Last zero time or maximum time of the winding number of Brownian motions

Izumi Okada*

Abstract

In this paper we consider the winding number, $\theta(s)$, of planar Brownian motion and study asymptotic behavior of the process of the maximum time, the time when $\theta(s)$ attains the maximum in the interval $0 \leq s \leq t$. We find the limit law of its logarithm with a suitable normalization factor and the upper growth rate of the maximum time process itself. We also show that the process of the last zero time of $\theta(s)$ in $[0, t]$ has the same law as the maximum time process.

Keywords: Brownian motion; winding number; Last zero time; Maximum time.
AMS MSC 2010: Primary Primary 60J05, Secondary Secondary 60F10.
Submitted to ECP on April 27, 2014, final version accepted on September 8, 2014.

1 Introduction and Main results

In this paper we seek for an analogue of the arcsine law of the linear Brownian motion for the argument of a complex Brownian motion $\left\{W(t)=W_{1}(t)+i W_{2}(t): t \geq 0\right\}$ started at $W(0)=(1,0)$. Skew-product representation tells us that there exist two independent linear Brownian motions $\{B(t): t \geq 0\}$ and $\{\hat{B}(t): t \geq 0\}$ such that

$$
\begin{equation*}
W(t)=\exp (\hat{B}(H(t))+i B(H(t))) \text { for all } t \geq 0 \tag{1.1}
\end{equation*}
$$

where

$$
H(t)=\int_{0}^{t} \frac{d s}{|W(s)|^{2}}=\inf \left\{u \geq 0: \int_{0}^{u} \exp (2 \hat{B}(s)) d s>t\right\}
$$

which entails that B is independent of $|W|$ and hence of H, while $\log |W|$ is time change of \hat{B} (cf. e.g., [5], Theorem 7.26).

We let $\theta(t)=B(H(t))$ so that $\theta(t)=\arg W(t)$, which we call the winding number. Without loss of generality we suppose $\theta(0)=0$. The well-known result of Spitzer [9] states the convergence of $2 \theta(t) / \log t$ in law:

$$
\lim _{t \rightarrow \infty} P\left(\frac{2 \theta(t)}{\log t} \leq a\right)=\frac{1}{\pi} \int_{-\infty}^{a} \frac{d x}{1+x^{2}}
$$

It is shown in [1] that for any increasing function $f:(0, \infty) \rightarrow(0, \infty)$

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{\theta(t)}{f(t)}=0 \text { or } \infty \quad \text { a.s. } \tag{1.2}
\end{equation*}
$$

[^0]Last zero time or maximum time of the winding number of Brownian motions
according as the integral $\int^{\infty} \frac{1}{f(t) t} d t$ converges or diverges and

$$
\liminf _{t \rightarrow \infty} \frac{1}{f(t)} \sup \{\theta(s), 1 \leq s \leq t\}=0 \text { or } \infty \quad \text { a.s. }
$$

according as the integral $\int^{\infty} \frac{f(t)}{t(\log t)^{2}} d t$ diverges or converges; moreover, it is shown that the square root of the random time $H(t)$ is subjected to the same growth law as of θ in (1.2) and the lim inf behavior of $H(t)$ is also given. Another proof of (1.2) is given in [8]. Also, it is shown in [7]

$$
\liminf _{t \rightarrow \infty} \frac{\log \log \log t}{\log t} \sup \{|\theta(s)|, 1 \leq s \leq t\}=\frac{\pi}{4} \quad \text { a.s.. }
$$

Before advancing our result we recall the two arcsine laws whose analogues are studied in this paper. Let $\{B(t): t \geq 0\}$ be a standard linear Brownian motion started at zero and denote by Z_{t} the time when the maximum of B_{s} in the interval $0 \leq s \leq t$ is attained. Then, the process Z_{t} and the process $\sup \{s \in[0, t]: B(s)=0\}$, the last zero of Brownian motion in the time interval $[0, t]$, are subject to the same law, and according to Lévy's arcsine law the scaled variable Z_{t} / t is subject to the arcsin law. (cf. e.g., [5] Theorem 5.26 and 5.28)

In order to state the results of this paper we set

$$
\begin{equation*}
V(a)=\frac{4}{\pi^{2}} \iint_{0 \leq y \leq a x} \frac{d x}{1+x^{2}} \frac{d y}{1+y^{2}} \tag{1.3}
\end{equation*}
$$

We also define a random variable $M_{t} \in[0, t]$ by

$$
\theta\left(M_{t}\right)=\max _{s \in[0, t]} \theta(s)
$$

the time when $\theta(s)$ attains the maximum in the interval $0 \leq s \leq t$, and a random variable L_{t} by

$$
L_{t}=\sup \{s \in[0, t]: \theta(s)=0\}
$$

the last zero of $\theta(s)$ in $[0, t]$. According to Theorem 2.11 of [5] a linear Brownian motion attains its maximum at a single point on each finite interval with probability one. In view of the representation $\theta(t)=B(H(t))$, it therefore follows that the maximiser M_{t} is uniquely determined for all t with probability one.

Theorem 1.1. (a) For every $0<a<1$

$$
\lim _{t \rightarrow \infty} P\left(\frac{\log M_{t}}{\log t} \leq a\right)=V\left(\frac{a}{1-a}\right)
$$

(b) It holds that

$$
\left\{L_{t}: t \geq 0\right\}={ }_{d}\left\{M_{t}: t \geq 0\right\}
$$

Theorem 1.2. Let $\alpha(t)$ be a positive function that is non-increasing, tends to zero as $t \rightarrow \infty$ and satisfies

$$
\begin{equation*}
2 \alpha\left(t^{e}\right) \geq \alpha(t) \tag{1.4}
\end{equation*}
$$

and put

$$
I\{\alpha\}=\int^{\infty} \frac{\alpha(t)|\log \alpha(t)|}{t \log t} d t
$$

Last zero time or maximum time of the winding number of Brownian motions

Then, with probability one

$$
\liminf _{t \rightarrow \infty} \frac{M_{t}}{t^{\alpha(t)}}=\infty \text { or } 0
$$

according as the integral $I\{\alpha\}$ converges or diverges.
It may be worth noting that the distribution function $V(a /(1-a))(0 \leq a \leq 1)$ is expressed as

$$
V\left(\frac{a}{1-a}\right)=\int_{0}^{a} \frac{1}{2 u-1} \log \frac{u}{1-u} d u
$$

Indeed,

$$
V^{\prime}(c)=\int_{0}^{\infty} \frac{x d x}{\left(1+x^{2}\right)\left(1+c^{2} x^{2}\right)}=\frac{\log c}{c^{2}-1} \quad(c \neq 1)
$$

where

$$
\frac{d}{d a} V\left(\frac{a}{1-a}\right)=\frac{1}{(1-a)^{2}} V^{\prime}\left(\frac{a}{1-a}\right) \quad\left(a \neq \frac{1}{2}\right)
$$

and we find the density asserted above.

2 Proofs

2.1 Proof of Theorem 1.1

Let $\{N(t): t \geq 0\}$ be the maximum process of a winding number $\{\theta(t): t \geq 0\}$, i.e. the process defined by

$$
N(t)=\max _{s \in[0, t]} \theta(s)
$$

Lemma 2.1. If $a>0$, then $P(N(t)>a)=2 P(\theta(t)>a)=P(|\theta(t)|>a)$.
Proof. By reflection principle [5], (Theorem 2.21) it holds that for any $t>0$

$$
\max _{0 \leq l \leq t} B(l)={ }_{d}|B(t)| .
$$

By Skew-product representation $B(t)$ is independent of $|W(t)|$, hence since $B(l)$ is independent of $H(t)=\int_{0}^{t} \frac{d m}{|W(m)|^{2}}$, it holds

$$
\max _{0 \leq l \leq t} B(H(l))={ }_{d}|B(H(t))|,
$$

showing the assertion of the lemma.
Lemma 2.2. $\{N(t)-\theta(t): t \geq 0\}={ }_{d}\{|\theta(t)|: t \geq 0\}$.
Proof. According to Lévy's representation of the reflecting Brownian motion [5], (Theorem 2.34) we have

$$
\left\{\max _{0 \leq l \leq t} B(l)-B(t): t \geq 0\right\}={ }_{d}\{|B(t)|: t \geq 0\} .
$$

Hence as in the preceding proof,

$$
\left\{\max _{0 \leq l \leq t} B(H(l))-B(H(t)): t \geq 0\right\}={ }_{d}\{|B(H(t))|: t \geq 0\},
$$

as desired.

Last zero time or maximum time of the winding number of Brownian motions

Proof of Theorem 1.1. Lemma 2.2 together with Lemma 2.1 show that the process $\left\{M_{s}\right.$: $s \geq 0\}$ has the same law as $\left\{L_{s}: s \geq 0\right\}$, being nothing but the last zero of the process $\{N(t)-\theta(t): 0 \leq t \leq s\}$ for any s. So it remains to prove part (a). Fix $a \in(0,1)$. Set $T_{c}=\inf \{l \geq 0:|W(l)|=c\}$, for which we sometimes write $T(c)$ for typographical reasons. We first prove the upper bound. By (1.1) it holds that

$$
\begin{align*}
P\left(M_{t}<t^{a}\right) & =P\left(\max _{0 \leq u \leq t^{a}} B(H(u))>\max _{t^{a} \leq u \leq t} B(H(u))\right) \\
& =P\left(\max _{0 \leq u \leq t^{a}} B(H(u))-B\left(H\left(t^{a}\right)\right)>\max _{t^{a} \leq u \leq t} B(H(u))-B\left(H\left(t^{a}\right)\right)\right) \\
& =P\left(\max _{0 \leq u \leq t^{a}} B(H(u))-B\left(H\left(t^{a}\right)\right)>\max _{t^{a} \leq u \leq t} \tilde{B}(H(u))-\tilde{B}\left(H\left(t^{a}\right)\right)\right), \tag{2.1}
\end{align*}
$$

where \tilde{B} is a linear Brownian motion started at zero which is independent of W. Corresponding to (1.1) we can write $\tilde{W}(0)=(1,0), \arg \tilde{W}(l)=\tilde{B}(\tilde{H}(l)), \tilde{H}(l)=\int_{0}^{l} \frac{d m}{|\tilde{W}(m)|^{2}}$ with \tilde{W} independent of W, and put $\tilde{T}_{c}=\inf \{l \geq 0:|\tilde{W}(l)|=c\}$. By Lemma 2.1 and Lemma 2.2 we have $\max _{0 \leq u \leq t^{a}} B(H(u))-B\left(H\left(t^{a}\right)\right)={ }_{d} \max _{0 \leq u \leq t^{a}} B(H(u))$, and therefore

$$
\begin{align*}
& P\left(\max _{0 \leq u \leq t^{a}} B(H(u))-B\left(H\left(t^{a}\right)\right)>\max _{t^{a} \leq u \leq t} \tilde{B}(H(u))-\tilde{B}\left(H\left(t^{a}\right)\right)\right) \\
= & P\left(\max _{0 \leq u \leq t^{a}} B(H(u))>\max _{t^{a} \leq u \leq t} \tilde{B}(H(u))-\tilde{B}\left(H\left(t^{a}\right)\right)\right) . \tag{2.2}
\end{align*}
$$

By standard large deviation result (cf. e.g., [4], (11) and (12)), given $\epsilon>0$, it holds that for all sufficiently large t

$$
P\left(t^{a} \leq T_{t^{\frac{a+\epsilon}{2}}}, T_{t^{\frac{1-\epsilon}{2}}} \leq t\right) \geq 1-\epsilon .
$$

Therefore, we get

$$
\begin{align*}
& P\left(\max _{0 \leq u \leq t^{a}} B(H(u))>\max _{t^{a} \leq u \leq t} \tilde{B}(H(u))-\tilde{B}\left(H\left(t^{a}\right)\right)\right) \\
\leq & P\left(\max _{0 \leq u \leq T\left(t^{\frac{a+\epsilon}{2}}\right)} B(H(u))>\max _{T\left(t^{\frac{a+\epsilon}{2}}\right) \leq u \leq T\left(t^{\frac{1-\epsilon}{2}}\right)} \tilde{B}(H(u))-\tilde{B}\left(H\left(T_{t^{\frac{a+\epsilon}{2}}}\right)\right)\right)+\epsilon . \tag{2.3}
\end{align*}
$$

Also, strong Markov property tells us

$$
\int_{T_{t} \frac{a+\epsilon}{2}}^{T} t^{\frac{1-\epsilon}{2}} \frac{d m}{|W(m)|^{2}}={ }_{d} \int_{0}^{\tilde{T}_{t}} t^{\frac{1-a-2 \epsilon}{2}} \frac{d m}{|\tilde{W}(m)|^{2}}
$$

$$
\text { and } H\left(T_{t \frac{1-\epsilon}{2}}\right)-H\left(T_{t \frac{a+\epsilon}{2}}\right) \text { is independent of } H\left(T_{t \frac{a+\epsilon}{2}}\right) .
$$

So, if we set for $a, b<\infty$

$$
Q(a, b)=P\left(\max _{0 \leq u \leq T(a)} B(H(u))>\max _{0 \leq u \leq \tilde{T}(b)} \tilde{B}(\tilde{H}(u))\right),
$$

it holds that

$$
\begin{equation*}
P\left(\max _{0 \leq u \leq T\left(t^{\frac{a+\epsilon}{2}}\right)} B(H(u))>\max _{T\left(t^{\frac{a+\epsilon}{2}}\right) \leq u \leq T\left(t^{\frac{1-\epsilon}{2}}\right)} \tilde{B}(H(u))-\tilde{B}\left(H \left(T_{\left.\left.\left.t^{\frac{a+\epsilon}{2}}\right)\right)\right)=Q\left(t^{\frac{a+\epsilon}{2}}, t^{\frac{1-a-2 \epsilon}{2}}\right) . . ~ . ~}\right.\right. \text {. }\right. \tag{2.4}
\end{equation*}
$$

Note that by Skew-product representation $B(t)(\operatorname{resp} . \tilde{B}(t))$ is independent of $H\left(T_{t^{\frac{a+\epsilon}{2}}}\right)($ resp. $\tilde{H}\left(\tilde{T}_{t \frac{a+\epsilon}{2}}\right)$). Then, if $\tilde{\theta}(l)=\tilde{B}(\tilde{H}(l))$, by reflection principle we get

$$
\begin{align*}
Q\left(t^{\frac{a+\epsilon}{2}}, t^{\frac{1-a-2 \epsilon}{2}}\right) & =P\left(\left|B\left(H\left(T_{t^{\frac{a+\epsilon}{2}}}\right)\right)\right|>\left|\tilde{B}\left(\tilde{H}\left(\tilde{T}_{t^{\frac{1-a-2 \epsilon}{2}}}\right)\right)\right|\right) \\
& =P\left(\left|\theta\left(T_{t^{\frac{a+\epsilon}{2}}}\right)\right|>\left|\tilde{\theta}\left(\tilde{T}_{t^{\frac{1-a-2 \epsilon}{2}}}\right)\right|\right) . \tag{2.5}
\end{align*}
$$

Last zero time or maximum time of the winding number of Brownian motions

Moreover, since $\theta\left(T_{r}\right)$ follows the Cauchy distribution with parameter $|\log r|$ (cf. e.g., [6], Section 5, Exercise 2.16, [11], Proposition 2.3, and [12]), we get

$$
\begin{equation*}
Q\left(t^{\frac{a+\epsilon}{2}}, t^{\frac{1-a-2 \epsilon}{2}}\right)=P\left(\left|\theta\left(T_{t^{\frac{a+\epsilon}{2}}}\right)\right|>\left|\tilde{\theta}\left(\tilde{T}_{t^{\frac{1-a-2 \epsilon}{2}}}\right)\right|\right)=V\left(\frac{a+\epsilon}{1-a-2 \epsilon}\right) . \tag{2.6}
\end{equation*}
$$

Therefore, since ϵ is arbitrary, this gives the desired upper bound.
Next, we prove the lower bound. By standard large deviation result (cf. e.g., [4], (11) and (12)), given $\epsilon>0$, it holds that for all sufficiently large t

$$
\begin{equation*}
P\left(T_{t} \frac{a-\epsilon}{2} \leq t^{a}, t \leq T_{t \frac{1+\epsilon}{2}}\right) \geq 1-\epsilon \tag{2.7}
\end{equation*}
$$

Moreover, by repeating the argument in (2.3) and (2.4), we get

$$
\begin{aligned}
& P\left(\max _{0 \leq u \leq t^{a}} B(H(u))>\max _{t^{a} \leq u \leq t} \tilde{B}(H(u))-\tilde{B}\left(H\left(t^{a}\right)\right)\right) \\
\geq & Q\left(t^{\frac{a-\epsilon}{2}}, t^{\frac{1-a+2 \epsilon}{2}}\right)-\epsilon .
\end{aligned}
$$

Therefore, repeating the arguments in (2.1), (2.2), (2.5) and (2.6), we get

$$
\begin{aligned}
P\left(M_{t}<t^{a}\right) & =P\left(\max _{0 \leq u \leq t^{a}} B(H(u))>\max _{t^{a} \leq u \leq t} \tilde{B}(H(u))-\tilde{B}\left(H\left(t^{a}\right)\right)\right) \\
& \geq Q\left(t^{\frac{a-\epsilon}{2}}, t^{\frac{1-a+2 \epsilon}{2}}\right)-\epsilon \\
& =V\left(\frac{a-\epsilon}{1-a+2 \epsilon}\right)-\epsilon
\end{aligned}
$$

yielding the lower bound.

2.2 Proof of Theorem 1.2

Proof of Theorem 1.2. We first prove $\liminf _{t \rightarrow \infty} M_{t} / t^{\alpha(t)}=\infty$ if $I\{\alpha\}<\infty$. We may replace $\alpha(t)$ by $\alpha(t) \vee(\log \log t)^{-2}$. Indeed, if we set

$$
\tilde{\alpha}(t)=\alpha(t) 1\left\{\alpha(t)>(\log \log t)^{-2}\right\}+(\log \log t)^{-2} 1\left\{\alpha(t) \leq(\log \log t)^{-2}\right\}
$$

$I\{\tilde{\alpha}\}<\infty$. By standard large deviation result (cf. e.g., [4], (11) and (12)) for any $q<\infty$ there exist $0<c_{1}, c_{2}<\infty$ such that

$$
\begin{equation*}
P\left(q t^{4 \alpha(t)} \leq T\left(t^{4 \alpha(t)}\right), T\left(t^{\frac{1}{2}-\alpha(t)}\right) \leq t\right) \geq 1-c_{1} \exp \left(-t^{c_{2} \alpha(t)}\right) \tag{2.8}
\end{equation*}
$$

Therefore, by the same arguments as made for (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6) we infer that for any $q<\infty$

$$
\begin{aligned}
P\left(M_{t}<q t^{4 \alpha(t)}\right) & =P\left(\max _{0 \leq u \leq q t^{4 \alpha(t)}} B(H(u))-B\left(H\left(q t^{4 \alpha(t)}\right)\right)>\max _{q t^{4 \alpha(t)} \leq u \leq t} \tilde{B}(H(u))-\tilde{B}\left(H\left(q t^{4 \alpha(t)}\right)\right)\right) \\
& \leq Q\left(t^{4 \alpha(t)}, t^{\frac{1}{2}-5 \alpha(t)}\right)+c_{1} \exp \left(-t^{c_{2} \alpha(t)}\right) \\
& =V\left(\frac{4 \alpha(t)}{\frac{1}{2}-5 \alpha(t)}\right)+c_{1} \exp \left(-t^{c_{2} \alpha(t)}\right) .
\end{aligned}
$$

We set $t_{n}=\exp \left(e^{n}\right)$. Then, noting that $V(\alpha(n)) \asymp \alpha(n)|\log \alpha(n)|$, we deduce from (2.8) that for some $C<\infty$

$$
P\left(M_{t_{n}}<t_{n}^{4 \alpha\left(t_{n}\right)}\right) \leq C \alpha\left(t_{n}\right)\left|\log \alpha\left(t_{n}\right)\right|+c_{1} \exp \left(-t_{n}^{c_{2} \alpha\left(t_{n}\right)}\right)
$$

The sum of the right-hand side over n is finite since $\sum_{n=1}^{\infty} \alpha\left(t_{n}\right)\left|\log \alpha\left(t_{n}\right)\right|<\infty$ if $I\{\alpha\}<$ ∞, and $\alpha(t) \geq(\log \log t)^{-2}$ according to our assumption. Thus, by Borel-Cantelli lemma for any $q<\infty$, with probability one

$$
\begin{equation*}
\frac{M_{t_{n}}}{t_{n}^{4 \alpha\left(t_{n}\right)}}>q \quad \text { for almost all } n \tag{2.9}
\end{equation*}
$$

Last zero time or maximum time of the winding number of Brownian motions

Note that if we choose t such that $t_{n}<t \leq t_{n+1}$, then $t_{n}^{4 \alpha\left(t_{n}\right)}>t^{\alpha(t)}$ and from (2.9) it follows that $M_{t}>M_{t_{n}}>q t^{\alpha(t)}$ for all sufficiently large n. Hence,

$$
\liminf _{t \rightarrow \infty} \frac{M_{t}}{t^{\alpha(t)}}>q \quad \text { a.s.. }
$$

Since $q<\infty$ is arbitrary, this concludes the proof.
Next, we prove $\liminf _{t \rightarrow \infty} M_{t} / t^{\alpha(t)}=0$ assuming that $I\{\alpha\}=\infty$. For any $a<b<\infty$, we set

$$
\theta^{*}[a, b]=\max \left\{\theta(t): T_{a} \leq t \leq T_{b}\right\},
$$

and define $\bar{M}[a, b]$ via

$$
\theta(\bar{M}[a, b])=\theta^{*}[a, b] \quad \text { and } T_{a} \leq \bar{M}[a, b] \leq T_{b} .
$$

Recall we have set $t_{n}=\exp \left(e^{n}\right)$. For $q>0$, denote by A_{n} the event

$$
\bar{M}\left[q t_{n}^{\alpha\left(t_{n}\right)}, t_{n}\right]<T\left(q t_{n}^{2 \alpha\left(t_{n}\right)}\right) .
$$

Bringing in the set $D=\left\{n \in \mathbb{N}: \alpha\left(t_{n}\right)>\frac{1}{\left(\log \log t_{n}\right)^{2}}\right\}$, we shall prove $\sum_{n=1, n \in D}^{\infty} P\left(A_{n}\right)=$ ∞ and

$$
\begin{equation*}
\liminf _{n \in D, n \rightarrow \infty} \frac{\sum_{j=1, j \in D}^{n} \sum_{k=1, k \in D}^{n} P\left(A_{j} \cap A_{k}\right)}{\left(\sum_{j=1, j \in D}^{n} P\left(A_{j}\right)\right)^{2}}<\infty \tag{2.10}
\end{equation*}
$$

which together imply $P\left(\limsup _{n \in D, n \rightarrow \infty} A_{n}\right)=1$ according to the Borel-Cantelli lemma (cf. [10], p. 319 or [3]) and Kolmogorov's $0-1$ law. First we prove $\sum_{n=1, n \in D}^{\infty} P\left(A_{n}\right)=\infty$. Note that it holds that for $0<a<b<c$

$$
P\left(\theta^{*}[a, b]>\theta^{*}[b, c]\right)=P\left(\theta^{*}\left[1, \frac{b}{a}\right]>\theta^{*}\left[\frac{b}{a}, \frac{c}{a}\right]\right) .
$$

Thus,

$$
P\left(\theta^{*}\left[q t^{\alpha(t)}, q t^{2 \alpha(t)}\right]>\theta^{*}\left[q t^{2 \alpha(t)}, t\right]\right)=P\left(\theta^{*}\left[1, t^{\alpha(t)}\right]>\theta^{*}\left[t^{\alpha(t)}, \frac{1}{q} t^{1-\alpha(t)}\right]\right)
$$

Therefore, we get by the same argument as employed for (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6)

$$
\begin{align*}
& P\left(\bar{M}\left[q t^{\alpha(t)}, t\right]<T\left(q t^{2 \alpha(t)}\right)\right) \\
= & P\left(\theta^{*}\left[1, t^{\alpha(t)}\right]>\theta^{*}\left[t^{\alpha(t)}, \frac{1}{q} t^{1-\alpha(t)}\right]\right) \\
= & P\left(\max _{u \leq T\left(t^{\alpha(t)}\right)} B(H(u))-B\left(H\left(T\left(t^{\alpha(t)}\right)\right)\right)>\max _{T\left(t^{\alpha(t)}\right) \leq u \leq T\left(\frac{1}{q} t^{1-\alpha(t)}\right)} \tilde{B}(H(u))-\tilde{B}\left(H\left(T\left(t^{\alpha(t)}\right)\right)\right)\right) \\
= & Q\left(t^{\alpha(t)}, \frac{1}{q} t^{1-2 \alpha(t)}\right) \\
= & V\left(\frac{\alpha(t)}{1-2 \alpha(t)-(\log t \log q)^{-1}}\right) \tag{2.11}
\end{align*}
$$

Moreover, using $V(\alpha(n)) \asymp \alpha(n)|\log \alpha(n)|$ again, we get for some $C>0$

$$
P\left(A_{n}\right) \geq C \alpha\left(t_{n}\right)\left|\log \alpha\left(t_{n}\right)\right|
$$

It holds that $\sum_{n \in D} \alpha\left(t_{n}\right)\left|\log \alpha\left(t_{n}\right)\right|=\infty$ if $I\{\alpha\}=\infty$, since $\sum_{n \notin D} \alpha\left(t_{n}\right)\left|\log \alpha\left(t_{n}\right)\right|<\infty$. So we get $\sum_{n \in D} P\left(A_{n}\right)=\infty$.

Last zero time or maximum time of the winding number of Brownian motions

Next we prove (2.10). We only need to consider $\sum_{j=1, j \in D} \sum_{k<j, k \in D} P\left(A_{j} \cap A_{k}\right)$. First we consider $\sum_{j=1, j \in D}^{n} \sum_{k \in R_{k, j}, k \in D} P\left(A_{j} \cap A_{k}\right)$ where $R_{k, j}=\left\{k: q t_{j}^{\alpha\left(t_{j}\right)} \geq t_{k}\right\}$. Note that for $a<b \leq c<d<\infty$

$$
\begin{equation*}
\bar{M}[a, b]-T_{a} \text { is independent of } \bar{M}[c, d]-T_{c} . \tag{2.12}
\end{equation*}
$$

Then, since $q t_{k}^{\alpha\left(t_{k}\right)}<t_{k} \leq q t_{j}^{\alpha\left(t_{j}\right)}<t_{j}$ when k is satisfied with $q t_{j}^{\alpha\left(t_{j}\right)} \geq t_{k}$, it holds that

$$
\begin{equation*}
P\left(A_{j} \cap A_{k}\right)=P\left(A_{j}\right) P\left(A_{k}\right) . \tag{2.13}
\end{equation*}
$$

So, next we consider the case $q t_{j}^{\alpha\left(t_{j}\right)}<t_{k}$. We denote by $A_{k, j}^{\prime}$ the event $\bar{M}\left[q t_{k}^{\alpha\left(t_{k}\right)}, q t_{j}^{\alpha\left(t_{j}\right)}\right]<$ $T\left(q t_{k}^{2 \alpha\left(t_{k}\right)}\right)$. Note that when k is satisfied with $q t_{j}^{\alpha\left(t_{j}\right)}<t_{k}$, we have $A_{k} \subset A_{k, j}^{\prime}$, and by (2.12) $P\left(A_{j} \cap A_{k, j}^{\prime}\right)=P\left(A_{j}\right) P\left(A_{k, j}^{\prime}\right)$. Then, since by the same argument for (2.11) $P\left(A_{k, j}^{\prime}\right)=V\left(\frac{e^{k} \alpha\left(t_{k}\right)}{e^{j} \alpha\left(t_{j}\right)-e^{k} \alpha\left(t_{k}\right)}\right)$, we get

$$
\begin{equation*}
P\left(A_{j} \cap A_{k}\right) \leq P\left(A_{j} \cap A_{k, j}^{\prime}\right)=P\left(A_{j}\right) P\left(A_{k, j}^{\prime}\right)=P\left(A_{j}\right) V\left(\frac{e^{k} \alpha\left(t_{k}\right)}{e^{j} \alpha\left(t_{j}\right)-e^{k} \alpha\left(t_{k}\right)}\right) \tag{2.14}
\end{equation*}
$$

Furthermore, since $\alpha\left(t_{k}\right) \leq 2 \alpha\left(t_{k+1}\right)$ due to the assumption (1.4), we get

$$
\begin{align*}
& \quad \sum_{k \in R_{k, j}^{c}, k<j, k \in D} P\left(A_{k, j}^{\prime}\right)=\sum_{k \in R_{k, j}^{c}, k<j, k \in D} V\left(\frac{e^{k} \alpha\left(t_{k}\right)}{e^{j} \alpha\left(t_{j}\right)-e^{k} \alpha\left(t_{k}\right)}\right) \\
& \leq \sum_{k=1}^{\infty} V\left(\frac{2^{k}}{e^{k}-2^{k}}\right) \leq C \sum_{k=1}^{\infty}\left(\frac{e}{2}\right)^{-k} \leq C^{\prime}, \tag{2.15}
\end{align*}
$$

where $R_{k, j}^{c}=\left\{k: q t_{j}^{\alpha\left(t_{j}\right)}<t_{k}\right\}$. So, by (2.14) and (2.15) we get $\sum_{j=1, j \in D}^{n} \sum_{k \in R_{k, j}^{c}, k \in D} P\left(A_{j} \cap\right.$ $\left.A_{k}\right) \leq C \sum_{j=1, j \in D}^{n} P\left(A_{j}\right)$. Combined with (2.13) this shows

$$
\sum_{j=1, j \in D}^{n} \sum_{k \leq j, k \in D}^{n} P\left(A_{j} \cap A_{k}\right) \leq \sum_{j=1, j \in D}^{n} \sum_{k \leq j, k \in D}^{n} P\left(A_{j}\right) P\left(A_{k}\right)+C^{\prime} \sum_{j=1, j \in D}^{n} P\left(A_{j}\right),
$$

completing the proof of (2.10). Therefore, we can conclude that with probability one

$$
\begin{equation*}
\bar{M}\left[q t_{n}^{\alpha\left(t_{n}\right)}, t_{n}\right]<T\left(q t_{n}^{2 \alpha\left(t_{n}\right)}\right) \quad \text { infinitely often for } n \in D . \tag{2.16}
\end{equation*}
$$

On the other hand, by standard large deviation result (cf. e.g., [4], (11) and (12)) there exist $0<c_{3}, c_{4}<\infty$ such that

$$
P\left(T\left(q t^{2 \alpha(t)}\right) \leq q t^{5 \alpha(t)}, t^{\frac{1}{4}} \leq T_{t}\right) \geq 1-c_{3} \exp \left(-c_{4} t^{\alpha(t)}\right)
$$

Moreover, $\sum_{n \in D} c_{3} \exp \left(-c_{4} t_{n}^{\alpha\left(t_{n}\right)}\right)<\infty$. Then, by Borel-Cantelli lemma it holds that with probability one

$$
\begin{equation*}
T\left(q t_{n}^{2 \alpha\left(t_{n}\right)}\right) \leq q t_{n}^{5 \alpha\left(t_{n}\right)}, \quad M_{t_{n}^{\frac{1}{4}}} \leq \bar{M}\left[q t_{n}^{\alpha\left(t_{n}\right)}, t_{n}\right], \quad \text { for almost all } n \in D . \tag{2.17}
\end{equation*}
$$

So, by (2.16) and (2.17) it holds that
$\liminf _{t \rightarrow \infty} \frac{M_{t}}{q t^{20 \alpha(t)}} \leq \liminf _{n \in D, n \rightarrow \infty} \frac{M_{t_{n}}}{q t_{n}^{20 \alpha\left(t_{n}\right)}} \leq \liminf _{n \in D, n \rightarrow \infty} \frac{M_{t_{n}^{\frac{1}{n}}}}{q t_{n}^{5 \alpha\left(t_{n}\right)}} \leq \liminf _{n \in D, n \rightarrow \infty} \frac{\bar{M}\left[q t_{n}^{\alpha\left(t_{n}\right)}, t_{n}\right]}{T\left(q t_{n}^{2 \alpha\left(t_{n}\right)}\right)}<1 \quad$ a.s..
The proof finishes since $q>0$ is arbitrary by replacing $\alpha(t)$ by $\frac{\alpha(t)}{20}$.

Last zero time or maximum time of the winding number of Brownian motions

References

[1] Bertoin,J. and Werner,W.: Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process. Séminaire de Probabilités XXVIII Lecture Notes in Mathematics Volume 1583, (1994), 138-152. MR-1329109
[2] Durrett,R.: Probability theory and examples. (2010) (Cambridge Series in Statistical and Probabilistic Mathematics) MR-2722836
[3] Lamperti, J.: Wiener's test and Markov chains. J. Math. Anal. appl. 6, (1963), 58-66. MR0143258
[4] Lawler,G.F.: Hausdorff dimension of cut points for Brownian motion. Electronic Journal of Probability 1, (1996), 2. MR-1386294
[5] Mörters,P. and Peres,Y.: Brownian motion. (2010) (Cambridge Series in Statistical and Probabilistic Mathematics) MR-2604525
[6] Revuz,D and Yor,M.: Continuous martingale and Brownian motion. (1991) (Grundlehren der mathematischen Wissenschaften) MR-1083357
[7] Shi,Z.: Liminf behaviours of the windings and Lévy's stochastic areas of planar Brownian motion. Séminaire de Probabilités XXVIII, ed. by J. Azéma, M. Yor, P.A.Meyer. Lecture Notes in Mathematics, vol. 1583 (Springer, Berlin), (1994), 122-137. MR-1329108
[8] Shi,Z.: Windings of Brownian motion and random walks in the plane. Ann. Probab., 26, n.1, (1998), 112-131. MR-1617043
[9] Spitzer,F.: Some theorems conserning 2-dimensinal Brownian motion. Trans. Amer. Math. Soc. 87, (1958), 187-197. MR-0104296
[10] Spitzer,F.: Principles of random walk. (1964), Van Nostrand, Princeton, NJ. MR-0171290
[11] Vakeroudis,S.: On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity. SIAM Theory of Probability and its Applications, Vol. 56 (3), (2012), 485-507 (or in Teor. Veroyat-nost. i Primenen., Vol. 56 (3), (2011), 566-591). MR-3136465
[12] Williams,D.: A Simple Geometric Proof of Spitzer's Winding Number Formula for 2dimensional Brownian Motion. preprint, (1974), University College, Swansea.

Acknowledgments. The author would like to thank Professor Kôhei Uchiyama who provided the invaluable comments.

[^0]: *Department of Mathematics, Tokyo Institute of Technology, Japan. E-mail: okada.i.aa@m.titech.ac.jp

