,σ2,ν) is (f(·), σ2(·), ν)). For all t > 0 we will

denote P (f,σ2,ν)
t for the restriction of P (f,σ2,ν) to Dt. In the case where

∫
|y|≤1

|y|ν(dy) <

∞, we set γν :=
∫
|y|≤1

yν(dy). Note that, if ν is a finite Lévy measure, then the process(
{xt}, P (γν ,0,ν)

)
is a compound Poisson process.

Here and in the sequel we will denote by ∆xr the jump of process {xt} at the time r:

∆xr = xr − lim
s↑r

xs.
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Definition 2.2. Consider
(
{xt}, P (f,σ2,ν)

)
and define the jump part of {xt} as

xd,νt = lim
ε→0

(∑
r≤t

∆xrI|∆xr|>ε − t
∫
ε<|y|≤1

yν(dy)

)
a.s. (2.2)

and its continuous part as
xc,νt = xt − xd,νt a.s. (2.3)

We now recall the Lévy-Itô decomposition, i.e. the decomposition in continuous and
discontinuous parts of an additive process.

Theorem 2.3 (See [18], Theorem 19.3). Consider
(
{xt}, P (f,σ2,ν)

)
and define {xd,νt } and

{xc,νt } as in 2.2 and 2.3, respectively. Then the following hold.

(i) There is D1 ∈ D with P (f,σ2,ν)(D1) = 1 such that, for any ω ∈ D1, xd,νt (ω) is defined
for all t ∈ [0, T ] and the convergence is uniform in t on any bounded interval,
P (f,σ2,ν)-a.s. The process {xd,νt } is a Lévy process on R with characteristic triplet
(0, 0, ν).

(ii) There is D2 ∈ D with P (f,σ2,ν)(D2) = 1 such that, for any ω ∈ D2, xc,νt (ω) is contin-
uous in t. The process {xc,νt } is an additive process on R with local characteristics
(f(·), σ2(·), 0).

(iii) The two processes {xd,νt } and {xc,νt } are independent.

2.2 Change of measure for additive processes

For the proof of Theorem 1.2 we also need some results on the equivalence of mea-
sures for additive processes. By the notation� we will mean “is absolutely continuous
with respect to”.

2.2.1 Case σ2 = 0

Theorem 2.4 (See [18], Theorems 33.1–33.2 and [19] Corollary 3.18, Remark 3.19).
Let

(
{xt}, P (0,0,ν̃)

)
and

(
{xt}, P (η,0,ν)

)
be two Lévy processes on R, where

η =

∫
|y|≤1

y(ν − ν̃)(dy) (2.4)

is supposed to be finite. Then P (η,0,ν)
t � P

(0,0,ν̃)
t for all t ≥ 0 if and only if ν � ν̃ and the

density dν
dν̃ satisfies ∫ (√

dν

dν̃
(y)− 1

)2

ν̃(dy) <∞. (2.5)

Remark that the finiteness in (2.5) implies that in (2.4). When P
(η,0,ν)
t � P

(0,0,ν̃)
t , the

density is

dP
(η,0,ν)
t

dP
(0,0,ν̃)
t

(x) = exp(Ut(x)),

with

Ut(x) = lim
ε→0

(∑
r≤t

ln
dν

dν̃
(∆xr)I|∆xr|>ε −

∫
|y|>ε

t

(
dν

dν̃
(y)− 1

)
ν̃(dy)

)
, P (0,0,ν̃)-a.s. (2.6)

The convergence in (2.6) is uniform in t on any bounded interval, P (0,0,ν̃)-a.s. Besides,
{Ut(x)} defined by (2.6) is a Lévy process satisfying EP (0,0,ν̃) [eUt(x)] = 1, ∀t ∈ [0, T ].
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2.2.2 Case σ2 > 0

Lemma 2.5. Let ν1 � ν2 be Lévy measures such that∫
R

(√
dν1

dν2
(y)− 1

)2

ν2(dy) <∞. (2.7)

Define

η =

∫
|y|≤1

y(ν1 − ν2)(dy), (2.8)

which is finite thanks to (2.7), and consider real functions f1, f2 and σ > 0 such that∫ T

0

(f1(r)− f2(r)− η
σ(r)

)2

dr <∞, T ≥ 0. (2.9)

Then, under P (f2,σ
2,ν2),

Mt(x) = exp
(
Ct(x) +Dt(x)

)
(2.10)

is a (Dt)-martingale for all t in [0, T ], where

Ct(x) :=

∫ t

0

f1(r)− f2(r)− η
σ2(r)

(dxc,ν2r − f2(r)dr)− 1

2

∫ t

0

(f1(r)− f2(r)− η
σ(r)

)2

dr,

Dt(x) := lim
ε→0

(∑
r≤t

ln
dν1

dν2
(∆xr)I|∆xr|>ε − t

∫
|y|>ε

(ν1 − ν2)(dy)

)
. (2.11)

The convergence in (2.11) is uniform in t on any bounded interval, P (f2,σ
2,ν2)-a.s.

Proof. The existence of the limit in (2.11) is guaranteed by (2.7) (see Theorem 2.4).
Since

∫ t
0

1
σ(r) (dxc,ν2r − f2(r)dr) is a standard Brownian motion under P (f2,σ

2,0), we have

that
∫ t
s
f1(r)−f2(r)−η

σ2(r) (dxc,ν2r − f2(r)dr) has normal law N
(

0,
∫ t
s

( f1(r)−f2(r)−η
σ(r)

)2
dr
)

, hence

E
P (f2,σ

2,0) [exp((Ct − Cs)(x))] = 1. Theorem 2.3 entails that {xc,ν2t } and {xd,ν2t } are in-

dependent under P (f2,σ
2,ν2). Moreover, the law of {Ct(x)} (resp. {Dt(x)}) is the same

under P (f2,σ
2,ν2) or P (f2,σ

2,0) (resp. P (f2,0,ν2) or P (0,0,ν2)). Further, using Theorem 2.4,
we know that {Dt(x)} is a Lévy process such thatEP (0,0,ν2) [exp(Dt−s(x))] = 1 for all s < t.
These facts together with the independence of the increments of ({xt}, P (f2,σ

2,ν2)) and
the stationarity of {Dt(x)} imply:

E
P (f2,σ

2,ν2) [Mt(x)|Ds] = E
P (f2,σ

2,ν2)

[
Ms(x) exp

(
(Ct − Cs)(x) + (Dt −Ds)(x)

)∣∣Ds]
= Ms(x)E

P (f2,σ
2,ν2) [exp((Ct − Cs)(x) + (Dt −Ds)(x))]

= Ms(x)E
P (f2,σ

2,0) [exp((Ct − Cs)(x))]EP (0,0,ν2) [exp((Dt −Ds)(x))]

= Ms(x)EP (0,0,ν2) [exp(Dt−s(x))]

= Ms(x).

Lemma 2.6. Suppose that the hypothesis (2.7) and (2.9) of Lemma 2.5 are satisfied.

Then, using the same notations as above, P (f1,σ
2,ν1)

t � P
(f2,σ

2,ν2)
t for all t and the density

is given by:

dP
(f1,σ

2,ν1)
t

dP
(f2,σ2,ν2)
t

(x) = Mt(x). (2.12)
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Proof. For s < t, we prove that

E
P (f2,σ

2,ν2)

[
exp(iu(xt − xs))

Mt

Ms
(x)|Ds

]
= E

P (f1,σ
2,ν1) [exp(iu(xt − xs)].

To that aim remark that, thanks again to Theorem 2.3:

E
P (f2,σ

2,ν2)

[
eiu(xt−xs)Mt(x)

Ms(x)

∣∣∣Ds]
= E

P (f2,σ
2,ν2)

[
eiu(x

c,ν2
t −xc,ν2s +x

d,ν2
t −xd,ν2s )Mt(x)

Ms(x)

∣∣∣Ds]
= E

P (f2,σ
2,0)

[
eiu(xt−xs)e(Ct−Cs)(x)

]
EP (0,0,ν2)

[
eiu(xt−xs)e(Dt−Ds)(x)

]
. (2.13)

Let us now compute the first factor of (2.13):

E
P (f2,σ

2,0)

[
eiu(xt−xs)e(Ct−Cs)(x)

]
= E

P (f1−·η,σ2,0)

[
eiu(xt−xs)

]
= exp

(
iu

∫ t

s

(f1(r)− η)dr − u2

2

∫ t

s

σ2(r)dr
)
.

In the first equality we used the Girsanov theorem, thanks to the fact that
∫ t

0
1

σ(r) (dxr −
f2(r)dr) is a Brownian motion under P (f2,σ

2,0), while the second one follows from (2.1).
We compute the second factor of (2.13) by means of Theorem 2.4 and another applica-
tion of (2.1):

EP (0,0,ν2)

[
eiu(xt−xs)e(Dt−Ds)(x)

]
= EP (0,0,ν2)

[
eiuxt−seDt−s(x)

]
= EP (η,0,ν1)

[
eiuxt−s

]
= exp

(
(t− s)

[
iuη −

∫
R

(1− eiuy + iuyI|y|≤1)ν1(dy)
])
.

Consequently:

E
P (f2,σ

2,ν2)

[
eiu(xt−xs)Mt(x)

Ms(x)

∣∣∣Ds] = E
P (f1,σ

2,ν1) [e
iu(xt−xs)] ∀0 ≤ s ≤ t. (2.14)

Fix t and define a probability measure Pt on Dt by Pt(B) = E
P (f2,σ

2,ν2) [MtIB ] for B ∈ Dt.
As a consequence of Lemma 2.5 and the Bayes rule, the two processes given by

(
{xs :

0 ≤ s ≤ t}, P (f1,σ
2,ν1)

t

)
and

(
{xs : 0 ≤ s ≤ t}, Pt

)
are identical. Indeed, by (2.14), both

have independent increments and the prescribed characteristic function. Consequently,
(2.12) holds.

3 Proof of Theorem 1.2

For the proof we will need the following three calculus lemmas.

Lemma 3.1. Let X be a random variable with normal law N (m,σ2). Then

E

∣∣∣1− eX ∣∣∣ = 2
[
φ
(
− m

σ

)
− φ

(
− m

σ
− σ

)]
,

where φ(x) = 1√
2π

x∫
−∞

e−
y2

2 dy.
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Proof. By definition we have

E

∣∣∣1− eX ∣∣∣ =
1√
2πσ

∫ ∞
−∞
|1− ex|e−

(x−m)2

2σ2 dx

=
1√
2πσ

(∫ 0

−∞
(1− ex)e−

(x−m)2

2σ2 dx+

∫ ∞
0

(ex − 1)e−
(x−m)2

2σ2 dx

)
.

To conclude, just split the sums inside the integrals and use the change of variables(
y = x−m

σ − σ
)
, resp.

(
y = x−m

σ

)
.

Lemma 3.2. For all x, y in R we have:

|1− ex+y| ≤ 1 + ex

2
|1− ey|+ 1 + ey

2
|1− ex|. (3.1)

Proof. By symmetry we restrict to x ≥ 0.

• x, y ≥ 0: In this case we have that |1 − ex+y| is exactly equal to 1+ex

2 |1 − ey| +
1+ey

2 |1− e
x|.

• x ≥ 0, y ≤ 0, x+ y ≥ 0: Then the member on the right hand side of (3.1) is equal to
ex − ey ≥ ex − 1 ≥ ex+y − 1.

• x ≥ 0, y ≤ 0, x + y ≤ 0: In this case the member on the right of (3.1) is equal to
ex − ey ≥ 1− ey ≥ 1− ex+y.

Lemma 3.3. With the same notations as in Theorem 1.2 and Lemma 2.5, we have:

E
P

(0,0,ν2)

T

[∣∣1− exp(DT (x))
∣∣] = E

P
(γν2 ,0,ν2)

T

[∣∣1− exp(DT (x))
∣∣] ≤ 2 sinh

(
T

∫
R

L1(ν1, ν2)

)
.

(3.2)

Proof. Thanks to Theorem 2.3 it is clear thatE
P

(0,0,ν2)

T

[
|1−exp(DT (x))|

]
= E

P
(γν2 ,0,ν2)

T

[
|1−

exp(DT (x))|
]
. In order to simplify the notations, let us introduce the quantities h+ =(

dν1
dν2

)I dν1
dν2
≥1 and h− =

(
dν1
dν2

)I dν1
dν2

<1 (i.e. h+, resp. h−, is identically 1 where dν1
dν2

< 1,

resp. where dν1
dν2
≥ 1). Let us define

A+(x) := lim
ε→0

(∑
r≤T

lnh+(∆xr)I|∆(xr)|>ε − T
∫
|y|>ε

(h−(y)− 1)ν2(dy)

)
,

A−(x) := lim
ε→0

(∑
r≤T

lnh−(∆xr)I|∆(xr)|>ε − T
∫
|y|>ε

(h+(y)− 1)ν2(dy)

)
.

Remark that both A+(x) and A−(x) have the same law under P (γν2 ,0,ν2)
T and P

(0,0,ν2)
T

(see Theorem 2.3), and that they are constructed in such a way that

DT (x) = A+(x) +A−(x).

Using Lemma 3.2 and the fact that A+(x) ≥ 0 and A−(x) ≤ 0 we get:

E
P

(γν2 ,0,ν2)

T

[
|1−DT (x)|

]
= E

P
(γν2 ,0,ν2)

T

∣∣1− exp(A+(x) +A−(x))
∣∣

≤ E
P

(γν2 ,0,ν2)

T

[
1 + eA

+(x)

2

∣∣∣1− eA−(x)
∣∣∣+

1 + eA
−(x)

2

∣∣∣1− eA+(x)
∣∣∣]

= E
P

(γν2 ,0,ν2)

T

[
eA

+(x) − eA
−(x)

]
.
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In order to compute the last quantity let us consider two more Lévy measures:

ν+ := ν2I dν1
dν2

<1
+ ν1I dν1

dν2
≥1
, ν− := ν2I dν1

dν2
≥1

+ ν1I dν1
dν2

<1
.

Notice that ν+, ν− are absolutely continuous with respect to ν2, with densities given
by h+, h−, respectively. Applying Theorem 2.4 to the pairs of measures (ν+, ν2) and
(ν−, ν2) we get

E
P

(0,0,ν2)

T

[
eA

+(x)
]

= exp

(
T

∫
R

(h+(y)− h−(y))ν2(dy)

)
,

E
P

(0,0,ν2)

T

[
eA
−(x)

]
= exp

(
T

∫
R

(h−(y)− h+(y))ν2(dy)

)
.

Then, recalling that both A+(x) and A−(x) have the same law under P (γν2 ,0,ν2)
T and

P
(0,0,ν2)
T we obtain:

E
P

(γν2 ,0,ν2)

T

[
eA

+(x) − eA
−(x)

]
= 2 sinh

(
T

∫
R

∣∣∣1− dν1

dν2
(y)
∣∣∣ν2(dy)

)
.

Proof of Theorem 1.2. Case σ2 > 0: With the same notations as in Lemma 2.5 and by
means of Lemma 2.6 one can write

L1

(
P

(f1,σ
2,ν1)

T , P
(f2,σ

2,ν2)
T

)
= E

P
(f2,σ

2,ν2)

T

∣∣1− exp(CT (x) +DT (x))
∣∣.

Now, using Lemma 3.2 and the independence between CT (x) and DT (x) (Theorem 2.3),
we obtain

L1

(
P

(f2,σ
2,ν2)

T , P
(f1,σ

2,ν1)
T

)
≤E

P
(f2,σ

2,ν2)

T

(
1 + eCT (x)

2

)
E
P

(f2,σ
2,ν2)

T

|1− eDT (x)|

+ E
P

(f2,σ
2,ν2)

T

(
1 + eDT (x)

2

)
E
P

(f2,σ
2,ν2)

T

|1− eCT (x)|.

We conclude the proof using Lemmas 3.3 and 3.1 together with the fact that

E
P

(f2,σ
2,ν2)

T

eCT (x) = 1 = E
P

(f2,σ
2,ν2)

T

eDT (x).

Case σ2 = 0: If f1−f2 ≡ γν1−γν2 , notice that, as the drift component of
(
{xt}, P (f1,0,ν1)

T

)
and

(
{xt}, P (f2,0,ν2)

T

)
is deterministic, we have

dP
(f1,0,ν1)
T

dP
(f2,0,ν2)
T

(x) =
dP

(f1−f2,0,ν1)
T

dP
(0,0,ν2)
T

(x) = DT (x)

with DT (x) as in (2.11). Theorem 2.4 allows us to write the L1-distance between

P
(f1,0,ν1)
T and P (f2,0,ν2)

T asE
P

(f2,0,ν2)

T

∣∣1−DT (x)
∣∣. We then obtain the bound 2 sinh(TL1(ν1, ν2))

by means of Lemma 3.3.
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